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Abstract
This study investigates a new affine term structure model that uses machine learning methods in
addition to traditional principal component and latent factor analysis. Prior asset pricing models
have limitations due to small sample sizes, computational complexity, and lack of economic
implications, to which the proposed model provides a partial solution. We use a regression
method and PCA to construct the model with five yield factors and 124 macroeconomic
variables. The empirical results support the model’s robust yield fitting and predictability for
future excess returns. The model’s predictability further improves as the number of factors
increases. Using Lasso for data augmentation, we exemplify how the model can use machine
learning to expand data infinitely for greater accuracy in predicting bond returns. We also use
Lasso when selecting the most relevant macroeconomic variables to be used in the prediction of
bond returns. Our findings extend the literature by showing how to apply machine learning
without breaching the no-arbitrage rule and provide fixed income managers with a convenient
tool to predict bond returns while generating economic interpretations.
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I. Introduction

Early asset pricing models, such as the capital asset pricing model (CAPM) (Sharpe, 1964) and

the Intertemporal CAPM (ICAPM) (Merton, 1973), focus on predicting asset returns using

observable factors. Although such models provide statistical and systematic means to predict

asset returns for academics and practitioners, using observable factors limits the scope of

investigation or interpretation of the results. In 1964, the arbitrage pricing theory (APT) (Ross,

1976) introduces the use of latent factors, building the link between returns and risk premia

although latent factor analysis also faces shortcomings. For example, while macroeconomic

variables can be used as inputs in model construction, the results cannot be linked to specific

economic implications (Bai & Wang, 2016).

Over the past decades, despite such shortcomings, the traditional factor models have

gained popularity among academics and practitioners in predicting asset returns, especially for

stock investment. However, the models can hardly be used for predicting bond returns. It is

mainly because bonds are issued in different tranches and maturities, which affect the price

movement of different bonds upon issuance. This highlights the importance of investigating a

yield curve, which plots the cross-sectional relationship between maturities and yields of bonds

in a given time. Therefore, academics have developed affine models to explore this relationship

and predict future bond returns in particular. For example, Litterman and Scheinkman (1991) use

a principal component analysis (PCA) and find three principal components, such as level, slope,

and curvature factors, as main determinants of US bond returns. Since then, affine models have

been the main focus of bond pricing studies, some of which characterize affine models using

latent factors (Duffie & Kan, 996), investigate an additional return-forecasting factor as the
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fourth principal component (Cochrane & Piazzesi, 2008), and use a computationally simple

regression method to construct an affine model (Adrian, Crump, & Moench, 2013).

Nevertheless, due to the computational burden and restrictions imposed on affine models,

existing studies seldom (i) extend the number of factors to find the most precise specification for

the model or (ii) explore innovative methods to extend the model’s use. Besides, (iii) a small

sample bias also exists. In terms of the number of factors, asset pricing models for equities

explore up to 316 factors (Harvey, Liu, and Zhu, 2016) to investigate its return predictability. For

bonds, the most up-to-date innovation for affine term structure model literature may be the

discovery of the five principal factors through the regression method (Adrian, et al., 2013).

Affine models before the ACM model primarily used maximum likelihood methods to estimate

principal factors (Chen & Scott, 1993). By using regressions, the ACM model incorporates

higher-order factors such as the fourth and fifth principal components without compromising the

model’s predictive power or increasing computational difficulty. However, the other two

problems still remain, that is, the model’s inability to provide economic interpretations and a

small sample bias.

For innovative methods, some existing studies investigate the use of machine learning in

asset pricing model construction even for bonds (Bianchi, Buchner, & Tamoni, 2020). Machine

learning methods can also be used to address the small sample issue. However, studies that

utilize machine learning for asset pricing are subject to criticism such that they seldom base their

investigation on important asset pricing assumptions, i.e., no arbitrage. The use of machine

learning in asset pricing is being extensively discussed by academics and practitioners (Israel et

al., 2020), but how to address it while adhering to the traditional assumption of no arbitrage, for

example, may be another challenge that needs to be solved first.

3



To address such concerns and fill the gaps in the literature, this study investigates a new

asset pricing model that has the following advantages. First, the new model can incorporate an

infinite number of factors without compromising the model’s predictability or increasing

computational difficulty. To do so, we combine machine learning and regression methods in

model construction as well as empirical tests. The regression method we use in this study can be

considered a variant of the ACM model.

Furthermore, the proposed model allows the incorporation of an extensive pool of

macroeconomic variables. This makes simulations easier, enabling the interpretation of the

results with specific economic data the users choose to apply. Macroeconomic variables are

essential for predicting bond returns. Prior studies not only shed light on the significant effect of

the changes in macroeconomic variables on bond returns (Estrella & Hardouvelis, 1991) but also

investigate specific types of macroeconomic variables that affect bond returns (Ludvigson & Ng,

2009; Wachter, 2006); however, the investigation of the influence of macroeconomic variables

has been limited in scope due to the prior models’ limited capacity to accommodate a large

number of factors. We show how to alleviate this issue using the Least Absolute Shrinkage and

Selection Operator (Lasso) in addition to PCA.

Lastly, the proposed model easily accommodates machine learning. Finance and

economic researchers use high-dimensional data sets characterized by N, a large cross-sectional

dimension, and T, a large time dimension. By utilizing machine learning, one can expand the

data size by increasing N in particular without limitation. In this study, we exemplify the use of

Lasso to expand data and confirm the original results obtained through the ordinary least square

(OLS) regressions. Autoencoder, a deep learning model, is one of the other options that can be

used along with Lasso and PCA to improve the performance of our model.
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In terms of methodology, we first show how to construct our data and model. We conduct

PCA on the combined data of US treasury data and a pool of macroeconomic factors to generate

latent pricing factors for model construction. The model generates forward rates, which are

compared to the observed forward rates during the sample period of 1971:8 to 2021:2 to confirm

fitted yields. We run regressions with four to 129 factors, including 124 macroeconomic

variables, to investigate the model’s forecasting power for future bond returns. To check the

robustness of the results, we run Lasso regression with three different specifications using

in-sample and out-of-sample data. In the process, we describe how to expand data size infinitely

using Lasso. The results confirm that the predictive power of the model remains intact or even

improves for intermediate maturities in particular.

Throughout the process, we compare the yield fitting and predictability of our model to

those of the ACM model with four or five factors. The outcomes provide strong evidence

supporting the predictability of our proposed model for predicting future bond returns with

minimal root mean square errors (RMSEs) among other measures that we present alongside.

Finally, we perform Lasso in addition to PCA to narrow the list of macroeconomic variables to

contain only the relevant ones. The final list contains 23 macroeconomic variables out of 124

variables, which would allow us to interpret the results with more specific economic

implications.

Our contributions to the literature are summarized as follows. First, we extend the asset

pricing literature by introducing an innovative model, yet strictly grounded on the traditional

assumption of asset pricing, i.e., no arbitrage. We propose that the model can help mitigate the

problems associated with the computational complexity, limited use of factors, and lack of

economic meanings of the existing factor models.
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Second, we marginally add to the academic discussion regarding the use of machine

learning in asset pricing by proposing a model that has flexibility in accommodating machine

learning. We show how the use of machine learning can help expand underlying data and

incorporate any number of macroeconomic variables to increase the predictability of the model.

When predicting bond returns, for example, fixed income managers tend to consider the

movement of a set of macroeconomic variables they consider important and investigate their

influence on returns. Since using latent factors, one cannot pinpoint exactly what macroeconomic

variables contribute to the results; however, one can at least test different sets of variables with

much flexibility and generate economic meanings using our model.

The rest of the paper is organized as follows: Section 2 discusses affine models in general

and introduces our new model. Section 3 explains the data and empirical methods used in our

study. Section 4 reports the empirical results and Section 5 concludes.

2. Affine models

2.1. Literature review

The proposed model can be considered a variant of that invented by Adrian, Crump, and Moench

(ACM) (2013) in the sense that both models use a regression method. Using a regression method

entails a number of advantages over other methods such as maximum likelihood (ML) methods,

which make distributional assumptions and computation more difficult.

Traditional factor analysis well establishes that the level, slope, and curvature factors

drive yields. Cochrane and Pizzesi (2009) discover the single return-forecasting factor next to the

traditional three factors, followed by Adrian, et al. (2013) who investigate an affine model with
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even higher order factors; however, compared to the asset pricing literature on equities, the asset

pricing literature on fixed income assets has more room for development.

One of the reasons is related to the complex nature of bond pricing due to the wide array

of features that make each bond unique. Specifically, besides the characteristics specific to

issuers, bond maturities or other covenants such as collateralizations or call options affect bond

pricing to different degrees. More importantly, the treasury yield curve at the time of issuance is

a major determining factor in bond pricing while changes in macroeconomic factors significantly

determine the yield curve. For example, bond risk premia are significantly driven by shocks to

inflation and aggregate consumption (Brandt and Wang, 2003; Wachter, 2006) or even

counter-cyclical movements caused by macroeconomic uncertainty (Bansal & Yaron, 2004;

Bansal et al., 2005). Ludvigson and Ng (2009), who use more than a hundred macroeconomic

indicators to investigate the effect of cyclical fluctuations of them in bond pricing, criticize that

existing affine models are constructed with non-cyclical financial factors only, which does not

truly reflect reality.

Nevertheless, affine models up to date can hardly be used to link economic

interpretations to their outcomes mainly because they depend on latent factors. The use of latent

factors for bond pricing simplifies the process of model construction but also makes it difficult to

interpret the results from an economic perspective. To overcome such problems, one of the most

simple ways would be to make it computationally easier and faster to test different sets of

macroeconomic variables so that users of the model can find the best possible set of

macroeconomic variables for predicting future bond returns. Our proposed model makes these

possible and allows machine learning methods to be employed without foregoing the

no-arbitrage rule.
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2.2. The proposed model

This study examines how to construct and test an affine model with a large number of

macroeconomic variables as inputs in addition to traditional yield factors. As follows, we

describe our empirical strategy step by step as follows. A complete description of the model is

included in Appendix I.

Step 1: Normalize Liu and Wu’s (2021) yield curve data for the mean value of zero and

the standard deviation of one before performing PCA to generate five yield factors.

Step 2: Download the monthly macroeconomic data from FRED. Then, use the tcode

from McCracken and Ng (2015) for data transformation. Following the method described

in Appendix II, transform the unbalanced panel of data to a balanced one.

Step 3: Perform another PCA on the obtained 127 macroeconomic variables and exclude

principal components that have eigenvalues smaller than 2e-16. (If eigenvalues are too

small, one cannot obtain the inverse matrix of the covariance matrix when generating dzv,t

in equation (3) later.).

Step 4: Using the final data set, perform a regression analysis.

Start with vt+1, a K-dimensional vector of state variables, i.e., five yield factors and

macroeconomic variables at time t+1. The equation is as follows:
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From this, generate dvt+1 and dzt, t, which denotes the source of risk, using the following

equations:

and

is the covariance matrix of dvt, and is equivalent to I (since dvt is obtained as a

result of conducting PCA on the time-series data).

Step 5: Collect the sigma and beta, the regression coefficients, using the following

equations.

and ..

Step 6: Formulate a regression equation (1), which is rearranged as equation (2) as

follows:

(1)

(2) .

denotes the price of risks and is a linear function of risks, . In equation (2),

is a constant; therefore,

(3) .

Step 7:  Use equation (3) to obtain for each t in regression analysis. This completes an

arbitrage-free affine term structure model with a large number of macro-financial factors.

3. Data
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We use Liu and Wu’s (2021) yield curve data set, which is also used by Bianchi, Buchner, and

Tamoni (2020) who investigate bond risk premia using machine learning.1 Using the data, we use

regression and PCA methods to estimate up to 129 pricing factors, including five yield factors

and 124 macroeconomic variables.

For macroeconomic variables, we collect monthly macroeconomic data from the Federal

Reserve Economic Data (FRED) database.2 We use tcode to transform the data before generating

macroeconomic factors in reference to the method of McCracken and Ng (2015). Due to frequent

missing values, more specifically, we use the five-step procedure to balance the unbalanced

panel of macroeconomic variables (see Appendix II for details).

We start with the pool of 127 macroeconomic variables to collect macroeconomic data,

following Ludvigson and Ng (2009). PCA is used to generate 127 principal components but

three of the 127 factors have too small eigenvalues to find the inverse of the matrix; therefore, a

final set of 124 factors is used for in-sample tests and a set of 121 factors for out-of-sample tests

in addition to five yield factors. This makes the total number of factors 129 and 126 for

in-sample and out-of-sample tests, respectively. The list of 124 macroeconomic variables is

attached in Appendix III.

Table 1 describes summary statistics of the model-generated yields and observed yields.

The sample period is from 1971:8 to 2021:2 for all the following figures and tables in this paper

unless otherwise stated.

###Insert Table 1 about here###

The estimates in Table 1 show the fitting of the model-implied yields during the in-sample

period. The results support that increasing the number of factors from five to 129 enhances the

2 Source: https://research.stlouisfed.org/econ/mccracken/fred-databases/
1 Source: https://sites.google.com/view/jingcynthiawu/yield-data
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fitting of the yields. The statistics of the model-implied yields generated by using 129 factors are

indeed nearly identical to those of the observed spot rates.

Finally, we employ a simple method to select relevant macroeconomic variables for the

model. While PCA is widely used to verify the relative importance of all pricing factors, Lasso

has the advantage of enabling the selection of only relevant factors while neglecting irrelevant

ones. We exemplify how Lasso regression can be used to find, for example, a final set of 23

macroeconomic variables out of 124 macroeconomic variables in our test. Using this method in

combination with our proposed model can simplify the construction process for predicting bond

returns. A discussion of the results is included in subsection 4.3.

4. Empirical Tests

4.1. Yield fitting

To check the fitting of the forward rates implied by our model, we conduct time series and

cross-sectional regressions for the period of 1972:8 to 2021:12. Figure 1 plots the time series

yield fitting and estimates of term premia as well as predictability for one-month holding returns

of the observed and model-implied yields.

###Insert Figure 1 about here###

All four graphs in Figure 1 plot the results generated by using all 129 factors, including

five yield factors and 124 macroeconomic variables.3 The upper two graphs show that the

observed and model-implied yields are almost perfectly matched when measured over time. The

bottom two graphs also show that the proposed model can predict one-month holding excess

returns of the bonds almost perfectly while the term premia remain stable.

3 Our model is used to generate four and five yield factors for comparison with prior affine
models that use the same number of factors (e.g., CP and ACM models). The results are reported
in Appendix IV.
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###Insert Figure 2 about here###

Figure 2 plots cross-sectional regression results using the means and standard deviations

of the observed and model-implied yields across different maturities ranging from 3 to 120

months. The graph on the left-hand side plots the unconditional means while the graph on the

right-hand side plots the unconditional standard deviations of the observed and model-implied

yields. The results show that the observed and model-implied yields are almost perfectly

matched when tested cross-sectionally as well.4

4.2. Forecasting bond returns using yield and macroeconomic factors

Existing affine term structure model studies primarily focus on how a model generates yields that

are close to observed yields. However, examining whether the proposed model can predict future

returns during out-of-sample periods would also be equally important, especially for practitioners

trying to generate excess returns using the model. Jang, Kang, and Lee (2020) examine the

predictive power of the ACM model using Korean bond data. They use forward rates generated

by the ACM model and empirically show that the difference between model-implied forward

rates from the prior and present periods can be used to predict the difference between the actual

forward rates from the prior and present periods. The tests are done for the in-sample and

out-of-sample periods.

To explore whether our proposed model can be used to predict future returns using

forward rates, similar to Jang et al. (2020), we use the following equation for regression:

4 Results generated from using four and five yield factors are reported in Appendix V.
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To perform this regression, we convert the observed spot rates in our sample into forward

rates because our model generates forward rates. The independent variable is the difference

between the observed and model-implied forward rates at t that mature in n months, denoted as

𝛃. The dependent variable is the difference between the forward rates at t and t + 1 that mature in

n months. The difference between the forward rates at t-1 and t is used as a control variable and

the coefficient is denoted, 𝛄.

###Insert Table 2 about here###

Table 2 reports the regression results generated by using our proposed model with four, five, and

129 factors, which include five yield factors and 124 macroeconomic variables. The coefficients

and t-values for beta and gamma, i.e., a control variable, are reported. The results imply that the

predictability of the model varies depending on the bonds’ maturities but significantly increases

as the number of factors increases from four to 129. For example, for the bonds with 24-month

maturities, the model predicts the returns with far more significance when 129 factors are used

(t-value of 2.947) than when 4 factors are used (t-value of 0.913). The same applies to the bonds

with other maturities except for those with 48-month maturities where the significance of beta

coefficients deteriorates as the number of factors increases.

###Insert Figure 3 about here###

Figure 3 plots only the t-values generated from the same regression, of which the results

are reported in Table 2. The upper two graphs show that our model with four or five factors has a

significant forecasting power for future bond returns using forward rates at t. However, when the

number of factors increases to 129 as in the graphs in the second row, our model displays no

forecasting ability as shown in the flat lines. We assume that this may be related to the small

sample size, and therefore may be mitigated through data augmentation. Indeed, the predictive

13



power becomes significant with expanded data and the results are presented and discussed in the

later section.

4.3. Selection of macroeconomic variables

Among the 129 factors used in the tests, 5 are yield factors and 124 are macroeconomic

variables. This is a large set of factors that may be hard for practitioners to collect the data and

run tests upon. Conducting PCA usually helps us examine the relative importance of all the

variables; however, Lasso, which helps select only the relevant factors for empirical tests, may

be more useful when we have a large number of factors. More specifically, Lasso regression can

be used to minimize the number of factors, simplifying the model construction process and

enabling economic interpretation of the outcomes generated by the model. In Table 2, we show

how Lasso regression helps us narrow the number of factors for the empirical tests in our study.

###Insert Table 3 about here###

In this case, we choose only the variables that have t-values greater than 1.960. This leaves only

23 macroeconomic variables out of 121 macroeconomic variables collected from FRED. This is

one example of how practitioners can use Lasso to minimize the number of macro factors to

obtain principal components of their chosen number for the model. As the number of

macroeconomic factors decreases, it would become easier to understand which macroeconomic

variables specifically contribute to the model outcomes.

4.4. Model comparison

Yield fitting
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To check the robustness of our model, we compare the yield-fitting results of our proposed

model to those of the ACM model. Figure 4 plots different estimates, e.g., epsilons, standard

deviations, and RMSEs, for comparison.

###Insert Figure 4 about here###

###Insert Table 4 about here###

Predictability

To check the robustness of our model in terms of predicting future bond returns using

model-implied forward rates, we examine the predictive power of the prior affine models. The

results are reported in Figure 5 and also in Table 5. As mentioned earlier, we use 121

macroeconomic variables, having eliminated three variables that have too small eigenvalues to

make an inverse of the matrix. For out-of-sample tests, as a result, all 126 factors are used,

including 5 yield factors and 121 macroeconomic factors.

###Insert Figure 5 about here###

In the bottom right graph, the RMSEs of all models range from zero to 0.005, i.e., the forecasting

error is nearly zero across all maturities. This indicates that the forecasting power of the

proposed model does not decay but even improves at some maturities. Some may argue that

using only a few factors in the conventional affine model to predict future returns may be more

convenient if the predictive power does not significantly improve; however, our proposed model

can accommodate a large number of pricing factors, allowing for the use of any number of

macroeconomic variables that affect bond pricing, without compromising the predictive ability.

##Insert Table 5 about here###

Table 5 reports the predictive power of alternative models, the ACM model with four and five

factors. The results confirm the predictive power of the ACM model for future bond returns with
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statistical significance across most maturities but is inferior to that of our proposed model with

129 factors shown in Table 2.

4.5. Data Augmentation

We perform additional tests to examine the effect of data augmentation on yield fitting. For

earlier yield fitting, of which the results are reported in Figure 1 and Figure 2, the dependent

variable is the difference between the observed and model-implied forward rates. The forward

rates have n-month maturities in the multiples of three so that we have 40 data points in total

(e.g. 3, 6, 9,...117, and 120-month).

To expand the data, we further divide the maturities into multiples of one, 0.25, and

0.125. For example, with the current data set, we do not have the data on forward rates at n=1, 2,

4, 5, …, 118, and 119. To expand the data to have monthly forward rates, we use a linear

interpolation on forward rates at n=3 and 6 to obtain forward rates at n=4 and 5 and use a linear

interpolation on forward rates at n=117 and 120 to obtain forward rates at n=118 and 119. The

resulting data have 120 monthly forward rates in total instead of 40. When we further augment

the data to have forward rates with n/4- and n/8-month maturities, we gain a total of 480 and

1,920 data points, respectively. Our proposed model’s predictive power when measured with

such expanded data is reported in Figure 6.

###Insert Figure 6 about here###

The most notable difference between Figure 3 and Figure 6 is that the model’s prediction

power when all 129 factors are used is significantly increased through data augmentation. The

t-values stay between zero and one in Figure 3 whereas they become more significant and vary

across different maturities when we have more data to measure the predictability of the model for
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future bond returns. This would exemplify how data augmentation through linear interpolation, a

commonly used technique in machine learning, can help mitigate the problem associated with a

small sample size in asset pricing studies.

4.6. Model performance amid liquidity shock

We examine the proposed model’s performance during the period of a liquidity shock. The

purpose is to test whether the model generates superior performance amid market illiquidity.

Figure 7 plots the RSMEs of the performance of our model and the ACM’s during the

COVID-19 pandemic, an out-of-sample period. The out-of-sample period is based on the

reference date of 11 March 2020 when the COVID-19 pandemic was declared by the World

Health Organization (WHO). The upper five lines represent the RMSEs during the in-sample

period of 2008:3 to 2021:12 while the bottom five lines represent the RMSEs during the

out-of-sample period of 2020:4 to 2021:12.

### Insert Figure 7 about here ###

Figure 7 shows that the RSEMs of our model during the period of COVID-19 range from

zero to 0.003 for all specifications reported in Figure 7. Such a result confirms that the

predictability remains intact during the period of market distress caused by COVID-19,

supporting the superior performance of our proposed model. The sample period in our study is as

long as 50 years, which may strengthen generalize the conclusions; however, checking for the

performance during a specific time period would further strengthen our conclusion.

4.7. Out-of-sample tests with Lasso
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To check the robustness of the results, we test the model with different specifications in Lasso

regressions. Figure 8 has figures plotting RMSEs to compare the performance of our proposed

model to that of the ACM model with four and five factors. The model construction follows the

same steps as those used to generate the results in Figure 3. The difference is that we use Lasso

regression instead of OLS in one of the two locations, or both, as below:

and

.

### Insert Figure 8 about here ###

In earlier tests, we use OLS to generate beta coefficients and lambda. In model type 1, we

use Lasso in the first location and OLS in the second. In model type 2, we use Lasso instead of

OLS in the second location only. In model type 3, we use Lasso in both the first and second

locations.5 Model type 0 is what we use to generate the main results using OLS in both locations.

Using the same alpha within different ranges for model types 1, 2, and 3, we generate RMSEs for

the out-of-sample tests. More specifically, we generate RMSEs using each estimate of alpha

within the preset ranges for 12 maturities (i.e., 3, 6, 9, 12, 17, 24, 30, 36, 60, 72, 84, and 120

months) and add the generated RMSEs for each maturity.

The smallest calculated values are used to plot the graphs in Panel A of Figure 8. The

results show that our proposed model performance is not compromised during the out-of-sample

periods. The results in Panel B of Figure 8 also confirm that the predictability of our proposed

5 In Lasso regression, L1 term (alpha) is a regularizing hyperparameter. When performing
out-of-sample tests, estimates of alpha may differ depending on sample periods. Therefore, we
would divide the data set into a train, validation, and test sets, and use the validation set for
hyperparameter tuning. However, in this study, we use the same estimate of alpha for
out-of-sample tests for simplicity. The estimate of alpha has a range of (0.0001, 0.001), (0.001,
0.01), and (0.001, 0.01) for model type 1, 2, and 3, respectively.
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model is not compromised after data augmentation during the out-of-sample periods.

5. Conclusion

In this paper, we show that increasing the number of factors enhances the forecasting power of

an affine model. We propose a new affine model that makes it possible and easy to use a large

number of factors or even utilize machine learning methods in an affine model. In addition, we

show that using the proposed methods involving PCA and Lasso can further simplify the process

by enabling the users to choose a specific set of relevant macroeconomic variables. This saves

the users from the wearing job of collecting exhaustive amounts of data or choosing ad-hoc

variables without ground. Furthermore, we show that a small sample size problem can be

mitigated from data augmentation through a machine learning method. The forecasting ability of

the model is indeed enhanced in terms of its precision by expanding our data using Lasso.

In academia and practice, there is growing attention to the use of machine learning in

asset pricing. Despite the advantages of using machine learning, such as generating outcomes

with increased velocity and precision as well as less manpower, skeptics are often concerned

about the possibility of data mining and breach of fundamental asset pricing assumptions such as

the no-arbitrage condition (Bianchi et al., 2020; Chen et al., 2019). The proposed model in our

study enables the use of machine learning with much flexibility while adhering to the assumption

of no arbitrage. In that sense, our study may add some insight to the ongoing conversations about

machine learning and asset pricing models, especially for those who value the fundamental

assumptions of asset pricing but also recognize the importance of expanding the field by

accepting the use of various machine learning methods.
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In addition to investigating other machine learning methods in asset pricing, future

studies can expand the literature by exploring the effect of behavioral traits of investors on asset

pricing, for example, by using big data and machine learning to measure an investor’s true risk

appetite.
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Figure 1. Time-series fit and term premia of model-implied yields using 129 factors.
This figure plots the yield fitting and term premium estimates, as well as predictability for
one-month holding period excess returns of zero-coupon yield curve data for Treasuries with
two- and ten-year maturities, as observed and implied by the ACM model and our proposed
model with 129 pricing factors. Of the 120 factors, five are yield factors and 124 are
macroeconomic variables. The sample data are constructed using Liu and Wu’s (2021) yield
curve data set. The sample period is from 1972:8 to 2021:12. For all graphs, solid lines represent
observed yields and returns, dashed green lines represent model-implied yields and returns and
dashed red lines represent the model-implied term premia.
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Figure 2. Cross-sectional fit of model-implied yields using 129 factors.
This figure plots the cross-sectional fit of the yields generated by using our proposed model with
129 pricing factors, including five yield factors and 124 macroeconomic variables. The sample
data are constructed using Liu and Wu’s (2021) yield curve data set. The sample period is from
1972:8 to 2021:12. The graph on the left-hand side plots the unconditional means while the
graph on the right-hand side plots the unconditional standard deviations of the observed and
model-implied yields.
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Figure 3. Predictive power across different maturities.
This figure plots the t-values generated from the regression used to test the predictive power of
our proposed model. The following equations are used:

1) without control variables

2) with control variables

The independent variable is the difference between the observed and model-implied forward
rates at t that mature in n months, denoted as 𝛃. The dependent variable is the difference between
the forward rates at t and t + 1 that mature in n months. The difference between the forward rates
at t-1 and t is used as a control variable and the coefficient is denoted, 𝛄. The sample data are
constructed using Liu and Wu’s (2021) yield curve data set. The sample period is from 1972:8 to
2021:12.
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Figure 4. In-sample model performance comparison.
The figure plots in-sample model performance for comparison using two metrics such as the
percentage valuation errors of the predicted value of rate ( ) and root mean squared error𝑑𝑓𝑤𝑑 ϵ
(RMSE). The percentage valuation errors measure the accuracy in predicting dfwd rate and is

defined as where is the difference of forward rate and isϵ ≡ 𝑑𝑓𝑤𝑑 / 𝑑𝑓𝑤𝑑 − 1 𝑑𝑓𝑤𝑑 𝑑𝑓𝑤𝑑
the corresponding model estimate. RMSE measures the difference between the actual value and

predicted value, and it is defined as )𝑅𝑀𝑆𝐸(𝑑𝑓𝑤𝑑 ≡ 1
𝑁 ∑ (𝑑𝑓𝑤𝑑 − 𝑑𝑓𝑤𝑑)

2
.
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Figure 5. Out-of-sample model performance comparison.
We divide the data into a training set and a test set in the ratio of 7:3. The sample period for the
training set is from 1972:8 to 2007:2 while that for the test set is from 2007:3 to 2021:12. We

estimate prediction values, denoted as , for training set periods in the following steps:𝑑𝑓𝑤𝑑

Step 1. Use the data from 1972:8 to 2007:2 for yield fitting

Step 2. Calculate by using model-implied and observed forward rates in the𝑑𝑓𝑤𝑑
following equation:

Step 3. Expand the period of training set to 1972:2 to 2007:3 and repeat Step 1 and 2.
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Figure 6. Predictive power of the model using data augmentation.
This figure plots the t-values of beta and gamma coefficients generated from the regressions to
test the predictive power of the model using expanded data. The following equations are used:

1) without control variables

2) with control variables

The sample data in this study has a total of 40 data points, consisting of forward rates with
n-month maturities that are the multiples of 3-month. Through linear interpolation, we augment
the data to have 120, 480, and 1,920 data points that are forward rates with 1/n-, 0.25/n-, and
0.125/n-month maturities, respectively. Panel A plots the results from having the data of 120
forward rates implied by our proposed model with four, five, and 129 factors, which includes 5
yield factors and 124 macroeconomic variables. Panel B and Panel C plot the results from having
the data of 480 and 1,920 forward rates, implied by the model with four, five, and 129 factors.

Panel A. t-values of beta and gamma coefficients when using 120 data points.
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Panel B. t-values of beta and gamma coefficients when using 480 data points.
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Panel C. t-values of beta and gamma coefficients when using 1,920 data points.
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Figure 7. Out-of-sample model performance comparison during COVID-19.
This figure presents the value of root mean squared error (RMSE) during the COVID-19
pandemic, an out-of-sample period. The out-of-sample period is based on the reference date of
11 March 2020 when the COVID-19 pandemic was declared by the World Health Organization
(WHO). The sample data are constructed using Liu and Wu (2021)’s yield curve data set. The
upper five lines represent the RMSEs during the in-sample period of 2008:3 to 2021:12 while the
bottom five lines represent the RMSEs during the out-of-sample period of 2020:4 to 2021:12.
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Figure 8. Out-of-sample model performance comparison using Lasso.
This figure shows the predictability of the ACM and our proposed model during the
out-of-sample period using Lasso. Panel A plots the RMSEs using the original dataset of 40
maturities in the ACM model with four and five factors as well as different model specifications
of Lasso. Panel B plots the RMSEs using the augmented data, consisting of 120, 480, adn 1,920
data points, in the ACM with four and five factors and our proposed model with four, five, and
129 factors. 129 factors include five yield factors as well as 124 macroeconomic variables. For
performance tests during the out-of-sample periods, we divide the data into a training set and a
test set in the ratio of 7:3. The sample period for the training set is from 1972:8 to 2007:2 while

that for the test set is from 2007:3 to 2021:12. We estimate prediction values, denoted as ,𝑑𝑓𝑤𝑑
for training set periods in the following steps:

Step 1. Use the data from 1972:8 to 2007:2 for yield fitting.

Step 2. Calculate by using model-implied and observed forward rates in the𝑑𝑓𝑤𝑑
following equation:

Step 3. Expand the period of training set to 1972:2 to 2007:3 and repeat Step 1 and 2.

Panel A. With the original data set of 40 maturities.
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Panel B. With data augmentation.
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Table 1. Summary statistics of observed and model-implied yields.
This table reports the summary statistics of the observed and model-implied yields from the
period of 1971:8 to 2021:2. Panel A shows the summary statistics of the spot rates observed for
the same period. Panel B reports the summary statistics of the spot rates generated by using five
yield factors in our proposed model. Five factors include yield, slope, curvature, and two
additional higher-order factors as generated by Adrian, Crump, and Moench (2013). Panel C
reports the summary statistics of the spot rates generated by using five yield factors in addition to
124 macroeconomic variables in our proposed model. The fitted forward rates generated by the
model are transformed to spot rates, which are used for the summary statistics to compare with
the observed spot rates. For all panels, the number of observations (count), average values
(mean), standard deviations (std), minimum values (min), 25% (25%), 50% (50%), and 75%
(75%) percentile values, and maximum values (max) are reported.
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Table 2. Predictive power of the proposed model.
This table presents the regression results for the predictive power of our proposed model for
future bond returns using the following equation:

The independent variable is the difference between the observed and model-implied forward
rates at t that mature in n months, denoted as 𝛃. The dependent variable is the difference between
the forward rates at t and t + 1 that mature in n months. The difference between the forward rates
at t-1 and t is used as a control variable and the coefficient is denoted, 𝛄. The sample data are
constructed using the Liu and Wu’s(2021) yield curve data set. The sample period is from 1972:8
to 2021:12.
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Table 3. Relative importance of macroeconomic variables.
This table reports the relative importance of macroeconomic variables using Lasso. We conduct
Lasso regressions with different specifications in model type 1, 2, and 3 (see the description of
Figure 8). The results are nearly identical regardless of the model type, so we randomly choose
model type 2 and the best alpha generated from the out-of-sample test to obtain coefficients for
the five yield factors and 121 macroeconomic variables. With eigenvalues obtained from
conducting PCA on the data of 127 macroeconomic variables, we calculate a lasso coefficient
multiplied by the eigenvector for each macroeconomic variable, of which the average and
standard deviation are used to calculate a t-value of each macroeconomic variable using the
general equation, t-value = mean / std/ .𝑁
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Table 4. Summary statistics of model-implied rates using alternative models.
This table reports the summary statistics of the model-implied yields using alternative models for
the period of 1971:8 to 2021:2. Panel A reports the summary statistics of the fitted spot rates
generated by using four yield factors in the model created by Adrian, Crump, and Moench
(2013). Four factors include yield, slope, curvature, and CP factor generated by the ACM model.
Panel B reports the summary statistics of the fitted spot rates generated by using five yield
factors in the ACM model. Five factors include yield, slope, curvature, and two additional
higher-order factors as generated by the ACM model. For all panels, the number of observations
(count), average values (mean), standard deviations (std), minimum values (min), 25% (25%),
50% (50%), and 75% (75%) percentile values, and maximum values (max) are reported.
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Table 5. Predictive power of alternative models.
This table presents the regression results for the predictive power of the ACM model with four
and four and five factors for future bond returns using the following equation:

The independent variable is the difference between the observed and model-implied forward
rates at t that mature in n months, denoted as 𝛃. The dependent variable is the difference between
the forward rates at t and t + 1 that mature in n months. The difference between the forward rates
at t-1 and t is used as a control variable and the coefficient is denoted, 𝛄. The sample data are
constructed using Liu and Wu’s (2021) yield curve data set. The sample period is from 1972:8 to
2021:12.
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Appendix I. The Proposed Affine Model Construction.

Let us specify forward rates as:

is the value of the forward contract at , but determined at ( ) that pays one
dollar at . Therefore, the following relationship holds:

is the value of a zero-coupon bond at that pays one dollar at ( ).

In addition, our affine pricing kernel is assumed to be:

if is from PCA of time-series data, is .
is the source of risks. Therefore, denotes the price of the risks.

Our model is called ‘affine’ because the price of risk ( ) is a linear function of risks ( ).
is a K-dimensional vector of state variables (eg, macro-financial variables, big data).

The value of entering two offsetting forward contracts is zero, ie, . Hence, the
definition of pricing kernel implies:
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Applying Ito’s lemma produces:

To use notations as follows:

Then, the empirical design becomes:

We can derive a yield curve iteratively by adding to because is a
cross-sectional measurement error. This is in line with the usual affine model approach in which
each yield equation with measurement errors is specified as:
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Matching the volatility terms produces:

Then, our empirical design becomes:

,

where

.

Empirical design: Regression approach

First, define process on normalization, detrending, and dimension reduction. Second, run the
Fama-MacBeth regression to estimate based on the assumption that a diagonal
matrix. Third, regress on to obtain . Finally, estimate standard errors using
bootstrapping. If the function form of the yield curve (f) is known, we can generate as much
cross-sectional data as possible by making infinitely small. It is possible when a yield curve is
defined at an infinite number of points (e.g., a real line). Then, we can estimate a large dimension
of . When becomes too small and negligible, we can ignore the term, .
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Appendix II. Five-step Procedure to Balance the Panel of Macroeconomic Variables

Step 1. Use the tcode from McCracken and Ng (2015) to transform the data.

Step 2. Normalize the outcome from the first step because “observations that are missing
are initialized to the unconditional mean based on the non-missing values (which is zero
since the data are demeaned and standardized) so that the panel is re-balanced
(McCracken and NG, 2015).”

Step 3. Use the generated panel data to obtain factors and loadings before rewriting the
missing values with estimates of lambda times factor.

Step 4. Use the standard deviation and mean estimates obtained in the process of
normalization in Step 2 to inverse the normalization to revert to the original data form.

Step 5. Repeat Step 2 to step 4 until missing values do not change.
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Appendix III. List of macroeconomic variables.
The table lists all 124 macroeconomic variables along with the variable names, descriptions and
tcodes, following Ludvigson and Ng (2009). The tcode column denotes the following data
transformation for a series :

(1) No transformation
(2)
(3)
(4)
(5)

(6)
(7)

43



44



45



Appendix IV. Time-series fitting and term premia of model-implied yields using four and five
yield factors.
This figure plots the yield fitting and term premium estimates, as well as predictability for
one-month holding period excess returns of zero-coupon yield curve data for Treasuries with
two- and ten-year maturities, as observed and implied by the ACM model and our proposed
model using four yield factors (Panel A) and five yield factors (Panel B). The sample data are
constructed using Liu and Wu’s (2021) yield curve data set. The sample period is from 1972:8 to
2021:12. For both panels, solid lines represent observed yields and returns, dashed green lines
represent model-implied yields and returns, and dashed red lines represent the model-implied
term premia.

Panel A. Time-series fit and term premia of model-implied yields using four yield factors.
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Panel B. Time-series fit and term premia of model-implied yields using five yield factors.
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Appendix V. Cross-sectional fit of model-implied yields using four and five yield factors.
The figures plot the cross-sectional fit of the yields generated by using our proposed model with
four (Panel A) and five factors (Panel B). The sample data are constructed using Liu and Wu’s
(2021) yield curve data set. The sample period is from 1972:8 to 2021:12. For both panels, the
graph on the left-hand side plots the unconditional means while the graph on the right-hand side
plots the unconditional standard deviations of the observed and model-implied yields.

Panel A. Cross-sectional fit of model-implied yields using four yield factors.

Panel B. Cross-sectional fit of model-implied yields using five yield factors.
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