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1 Introduction

A basic economic function of prices is to convey information. As informed agents trade to exploit

their private information regarding the payoff of an asset, agents’ private information is impounded into

the asset price. However, agents may have private information beyond just the (expected) asset payoff,

such as higher-order moments of the payoff distribution. Exploiting such higher-order information

requires trading derivatives. For example, an informed agent trading on volatility information may

need to trade two or more suitable option contracts. As financial markets matured, such derivatives

trades have long become common practice. Indeed, the significant size and importance of derivative

markets derive from their principal utility of providing investors with exposure to aspects of asset

payoff distributions beyond the expected payoffs. This means higher-order information is impounded

into derivatives prices. Yet, there has been no theory of derivatives price discovery that articulates

the microfoundation of this basic economic logic. This paper considers a general tractable model that

captures the fundamental aspects of derivatives price discovery—the nonlinear nature of both higher-

order information and derivatives payoffs, and the resulting strategic interdependence of trades and

prices within and between derivative markets. We characterize, in closed form, the informed demand,

price impact within and between markets, and information efficiency of prices.

In our model, the informed trader has private information regarding the probabilities of future states

of the world and is allowed to trade arbitrary portfolios of state-contingent claims. In other words, the

informed trader has private information regarding the payoffs of Arrow-Debreu securities and can trade

in the Arrow-Debreu markets. No assumption is made on the informed trader’s private information.

The model is the simplest possible model of general price discovery across contingent claim markets

and encompasses various derivative market settings.

When only the underlying asset is traded and there are no derivative markets, our model specializes

to the single asset model of Kyle (1985).1 In this single asset setting, the uninformed trader has

a linear supply schedule. The slope of the supply schedule—known as Kyle’s lambda—characterizes

equilibrium and is proportional to the (exogenous) variation of the asset payoff across signals. In the

general contingent claims setting, the endogenous relationships between quantities and prices, under

information asymmetry, emerge both within and between markets. The price of a given security depends

not only on the quantity demanded for that security itself but on the quantities demanded across the

entire set of securities. For two states x and y, the quantity demanded for security y in general causes

1Previous extensions of Kyle (1985) include, for example, Caballe and Krishnan (1994), Foster and Viswanathan
(1996), Back et al. (2000), Rochet and Vila (1994), and Collin-Dufresne and Fos (2016). Caballe and Krishnan (1994),
Foster and Viswanathan (1996), and Back et al. (2000) consider settings where multiple insiders have differential private
information about the fundamental values of a finite set of assets. Rochet and Vila (1994) drops the normality assumption
of Kyle (1985) on asset value and assumes the insider observes noise trades. Collin-Dufresne and Fos (2016) consider a
setting where noise trading intensity is a stochastic process. None considers derivatives or private information beyond
the (first moment of) asset fundamental value.
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price adjustment for security x, to the extent that the demand for y reflects the informed trader’s private

information regarding x. The set of supply schedules for the Arrow-Debreu securities is equivalent to

a pricing kernel that prices all state-contingent claims, e.g. options.

Generalizing the intuition of Kyle’s lambda, we show that the marginal effect of the quantity

demanded for one security on the price of another security is proportional to the covariance of the payoffs

of the two securities. Kyle’s lambda generalizes to an infinite-dimensional matrix of (endogenous) payoff

covariances.2 The informed trader’s trading strategy also admits a very intuitive characterization. The

informed trader’s optimal portfolio of state-contingent claims is a linear combination of possible payoff

distributions, with positive weight for the true payoff distribution, which is privately known to him,

and negative weights for the other distributions. In other words, the informed trader buys the true

payoff distribution, as a contingent claim portfolio, and sells the other distributions.

While certain parallels can be drawn with the single asset special case, our general setting also makes

clear the former’s incompleteness. In general, the nonlinear nature of higher-order information means

the optimal portfolio is also nonlinear, i.e. requires derivatives. The absence of derivative markets

restricts the informed trader to sub-optimal linear demands and therefore reduces his welfare.3 This is

the case even when private information only concerns the expected payoffs (as in Kyle (1985)), because

derivatives allows the informed trader to better hide his private information by reducing his demand

for low probability states.4

As a consequence of the fact that price discovery takes place jointly across all markets, the informa-

tion efficiency of all contingent claim prices can be summarized in a single measure. We show that the

information efficiency of prices does not depend on the specification of possible payoff distributions.5

That is, the extent to which higher-order information is impounded into contingent claim prices is

independent of the specification of private information. This general result points to a basic aspect of

complete markets that has so far gone unnoticed. Just as risk is always shared efficiently in a complete

market, information is always (partially) impounded into prices in a complete market, and the extent

to which this occurs is invariant with respect to the nature of information.6

By the standard Breeden-Litzenberger (1978) formula, our model has an equivalent options formu-

lation.7 In this options formulation, the informed trader has private information regarding arbitrary

aspects of the payoff distribution of the underlying asset, under arbitrary specification of the possible

payoff distributions, and is allowed to trade arbitrary option portfolios. Private information regarding

2In contrast to the single asset setting, the information spillover across markets endogenizes the variance-covariance
matrix of asset payoffs.

3As a corollary, trading derivatives increases the loss of noise traders whose trades are unrelated to the asset payoff.
4See Example 6.1.
5Nor does the information efficiency of contingent claim prices depend on the amount of noise trading that is taking

place.
6See Remark 6.12.
7See Breeden and Litzenberger (1978) for the Breeden-Litzenberger formula.
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high-order moments is a special case. This is the first paper to obtain a unified theory of insider trading

on high-order moments.

The closed-form formula for inform demand prescribes option strategies for trading on any given

moment. For trading on volatility and skewness, the informed demand formula shows that the option

strategies commonly used in trading practice can indeed be rationalized in the equilibrium setting.8

Due to its wide usage, the option strategy for trading on high volatility, known as the straddle, has

also been incorporated in various empirical elements of the literature—see, for example, Coval and

Shumway (2001) and Driessen et al. (2009). Our results provide microfoundation for such empirical

considerations and extend their scope.

Our theory has empirical implications for options price discovery and the cross-section of option

returns.9 For options price discovery with respect to higher-order moments, our theory provides adverse

selection measures that can be estimated from data—namely, the cross-market price impact between

prescribed option contracts. The within-market price impact is a well-established adverse selection

measure in the market microstructure literature.10 It is generalized to higher-order moments by the

cross price impact measure. This generalization leads to new empirical hypotheses regarding the pre-

dictability of higher moments of the underlying payoff by options cross price impact. For example, high

cross price impact between the put-call pair in a straddle means that the (future) volatility of underlying

payoff is currently underpriced. In turn, this predicts an increase in the volatility of underlying.

For the cross-section of option returns, our theory suggests candidate systematic factors reflect-

ing the extent to which higher-order moment price discovery takes place across option markets. For

example, if options price discovery takes place with respect to certain higher moments, the returns

of option portfolios for trading on those moments should help explain the cross-sectional variation of

option returns. In this paper, we specify the equivalent options formulation and indicate avenues for

further analysis.11

Allowing arbitrary private information and arbitrary demand for derivatives means that the Bayesian

trading game between the informed and uninformed traders is infinite-dimensional. The informed

trader’s demand and the uninformed trader’s pricing kernel are both infinite-dimensional, and nonlin-

ear, objects. Tractability in this general setting is made possible by appropriate rigorous modelling and

methodology. We show that the game can be reduced to an isomorphic finite-dimensional game. The

finite-dimensional game is canonical, in the sense that it is independent of the specification of payoff

distributions. This finite-dimensional reduction yields a closed-form equilibrium solution characterized

8See Examples 6.2 and 6.3.
9See Section 7.2.

10See, for example, the price impact regressions employed in Glosten and Harris (1988), Lin et al. (1995), Huang and
Stoll (1997), Goyenko et al. (2009), Hendershott et al. (2011), and Makarov and Schoar (2020).

11Applications to insider trading on high-order moments and option markets within our general framework are to be
explored in future papers.
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by one endogenous constant.

Our chosen setting is space-continuous—as in many models of asset pricing and derivative pricing—

and time-static. Standard techniques from stochastic analysis used to solve continuous-time models

of insider trading—e.g. Back (1993)—are not applicable. A rigorous formulation of the uninformed

trader’s infinite-dimensional Bayesian inference problem is not possible with the standard construction

of stochastic integral, and we adapt tools from rough paths theory to construct a pathwise stochastic

integral.12

The continuous-space assumption is made in the same spirit as the standard continuous-time as-

sumption in dynamic models. It yields a simple intuitive equilibrium in a general model. In the

options formulation, this assumption means there are option markets corresponding to all possible

strikes. Actual option strike grids can be viewed as discretizations of this stylized setting. Indeed,

certain widely traded synthetic derivatives are constructed using options by discretizing the same

Breeden-Litzenberger formula used in our formulation.13 Moreover, the option strategies for trading on

higher moments prescribed by the informed demand formula can be implemented using finitely many

options.

The empirical literature has documented that options orders and trades contain higher-order infor-

mation regarding the underlying asset’s payoff distribution—see, for example, Cao et al. (2005), Pan

and Poteshman (2006), Ni et al. (2008), Goyal and Saretto (2009), Roll et al. (2009), and Augustin

et al. (2019).14 On the other hand, existing theory literature on informed options trading primarily

compares aspects of the market with and without an option, with information asymmetry restricted to

asset fundamental value in all cases—see, for example, Back (1993), Biais and Hillion (1994), Easley

et al. (1998), and Collin-Dufresne et al. (2021).15 None considers informed trading in more than one

option or speaks to the higher-order information content of options orders and trades.16 This paper

12Rough paths theory originates from probability. See Lyons et al. (2007), Hairer (2014), and Friz and Hairer (2020).
13One such synthetic derivative is the Cboe VIX. See https://www.cboe.com/tradable_products/vix/.
14Pan and Poteshman (2006) and Ni et al. (2008) show that option trading volume contains information on future

stock returns and volatility. Goyal and Saretto (2009) show that mispricing in the second moment can be traded on using
the straddle. Roll et al. (2009) find that option-to-stock volume is closely related to firm value and positively associated
with absolute returns of post-earnings announcements, pointing to the informational role played by the options markets.
Cao et al. (2005) and Augustin et al. (2019) document abnormal options trading volume and predictability of options
order flow around specific corporate events.

15Back (1993) shows that information asymmetry can lead to market incompleteness by introducing one option in a
continuous-time setting, where the market is already complete with no options in the absence of information asymmetry.
Biais and Hillion (1994) consider the implication of introducing an option when liquidity trades are endogenous. Easley
et al. (1998) consider informed option trading when the asset value has two possible realizations. Collin-Dufresne et al.
(2021) study information flow from stock markets to option markets when informed trading occurs only in the stock
market.

16Chabakauri et al. (2022) also consider informed trading in Arrow-Debreu markets. They impose a parametric
assumption on the Arrow-Debreu payoff distributions in a rational expectations setting, where traders are price takers.
We impose no parametric assumption on the Arrow-Debreu payoff distributions in a strategic setting, where traders
have price impact. In our setting, the informed trader can have private information on arbitrary higher-order moments
and trades a complete menu of options, while their setting restricts informed trading beyond the first moment to one
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bridges the gap between the theory and empirical literatures on informed options trading.

In the option pricing and financial econometrics literatures, large classes of models are concerned

with the modelling of volatility information contained in option prices, as expressed by their (Black-

Scholes) implied volatilities, which are known to exhibit the volatility smile across strikes. The class

of stochastic volatility models, first introduced by Heston (1993), is both assessed and estimated by

relating option prices to the model parameters via the volatility smile.17 The same approach drives

the development of local volatility models.18 Despite being the focus of an important (reduced-form)

modelling framework, no economic mechanism has been put forth to explain how the volatility smile

may arise. Within our setting, the volatility smile arises through options price discovery of volatility.

As the informed trader trades on volatility information, the equilibrium implied volatilities form an

insider smile. This microfounded explanation may help shed light on the misspecification issues that

reduced-form models aim to address.

The rest of the paper is organized as follows. Section 2 summarizes our model setup. Section 3

formulates the uninformed trader’s Bayesian inference problem. Section 4 analyzes the informed trader’s

portfolio choice problem. Section 5 establishes equilibrium. Section 6 provides basic characterizations

of Arrow-Debreu price discovery—the informed demand, price impact, and information efficiency of

prices. Section 7 discusses the insider smile, empirical implications of our theory, and the case of

risk-averse agents. Section 8 concludes. The Appendix contains proofs.

2 Model

2.1 General Setup

There are two risk-neutral agents, the insider and the market maker. There is a risk-free asset in

perfectly elastic supply with risk-free rate zero. At t = 0, a signal s ∈ S realizes, which informs the

observer of the probability distribution across possible t = 1 states of the world. Only the insider

observes the signal.19 The market maker has a Bayesian prior π0(ds) on the set S of possible signals.

At t = 0, there is a complete market of Arrow-Debreu (AD) securities for possible t = 1 states. The

structure of the economy is common knowledge.

After observing the signal at t = 0, the insider submits his demand, i.e. market orders, for AD

volatility derivative. Their setting does not cover, for example, insider trading on volatility using options.
17For calibration of stochastic volatility models by the volatility smile, see, for example, Bates (1996), Duffie et al.

(2000), and Britten-Jones and Neuberger (2000). For estimation and model selection using option prices, see Bates
(2000), Aı̈t-Sahalia and Kimmel (2007), Christoffersen et al. (2010), and Aı̈t-Sahalia et al. (2021).

18See, for example, Berestycki et al. (2002) and Carr and Cousot (2012).
19The assumption that the insider observes the entire probability distribution is without loss of generality. If the insider

has only partial information, which may be heterogeneous across signals, conditioning on his information signal-by-signal
returns to our setting.
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securities to maximize his expected utility of t = 1 consumption. There are noise traders who trade

for exogenous (e.g. liquidity) reasons. The insider and noise traders face no leverage or short-selling

constraints. The market maker observes the aggregate order flow of the insider and noise traders across

all AD markets, and sets the prices to be the ex-ante zero-profit prices, according to his belief regarding

the insider’s trading strategy.20

The set (S, π0) of possible signals is a Borel probability space where the probability measure π0 is

the market maker’s prior. The set of possible t = 1 states is indexed by an interval [x, x̄].21 Conditional

on the signal s, the probability distribution across possible t = 1 states is therefore specified by a

density η( · , s) : [x, x̄] → ℝ. After observing s, the insider chooses a portfolio W ( · , s) : [x, x̄] → ℝ,
where W (x, s) is the insider’s order for state x security.

Noise trader orders are normally distributed with mean zero in each market and independent be-

tween markets. Passing to the continuum, noise trader orders across an infinitesimal increment of states

[x, x+dx] are given by

dNx = σ(x)dBx

where (Bx) is a standard Brownian motion, with the index x interpreted as state (rather than time),

and σ(x) is the noise trading intensity at state x market.

In the event that the insider submits orders W ( · , s) after observing signal s, the total cumulative

order flow received by the market maker is therefore a sample path ω of the Itô process (Yx)x≤x≤x̄

specified by22

dYx︸︷︷︸
total order

over [x,x+dx]

= W (x, s)dx︸ ︷︷ ︸
insider order
over [x,x+dx]

+ dNx︸︷︷︸
noise order

over [x,x+dx]

= W (x, s)dx + σ(x)dBx. (1)

20Implicitly, there is Bertrand competition among market makers.
21The interval need not be finite. [x, x̄] can be replaced by (−∞,∞).
22Discrete States Analog Following standard notation, the stochastic process (1), indexed by x, is specified in

differential form. We emphasize that the market maker observes a sample path ω of the specified process (Yx)x≤x≤x̄ over
the entire set [x, x̄] of states. This means that the market maker observes the aggregate demand of the insider and noise
trader for each AD market x. In the analogous setting with discrete states, xi, i ≥ 1, the market maker would observe
the discrete sample path (Yi)i≥1, i.e. total cumulative order flow

Y0 = 0, Yi =
∑
j≤i

W (xj , s) +Nj , i ≥ 1,

where W (xj , s) and Nj
d∼ N (0, σ2(xj)) are the insider order conditional on s and noise order, respectively, for state xj .

This is equivalent to observing the first differences, i.e. the discrete analog of dYx of (1),

∆Yi = W (xi, s) +Ni, i ≥ 1,

which is the aggregate demand of the insider and noise traders for each AD market xi.
While the discrete states setting does not admit the same tractability or generality, it can be approximated in the

continuous states setting by discretization. See Section 2.4.
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After receiving total order flow ω, the market maker updates his prior π0(ds) according to his belief

W̃ ( · , · ) : [x, x̄] × S → ℝ regarding the insider’s trading strategy. According to the market maker’s

posterior π1(ds, ω; W̃ ) conditional on ω and given his belief W̃ , the state x price set by the market

maker is

P (x, ω; W̃ ) =

∫
S

η(x, s)π1(ds, ω; W̃ ).

Conditional on observing s and given market maker belief W̃ ( · , · ), the insider maximizes his

expected utility of consumption over possible t = 1 states:

max
W ( · )

𝔼ℙW [

∫ x̄

x

(η(x, s)− P (x, ω; W̃ )) ·W (x)dx], (2)

where the expectation 𝔼ℙW [ · ] is taken over possible realizations of total order flow ω under the proba-

bility law ℙW of the Itô process (1) induced by insider portfolio W ( · ).
In equilibrium, the optimal trading strategy of the insider, given the market maker’s pricing kernel

P ( · , ω;W ∗) based on his belief W ∗( · , · ) regarding insider’s trades, coincides with W ∗( · , · ).23 That

is, the optimal portfolio of the insider after observing signal s is W ∗( · , s), for each s ∈ S, thereby con-

firming the market maker’s belief. In equilibrium, the market maker’s prior and posterior probabilities

form a two-period martingale. Therefore so do the t = 0 and t = 1 prices at each AD market x.

2.2 Specializing to Kyle (1985)

When the insider’s private information is the asset fundamental value (equivalently, expected asset

payoff) and there are no derivative markets, our model reduces to the static case of the Kyle (1985)

single asset model.

Let the signal s ∈ S be the asset fundamental value and π0(ds) be the market maker’s prior

distribution of s. A trading strategy of the insider is a map W : S → ℝ where, after observing s, the

insider submits a market order W (s) for the asset. If the insider submits order W , the market maker

observes ω = W + ε, where ε is the noise trader order. The market maker has a belief W̃ : S → ℝ
regarding the insider’s strategy, computes his posterior π1(ds, ω; W̃ ) regarding the fundamental value

conditional on ω given his belief W̃ ( · ), and sets the asset price to be the zero profit price

P (ω; W̃ ) =

∫
S

s · π1(ds, ω; W̃ ).

23The formal statement of equilibrium is given in Definition 3.
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Conditional on observing s and given market maker belief W̃ ( · ), the insider maximizes expected profit

max
W

𝔼ℙW [(s− P (ω; W̃ )) ·W ]

where the expectation 𝔼ℙW [ · ] is taken with respect to the distribution ℙW of total order flow ω. An

equilibrium is a trading strategy W ∗( · ) such that

W ∗(s) = argmax
W

𝔼ℙW [(s− P (ω; W ∗)) ·W ], ∀s. (3)

This is a special case of the equilibrium described in Section 2.1 when there are no derivative markets.

Assume s
d∼N (v0, σ

2
v) and ε

d∼N (0, σ2
ε), where v0 and σ2

v are the prior mean and variance, respec-

tively, of asset fundamental value, and σε is the noise trading intensity. Restricting to linear strategies,

W ∗(s) = β(s− v0), and P (ω; W ∗) = v0 + λω, (4)

we recover the equilibrium obtained in Theorem 1 of Kyle (1985):

β =
1

2λ
=
σε
σv
, and λ =

σv
2σε

. (5)

λ is referred to as Kyle’s lambda.

In this single asset setting, the price impact—the marginal effect of quantity on price—is the slope

of the market maker’s linear supply curve P (Q) = v0 + λQ specified by (4) and (5). Price impact

λ is proportional to the variation σv of the asset fundamental value. Higher variation of the asset

fundamental value implies higher variation of the insider’s trades across signals, which makes order

flow more informative for the market maker, leading to higher price impact. In other words, price

impact is determined by the information intensity of the insider’s private signal. This intuition will

generalize to the contingent claims setting, both within and between markets.24

2.3 Options

The equivalent options formulation of our model is as follows. Interpret the states as possible t = 1

spot prices of an underlying asset with the consumption good as numeraire, and assume there are t = 0

markets for a complete menu of put and call options maturing at t = 1. Let K0 be the market maker’s

24 d
dQP = d

dW 𝔼[P ] = λ generalizes to the price impact expression ∂
∂W (y)P (x,W ; W̃ ) of Corollary 4.3. The equilibrium

characterization of price impact in the general setting is given in Section 6.2.
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prior expected payoff of the asset,

K0 =

∫
S

∫ x̄

x

x η(x, s)dx π0(ds),

i.e. K0 is the t = 0 futures price set by the market maker. By the decomposition formula of Breeden

and Litzenberger (1978),

W (x, s) = W (K0, s) +W ′(K0, s)(x−K0) +

∫ K0

x

W ′′(K, s)(x−K)−dK (6)

+

∫ x̄

K0

W ′′(K, s)(x−K)+dK,

a portfolio W ( · , s) of AD securities is equivalent to a portfolio consisting of positions W (K0, s) in the

risk-free asset, W ′(K0, s) in futures, andW ′′(K, s) in out-of-the-money put (resp. call) options at strike

K < K0 (resp. K > K0).

The insider submits futures and options orders after observing his private signal. Noise trades

for futures follows a normal distribution N (0, σ2
f ), where σf is noise trading intensity in the futures

market. If the insider submits futures order W ′(K0, s) after observing signal s, the total futures

order flow received by the market maker is a realization ωf from the distribution N (W ′(K0, s), σ
2
f ).

25

Noise trades for put (resp. call) options across an infinitesimal increment [x,x+dx] of strikes follows

a Brownian increment σ(x)dBp
x (resp. σ(x)dBc

x), where σ(x) is the noise trading intensity at strike x.

If the insider submits put and call options orders ((W ′′(x, s))x<K0 , (W
′′(x, s))x>K0), the total options

order flow received by the market maker is a sample path (ωp, ωc) from the two-dimensional stochastic

process

dYx =

(
W ′′(x, s)dx+ σ(x)dBp

x

W ′′(x, s)dx+ σ(x)dBc
x

)
, (7)

indexed by strike x. The rest of the model proceeds along the same lines as the AD formulation.

Conversely, the results obtained in the AD formulation can be translated to options (more generally,

derivatives) by expressing options as portfolios of AD securities.

Options in Kyle (1985) In the options formulation, the discussion of Section 2.2 on specializing to

the Kyle (1985) single asset setting translates as follows.

Proposition 2.1.

(i) If the asset payoff distributions only differ in expected values across signals and there are no

options markets, then our model specializes to a static Kyle model where only futures are traded.

25As slight abuse of language, by a futures position we simply mean a linear position that pays off in the future, i.e. an
AD portfolio W (x) that is linear with respect to state x. We do not model margining, central clearing, etc.
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(ii) Conversely, if the expected asset payoff is the same across all signals, then the futures market

is redundant.

In Proposition 2.1(i), the assumption of no options markets is necessary. If the insider in Kyle

(1985) observes the distribution and options markets are introduced, the informed demand for options

would be non-zero. Options are not redundant even when agents are risk-neutral, and the possible

asset payoff distributions differ only in the expected value. At any given state the payoff varies non-

linearly between signals, and the insider’s optimal portfolio is therefore also nonlinear. This will be

demonstrated as a special parametric case of our setting (see Example 6.1).

2.4 Basic Intuition

Consider the following two-asset two-signal toy case of our setting. This case has a simple intuition

which, to the best of our knowledge, has not been explicitly set out in the literature. Discretize [x, x̄]

into a two-element partition χ1 ⊔ χ2, where sub-interval χi corresponds to state xi. For i, j = 1, 2, let

the state xi security payoff conditional on signal sj be specified by p(i, j), i.e. η(x, sj) = p(1, j)1χ1(x)+

p(2, j)1χ2(x). Suppose p(1, 1) = p(2, 2) > p(1, 2) = p(2, 1). In other words, signal si informs the insider

that xi (resp. xj ̸=i) has high (resp. low) payoff.

The insider’s equilibrium trading strategy is

W ∗(x, s1) = a∗1χ1(x)− a∗1χ2(x), W
∗(x, s2) = −a∗1χ1(x) + a∗1χ2(x) (8)

for some endogenous constant a∗ > 0 (which we shall obtain in the general setting). Conditional on

his signal si, the insider buys the high payoff asset xi and sells the low payoff asset xj ̸=i.

From the market maker’s perspective, the equilibrium price impact within the state xi market is

(proportional to) the variance of xi payoff across signals, (p(i, 1), p(i, 2)). The cross price impact between

the x1 and x2 markets is (proportional to) the covariance of their payoffs across signals.26 Since the

payoffs of x1 and x2 are negatively correlated across signals, the cross price impact is negative. The

variances and covariance are taken with respect to the market maker’s equilibrium posterior on signals.

The market maker’s equilibrium posterior is biased towards the insider’s private signal, because the

market maker infers information from order flow.

The characterization of cross price impact extends the intuition of Kyle’s lambda to between-

markets. The covariance of asset payoffs determines the covariation of the insider’s trades for the two

assets, which then determines the informativeness of xi order flow regarding xj ̸=i payoff and, in turn,

the cross price impact. In this case, the insider’s trades (8) for x1 and x2 are negatively correlated

26The market maker’s two-asset supply function, from ℝ2 to ℝ2, is nonlinear. Therefore, in contrast to the single asset
setting, price impact within and across markets is not constant. The variance-covariance characterization of price impact
holds at the margin.
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across signals. Since the market maker correctly anticipates the insider’s equilibrium strategy, he infers

from a buy order for xi that the insider’s private signal is likely si, which means xj ̸=i likely has low

payoff. This leads the market maker to adjust the fair price of xj ̸=i downwards. Similarly, a sell order

for xi leads to upward price adjustment for xj ̸=i.

A contribution of this paper is showing that the intuition described in this section is robust with

respect to the number of assets, the specification of payoffs, and the number of signals. Indeed, the basic

intuition articulated by our results in the general many-asset setting is that such two-asset relationships

operate pairwise throughout the entire set of assets. In particular, the order flow at each market can

have global price impact on all markets.

2.5 Methodology

The methodology we use to formally establish the above intuition in the general setting can be

summarized as follows.

(i) In the market maker’s Bayesian inference problem, the data ω (aggregate order flow across mar-

kets) is generated by a family of Itô processes parameterized by their drifts (conjectured insider

orders W̃ ( · , s) conditional on the signal s). The market maker’s posterior conditional on his data

ω is, by definition, an ω-by-ω object, and standard results for Itô processes do not admit such

notions. To make the market maker’s posterior well-defined and his infinite-dimensional inference

problem tractable, we formulate an ω-by-ω stochastic integral.

(ii) Unlike the single asset setting, the insider’s demand cannot be characterized by simply inverting

the pricing rule of the market maker.27 In particular, the insider optimizes over an infinite-

dimensional function space—he may choose an arbitrary portfolio of state-contingent claims.

The insider’s first-order condition for his risk-sharing and price impact trade-offs must therefore

be expressed in terms of functional derivatives.

(iii) Appropriately addressing (i) and (ii) makes it possible to deduce a finite-dimensional game that

is isomorphic to the original infinite-dimensional game. This finite-dimensional reduction follows

from the observation that, by a no-arbitrage argument, portfolios orthogonal to the possible payoff

distributions can be excluded from the market maker’s equilibrium belief. This reduction yields

an equilibrium solution characterized by one endogenous constant.

Sections 3 and 4 place the preceding outline on a rigorous footing, clarify the economic mechanisms

in effect, and derive necessary conditions for equilibrium.

27In the single asset equilibrium (5), β = 1
2λ .
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3 The Market Maker’s Inference

As discussed in Section 2.4, intuitively the market maker’s inference takes place not only within-

market but also cross-market. In general, for any two states x and y, the order flow at state x may

reveal information about state y payoff, which in turn leads to state y price adjustment. A rigorous

formulation of the market maker’s Bayesian inference problem will make this intuition precise (see

Remark 3.2 below).

3.1 Bayes Rule Heuristic

Formally, the sample space in the market maker’s Bayesian inference problem is the infinite-

dimensional space Ω = C([x, x̄],ℝ) of continuous functions on [x, x̄]. Suppose the market maker’s

belief regarding the insider’s trading strategy is W̃ ( · , · ) : [x, x̄]×S → ℝ. According to this belief, con-

ditional on the insider observing signal s the total order flow across all states received by the market

maker is a sample path ω ∈ Ω of the Itô process specified by (1)

dY s
x = W̃ (x, s)dx+ σ(x)dBx. (9)

Consider Bayes Rule,

posterior probability ∝ conditional likelihood of data × prior probability of parameter (10)

for the market maker’s problem, where the data is order flow ω and the parameter W̃ (·, s) has prior

probability π0(ds). On the space Ω of sample paths, consider the reference probability measure µ that

specifies the stochastic process (σ(x)Bx) and the probability measure ℙW̃ ( · ,s) that specifies (Y
s
x ) of (9).

The reference measure µ specifies the probability law of noise-only order flow when insider order is zero

for all markets, while the measure ℙW̃ ( · ,s) specifies the probability law of order flow when insider order

is W̃ (·, s). By Girsanov’s Theorem, the Radon-Nikodym derivative of ℙW̃ ( · ,s) with respect to µ is given

by28

dℙW̃ ( · ,s)

dµ
= e

∫ x̄
x

W̃ (x,s)
σ(x)

dBx− 1
2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx
. (11)

At first glance, the Radon-Nikodym derivative (11) should specify the likelihood ratio of data ω con-

ditional on the parameter W̃ ( · , s) over the reference measure µ. Therefore, heuristic application of

Bayes Rule (10) suggests that, conditional on order flow ω, the market maker’s Bayesian posterior over

28See Theorem 5.1 in Chapter 3 of Karatzas and Shreve (2012).

12



the signal space S should be given by the expression

dℙW̃ ( · ,s)

dµ
(ω)× π0(ds)

/
C(ω, W̃ ) = e

∫ x̄
x

W̃ (x,s)
σ(x)

dBx− 1
2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx︸ ︷︷ ︸

conditional likelihood of data

× π0(ds)︸ ︷︷ ︸
prior

/
C(ω, W̃ ) , (12)

where C(ω, W̃ ) is a normalization constant. This is problematic in the standard Itô construction of the∫
· dB integral used in Girsanov’s Theorem. In the Itô sense, the integral

∫ x̄

x
W̃ (x,s)
σ(x)

dBx—therefore the

candidate expression (12) for the posterior—has no meaning for any given ω.29 Unlike the case of finite-

dimensional sample space ℝn, Bayesian posteriors are not trivially well-defined once the conditional

probability law of data and the prior distribution of the parameter are specified.

3.2 The Posterior and Pricing Kernel

To make the candidate expression (12) rigorous, we consider a pathwise formulation of the stochastic

integral, using tools adapted from rough paths theory.30 Here we summarize the construction. The

precise statement of the assumptions and proofs are given in Section A.1 of the Appendix.

Assume both the insider’s contingent claim portfolio W ( · , s) and the (squared) noise trading in-

tensity σ2( · ) lie in the Hölder space Cδ([x, x̄],ℝ) for some 0 < δ < 1, and restrict possible realization

ω of total order flow to an appropriate subset Ωγ of Ω.31 Hölder δ-continuity is (much) weaker than

differentiability and imposes no practical constraint on the insider’s choice set. The modified sample

space Ωγ ⊂ Ω is chosen so that ω lies in Ωγ with probability one. Therefore restricting to ω ∈ Ωγ is

without loss of generality. The restriction of the probability measure µ to Ωγ will be denoted by µγ.

It can then be shown that, for each ω ∈ Ωγ, the limit of Riemann sums

∫ x̄

x

Wx

σ2(x)
dωx ≡ lim

max
k

|xk+1−xk|→0

x=x0<···<xn=x̄

n−1∑
k=0

Wxk

σ2(xk)
· (ωxk+1

− ωxk
) (pathwise integral) (13)

exists and therefore defines an ω-by-ω Riemann integral.32 This ω-by-ω integral gives the Radon-

Nikodym derivative
dℙ

W̃ ( · ,s)
dµ

of (11) rigorous meaning as an ω-by-ω density. Moreover, under this

pathwise formulation of the stochastic integral, one can show that the data ω and the parameter

29An Itô integral is an equivalence class defined only up to indistinguishability. In the Itô sense, the Radon-Nikodym

derivative
dℙ

W̃ ( · ,s)
dµ of (11) defines a probability measure on Ω, but not an ω-by-ω density, which is necessary in order to

define the conditional likelihood of data ω.
30See Friz and Hairer (2020).
31The Hölder space Cδ([x, x̄],ℝ) consists of Hölder δ-continuous elements of C([x, x̄],ℝ), equipped with the Hölder

seminorm [f ]δ = sup
x ̸=y

|f(x)−f(y)|
|x−y|δ .

32See Lemma A.1(i).
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W̃ ( · , s) in the market maker’s intended Bayesian problem are jointly measurable.33 Joint measurability

makes conditioning on ω, therefore a Bayesian posterior, well-defined. Lastly, one can show that the

candidate expression (12), now properly defined as random probability measure, specifies the market

maker’s intended posterior distribution on S.34 We have the following theorem.

Theorem 3.1. Under appropriate assumptions, the following holds.35 Let W̃ ( · , · ) : [x, x̄] × S → ℝ
be the market maker’s belief regarding the insider’s trading strategy, and ω = (ωx)x≤x≤x̄ ∈ Ωγ be the

aggregate order flow received by the market maker.

(i) (Market Maker Posterior) The market maker’s Bayesian inference problem is well-defined,

and his posterior probability measure on S conditional on ω is given by

π1(ds, ω; W̃ ) = e
∫ x̄
x

W̃ (x,s)

σ2(x)
dωx− 1

2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx · π0(ds)

/
C(ω, W̃ ) , (14)

where the
∫
· dω integral is the pathwise integral defined in (13), and C(ω, W̃ ) is the normalization

constant.36

(ii) (Arrow-Debreu Prices/Pricing Kernel) Conditional on receiving order flow ω and ac-

cording to his belief W̃ ( · , · ), the zero-profit AD prices set by the market maker are

P (x, ω ; W̃ )︸ ︷︷ ︸
price of state x AD security

=

∫
S

η(x, s)π1(ds, ω ; W̃ ), x ∈ [x, x̄],

where π1(ds, ω ; W̃ ) is the posterior obtained in (i).

The posterior π1(ds, ω; W̃ ) obtained in (14) is the heuristic expression (12) made rigorous. The

assumptions of Theorem 3.1 will be maintained in all that follows.

Remark 3.2. (Cross-Market Inference) Through pathwise integration, Theorem 3.1 makes precise the

economic intuition of how the market maker arrives at his posterior and pricing kernel. After receiving

total cumulative order flow ω = (ωx)x≤x≤x̄ across states, for each signal s the market maker compares

ω with his belief W̃ ( · , s) = (W̃ (x, s))x≤x≤x̄ regarding what the insider’s orders across states would have

been if s were the actual observed signal. If the observed order flow ω overlaps significantly with the

market maker’s belief W̃ ( · , s) for a given signal s—i.e.
∫ x̄

x
W̃ (x,s)
σ2(x)

dωx is high, it reinforces the market

maker’s belief about the order flow he expects to see if s were the actual observed signal. This leads

the market maker to revise his posterior probability for s upwards, and vice versa. The scaling by 1
σ2(x)

33See Lemma A.1(ii). Joint measurability of data and parameter is a basic requirement in formulating any Bayesian
problem, without which conditioning on data has no meaning, and the posterior cannot be defined.

34See Lemma A.1(iii)
35See Assumption A.1.

36C(ω, W̃ ) =
∫
S
e
∫ x̄
x

W̃ (x,s′)
σ2(x)

dωx− 1
2

∫ x̄
x

W̃ (x,s′)2

σ2(x)
dx · π0(ds

′).
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adjusts for noise trading intensity. Through the overlap measures (
∫ x̄

x
W̃ (x,s)
σ2(x)

dωx)s∈S, the market maker

infers information globally about all states from the local order flow at any given state. The market

maker then forms his pricing kernel P ( · , ω ; W̃ ) by aggregating the across-states information implied

by the order flow at each state.

3.3 Overlap Measures

Definition 1. Let the market maker’s belief W̃ ( · , · ) : [x, x̄]× S → ℝ be given.

(i) For the market maker, the (noise-adjusted) overlap between aggregate order ω and his belief

W̃ ( · , s) regarding insider order conditional on s is

Omm(ω, s; W̃ ) =

∫ x̄

x

W̃ (x, s)

σ2(x)
dωx.

(ii) For the insider, the (noise-adjusted) overlap between his order (or marginal order) W ( · ) and

W̃ ( · , s) is

Oinsider(W, s; W̃ ) =

∫ x̄

x

W̃ (x, s)

σ2(x)
W (x)dx.

Omm(ω, s; W̃ ) is the overlap between aggregate order ω observed by the market maker and what

the market maker believes the insider’s demand would be conditional on s, W̃ ( · , s), adjusted for noise

trading intensity. The overlap profile

Omm(ω, · ; W̃ ) = (Omm(ω, s; W̃ ))s∈S

compares ω with market maker belief W̃ ( · , s) for each signal s and summarizes the price impact of

ω. Similarly, Oinsider(W, s; W̃ ) is the overlap between actual insider order W ( · ) and what the market

maker believes the insider’s order would be, W̃ ( · , s). The overlap profile

Oinsider(W, · ; W̃ ) = (Oinsider(W, s; W̃ ))s∈S

compares W with the market maker’s belief signal-wise and summarizes the extent to which an insider

orderW ( · ), i.e. ω net of noise trades, affects prices. As discussed in Remark 3.2, Omm occurs naturally

in the market maker’s problem. Oinsider will play an analogous role for the insider’s problem (see

Sections 4.2 and 4.3).

The difference between the two overlap measures Omm(ω, s; W̃ ) and Oinsider(W, s; W̃ ) is that, while

the market maker only observes the aggregate order ω, the insider knows his own order W ( · ). The

market maker updates the posterior probability of s conditional on ω by considering Omm(ω, s; W̃ ). On

the other hand, the insider’s portfolio choice W ( · ) influences the market maker’s posterior probability
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of s through Oinsider(W, s; W̃ ). Both overlap measures are non-local with respect to the state. In

equilibrium, this will result in cross-market price impact.

4 The Insider’s Portfolio Choice

This section derives two necessary conditions for the insider’s optimal portfolio—the first-order

condition and no-arbitrage. Under the same maintained assumptions as Theorem 3.1, given the market

maker’s belief W̃ ( · , · ) regarding his trading strategy, the formal statement of the insider’s portfolio

choice problem (2) conditional on observing signal s ∈ S is37

max
W ( · )∈Cδ([x,x̄],ℝ)

∫ x̄

x

W (x)η(x, s)dx︸ ︷︷ ︸
expected payoff

−
∫ x̄

x

W (x) · 𝔼ℙW [P (x, ω; W̃ )]dx︸ ︷︷ ︸
expected cost

(15)

= max
W ( · )∈Cδ([x,x̄],ℝ)

∫ x̄

x

W (x)η(x, s)dx−
∫ x̄

x

W (x) · P (x,W ; W̃ )dx (16)

≡ max
W (·)∈Cδ([x,x̄],ℝ)

J(W ; W̃ , s) (17)

where ℙW is the probability measure over aggregate order flow ω ∈ Ωγ induced by the insider’s choice

W ( · ), P ( · , ω; W̃ ) is the market maker’s pricing kernel, and

P (x,W ; W̃ ) = 𝔼ℙW [P (x, ω; W̃ )] (18)

is the expected price of state x security under ℙW and given W̃ . The expression J(W ; W̃ , s) in (17)

defines the insider’s expected utility functional conditional on s and given market maker belief W̃ .

Clearly, any portfolio W with the property that
∫ x̄

x
W (x)η(x, s)dx = 0 for all s achieves zero

expected payoff for the insider. In other words, any portfolio W that is orthogonal to the observed

payoff distribution η( · , s) has zero expected payoff. Therefore the domain of J can be restricted to

(the closure of) the linear span of {η( · , s)}s∈S. Also, any portfolio W that is constant across states

achieves zero expected utility. In other words, risk-free portfolios are payoff irrelevant, because there

is no information asymmetry regarding the risk-free asset. Therefore, by adding a risk-free portfolio if

necessary, we can assume the insider chooses a long-short portfolio W with
∫ x̄

x
W (x)dx = 0. We record

these facts as Proposition 4.1.

Proposition 4.1.

(i) (No Insider Demand Orthogonal to Payoffs) Without loss of generality, for all W̃ and s, the

37Under the maintained Assumption A.1, the expression of the expected utility functional in (2) is equal to that in

(15) by the Fubini-Tonelli Theorem, which allows the two integrals
∫ x̄

x
· dx and 𝔼ℙW [ · ] to commute.
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domain of the insider’s expected utility functional J( · ; W̃ , s) can be restricted to the closure of the linear

span of {η( · , s)}s∈S in Cδ([x, x̄],ℝ).
(ii) (Long-Short Portfolios Only) Without loss of generality, the domain of J( · ; W̃ , s) can be further

restricted to portfolio W ’s with
∫ x̄

x
W (x)dx = 0.

4.1 First-Order Condition

As the insider trades to exploit his private information regarding differential payoffs across states

conditional on his signal, his trades incur a marginal cost by revealing his private information to the

market maker.38 Cross-market inference by the market maker means this cost operates not only through

the within-market channel but also between-markets. In general, at any given state, the insider trades

off the marginal payoff of the state against the marginal cost consisting of, first, the current price of the

state itself, conditional on no price impact, and second, the global price impact of marginal demand at

the given state. This economic intuition is made rigorous by Theorem 4.2.

Theorem 4.2. (Insider FOC)

Conditional on observing s and given market maker belief W̃ ( · , · ), the insider’s expected util-

ity functional J( · ; W̃ , s) : Cδ([x, x̄],ℝ) → ℝ is Gâteaux-differentiable. Its Gâteaux derivative at W ,

i.e. marginal utility functional, dJ(W ; W̃ , s)( · ) : Cδ([x, x̄],ℝ) → ℝ decomposes into the following sum

dJ(W ; W̃ , s)( · )︸ ︷︷ ︸
marginal utility

= Np(W )( · )︸ ︷︷ ︸
marginal payoff

−
(
NAD(W )( · ) +NK(W )( · )

)︸ ︷︷ ︸
marginal cost

where

Np(W )(v)︸ ︷︷ ︸
marginal payoff of v

=

∫ x̄

x

v(x)η(x, s)ds, (19)

NAD(W )(v)︸ ︷︷ ︸
marginal cost of v,

AD term

=

∫ x̄

x

P (x,W ; W̃ )v(x)dx (20)

NK(W )(v)︸ ︷︷ ︸
marginal cost of v,
price impact term

=

∫ x̄

x

W (x)𝔼µγ

[
ℂ𝕠𝕧π1(ds,ω;W̃ )

(
η(x, s),Oinsider(v, s; W̃ )

)]
dx. (21)

38A risk-averse insider would, in addition to exploiting his private information regarding differential payoffs, trade to
smooth consumption across states. See Section 7.3.
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Therefore, for any optimal portfolio W conditional on signal s, the first-order condition

Np(W )( · )︸ ︷︷ ︸
marginal payoff

= NAD(W )( · )︸ ︷︷ ︸
AD term

+ NK(W )( · )︸ ︷︷ ︸
price impact term︸ ︷︷ ︸

marginal cost

(22)

must hold.39

The Gâteaux derivative dJ(W ; W̃ , s)(v) evaluated at v∈Cδ([x, x̄],ℝ) is the insider’s marginal utility

of marginal demand v at portfolioW , conditional on observing s and given market maker belief W̃ ( · , · ).
In the price impact term NK(W ) of (21), the covariance quantity

ℂ𝕠𝕧π1(ds,ω;W̃ )
(
η(x, s),Oinsider(v, s; W̃ )

)
, (23)

for a given state x, is the covariance between the state x payoff profile η(x, · ) and the overlap measure

profile Oinsider(v, · ; W̃ ) across signals, under the market maker’s posterior π1(ds, ω; W̃ ) on S.40 In the

expression

𝔼µγ

[
ℂ𝕠𝕧π1(ds,ω;W̃ )(· · · , · · · )

]
entering NK(W ), the inner covariance operator ℂ𝕠𝕧π1(ds,ω;W̃ )( · , · ) is taken with respect to market

maker’s posterior π1(ds, ω; W̃ ) conditional on ω, and the outer expectation operator 𝔼µγ [ · ] is taken

with respect to µγ over ω.

The first-order condition (22) equalizes the marginal payoff functional Np(W ) with the marginal

cost functional NAD(W ) +NK(W ). The marginal payoff functional Np(W ) can be identified with the

payoff distribution η( · , s). That is, conditional on signal s, the payoff of marginal demand for state

x security is the true payoff η(x, s) of that security, which is known to the insider. The marginal cost

functional decomposes into the risk-sharing Arrow-Debreu term NAD(W ) and the price impact term

NK(W ). The Arrow-Debreu term NAD(W ) can be identified with the current (expected) AD prices

P ( · ,W ; W̃ ). In other words, the marginal cost for state x order would be the current state x price set

by the market maker, if marginal demand at x does not cause the market maker to revise his belief

W̃ . However, in general a marginal demand at x will cause the market maker to revise his belief and

result in global price impact on all markets. This corresponds to the price impact term NK(W ) of the

marginal cost.

39The parametrization by W̃ and s is suppressed in the notations for the Arrow-Debreu term NAD and the price impact
term NK .

40Let us further explain the notation of the covariance quantity (23). The variable s in (23) is a dummy variable of

integration and integrated away over the distribution π1(ds, ω; W̃ ) after taking the covariance. Given W̃ , the covariance
quantity is therefore a function of x, v, and ω.
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4.2 Cross-Market Price Impact

By the characterization of the price impact term NK(W ) of the marginal cost functional in Theo-

rem 4.2, the global price impact of insider marginal demand v is given by the following linear operator

Λ: Cδ([x, x̄],ℝ) → Cδ([x, x̄],ℝ),

v( · ) Λ7→ 𝔼µγ

[
ℂ𝕠𝕧π1(ds,ω;W̃ )

(
η( · , s),Oinsider(v, s; W̃ )

)]
(global price impact operator). (24)

Λ maps a marginal demand v of the insider to its price impact on each state. Λv evaluated at x,

(Λv)(x), is the price impact of v on state x market. In the definition of Λ, for a given state x, the

covariance quantity (23) is the covariance, under the market maker’s posterior π1(ds, ω; W̃ ), of two

profiles across signals:

� The payoff profile of state x security, η(x, · ).
� The overlap profile Oinsider(v, · ; W̃ ) of Definition 1(ii), between marginal demand v and what the

market maker believes the insider’s orders would be if a signal were the actual observed signal.

The operator Λ therefore captures the following intuition. If the marginal demand v interacts with the

market maker belief W̃ signal-by-signal to produce an overlap profile Oinsider(v, · ; W̃ ) that resembles

the state x payoff η(x, · ), then v causes the market maker to raise state x price, vice versa.

Of particular interest is the special case of localized pairwise price impact—the marginal effect of

state y order on state x price. We have the following immediate corollary of Theorem 4.2.

Corollary 4.3. Let x, y ∈ [x, x̄] be two states, Λ be the global price impact operator defined in (24),

and v( · ) be a marginal demand that has support in a vanishingly small neighborhood of state y. Then

the price impact of state y order on (expected) state x price under market maker belief W̃ is given by

∂

∂W (y)
P (x,W ; W̃ ) = (Λv)(x) (price impact of y on x). (25)

Example 4.4. The marginal demand v in Corollary 4.3 can be taken as the Dirac delta function δy at

state y, so that41

Oinsider(v, · ; W̃ ) =

(∫ x̄

x

W̃ (x, s′)

σ2(x)
δy(x)dx

)
s′∈S

=

(
W̃ (y, s′)

σ2(y)

)
s′∈S

.

Suppose y can only realize under signal s and never realize under signals s′ ̸= s, and the market maker

believes that W̃ (y, s) > 0 and W̃ (y, s′) = 0 for s′ ̸= s, i.e. insider demand at y is positive if the true

signal is s and zero otherwise. Such belief by the market maker is plausible. This gives an overlap

41In the options formulation, δy is familiar to option traders as an (infinitesimally) tight butterfly around strike y.
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profile Oinsider(v, · ; W̃ ) that concentrates at s—positive at s and zero for s′ ̸= s. Now consider the

following two scenarios for a state x:

� Scenario (i). Suppose x can only realize under signal is s′ ̸= s, i.e. η(x, s) = 0 and η(x, s′) > 0

for s′ ̸= s. Then state y order has negative price impact on state x market, because the overlap

profile Oinsider(v, · ; W̃ ) and payoff profile η(x, · ) have negative correlation. The overlap profile

Oinsider(v, · ; W̃ ) concentrates at s while the payoff profile η(x, · ) concentrates on the complement

{s′ : s′ ̸= s}. The negativity of price impact of state y order on state x price has a familiar

intuition. An insider buy order at y will likely lead the market maker to believe that x has low

probability of realizing, which lowers the state x price.

� Scenario (ii). Suppose x, like y, can only realize under s, i.e. η(x, s) > 0 and η(x, s′) = 0 for

s′ ̸= s. Then state y order has positive price impact on state x market, because the overlap profile

Oinsider(v, · ; W̃ ) and the payoff profile η(x, · ) have positive correlation, both concentrating at s.

The intuition is the flip side of Scenario (i).

Example 6.5(i) considers Scenario (i) in equilibrium, when the market maker holds equilibrium

belief.

4.3 No-Arbitrage

No-arbitrage is a general necessary condition for equilibrium. We now derive this condition for

our setting, which is also the basis of the equilibrium solution.42 Here, as in Section 4.2, the overlap

measure Oinsider(W, s; W̃ ) between the insider’s trades and the market maker’s belief naturally occurs,

but with W being an insider portfolio instead of a marginal demand. Consider the bounded linear

operator K( · ; W̃ ) : Cδ([x, x̄],ℝ) → C(S,ℝ) defined by43

K(W ; W̃ ) = Oinsider(W, · ; W̃ ) =
(
Oinsider(W, s; W̃ )

)
s∈S

. (26)

Definition 2. The zero price impact subspace V0(W̃ ) under market maker belief W̃ is the

null space of K( · ; W̃ ), i.e.

V0(W̃ ) = K−1(0; W̃ ) ⊂ Cδ([x, x̄],ℝ).

Theorem 4.5. (No-Arbitrage)

For the insider’s portfolio choice problem (15) conditional on observing signal s and given market

maker belief W̃ , an optimal portfolio exists only if his expected utility functional J( · ; W̃ , s) descends

to the quotient space Cδ([x, x̄],ℝ)
/
V0(W̃ ) . In other words, for all c ∈ C(S,ℝ), the insider’s expected

42In our setting, we interpret “no-arbitrage” to mean that the insider cannot achieve unbounded expected utility.
43That the range of K( · ; W̃ ) lies in C(S,ℝ) and that K( · ; W̃ ) is a bounded operator both follow from the Dominated

Convergence Theorem.
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utility functional J( · ; W̃ , s) must be constant on the closed affine subspace Vc(W̃ ) = K−1(c; W̃ ). In

particular, J( · ; W̃ , s) must be zero on the zero price impact subspace V0(W̃ ).

The proof of the theorem illustrates the underlying economic intuition.

Proof. Inspecting the expression (18) of P (x,W ; W̃ ) shows that, ifK(W ; W̃ ) = c for a fixed c ∈ C(S,ℝ),
then the (expected) state x price P (x,W ; W̃ ) faced by the insider depends only on the state x and

not on W .44 That is, conditional on c ∈ C(S,ℝ), an insider order W ∈ Vc(W̃ ) does not change the

(expected) state prices.

In particular, an insider portfolio W in the zero price impact subspace V0(W̃ ) has an overlap profile

Oinsider(W, · ; W̃ ) = 0 ∈ C(S,ℝ)

that is identically zero on S. That is, a portfolio W ∈ V0(W̃ ) causes zero price impact, because it is

orthogonal to what the market maker believes the insider’s demand would be regardless of s. For the

insider’s problem to be well-posed, such a portfolio must give zero expected utility. Otherwise, the

insider can arbitrage by arbitrarily scaling up his portfolio. If W ∈ V0(W̃ ) and J(W ; W̃ , s) > 0, then

the insider’s expected utility J(αW ; W̃ , s) → ∞ as α → ∞, because the scaled portfolio αW ∈ V0(W̃ )

causes no price impact as α → ∞. This cannot occur in equilibrium. Similarly, J(W ; W̃ , s) < 0 for

some W ∈ V0(W̃ ) would allow arbitrage.

More generally, for any two portfolios W1 and W2 such that K(W1; W̃ ) = K(W2; W̃ ) = c ∈ C(S,ℝ),
i.e. W1,W2 ∈ Vc(W̃ ), no-arbitrage requires that J(W1; W̃ , s) = J(W2; W̃ , s). Otherwise, a long-short

portfolio, W1 − W2 or W2 − W1 ∈ V0(W̃ ), would be an arbitrage opportunity. In other words, to

preclude arbitrage, the insider’s expected utility functional J( · ; W̃ , s) must be constant on the affine

subspace Vc(W̃ ) for each c ∈ C(S,ℝ). This proves the theorem.

Restriction on Equilibrium Belief Since no-arbitrage is a necessary condition for equilibrium,

Theorem 4.5 gives a restriction on the market maker’s equilibrium belief. In equilibrium, the market

maker would not believe there is any informed demand in the zero price impact subspace V0(W̃ ).

44Let

I(ω, s; W̃ ) =

∫ x̄

x

W̃ (x, s)

σ2(x)
dωx − 1

2

∫ x̄

x

W̃ (x, s)2

σ2(x)
dx

and C ′(ω,W ; W̃ ) =
∫
S
eI(ω,s′;W̃ )e

∫ x̄
x

W̃ (x′,s′)W (x′)
σ2(x′)

dx′

π0(ds
′). We have

P (x,W ; W̃ ) = 𝔼µγ [

∫
S

η(x, s)e
I(ω,s;W̃ )e

∫ x̄
x

W̃ (x′,s)W (x′)
σ2(x′)

dx′
π0(ds)/C′(ω;W̃ )]

= 𝔼µγ [

∫
S

η(x, s)e
I(ω,s;W̃ )+c(s)π0(ds)/C′(ω;W̃ )]

which does not depend on W .
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Intuitively, we can therefore exclude the zero price impact subspace V0(W̃ ) from the market maker’s

equilibrium belief and restrict the belief to the ”orthogonal complement” of V0(W̃ )—more precisely, the

quotient space C
δ([x, x̄],ℝ)

/
V0(W̃ ) in Theorem 4.5. In particular, when S is finite, K( · ; W̃ ) is a finite-

rank operator, as the overlap profile Oinsider(W, · ; W̃ ) is finite-dimensional in this case. This means

the orthogonal complement of V0(W̃ ) is also finite-dimensional.45 This leads to a finite-dimensional

reduction of the infinite-dimensional trading game that we will exploit in Section 5.

Remark 4.6. More generally, when S is a compact subset of Euclidean space, K( · ; W̃ ) is a com-

pact linear operator.46 The restriction on the market maker’s possible equilibrium belief W̃ given by

Theorem 4.5 remains in effect. The null space of a compact operator—the zero price impact subspace

V0(W̃ )—is “large.” This restricts the market maker’s possible equilibrium belief to a “small” subspace

that is “almost finite-dimensional.” Our methodology for equilibrium solution remains applicable in the

more general case of compact S, such as a closed bounded subset of ℝ, with no material change in the

basic economic results. The degree of generality under which equilibrium obtains speaks to the robust-

ness of the underlying economic intuition. To reduce the technicality of the exposition, we consider the

finite S case in what follows.

5 Equilibrium

In this section, we establish equilibrium for the case of finitely many signals.

Assumption 1. (Finite S Case)

(i) The signal space S = {si}i=1,··· ,I is finite. The probability distribution over states [x, x̄] condi-

tional on si is η( · , si) for i = 1, · · · , I.
(ii) The prior π0 is the uniform distribution on S, i.e. π0(si) =

1
I
for each i.

(iii) Noise trading intensity is constant σ > 0 across states, i.e. σ(x) = σ > 0 for all x ∈ [x, x̄].

(iv) The set of distributions {η( · , si)}i=1,··· ,I is linearly independent.

To isolate the effect of information asymmetry regarding the payoff distribution, Assumption 1(ii)

and (iii) control for the Bayesian prior and noise trading intensity, respectively.47 Assumption 1(iv) is

an identification condition, from the perspective of the market maker.

45This follows from a general Fundamental Theorem of Linear Algebra.
46A linear operator K on a topological vector space is compact if the image of a bounded set under K is precompact.

Finite-rank operators are compact.
47In fact, controlling for noise trading intensity is redundant in the case of finitely many signals. When S is finite,

equilibrium is possible only when noise trading intensity σ2(x) is constant across states x ∈ [x, x̄]. In other words, when
there are only finitely many signals, varying noise trading intensity across infinitely many markets would allow arbitrage,
and no equilibrium can exist.
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Definition 3. A (Bayesian Nash) equilibrium in our model is a map W ∗( · , · ) : [x, x̄] × S → ℝ
such that, for all s ∈ S,

W ∗( · , s) ∈ argmax
W ( · )∈Cδ([x,x̄],ℝ)

J(W ;W ∗, s),

where J( · ;W ∗, s) is the insider’s expected utility functional (17), conditional on signal s and given

market maker belief W ∗( · , · ).

In other words, in equilibrium the market maker holds belief W ∗( · , · ), and the insider’s optimal

portfolio conditional on each s is W ∗( · , s), thereby confirming the market maker’s belief.

Definition 4. The information intensity matrix M(η) ∈ ℝI×I is

M(η) = [Mij(η)]1≤i,j,≤I = [

∫ x̄

x

η(x, si)η(x, sj)dx]1≤i,j,≤I .

The information intensity matrix M(η) is positive definite under the identification condition of

Assumption 1(iv). It has a clear interpretation. It is a measure of the correlation of asset payoff

distributions across signals. Partially ordered by positive-semidefiniteness, a larger M(η) means a

higher correlation of asset payoff distributions η( · , s) across signals s. There is a direct analogy

between M(η) and the variance of asset fundamental value in the Kyle (1985) single asset setting of

Section 2.2. They both reflect the informativeness—information intensity—of the insider’s signal. A

change of basis via M(η) will give a finite-dimensional reduction of the trading game that is invariant

with respect to the specification of {η( · , si)}i=1,··· ,I (see Remark 5.2).

Corollary 5.1 below follows from Proposition 4.1(i) and strengthens the no-arbitrage condition of

Theorem 4.5 under equilibrium.

Corollary 5.1. Under Assumption 1 (i), for all market maker belief W̃ ( · , · ) and signal sj, the domain

of insider’s expected utility functional J( · ; W̃ , sj) can be restricted to the contingent claim portfolios in

the linear span of {η( · , si)}i=1,··· ,I . Therefore, in equilibrium W ∗( · , sj) must also lie in the linear span

of {η( · , si)}i=1,··· ,I , for all j.

Corollary 5.1 is very intuitive. By Proposition 4.1(i), the portfolios orthogonal to the linear span of

{η( · , si)}i=1,··· ,I give zero payoff to the insider. Therefore, by the no-arbitrage condition of Theorem 4.5,

the market maker’s equilibrium belief can be restricted to the same linear span. In an equilibrium

W ∗, the orthogonal complement of the linear span is the zero price impact subspace V0(W
∗). The

finite-dimensional reduction of the infinite-dimensional game is achieved by excluding, without loss of

generality, the “large” subspace V0(W
∗) so that only a “small” residual subspace remains.48

48More precisely, the excluded zero price impact subspace V0(W
∗) has finite codimension in the infinite-dimensional

space Cδ([x, x̄],ℝ). The quotient space Cδ([x, x̄],ℝ)
/
V0(W

∗) in Theorem 4.5 is isomorphic to the linear span of

{η( · , si)}i=1,··· ,I .
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5.1 Finite-Dimensional Reduction

In view of Corollary 5.1, the Bayesian trading game between the insider and the market maker

admits a finite-dimensional reduction. We now make this explicit by considering the linear expansion

coefficients with respect to {η( · , si)}i=1,··· ,I . Characterizing equilibrium is then equivalent to charac-

terizing the fixed points of a map on ℝI×I .

For a portfolio

W ( · ) =
I∑

i=1

diη( · , si)

in the linear span of {η( · , si)}i=1,··· ,I , collect the expansion coefficients in the vector

d = (di) ∈ ℝI . (27)

Similarly, for market maker belief W̃ ( · , · ) in the same linear span,

W̃ ( · , si) =
I∑

j=1

d̃
(i)
j η( · , sj), where d̃(1), · · · , d̃(I) ∈ ℝI ,

form the square matrix

D̃ = [d̃(1) · · · d̃(I)] ∈ ℝI×I ,

where d̃(i) is the i-th column of D̃. Furthermore, impose the change of basis on ℝI given by49

d̂ =
1

σ
M

1
2 (η)d. (28)

Let D̂ denote the market maker’s belief D̃ of (29) under this change of basis transformation, i.e.

D̂ =
1

σ
M

1
2 (η)D̃ = [d̂(1) · · · d̂(I)]. (29)

Let ei denote the i-th standard basis vector of ℝI and I ∈ ℝI×I be the identity matrix.

Remark 5.2. The change of basis (28) normalizes the information intensity across signals. For exam-

ple, if the payoffs {η( · , si)}i=1,··· ,I have disjoint supports on [x, x̄], then the change of basis is equivalent

to simply replacing each η( · , si) by

σ · 1

(
∫ x̄

x
η(x, si)2dx)

1
2

· η( · , si)

49M
1
2 (η) denotes the unique positive-definite square root of the information intensity matrix M(η), which exists by

Assumption 1(iv).
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in the original game, which normalizes the across-state variations of the payoffs.50

Proposition 5.3. Under Assumption 1, the Bayesian trading game between the insider and the market

maker is isomorphic to the following finite-dimensional canonical game:

� The market maker has uniform prior on signals s1, · · · , sI . The insider observes the realization

of the signal.

� If the insider chooses d̂ ∈ ℝI , the market maker observes d̂ + X̂, where X̂ = (X̂i)i=1,··· ,I , X̂i
i.i.d.∼

N (0, 1).

� After observing d̂ + X̂ and given his belief D̂ = [d̂(1) · · · d̂(I)] regarding the insider’s strategy, the

market maker updates his prior to the posterior probability mass function (π̂1(i, d̂; D̂))i=1,··· ,I on

S specified by

π̂1(i, d̂, X̂; D̂) =
e(d̂

(i))T d̂+(d̂(i))T X̂− 1
2
(d̂(i))T d̂(i)

I∑
j=1

e(d̂
(j))T d+(d̂(j))T X̂− 1

2
(d̂(j))T d̂(j)

, i = 1, · · · , I. (30)

� Conditional on observing si, the insider’s maximization problem is

max
d̂∈ℝI

eTi d̂− π̂1(d̂; D̂)T d̂ ≡ max
d̂∈ℝI

J(d̂; D̂, i), (31)

where π̂1(d̂; D̂) is the expectation of(
π̂1(1, d̂, X̂; D̂), · · · , π̂1(I, d̂, X̂; D̂)

)T
(32)

over possible realizations of X̂.

The canonical game is invariant with respect to the specification of possible payoff distributions

{η( · , si)}i=1,··· ,I . The isomorphism between the original game and the canonical game derives from the

explicit finite-dimensional reduction.

Interpretation of Canonical Game The canonical game admits the following natural interpre-

tation as a “trading game on signals.” There are pseudo-“Arrow-Debreu markets” corresponding to

pseudo-“Arrow-Debreu states” i = 1, · · · , I. Conditional on signal si, the i-th “state” will realize with

probability one and the other “states” have probability zero. Conditional on observing si, the insider

submits demand d̂ ∈ ℝI for the “Arrow-Debreu securities” to maximize the “expected profit” J(d̂; D̂, i)

defined in (31). The “noise trader order” for the i-th “state” is X̂i. The market maker has uniform prior

on {si}i=1,··· ,I and, after observing total order flow d̂+ X̂, sets the “Arrow-Debreu prices” according to

(30). This pricing rule encodes the market maker’s zero profit condition in the original game.

50More precisely, this normalizes the L2-norms of payoffs over the state space.
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An equilibrium in the canonical game is a set of trading strategies δ(i) ∈ ℝI , i = 1, · · · , I, such that,

for all i,

δ(i) ∈ argmax
d̂∈ℝI

J(d̂;D∗, i), (33)

where D∗ = [δ(1) · · · δ(I)] ∈ ℝI×I and J(d̂;D∗, i) is defined in (31).

Proposition 5.4. Under the isomorphism between the canonical game and the original trading game,

an equilibrium D∗ of the canonical game gives an equilibrium of the original game (as defined in

Definition 3) specified by

W ∗( · , si) =
I∑

j=1

β
(i)
j η( · , sj), where β(i) = σD∗M− 1

2 (η)ei ∈ ℝI (34)

for each signal si. The matrix σD∗M− 1
2 (η) will be referred to as equilibrium informed demand in

canonical form.

To express the equation to follow more compactly, let (p1, · · · , pI)T denote the random vector (32)

of the market maker’s posterior probabilities in the canonical game, with the dependence on d̂, X̂,

and D̂ understood. Then, conditional on observing si and given market maker belief D̂, the first-order

condition for the insider’s maximization problem (31) in the canonical game is51

ei − 𝔼(d̂;D̂)


p1
. . .

pI


︸ ︷︷ ︸
AD term NAD(d̂)

− D̂ ·
(
𝔼(d̂;D̂)



p1

. . .

pI

−


p1
...

pI

[p1 · · · pI

]) · d̂

︸ ︷︷ ︸
price impact term NK(d̂)

= 0, (35)

where 𝔼(d̂;D̂)[ · ] is the expectation taken over possible pseudo-“total order flow” d̂ + X̂, given insider

choice d̂ and market maker belief D̂.

51Under the isomorphism of Proposition 5.3, the marginal cost in the insider’s first-order condition (35) in the canonical
game retains the same Arrow-Debreu and price impact decomposition obtained in Theorem 4.2 for the original game,
but with respect to the pseudo-Arrow-Debreu states. The marginal cost at current demand d̂ is the sum

NAD(d̂) +NK(d̂).

With respect to the pseudo-Arrow-Debreu markets, the Arrow-Debreu term NAD(d̂) is the cost of marginal demand at

d̂, conditional on no price impact. The price impact term NK(d̂) reflects the price impact of marginal demand on all
pseudo-Arrow-Debreu markets.
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5.2 Symmetric Equilibrium

Define

Q = I− 1

I
ēēT ∈ ℝI×I (36)

where ē =
I∑

i=1

ei.

Equilibrium Ansatz The canonical game is symmetric across signals—up to permutation on i,

the insider’s problem is identical across signals. This symmetry owes to the normalization discussed

in Remark 5.2. Given the symmetry of the game and Proposition 4.1(ii), a natural conjecture for

equilibrium is

D∗ = aQ, for some a > 0. (37)

That is, conditional on observing si, the insider demand is a(1− 1
I
) for the i-th pseudo-AD state and

−a
I
for the other states. This portfolio of pseudo-AD securities corresponds to the i-th column D∗ei of

the equilibrium ansatz D∗ = aQ. Substituting the equilibrium ansatz into the first-order condition (35)

for each i and stacking the resulting vector equations side-by-side yield a matrix equation

Φ(a)Q = 0, (38)

where Φ(a) is a scalar-valued function of a. Provided that, in such a fixed point (38) of the joint

first-order conditions, the first-order condition is sufficient for optimality conditional on each signal, an

equilibrium is given by a solution a∗ to the equilibrium equation

Φ(a) = 0. (39)

Theorem 5.5. (Existence of Equilibrium)

(i) Under Assumption 1, there exists a∗ > 0 such that D∗ = a∗Q is an equilibrium of the canonical

game.

(ii) Therefore, by Proposition 5.4, the original trading game has an equilibrium where the canonical

form informed demand is a∗σQM− 1
2 (η).

In the equilibrium obtained in Theorem 5.5, the informed demand is positive in the observed signal

and negative in the other signals. The insider’s trading strategy conditional on the observed signal

therefore shifts the market maker’s posterior toward the observed signal. The market maker’s posterior

on signals, conditional on the observed signal, is biased toward the observed signal. Examples 5.6 and

5.7 demonstrate the special case of Theorem 5.5 where the signal is binary.

Example 5.6. (Binary Signal)
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Consider the binary signal case, S = {s1, s2}.
(i) Derivation of Equilibrium Equation Φ(a) = 0.

The equilibrium ansatz (37) is52

D∗ =

[
a −a
−a a

]
.

Substituting D∗ into the first-order condition of (35) conditional on s1 gives[
1

0

]
−

[
𝔼[p1]

1− 𝔼[p1]

]
− 4a2

[
𝔼[p1p2]
−𝔼[p1p2]

]
= (1− 𝔼[p1]− 4a2𝔼[p1p2])

[
1

−1

]
= 0 (40)

where 𝔼[ · ] is the expectation taken under the conjectured equilibrium D∗, and pi is the posterior prob-

ability of si. Substituting D
∗ into the market maker’s posterior (30) gives

(p1, p2)
d∼ (

eZ

eZ + 1
,

1

eZ + 1
), where Z

d∼ N (2a2, 8a2). (41)

By (41), the quantities 𝔼[p1] and 𝔼[p1p2] in (40) are moments of a logit normal distribution and func-

tions of a. Write

𝔼[p1] = ϕ1(a), and 𝔼[p1p2] = ϕ2(a).

The first-order condition (40) conditional on s1 can then be written as

Φ(a)

[
1

−1

]
= 0 (42)

where Φ(a) = 1− ϕ1(a)− 4a2ϕ2(a). The first-order condition conditional on s2

Φ(a)

[
−1

1

]
= 0 (43)

is identical with (42), up to permuting s1 with s2. Stacking the two symmetric equations (42) and (43)

side-by-side gives the matrix equation Φ(a)Q = 0 of (38) in the special case I = 2 (up to scalar multiple

52To be exact, in the binary signal case, we have

Q =

[
1
2 − 1

2
− 1

2
1
2

]
as defined by (36), and the equilibrium ansatz of (37) is

D∗ = aQ =
1

2

[
a −a
−a a

]
.

In this calculation for the binary signal case, we parameterize by 1
2a instead of a.
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1
2
). An equilibrium is given by a solution a∗ > 0 to Φ(a) = 0, which is the equilibrium equation (39) in

the special case I = 2.

(ii) Existence of Equilibrium.

Since

Φ(0) =
1

2
and lim

a→∞
Φ(a) ↑ 0,

Φ(a∗) = 0 for some a∗ > 0 by the Intermediate Value Theorem, and the existence of equilibrium

follows.53 This proves Theorem 5.5 in the case of binary signal.

The endogenous constant a∗ in Theorem 5.5 solves the equilibrium equation Φ(a) = 0 of (39). It

enters the insider’s demand by scaling his contingent claim portfolio uniformly across all states and

all signals, in both the canonical game and the original game. Example 5.7 further illustrates the

existence of equilibrium by considering how the market maker’s posterior varies with respect to a

under equilibrium belief, in the binary signal case.

Example 5.7. (Binary Signal—MM Equilibrium Posterior)

Consider the probability law (41), obtained Example 5.6, of the market maker’s equilibrium posterior

conditional on s1,

(p1, p2)
d∼ (

eZ

eZ + 1
,

1

eZ + 1
), where Z

d∼ N (2a2, 8a2).

(i) As a→ 0, the market maker’s posterior approaches the uniform prior (1
2
, 1
2
) with probability one,

In other words, if the insider demand is zero for all markets, order flow is pure noise across all

markets and there is no updating by the market maker.

(ii) As a→ ∞, the market maker’s posterior approaches the point mass (1, 0) on the observed signal

s1 with probability one. In other words, as the insider scales up his orders uniformly across all

markets and signals, eventually he reveals his private signal.

The insider faces increasing marginal cost.54 The marginal cost is the sum of the Arrow-Debreu

and price impact terms characterized in Theorem 4.2. Equilibrium a∗ attains when the marginal cost

exactly offsets the marginal payoff. The market maker’s equilibrium posterior is biased toward the

observed signal s1, as expected.
53It is clear that Φ(0) = 1

2 . That lim
a→∞

Φ(a) ↑ 0 can be seen as follows. Write

Φ(a) = 1− E[p1 + 4a2p1 − 4a2p21]

where

p1 =
e2a

2+2aY

e2a2+2aY + 1
, Y

d∼ N (0, 2).

We have p1 + 4a2p1 − 4a2p21 → 1 almost surely as a → ∞. Moreover, p1 + 4a2p1 − 4a2p21 > 1 eventually almost surely as
a → ∞. By Fatou’s Lemma, E[p1 + 4a2p1 − 4a2p21] → 1 from above as a → ∞. This implies Φ(a) → 0 from below as
a → ∞.

54See Lemma A.2.
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Figure 1: Comparative Statics of Endogenous Constant a∗ The endogenous constant a∗ as a function of number

signals I, plotted over the range 2 ≤ I ≤ 20.

Comparative Statics of a∗ The endogenous constant a∗ characterizing equilibrium only depends

on the number of signals I. In particular, it is independent of the specification of possible payoff

distributions {η( · , si)}i=1,··· ,I over states. a∗(I) is an increasing concave function of I, as shown in

Figure 1. As the market belief becomes more dispersed, the insider scales up his demand, uniformly

across states and signals, to exploit his private information. The marginal gain of scaling up diminishes

as the increased variation of his trades across signals also makes it easier for the market maker to infer

his private signal.

6 Price Discovery

6.1 Informed Demand

In the equilibrium of Theorem 5.5 characterized by a∗ > 0, the informed demand in the canonical

form of Proposition 5.4 is

a∗σQM− 1
2 (η) = [β(1) · · · β(I)] ∈ ℝI×I (44)

where β(i) = a∗σQM− 1
2 (η)ei. Explicitly, the equilibrium informed demand W ∗(·, si) conditional on

signal si is

W ∗( · , si) =
I∑

j=1

β
(i)
j η( · , sj), (45)

which is a long-short portfolio of the type specified in Proposition 4.1(ii). Applying the Breeden-

Litzenberger formula (6) to W ∗( · , si) gives the equivalent options portfolio.

Informed Demand Portfolio Construction The intuition underlying the informed demand for-

mula (45) can be seen in the following portfolio construction procedure:

� Step 1. Form an initial long-short portfolio where the observed payoff distribution η( · , si) receives
positive weight 1 − 1

I
and the other distributions η( · , sj), j ̸= i, receive equal negative weights

−1
I
.
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� Step 2. Adjust the initial portfolio weights by applying the linear transformation M− 1
2 (η).

� Step 3. Scale the overall portfolio by the endogenous constant a∗.

� Step 4. Finally, further scale the overall portfolio by noise trading intensity σ.

Step 1 constructs an initial portfolio by buying the observed signal and selling the other signals.

Step 2 adjusts the initial portfolio for the information intensity of the insider’s signal, as measured by

M(η). Higher information intensity of signals forces the insider to scale down his demand to reduce

the variation of his trades across signals.55 Step 3 scales the portfolio by the endogenous constant

a∗ to optimize with respect to dispersion of market belief. Higher dispersion of market belief allows

the insider to make larger trades.56 Step 4 scales the portfolio by σ to optimize with respect to noise

trading intensity. Higher noise trading intensity allows the insider to better conceal larger trades.

The informed demand in canonical form

a∗σQM− 1
2 (η)

and the single asset informed demand from (5)

β(s− v0) = σε ·
1

σv
(s− v0), β = σε ·

1

σv

share the same intuition regarding the information intensity of signal and noise trading intensity. The

quantity 1
σv

entering β has its contingent claims counterpart in the matrix M− 1
2 (η). Both σv and the

(square root of) information intensity matrix M
1
2 (η) determine the informativeness of order flow. In

the single asset setting, higher σv means the market maker can attribute more of the variation of order

flow to that of the asset fundamental value. In the general contingent claims setting, a larger M
1
2 (η),

in the sense of positive-semidefiniteness, means the market maker can infer more information regarding

the payoff distribution from total order flow across AD markets. Consequently, the informed demand

is decreasing with respect to σv and M
1
2 (η), in their respective settings. Noise trading intensity σε in β

plays exactly the same role as σ in D∗. The informed demand is increasing in noise trading intensity,

because more noise trades allows the insider to better hide his trades, whether in a single asset market

or across contingent claim markets.

Next, we demonstrate the informed demand for special parametric cases where private information

is restricted to the first, second, and third moments of the underlying asset payoff. In Examples 6.1,

6.2, and 6.3, the signal is binary, S = {s1, s2} and the state space is (−∞,∞).

55Step 2 reverses the normalization of information intensity across signals applied to derive the canonical game, dis-
cussed in Remark 5.2.

56As shown in Figure 1, a∗ is increasing with respect to I.
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Figure 2:
Insider Trading on Mean (Kyle (1985) with Option Markets) The shaded distributions in the left column indicate

the private signal of the insider. The figures in the right column show the informed demand W ∗, conditional on the

corresponding signals.

Within-Market Price Impact Two states x and y are indicated for illustration of within-market price impact. We

have Λx,x > Λy,y. State x has a higher within-market price impact than state y because the variation of the insider’s

signal at x is higher. In fact, state y payoff has zero variation across signals.

Example 6.1. (Insider Trading on Mean)

Let signal s1 (resp. s2) specify a payoff distribution that is normal N (µ1, σ) (resp. N (µ2, σ)), with

µ1 < µ2. This is a Kyle (1985)-type setting, where information asymmetry is restricted to the expected

asset payoff, but extended to incorporate derivative markets. Observing s1 (resp. s2) informs the insider

of low (resp. high) expected payoff.

Figure 2a shows the two possible distributions η( · , s1) and η( · , s2) with the shaded distribution

indicating the low expected payoff signal s1. Figure 2b shows the informed demandW ∗( · , s1) conditional
on s1. When the insider knows the expected payoff is lower than the current market belief, he longs

the low payoff states and shorts the other states. The informed demand is nonlinear. In terms of

futures and options, the linear short futures-only position of Kyle (1985) is sub-optimal, although it

approximates the optimal portfolio on strikes close to the t = 0 futures price.

The other case where the insider observes the high expected payoff signal s2 is symmetric. In Fig-

ure 2c, the shaded distribution indicates the signal s2. Figure 2d shows the informed demand W ∗( · , s2)
conditional on s2, To trade on an expected payoff which is higher than the current market belief, the

insider longs the high payoff states and shorts the other states. In terms of futures and options, a linear
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long futures position is again sub-optimal.
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Figure 3:
Insider Trading on Volatility The shaded distributions in the left column indicate the private signal of the insider.

The figures in the right column show the informed demand W ∗ conditional on the corresponding signals. The insider’s

positions are approximated by option butterfly/straddle positions for shorting/longing volatility.

Cross-Market Price Impact Three states—x, y, and z—are indicated for illustration of cross-market price impact.

State y has zero price impact on any state y′, i.e. Λy,y′ = 0. This is because state y payoff has zero variation across

signals, η(y, s1) = η(y, s2), which makes order flow at y pure noise—see corresponding zero informed demand at y shown

in Figures 3b and 3d, W ∗(y, s1) = W ∗(y, s2) = 0. The cross price impact between x and z is positive, Λx,z = Λz,x > 0.

This is because state x and state z payoffs (η(x, · ) and η(z, · ), respectively) are positively correlated across signals

s = s1, s2.

Example 6.2. (Insider Trading on Volatility)

Let signal s1 (resp. s2) specify a payoff distribution that is normal N (µ, σ1) (resp. N (µ, σ2)), with

σ1 < σ2.
57 The insider therefore has private information regarding the volatility of asset payoff. Ob-

serving s1 (resp. s2) informs the insider of low (resp. high) volatility.

Figure 3a shows the two possible distributions η( · , s1) and η( · , s2) with the shaded distribution

indicating the low volatility signal s1 of the insider. Figure 3b shows the corresponding informed demand

W ∗( · , s1) conditional on s1. In terms of options, to trade on the low volatility signal, the insider takes

a position that is well approximated by an option butterfly, which is used to trade on low volatility

57µ = 2, σ1 = 0.25, and σ2 = 0.5.
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signals in practice.58

Figure 3d shows the informed demand W ∗( · , s2) conditional on the high volatility signal s2, which is

shaded in Figure 3c. In terms of options, to trade on the high volatility signal, the insider takes a posi-

tion which is approximated by a straddle.59 The straddle is both used to trade on high-volatility signals

in practice and documented in the empirical literature to contain information on expected increase in

volatility—see, e.g. Pan and Poteshman (2006), Ni et al. (2008), and Goyal and Saretto (2009). An

alternative implementation of the informed demand W ∗( · , s2) is a short butterfly.
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Figure 4: Insider Trading on Skewness The shaded distributions in the left column indicate the private signal of

the insider. The figures in the right column show the informed demand W ∗ conditional on the corresponding signals.

Example 6.3. (Insider Trading on Skewness)

This example considers payoff distributions with different skewness while controlling for all other

moments. Let signal s1(resp. s2) specify a skew normal payoff distribution η(·, s1)(resp. η(·, s2) with

skewness parameter α1(resp. α2), where α1 < α2.
60 The mean and variance are the same across both

signals. Figure 4a shows the two distributions η(·, s1) and η(·, s2) with the shaded distribution indicating

the left-skewed signal s1 of the insider. Figure 4b shows the corresponding informed demand W ∗( · , s1).
Figure 4c and Figure 4d show the other case when the insider observes the right-skewed signal s2. In

58For a practitioner’s perspective on option butterfly, see e.g. https://www.cmegroup.com/education/courses/

option-strategies/option-butterfly.html.
59A straddle consists of a call option and a put option on the same underlying with the same strike price. For a

practitioner’s perspective, see e.g. https://www.cmegroup.com/education/courses/option-strategies/straddles.
html.

60α1 = −3 and α2 = 3.
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practitioner parlance, the informed demand can be implemented by long-short portfolios of so-called

“Christmas tree” options positions, with the long position aligned with the direction of skewness.

6.2 Price Impact

We now characterize the equilibrium price impact across AD markets. LetW ∗( · , · ) be the insider’s
equilibrium strategy (45). Substituting W ∗ = W = W̃ into the price impact expression (25) of

Corollary 4.3 yields the equilibrium price impact Λx,y between state x and y markets conditional on the

insider observing si,

Λx,y = (1− 1

I
) · a∗ · 1

σ
· 𝔼[ℂ𝕠𝕧π∗

1(ds,ω;si) (η(x, · ), η(y, · ))], (46)

where ℂ𝕠𝕧π∗
1(ds,ω;si)(η(x, · ), η(y, · )) is the covariance of the two states’ payoff profiles η(x, · ) and η(y, · )

under the market maker’s equilibrium posterior π∗
1(ds, ω; si) conditional on order flow ω, and 𝔼[ · ]

is taken with respect to its equilibrium probability law over ω. The equilibrium probability law of

π∗
1(ds, ω; si) over ω is characterized in Proposition 6.9. The following corollary is immediate.

Corollary 6.4. Cross price impact is symmetric with respect to states, Λx,y = Λy,x for all x and y.

Cross price impact is symmetric with respect to states because in equilibrium the market maker

infers equal amount of information from the marginal demands across any given pair of states.

Price Impact as Complementary Product The intuition underlying the cross price impact be-

tween two states x and y can be seen in each of the quantities entering the complementary product

defining Λx,y:

� (1− 1
I
)—the portfolio weight of the true payoff distribution in the informed demand (44).

� a∗—the endogenous constant. As the informed demand (44) scales up by a∗, this results in a

one-to-one response for price impact.

�
1
σ
—the reciprocal of noise trading intensity. Price impact moves inversely with respect to noise

trading intensity σ. Higher noise trading intensity means more noisy order flow for the market

maker and lowers price impact.

� 𝔼[ℂ𝕠𝕧π∗
1(ds,ω;si) (η(x, · ), η(y, · ))]—the (expected) covariance of state x and y payoff profiles under

the market maker’s equilibrium posterior. Because of the information spillover between markets,

the covariances of payoff profiles across signals are endogenous, in contrast to the single asset

setting. When the state x and y payoffs are highly correlated across signals, the insider’s demands

for x and y securities are also highly correlated across signals. For the market maker, order flow
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for x is therefore informative regarding the true payoff of y observed by the insider. This leads

to high price impact between x and y markets. Example 6.5 further illustrates this intuition.

Example 6.5.

(i) (Negative Cross Price Impact.) Let x and y be two states. If x can only realize under signal s

and y can only realize under signal s′ ̸= s, then

Λx,y = −(1− 1

I
) · a∗ · 1

σ
· 𝔼[η(x, s)π∗

1(s, ω; si) · η(y, s′)π∗
1(s

′, ω; si)] < 0.

Cross price impact is therefore negative, regardless of the insider’s signal si. This is similar to

Scenario (i) of Example 4.4, but in equilibrium. If the market maker receives a buy order at x,

he infers that state y security likely has zero payoff and lowers its price.

(ii) (Zero Cross Price Impact.) If state y payoff η(y, · ) has zero variation across signals, then Λy,y′ =

0 for all y′. That is, state y has zero price impact on all states regardless of the signal. This

means that the equilibrium order flow at y must contain no informed demand regardless of the

signal—otherwise there is arbitrage. This is the case for the state y indicated in Figure 3, where

η(y, · ) = (η(y, s1), η(y, s2))

has zero variation across signals {s1, s2}, i.e. η(y, s1) = η(y, s2). Figures 3b and 3d show that

the corresponding informed demand W ∗(y, · ) = 0 at y is indeed zero regardless of signal, making

order flow at y pure noise with no information content—hence no price impact.

(iii) (Positive Cross Price Impact.) For the two states x and z indicated in Figure 3, the cross price

impact Λx,z = Λz,x > 0 is positive, because the payoffs of x and z,

η(x, · ) = (η(x, s1), η(x, s2)) and η(z, · ) = (η(z, s1), η(z, s2)),

are positively correlated across signals {s1, s2}.

The price impact between general derivative markets is given by the following formula.

Corollary 6.6. (Price Impact Between General Derivatives)

Let φ1, φ2 : [x, x̄] → ℝ be state-contingent claims (e.g. options). Then the cross price impact between

the φ1 and φ2 markets is given by ∫ x̄

x

∫ x̄

x

φ1(x)φ2(y)Λx,ydxdy. (47)

For example, high cross price impact between the put and call pair in a straddle predicts high

volatility, as recorded in Proposition 6.7 below.
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Proposition 6.7. Under the parametric specification of Example 6.2, the cross price impact between

the constituent put and call pair in a straddle is higher conditional on the high-volatility signal s2 than

on the low-volatility signal s1.

Intuitively, high cross price impact between the put and call pair in a long-volatility straddle means

that volatility is underpriced and therefore should correct to a higher price level as price discovery takes

place. Such considerations can be extended to higher moments beyond volatility and yield testable

empirical predictions—see Section 7.2.

Λx,x and Kyle’s lambda Specializing Λx,y to x = y, we have the equilibrium price impact Λx,x

within state x market conditional on si,

Λx,x = (1− 1

I
) · a∗ · 1

σ
· 𝔼[𝕍𝕒𝕣π

∗
1(ds,ω;si) (η(x, · ))].

The intuition for Kyle’s λ discussed in Section 2.2 applies identically to Λx,x. Λx,x is proportional to

the (expected) posterior variance 𝔼[𝕍𝕒𝕣π∗
1(ds,ω;si) (η(x, · ))] of the state x security payoff, while Kyle’s

λ of (5) is proportional to the variation σv of the asset payoff. Price impact within an asset market is

high when the asset payoff has high variation across signals, whether the asset is the only asset being

traded or not.

Example 6.8. For the two states x and y indicated in Figure 2, we have Λx,x > Λy,y = 0. State x

has strictly positive within-market price impact because the state x payoff

η(x, · ) = (η(x, s1), η(x, s2))

has strictly positive variation across signals {s1, s2}. On the other hand, the state y payoff has zero

variation across signals. This can be seen in Figure 2a, which shows that η(y, s1) = η(y, s2), with the

s1 and s2 densities intersecting at y. Therefore, as in Example 6.5(ii), the equilibrium order flow at y

contains zero informed demand (see Figures 2b and 2d) and Λy,y′ = 0 for all y′.

6.3 Information Efficiency of Prices

The equilibrium probability law over ω of the market maker’s posterior probability mass function

π∗
1(ds, ω; si) conditional on the insider observing si admits the following canonical characterization.

Proposition 6.9. (Canonical Logistic Posterior)

Let a∗ be the endogenous constant characterizing equilibrium in Theorem 5.5, and X
d∼ N (0, (a∗)2Q)

be a multivariate normal random vector in ℝI with mean 0 and covariance matrix (a∗)2Q. The market
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Figure 5: Market Maker’s Expected Posterior The figures show the market maker’s expected posterior probability

mass functions on the signal space S = {s1, · · · , sI}, conditional on the insider observing signal s1, as the number I of

signals varies. The cases shown are for I = 2, 4, 6, and 8. In expectation, the probability assigned by the market maker’s

posterior to the observed signal s1 decreases as I increases.
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Figure 6: Information Efficiency of Prices Figure 6a shows the information efficiency of prices, as measured by the

expected value 𝔼[q(i)i ] of probability qi assigned by market maker’s posterior to the observed signal si, as a function of I

over 2 ≤ I ≤ 100. Figure 6b shows the expected posterior log-likelihood ratio log(
𝔼[q(i)i ]

(I−1)𝔼[q(i)−i ]
) of observed signal si vs all

other signals s−i, over 2 ≤ I ≤ 100.

maker’s equilibrium posterior conditional on si has the same distribution as the logistic transform q(i)

of X defined by61

q(i) =

 eX1∑
j

· · ·
, · · · , e

(a∗)2+Xi∑
j

· · ·
, · · · eXI∑

j

· · ·


T

. (48)

Figure 5 shows the (expected) posterior probability mass function 𝔼[q(1)j ], j = 1, · · · , I, conditional

61“
∑
j

· · · ” is the random normalization constant so that
∑
j

q
(i)
j = 1.
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on the signal s1, as I increases. By Proposition 6.9, the equilibrium probability law of the market

maker’s posterior on signals is independent of the possible payoff distributions {η( · , si)}i=1,··· ,I , as

well as the noise trading intensity σ. In equilibrium, the market maker correctly anticipates the

insider’s (ex ante) optimal trade-off of price impact along two dimensions—between states conditional

on signal and across signals. Therefore, these two dimensions are informationally independent in

equilibrium. The market maker’s posterior on signals (48) summarizes information across signals and

is therefore invariant with respect to the variation of asset payoffs between states conditional on signal.

The probability law of AD prices for a given specification of possible payoff distributions is now an

immediate corollary.

Corollary 6.10. (Equilibrium Arrow-Debreu Prices)

Let q(i), i = 1, · · · , I, be the logistic-normal random vector of Proposition 6.9. In equilibrium, the

market maker’s pricing kernel P ∗(x, ω; si), conditional on si, is distributed as

P ∗(x, ω; si)
d∼

I∑
j=1

q
(i)
j η(x, sj),

and the expected state x AD price P (x; si) conditional on si is given by

P (x; si) =
I∑

j=1

𝔼[q(i)j ]η(x, sj). (49)

The equilibrium AD prices are given by a (random) convex sum (49) of possible payoff distributions.

The information efficiency of AD prices can be measured by the (expected) weight 𝔼[q(i)i ] assigned

to the true payoff distribution η( · , si) in this convex sum. Corollary 6.10 has the following immediate

implication.

Corollary 6.11. The information efficiency measure 𝔼[q(i)i ] only depends on the number of signals I.

In particular, it is independent of the specification of payoff distributions {η( · , si)}i=1,··· ,I or the noise

trading intensity σ.

Remark 6.12. Corollary 6.11 states a basic property of complete markets with respect to price discovery—

the information efficiency of contingent claim prices depends only on the dispersion of market belief but

not the payoffs specified by that belief. In other words, the extent to which information is impounded into

prices is invariant with respect to the nature of information. As the insider’s trades (co-)vary across

states according to his information intensity, the market maker correctly anticipates this (co-)variation

and equilibrates prices to incorporate the insider’s private information to the extent characterized by

𝔼[q(i)i ], regardless of the information being traded on.62 This invariance result can be viewed as the price

62While the amount of information inferred by the market is invariant, the nature of the information inferred depends
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discovery counterpart of risk sharing in complete markets, where market prices equilibrate to allocate

risk efficiently, regardless of the idiosyncratic risks being hedged by agents.

Figure 6a shows that 𝔼[q(i)i ] is a decreasing and convex function of I. We record this as a proposition.

Proposition 6.13. The information efficiency of prices decreases as I increases. The marginal effect

of I on information efficiency is diminishing.

Proposition 6.13 is very intuitive. Dispersion of market belief hinders the ability of the market to

infer the insider’s private information from trades and therefore reduces information efficiency. The

marginal effect is diminishing because, as the informed demand scales up to exploit higher market

uncertainty, the increased variation of informed demand across signals also reveals some of the insider’s

private information and partially offsets the loss in information efficiency. Taking the statement of

Proposition 6.13 to the limit I → ∞ gives a canonical lower bound on information efficiency.

Proposition 6.14. As I → ∞, the information efficiency measure 𝔼[q(i)i ] approaches a canonical lower

bound ρ > 0

Figure 6b shows the (expected) posterior log-likelihood ratio log
𝔼[q(i)i ]

(I−1)·𝔼[q(i)−i ]
of observed signal si

versus all the other signals, as a function of I.63 As I → ∞,

log
𝔼[q(i)i ]

(I − 1) · 𝔼[q(i)−i]
→ −κ

for some canonical constant κ > 0. This implies that

𝔼[q(i)i ] ≈ (I − 1)e−κ

(I − 1)e−κ + (I − 1)

for large I. Therefore the information efficiency lower bound ρ of Proposition 6.14 is given by ρ =

lim
I→∞

𝔼[q(i)i ] = e−κ

e−κ+1
.

The existence of a canonical lower bound on information efficiency is consistent with the comparative

statics of the endogenous constant a∗. a∗(I) is increasing and concave with respect to I and approaches

a limit lim
I→∞

a∗(I) = α < ∞ as I → ∞ (as shown in Figure 1). As the dispersion of market belief

increases, the marginal loss in information efficiency comoves with the insider’s marginal gain as he

scales up his trades. The insider’s marginal gain from scaling up is decreasing, therefore so is the

marginal loss in information efficiency. Eventually, the marginal gain reaches zero, the insider stops

scaling up, and information efficiency reaches its lower bound.

on that of the insider’s private information.
63The subscript −i denotes any given j with j ̸= i.
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Figure 7: The Insider Smile (Smirk) Figure 7a shows the strike structure of the implied volatility of the equilibrium

option prices in the parametric setting of Example 6.2, which is computed as follows. For a realization ω of total order

flow, use the pricing kernel P ∗( · , ω; s2) to compute the out-of-the-money option prices for the entire spectrum of strikes

K ∈ [x, x̄]. Given the option prices, the corresponding implied volatilities (σIV (ω,K))K∈[x,x̄] are computed by inverting

the Black-Scholes formula. This is done for m = 1000 realizations ωk, k = 1, · · · ,m. The plot shows the resulting sample

average of implied volatilities 1
m

m∑
k=1

σIV (ωk,K) over strike K. (The time-to-maturity parameter is set to 1. The risk-free

rate and dividend yield are set to zero.) Figure 7b shows the insider smiles corresponding to σ2 = 0.5 (same solid line as

in Figure 7a), 0.6 (dashed line), and 0.7 (dotted line).

7 Discussion

7.1 The Insider Smile

The Black-Scholes implied volatility is a common transformation of option prices to express the

volatility information they contain. The strike structures of implied volatilities are known to exhibit

the volatility smile (or smirk), which points to the misspecification of the Black-Scholes model. The

option pricing and financial econometrics literatures continue to develop specifications to better cap-

ture this empirical regularity. A microfounded understanding provides a complementary perspective.

Our framework shows that the volatility smile arises through the incorporation of, indeed, volatility

information into option prices.

Consider the parametric setting of Example 6.2, where the insider is trading on the high volatility

signal. The strike structure of the implied volatility of the equilibrium option prices is shown in

Figure 7a. The implied volatility forms an insider smile that matches well qualitatively with a typical

pattern of volatility smile, with skewness towards lower strikes. The intuition of the insider smile is

simple. As the insider trades on high volatility, he buys options that pay off at deep in-the-money and

out-of-the-money strikes, e.g. a straddle. The resulting price impact pushes up the prices of options

at such strikes. In this case, the price impact is amplified cross-strike because the payoffs at in-the-

money and out-of-the-money strikes are positively correlated.64 Since the implied volatility is increasing

with respect to option price, this leads to higher implied volatilities as strikes move away from being

at-the-money and results in a smile.

64Consider, for example, the states x and z indicated in Figure 3.
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Figure 7b shows the insider smiles for different values of the high volatility signal. The insider smile

becomes more convex as the true volatility known to the insider increases. This is because a higher

volatility signal means the covariance of payoffs between in-the-money and out-of-the-money strikes

increases at a faster rate as the strikes move away from being at-the-money. Therefore the cross-strike

price impact also increases at a faster rate, which makes the insider smile more convex.65

7.2 Empirical Considerations

Higher Moment Adverse Selection The empirical options literature has similarly resorted to

using the implied volatility to extract volatility information from option prices (see, for example, Goyal

and Saretto (2009)). This is an ad hoc measure because the Black-Scholes formula itself assumes that

volatility is constant and options are redundant. Our theory provides an empirical measure for the

information content of option prices that is based on cross price impact and can be adapted to moments

beyond volatility. Namely, higher moment adverse selection in option markets can be measured by the

cross price impact between appropriately specified option contracts. In other words, options cross price

impact can be used to back out higher-order moment information. For instance, under the specification

of Example 6.2 where private information concerns volatility, adverse selection with respect to volatility

in option markets can be measured by the cross price impact between the put-call pair in a straddle.66

When the price impact is high between the put-call pair in a long-volatility straddle, the market maker

adverse-selects with respect to volatility, and volatility is underpriced.

Predictability of Return Higher Moments The adverse selection measures give rise to empirical

hypotheses regarding the predictability of higher moments of the underlying return. In the case of

volatility, this corresponds to the statement of Proposition 6.7:

Hypothesis 7.1. Higher cross price impact between the option contracts in a straddle (resp. butterfly)

portfolio predicts an increase (resp. decrease) in the volatility of the underlying return.

Similarly, under the specification of Example 6.3, higher cross price impact between the long-short

pair in the insider option portfolio conditional on the right-skewness signal predicts an increase in the

skewness of the underlying return. Beyond the options strategies demonstrated in Examples 6.2 and

6.3, the informed demand formula (45) prescribes options strategies for trading on any give moment.

Applying the informed demand formula and the cross price impact formula of Corollary 6.6 to each

moment yields the following general hypothesis.

65Calibration of the insider smile with respect to data and quantitative implications are outside the scope of this paper
and to be considered in future research.

66This is the same mechanism that explains the volatility smile, which embodies the inadequacy of the constant
volatility assumption.
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Hypothesis 7.2. The cross price impact between appropriately specified option contracts predicts the

corresponding moments of the underlying return.67

To the extent that the cross price impact between the prescribed option contracts in Hypothesis 7.2

predicts the corresponding moments, the corresponding option portfolios should generate positive re-

turns. For example, if the cross price impact between the put-call pair in a straddle predicts future

volatility, the straddle should generate positive return. The same consideration applies to higher-order

moments in general. If the prescribed options portfolios generate positive returns, it implies that mis-

pricing of higher moments across option markets is corrected over time as price discovery takes place.

A natural question is whether this holds only up to a certain number of moments or only up to certain

predictive horizon. Or, Hypothesis 7.2 may be rejected for certain (e.g. lower-order) moments because

option markets are informationally efficient with respect to those moments.

Question 7.3. What are the moments for which the corresponding option portfolios in Hypothesis 7.2

generate positive returns? In other words, to what extent does higher-order moment price discovery

take place in option markets?

Cross-Section of Option Returns The cross-section of option returns remains a puzzle (see, for

example, Bali and Murray (2013), Cao and Han (2013), Christoffersen et al. (2018), and Zhan et al.

(2022)). Existing literature has proposed different underlying stock characteristics (Bali and Murray

(2013), Cao and Han (2013), and Zhan et al. (2022)) or liquidity measures (Christoffersen et al. (2018))

as determinants of option returns. Considering the higher-moment predictability of Hypothesis 7.2

in the cross-sectional, instead of time series, sense suggests a distinct set of candidate higher-order

information factors for the cross-section of option returns.

Conjecture 7.4. Systematic factors for the cross-section of option returns may be constructed using

those prescribed options portfolios which generate returns from trading on higher moments.68

7.3 Risk Aversion

If the insider is risk-averse with utility function U , his portfolio choice problem (15) conditional on

observing signal s becomes

max
W ( · )∈Cδ[x,x̄]

𝔼ℙW [

∫ x̄

x

η(x, s) · U
(
W (x)− P (x, ω; W̃ )

)
]dx. (50)

67The hypothesis may be tested by regressing realized moments (e.g. squared returns in the case of volatility) on the
lagged cross price impact between prescribed option contracts (e.g. the put-call pair in a straddle).

68The candidate factors may be constructed by sorting prescribed options portfolios according to the cross price impact
between options in the portfolio and forming long-short portfolios as factors—for example, sorting straddles according
to the cross price impact between the constituent put-call pair into quintiles and forming long-short 5−1 portfolios.
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In the expression of the marginal utility functional dJ(W ; W̃ , s)( · ) of Theorem 4.2, for each state x

the payoff η(x, s) is replaced by the marginal utility-weighted payoff69

𝔼ℙW [η(x, s) · U ′(W (x)− P (x, ω; W̃ ))].

As in Theorem 4.2, the insider’s marginal disutility decomposes into an Arrow-Debreu term, which

now reflects risk-sharing between the insider and the market maker, and a price impact term. More

generally, when both agents are risk-averse, the insider’s first-order condition equalizes the marginal

utility-weighted payoff with (up to a Lagrange multiplier) the sum of the marginal disutility at current

price—under a pricing kernel adjusted for the market maker’s risk-aversion—conditional on no price

impact and the marginal disutility from price impact. With risk-averse agents, the Arrow-Debreu prices

aggregate risk as well as information. Further developing this case may shed light on the extent to

which (higher-order) adverse selection distorts risk-sharing incentives. This is outside the scope of the

current paper.

8 Conclusion

We have considered a basic framework of price discovery across contingent claim markets and charac-

terized the economic mechanism through which contingent claim prices jointly incorporate information.

Price discovery takes place not only within markets but also between markets. Our setting extends

the theory of informed trading to derivatives and higher-order information. In doing so, our results

explain empirical practice and stylized facts, bridge the gap with the empirical literature, and yield new

empirical questions. Within the general framework, special cases of interest and possible extensions

can be analyzed further. Our methodology provides tools to explore these avenues of future research.

A Appendix

A.1 Mathematical Assumptions

The rigorous formulations of both the market maker’s and insider’s problems are obtained under

the following assumptions. These assumptions are maintained for all mathematical statements made

in the paper.

For δ > 0, recall the Hölder space Cδ([x, x̄],ℝ) consists of δ-Hölder continuous elements of C([x, x̄],ℝ),
equipped with the Hölder seminorm [f ]δ = sup

x ̸=y

|f(x)−f(y)|
|x−y|δ .

69The explicit expression of dJ(W ; W̃ , s)( · ) is given in Section A.3 of the Appendix.
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Assumption A.1.

Let F be the Borel σ-field generated by the uniform norm ∥ · ∥∞ on Ω = C([x, x̄],ℝ), µ be the

probability measure on the measurable space (Ω,F) such that the canonical process x 7→ ωx has the

same probability law as (σ(x)Bx).

Fix γ ∈ (1
3
, 1
2
) and δ ∈ (0, 1] with δ + γ > 1. Let Cδ([x, x̄],ℝ) and Cγ([x, x̄],ℝ) be the corresponding

Hölder spaces, and Ωγ = {ω ∈ Ω : ω(0) = 0 and ω ∈ Cγ([x, x̄],ℝ)}.
(i) For every s ∈ S, the insider’s portfolio of contingent claims W ( · , s) : [x, x̄] → ℝ lies in

Cδ([x, x̄],ℝ).
(ii) Possible realization ω of total order flow across states lies in the measurable space (Ωγ,Fγ),

where Fγ = F ∩ Ωγ, and µγ denotes the measure µ restricted to Ωγ.

(iii) The insider’s strategy s 7→ W ( · , s), S → (Cδ[x, x̄],ℝ), is continuous.70

(iv) The (squared) noise trading intensity σ2( · ) across Arrow-Debreu markets lies in Cδ([x, x̄],ℝ)
and σ2(x) > 0 for all x.

The condition δ+γ > 1 in Assumption A.1 ensures that the integrand W ( · , s) and integrator ω to-

gether have sufficient pathwise (Hölder) regularity to define a pathwise integral. This condition means

that W ( · , s) and ω jointly satisfy a regularity condition that is infinitesimally stronger than the Lips-

chitz condition.71 Assumption A.1(i) imposes Hölder δ-continuity in x on W (x, s). Assumption A.1(ii)

replaces the underlying probability space (Ω,F , µ) by (Ωγ,Fγ, µγ), where Hölder γ-continuity holds for

the sample paths. This is without loss of generality because Ωγ ∈ F and µ(Ωγ) = 1.72

Assumption A.1(iii) assumes continuity of insider’s strategy with respect to signal s. This imposes

no constraint on the insider’s strategy when η( · , s) is continuous in s. Assumption A.1(iv) assumes

that noise traders are present in all AD markets. If noise traders are absent in a neighborhood of states,

there would be no trade in that neighborhood of states.

Lemma A.1.

Under Assumption A.1, the following holds.

(i) (Pathwise Integral) For all ω ∈ Ωγ, W ∈ Cδ([x, x̄],ℝ), and x ∈ [x, x̄], the limit of Riemann sums

∫ x

x

Wy

σ2(y)
dωy ≡ lim

max
k

|xk+1−xk|→0

x=x0<···<xn=x̄

n−1∑
k=0

Wxk

σ2(xk)
· [ωxk+1∧x − ωxk∧x]

exists and therefore defines an ω-by-ω Riemann integral.

70The topology on S is the same topology that generates the Borel σ-field on S.
71Having a Hölder exponent strictly larger than one can be interpreted as infinitesimal stronger than being Lipschitz.
72µ(Ωγ) = 1 because Brownian paths lie in C

1
2−ϵ([x, x̄],ℝ) for any ϵ ∈ (0, 1

2 ).
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(ii) (Joint Measurability of Data and Parameter) The map

(ω,W )︸ ︷︷ ︸
(data, parameter)

7→
∫ x̄

x

Wx

σ2(x)
dωx, (Ωγ, [ · ]γ)× Cδ([x, x̄],ℝ) → ℝ,

is continuous—in particular, measurable.

(iii) (Conditional Likelihood of Data) For all x ∈ [x, x̄] and W ∈ Cδ([x, x̄],ℝ), there exists a µγ-null

set N , which may depend on x and W , such that, for all ω ∈ Ωγ\N ,∫ x

x

Wy

σ2(y)
dωy =

[∫ x

x

Wy

σ2(y)
dBy

]
(ω),

where the integral on the left-hand side is the pathwise integral defined in (i) and the integral on the

right-hand side is a version of the Itô integral.

Proof. (i) We note first that Hölder continuity is preserved by taking quotients when the denominator

is bounded away from zero. Let W , σ ∈ Cδ([x, x̄],ℝ) with min
x∈[x,x̄]

σ(x) > α > 0 for some α > 0. Then

∣∣∣∣W (y)

σ(y)
− W (x)

σ(x)

∣∣∣∣ ≤ |σ(x)| |W (y)−W (x)|+ |W (x)| |σ(y)−W (x)|
|σ(y)| |σ(x)|

≤ ∥W∥∞ [W ]γ + ∥σ∥∞ [σ]γ
α2

· |y − x|δ ,

which implies W
σ
∈ Cδ([x, x̄],ℝ). Therefore it suffices to prove the claim with W in place of W

σ2 .

Given α, β > 0, we shall consider the space Cα,β
2 ([x, x̄],ℝ) of all functions Ξ from {(y, x) : x ≤ y ≤

x ≤ x̄} to ℝ with seminorm

[Ξ]α,β ≡ [Ξ]α︸︷︷︸
≡ sup

y<x

|Ξy,x|
(x−y)α

+ sup
y<r<x

|Ξy,x − Ξy,r − Ξr,x|
|x− y|β

<∞.

For ω ∈ Ωγ and W ∈ Cδ([x, x̄],ℝ), define Ξω,W by

Ξω,W
y,x ≡ Wy · (ωx − ωy).

Since
∣∣Ξω,W

y,x

∣∣ ≤ [ω]γ |x− y|γ and, for x ≤ y ≤ r ≤ x ≤ x̄,

∣∣Ξω,W
y,x − Ξω,W

y,r − Ξω,W
r,x

∣∣ = |(Wy −Wr) · (ωx − ωr)| ≤ [W ]δ [ωγ |x− y|γ+δ ,

we have Ξω,W ∈ Cγ,γ+δ
2 ([x, x̄],ℝ). Thus, because γ ≤ 1 < γ + δ, it follows from the Sewing Lemma of
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Friz and Hairer (2020) that the limit of Riemann sums

lim
max
k

|xk+1−xk|→0

x=x0<···<xn=x̄

n−1∑
k=0

Wxk
· [ωxk+1∧x − ωxk∧x]

exists. This proves the claim.

(ii) We will prove the continuity of the map73

(ω,W ) 7→
∫ •

0

Wt dωt, (Ωγ, [ · ]γ)× Cδ([x, x̄]ℝ) → Cγ([x, x̄],ℝ).

By the Sewing Lemma quoted in (i), it suffices to check the continuity of

(ω,W ) 7→ Ξω,W , (Ωγ, [ · ]γ)× Cδ([x, x̄],ℝ) → Cγ,γ+δ
2 ([x, x̄],ℝ).

Given ω, ω̃ ∈ Ωγ, W , W̃ ∈ Cδ([x, x̄],ℝ),∣∣∣(Ξω,W
y,x − Ξω,W

y,r − Ξω,W
r,x )− (Ξω̃,W̃

y,x − Ξω̃,W̃
y,r − Ξω̃,W̃

r,x )
∣∣∣

=
∣∣∣(Wy −Wr) · (ωx − ωr)− (W̃y − W̃r) · (ω̃x − ω̃r)

∣∣∣
≤ [W − W̃ ]δ [ω]γ |x− y|γ+δ + [W̃ ]δ [ω − ω̃]γ |x− y|γ+δ .

Therefore (below we use the Hölder norm ∥ · ∥W instead of the seminorm [ · ]W )∣∣∣Ξω,W
y,x − Ξω̃,W̃

y,x

∣∣∣ = ∣∣∣Wy · (ωx − ωy)− W̃y · (ω̃x − ω̃y)
∣∣∣

≤ ∥W∥∞ [ω]γ |x− y|γ + ∥W − W̃∥δ · (bδ ∨ 1) [ω̃γ |x− y|γ .

This proves the claim.

(iii) Let
∫ x

x
Wy dBy be a given version of the Itô integral. By the continuity ofW , the chosen version

is a probability limit74

∫ x

x

Wy dBy = lim
max
k

|xk+1−xk|→0

a=x0<···<xn=x

n−1∑
k=0

Wxk
· [Bxk+1∧x −Bxk∧x] in µγ-probability.

Then one can pass to a subsequence of the (implicitly given) sequence of partitions such that, for

73This is a stronger property than that stated in Lemma A.1(ii).
74See Revuz and Yor (2013).
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µγ-a.a. ω ∈ Ωγ(where we use the same notation for the subsequence),

[∫ x

x

Wy dBy

]
(ω) ≡ lim

max
k

|xk+1−xk|→0

x=x0<···<xn=x

n−1∑
k=0

Wxk
· [ωxk+1∧x − ωxk∧x] =

∫ x

x

Wy dωy.

This proves the claim.

A.2 Proof of Theorem 3.1

Claim A.1. Under Assumption A.1, for each W ∈ Cδ([x, x̄],ℝ), define a probability measure ℙW on

the measurable space (Ωγ,Fγ) via the Radon-Nikodym density

dℙW

dµγ

= e
∫ x̄
x

Wx
σ2(x)

dωx− 1
2

∫ x̄
x

W2
x

σ2(x)
dx
, (A.1)

where µγ is the canonical Wiener measure µ restricted to Ωγ, and
∫ x̄

x
Wx

σ2(x)
dωx is the pathwise integral

defined in Lemma A.1(i). Then the canonical process on (Ωγ,Fγ,ℙW ) has the same law as

Wxdx+ σ(x)dBx

where (Bx) is a standard Brownian motion.

Proof. This follows immediately from Lemma A.1(iii).

Proof of Theorem It suffices to prove (i), after which (ii) follows trivially. Consider the probability

space (Cγ([x, x̄],ℝ),G, µγ), where the σ-field G is the Borel σ-field given by the uniform norm, and µγ

is such that the canonical process has the same law as (σ(x)Bx) where (Bx) is a standard Brownian

motion.

Under Assumption A.1(i), (iii), and (iv), we have by Lemma A.1(i) that the expression π1(ds, ω; W̃ )

is well-defined for each ω ∈ Cγ([x, x̄],ℝ). By Claim A.1, under the probability measure ℙW̃ ( · ,s) defined

by the Radon-Nikodym density

dℙW̃ ( · ,s)

dµγ

= e
∫ x̄
x

W̃ (x,s)

σ2(x)
dωx− 1

2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx
,

the canonical process on Cγ([x, x̄],ℝ) has the same law as W̃ (x, s)dx+σ(x)dBx where (Bx) is a standard
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Brownian motion. Therefore the probability measure on Cγ([x, x̄],ℝ)× S defined by(
e
∫ x̄
x

W̃ (x,s)

σ2(x)
dωx− 1

2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx · µγ(dω)

)
⊗ π0(ds) = e

∫ x̄
x

W̃ (x,s)

σ2(x)
dωx− 1

2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx · µγ(dω)⊗ π0(ds)

correctly specifies the joint probability law of (ω, s) according to the market maker’s conjecture W̃ .

Under Assumption A.1(ii), we have by Lemma A.1(ii) that e
∫ x̄
x

W̃ (x,s)

σ2(x)
dωx− 1

2

∫ x̄
x

W̃ (x,s)2

σ2(x)
dx

is jointly mea-

surable in (ω, s). Therefore, an application of Fubini-Tonelli Theorem shows that π1(ds, ω; W̃ ) specifies

the probability measure on S conditional on ω, i.e. {π1(ds, ω; W̃ )}ω∈Cγ([x,x̄],ℝ) is the ω-disintegration

of the family {ℙW̃ ( · ,s)}s∈S, where ℙW̃ ( · ,s) is the probability law of aggregate order flow conditional on

s, according to market maker belief W̃ ( · , · ) regarding the insider’s trading strategy. This proves the

theorem.

A.3 Proof of Theorem 4.2

To make the dependence of expected AD price P (x,W ; W̃ ) (18) on W more explicit, we write

P (x,W ; W̃ ) = 𝔼ℙW [P (x, ω ; W̃ )]

= 𝔼ℙW [

∫
S

η(x, s)π1(ds, ω; W̃ )]

= 𝔼ℙW [

∫
S

η(x, s)eI(ω,s;W̃ )π0(ds)/C(ω;W̃ )]

= 𝔼µγ [

∫
S

η(x, s) eI(ω,s;W̃ )e

∫ x̄
x

W̃ (x′,s)W (x′)
σ2(x′)

dx′
·π0(ds)/C′(ω;W̃ )], (A.2)

where

I(ω, s; W̃ ) =

∫ x̄

x

W̃ (x, s)

σ2(x)
dωx −

1

2

∫ x̄

x

W̃ (x, s)2

σ2(x)
dx

and C ′(ω,W ; W̃ ) =
∫
S
eI(ω,s

′;W̃ )e
∫ x̄
x

W̃ (x′,s′)W (x′)
σ2(x′)

dx′
π0(ds

′). The equality (A.2) follows from the fact that

the law of the canonical process x 7→ ωx under ℙW is the same as the law of x 7→
∫ x

0
W (x′)dx′ + ωx

under µγ.

The Gâteaux derivative of the payoff functional W 7→
∫ x̄

x
W (x)η(x, s)ds is trivially identified with

η( · , s), and it suffices to consider the cost functional

Jc(W ) =

∫ x̄

x

W (x) · P (x,W ; W̃ )dx.

Let v ∈ Cδ([x, x̄],ℝ) and define

f(ε) = Jc(W + εv).
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The Gâteaux derivative dJc(W ) of Jc(W ) evaluated at v can be computed by invoking the Dominated

Convergence Theorem and differentiating under the integral signs:

dJc(W ) = f ′(0)

=

∫ x̄

x

v(x) · P (x,W ; W̃ )dx+

∫ x̄

x

W (x)g(x)dx (A.3)

for some function g(x). The first integral in (A.3) verifies the AD term NAD(W )(v) of Equation (20).

It remains to show the price impact term NK(W )(v) of Equation (21) is the second integral in (A.3).

The function g(x) is of the form 𝔼µγ [ψ(ω;x, W̃ )]. ψ(ω;x, W̃ ) is the random variable on Ωγ given by

∫
S

η(x, s)
C ′(ω; W̃ )l(s, ω; W̃ )

∫ x̄

x
W̃ (x′,s)
σ2(x′)

v(x′)dx′ − l(s, ω; W̃ )
∫
S
l(s′, ω; W̃ )

∫ x̄

x
W̃ (x′,s′)
σ2(x′)

v(x′)dx′π0(ds
′)

C ′(ω; W̃ )2
π0(ds)

where

C ′(ω; W̃ ) =

∫
S

e
∫ x̄
x

W̃ (x′,s′)W (x′)
σ2(x′)

dx′+···
π0(ds

′) =

∫
S

l(s′, ω; W̃ )π0(ds
′)

is the posterior normalization constant of the market maker’s posterior under the probability measure

µγ, and

l(s, ω; W̃ ) = e
∫ x̄
x

W̃ (x′,s)W (x′)
σ2(x′)

dx′+···
(A.4)

is the likelihood of ω under µγ. For clarity of notation, in (A.4) we have put “· · · ” for terms not relevant

for this calculation. We note that
l(s, ω; W̃ )π0(ds)

C ′(ω; W̃ )

is the market maker’s posterior condition on ω, under µγ. It is clear that ψ(ω;x, W̃ ) is the difference

between the posterior expectation of the product of η(x, · ) and
∫ x̄

x
W̃ (x′, · )
σ2(x′)

v(x′)dx′ and the product of

their posterior expectations. In other words, ψ(ω;x, W̃ ) is the posterior covariance between these two

quantities. This verifies the price impact term NK(W )(v) of Equation (21) and proves the theorem.

A.4 Proof of Proposition 5.3

For aggregate order flow ω ∈ Ωγ, define B(ω) to be the vector (
∫ x̄

x
η(x, si)dωx)i=1,··· ,I ∈ ℝI . In terms

of d and D̃ (defined in (27) and (29), respectively), the general market maker posterior over signals
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π1(ds, ω; W̃ ) obtained in Theorem 3.1(i) can be written explicitly as the probability mass function

π1(i, ω, d; D̃) =
e(d̃

(i))T
M(η)

σ2 d+(d̃(i))T
B(ω)

σ2 − 1
2
(d̃(i))T

M(η)

σ2 d̃(i)

I∑
j=1

e(d̃
(j))T

M(η)

σ2 d+(d̃(j))T
B(ω)

σ2 − 1
2
(d̃(j))T

M(η)

σ2 d̃(j)
, i = 1, · · · , I (A.5)

on S. For the expectation of
(
π1(i, ω, d; D̃)

)
i=1,··· ,I ∈ ℝI , we write

π̄1(d; D̃) =
(
𝔼µγ [π1(si, ω, d; D̃)]

)
i=1,··· ,I

∈ ℝI , (A.6)

where 𝔼µγ [ · ] is taken with respect to distribution over possible order flows ω if the insider chooses

d and the market maker holds belief D̃. The insider’s expected utility maximization problem (15),

conditional on observing si, now takes the simple finite-dimensional form

max
d∈ℝI

eTi M(η)d− π̄1(d; D̃)TM(η)d ≡ max
d∈ℝI

J(d; D̃, i). (A.7)

The Bayesian trading game between the insider and the market maker therefore reduces to one

where the market maker’s posterior belief is specified by (A.5), and the insider’s problem is (A.7).

The change of basis transformation (28)

d̂ =
1

σ
M

1
2 (η)d

replaces M, σ, and d in the market maker’s posterior π1(i, ω, d; D̃) of (A.5) by I, 1, and d̂, respectively.

Under this change of basis, the random vector X̂ = M− 1
2
B(ω)
σ

can be re-written as
∫
ξi(x)dZx where∫

ξi(x)ξj(x)dx = δij and (Zx) is a standard Brownian motion. Therefore, by Itô isometry,

X̂i
i.i.d.∼ N (0, 1), i = 1, · · · , I. (A.8)

This gives the market maker’s posterior (30) in the canonical game.

The change of basis (28) replaces M and d in the objective function J(d; D̃, i) of (A.7) by I and d̂,

respectively. This gives the insider’s problem (31) in the canonical game and proves the proposition.

A.5 Proof of Theorem 5.5

Lemma A.2. Let a′ > 0 be a solution to the equilibrium equation Φ(a) = 0. In the canonical game,

suppose the market maker holds belief a′Q. Then the insider’s objective function (31) conditional on

each si is concave, which implies that first-order conditions are sufficient for optimality. Therefore, since

the insider’s strategy a′Q satisfies the joint first-order conditions Φ(a′)Q = 0, a′Q is an equilibrium of
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the canonical game, as defined in (33).

Proof. Given the market maker’s belief D̂ = a′Q in the canonical game, the Hessian matrix of the

insider’s objective function (31) conditional on si can be computed by differentiating directly the first-

order condition (35), which gives

−a′Q𝔼




p1 −p1p2 · · ·
−p1p2 p2 · · ·

...
...

. . .




︸ ︷︷ ︸
S

= −a′QS.

By the Cauchy-Schwarz inequality,

𝔼[pipj]2 ≤ 𝔼[p2i ]𝔼[p
2
j ] ≤ 𝔼[pi]𝔼[pj], ∀1 ≤ i, j ≤ I.

Therefore S is positive semidefinite. Since QS = SQ, QS is also positive semidefinite. Therefore the

Hessian −a′QS is negative semidefinite. It follows that the insider’s objective function is concave. This

proves the lemma.

Lemma A.3. Let

p =


p1
...

pI


be the market maker’s posterior in the canonical game, conditional on the insider observing signal si. p

is a random probability measure on the signal space S = {s1, · · · , sI}. Let X
d∼ N (0, a2Q) be a random

vector that is multivariate normal with mean 0 and covariance matrix a2Q.

Under the equilibrium ansatz aQ, the probability law of p is given by75

p
d∼

 eX1∑
j

· · ·
, · · · , e

a2+Xi∑
j

· · ·
, · · · eXI∑

j

· · ·


T

.

Proof. Substituting the equilibrium ansatz aQ into the expression (A.5) for the market maker’s poste-

rior gives immediately that, conditional on signal si and order flow ω,

π1(si, ω, β
(i); aQ) =

ea
2(1− 1

I
)+ aeTi QM− 1

2 (η)
B(ω)

σ∑
j

· · ·
, (A.9)

75“
∑
j

· · · ” is a random normalization constant so that
∑
i

pi = 1.
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and, for k ̸= i,

π1(sk, ω, β
(i); aQ) =

ea
2(− 1

I
)+ aeTk QM− 1

2 (η)
B(ω)

σ∑
j

· · ·
, (A.10)

where
∑
j

· · · is a random normalization constant.

The common factor ea
2(− 1

I
) in (A.9) and (A.10) cancels after normalization. It remains to consider

the random vector M− 1
2 (η)B(ω)

σ
. By the same Itô isometry argument as that for (A.8), M− 1

2 (η)B(ω)
σ

∈
ℝI is distributed multivariate standard normal. Therefore aQB(ω)

σ

d∼ N (0, a2Q). This proves the

lemma.

Proof of Theorem

Derivation of Equilibrium Equation (39).

Substituting the equilibrium ansatz D̂ = aQ of (37) into the insider’s first-order condition (35) for

the canonical game conditional on s1 gives

𝔼

e1 −

p1
...

pI

− a2Q


p1

. . .

pI

Qe1 + a2Q


p1
...

pI

[p1 · · · pI

]
Qe1

 = 0, (A.11)

where 𝔼[ · ] is taken with respect to the probability law of the random probability measure p =


p1
...

pI


under the conjectured equilibrium.

The first-order condition (A.11) conditional on s1 simplifies to

𝔼

e1 −

p1

p2
...

pI

− a2
(

p1

0
...

0

− p1


p1

p2
...

pI

)
 = 𝔼

(1− a2p1)


1− p1

−p2
...

−pI


 = 0. (A.12)

The probability law of p is as characterized in Lemma A.3 above, with i = 1. Under this probability

law, the moments in Equation (A.12) are the moments of a logistic normal distribution. We now show

that, by substituting for the appropriate relationships between corresponding moments, (A.12) can be

written as

Φ(a)Qe1 = 0, (A.13)

for some Φ: [0,∞) → ℝ.
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To show (A.13), it suffices to show

𝔼
[
(1− a2p1)(1− p1)

]
= (I − 1)𝔼

[
(1− a2p1)p2

]
. (A.14)

Under the probability law of p obtained in Lemma A.3, (A.14) will imply

𝔼
[
(1− a2p1)(1− p1)

]
= (I − 1)𝔼

[
(1− a2p1)pi

]
, i = 3, · · · , I. (A.15)

In turn, (A.14) holds if

𝔼 [p1(1− p1)] = (I − 1)𝔼 [p1p2] . (A.16)

(A.16) holds since

𝔼 [p1(1− p1)] = 𝔼 [p1(p2 + · · ·+ pI)] = (I − 1)𝔼 [p1p2] ,

where 𝔼 [p1pi] = 𝔼 [p1pj] for all i, j ̸= 1 under the logistic-normal probability law of p given by

Lemma A.3, conditional on s1.

Therefore, in (A.13) we can take Φ(a) to be (up to a scalar multiple) the left-hand side of (A.15),

i.e.

Φ(a) = 𝔼
[
1− p1 − a2p1 + ap21

]
where

p1 =
ea

2+X1

ea2+X1 +
∑
i ̸=1

eXi
, X = (Xi)1≤i≤I

d∼ N (0, a2Q).

By symmetry, the first-order condition for i ̸= 1 is identical to (A.13) after permuting the indices 1

and i. Stacking the I symmetric first-order conditions,

Φ(a)Qei = 0, 1 ≤ i ≤ I,

side-by-side gives the matrix equation Φ(a)Q = 0 of (38). By Lemma A.2, an equilibrium is given by

a solution a∗ > 0 to Φ(a) = 0, which is the equilibrium equation of (39).

Existence of Equilibrium.

We have Φ(0) > 0. Moreover, 1−p1−a2p1+ap
2
1 → 0 and 1−p1−a2p1+ap

2
1 < 0 eventually almost

surely as a → ∞. By Fatou’s Lemma, Φ(a) → 0 from below as a → ∞. By the Intermediate Value

Theorem, there exists a∗ > 0 such that Φ(a∗) = 0. This proves (i), and (ii) follows immediately from

Proposition 5.4.

A.6 Proof of Proposition 6.9

This is an immediate corollary of Lemma A.3 in Proof of Theorem 5.5, with a = a∗.
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