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Abstract 

This paper investigates whether news articles on companies contain useful information about 

future equity option returns. We apply machine-learning approaches to extract signals from text 

data that can significantly predict delta-hedged option returns. Our results are robust after 

controlling for known option return predictors. More than half of the important words are 

sentiment-related. We find evidence that one channel underlying the explanatory power of the 

textual predictors based on machine-learning approaches is their information content about 

change in future volatility. Our work highlights the importance of analyzing unstructured data 

like texts for pricing derivatives and provides new evidence for machine-learning approaches’ 

superiority in extracting information from unstructured data. 
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1. Introduction 

Unstructured data, such as texts, images, and videos, contain important information about firm 

fundamentals and stock performances. For example, the seminal work of Tetlock (2007, 2010) 

and Loughran and McDonald (2011) extract information from texts using dictionary-based 

methods and find that linguistic media content can capture otherwise hard-to-quantify aspects 

of firms’ fundamentals.1 Some recent work starts exploring more advanced natural language 

processing tools to extract information from unstructured data. For example, Frankel, Jennings, 

and Lee (2022) document that machine-learning (ML) methods can produce more powerful 

and reliable disclosure sentiment measures than dictionary-based methods.2  

Despite the rich application of text data to study the equity market, little is known about 

the applicability of textual analysis in the options market. In this paper, we fill the gap by 

extracting novel information from news media via machine-learning approaches that can be 

used to predict cross-sectional equity option returns. Such text-based option return 

predictability is robust and generates sizeable option trading profits. Furthermore, we document 

that machine-learning approaches capture information from various perspectives, such as 

investor sentiment and future change in volatility. Our results showcase the usefulness of text 

data and machine learning tools for a better understanding of the options market.  

We start our investigation by training a support vector regression (SVR) model to learn 

the relation between texts and future option returns using over five million news articles. SVR 

is a supervised machine-learning algorithm that can effectively handle large dimensional 

feature space and has been shown to work well in finance (Manela and Moreira 2017).3 Our 

SVR predictor based on news media coverage of companies significantly predicts equity option 

returns. When we sort options into quintile portfolios based the SVR predictor, the 5-minus-1 

portfolio return spread is significantly positive averaging 1.48% (0.86%) per month for call 

(put) options and survives realistic option transaction costs. Such predictability holds for 

 
1 Tetlock (2007, 2010) and Tetlock, Saar-Tsechansky, and Macskassy (2008) show that linguistic media content 

can capture otherwise hard-to-quantify aspects of firms’ fundamentals. Loughran and McDonald (2011) develop 

a sentiment dictionary that can better reflect the tone of financial text from firms’ 10-Ks. Hassan, Hollander, van 

Lent, and Tahoun (2019) and Engle, Giglio, Kelly, Lee, and Stroebel (2020) utilize textual analysis to measure 

firm-level political and climate change risks, respectively.  
2

 From methodological perspectives, Ke, Kelly, and Xiu (2019) and Kelly, Manela, and Moreira (2021) improve 

the ability of machine-learning approaches to extract information from text data. 
3
 Manela and Moreira (2017) construct a text-based measure of uncertainty using support vector regression and 

apply the measure to predicting VIX. 
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different option moneyness or maturity. Our results are robust under alternative machine-

learning methods, including elastic net, random forest, and neural networks, and hold for 

different word constructions (such as bigram, trigram, and fivegram). Furthermore, the SVR 

predictor based on text data from newspaper is distinct from existing option return predictors 

such as volatility deviation (Goyal and Saretto 2009), idiosyncratic volatility (Cao and Han 

2013), stock return autocorrelation (Jeon, Kan, and Li 2019), and various underlying stock 

characteristics (Zhan, Han, Cao, and Tong 2022).  

We conduct further tests to understand the nature of SVR textual predictors for equity 

option returns. We find that the majority of the important word features selected by SVR comes 

from sentiment-related dictionaries. For example, more than half of the important words that 

contribute to the textual predictors come from two sentiment dictionaries widely used in the 

literature, namely the General Inquirer dictionary and the Loughran-McDonald dictionary. We 

then construct two sentiment-related measures based on these two dictionaries using traditional 

methods. One measure reflects the sentiment level, and the other reflects the sentiment 

disagreement. SVR predictors are closely related to lexicon-based sentiment measures as well 

as RavenPack sentiment measures. The predict power of SVR predictors for option returns is 

more significant (both economically and statistically) than lexicon-based sentiment measures 

and remains robust after controlling for the latter.  

In addition to capturing sentiment-related information, we find that the SVR predictor 

is significantly positively related to the implied volatility change over the next month. In 

contrast, we do not find similar predictability for lexicon-based sentiment measures. We also 

find that the SVR textual predictor is not related to future stock returns or earnings surprises.  

Our paper contributes to the growing literature of option return predictability. Recent 

studies have documented many predictors for equity option returns (see e.g., Zhan et al. (2022)). 

To the best of our knowledge, we are the first to forecast equity option returns using 

information from news media and machine learning approaches. We demonstrate that machine 

learning techniques are powerful in extracting important information embedded in the news 

media. Our paper is closely related to Bali, Beckmeyer, Moerke, and Weigert (2021), which 

applies machine learning techniques in forecasting option returns. Their predictors, stock 

characteristics and option-based characteristics, are distinct from the textual predictors we 

extract from news media. Our paper complements their study by demonstrating the benefit of 

machine learning techniques applied to alternative data that generate useful information for 
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predicting future option returns.  

The remainder of the paper is organized as follows. Section 2 provides sample 

descriptions and variable constructions. Section 3 provides empirical evidence and robustness 

checks. Section 4 examines the different economic channels and potential explanations of the 

equity option return predictability based on news media information. Section 5 concludes the 

paper. 

 

2. Data and Sample 

2.1. Data and Sample Descriptions 

The newspaper data is mainly collected from ProQuest and complemented with Factiva. From 

February 1996 to December 2018, at the end of each day, we collect all news articles from the 

most popular newspapers in the U.S., including Wall Street Journal, New York Times, 

Washington Post, and Financial Times. Since most articles in ProQuest and Factiva do not have 

firm-specific tags, we need to identify and match each article to the corresponding firms. We 

first collect a list of all company names from the Center for Research in Security Prices (CRSP) 

and conduct a textual fuzzy matching algorithm to search if any firms’ names appeared (at least 

twice) in the article. A textual fuzzy match, such as Jaro-Winkler distance or Levenshtein 

distance, is applied to define how similar a specific string is to the target string. We then assign 

each article to its corresponding firms by the textual fuzzy matching algorithm. Note that an 

article may be assigned to multiple firms since the content may cover multiple companies. To 

avoid mismatches between news articles and company names, we exclude those firms that are 

difficult to be identified by company names (e.g., including common words). Every month, we 

remove the outliers (firms with more than 50 articles) to minimize matching errors. Further, 

we manually go through a randomly selected subsample with all available company names 

from our matched article database to ensure each article is correctly assigned to affiliated 

companies by the fuzzy matching algorithm. Since we are interested in equity option returns, 

we only select firms that have both newspaper coverages and equity options traded. After all 

the filtering, we have 5,928,866 article-month observations in total. Compared with other 

studies, our dataset covers a broader scope of news media information for firms traded in the 

U.S. market. 

For option return sample, we collect equity option data, including best bid, best offer, 
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expiration date, and strike price from the OptionMetrics database. The underlying stock 

variables, such as stock return, stock price, trading volume, and shares outstanding, are 

collected from the CRSP database. Analyst forecast dispersion data is obtained from IBES. The 

sample period is from February 1996 to December 2018. For each month, we choose individual 

equity options that are closest to being at-the-money and have the shortest maturity among 

those with more than one month to expiration. Following the existing literature, we exclude 

observations that violate no-arbitrage conditions, have no trading volumes or open interests, 

have a quoted mid-price less than $0.125, and have paid cash dividends during the holding 

period. The holding period is from the beginning to the end of each month. We only retain 

stocks with both call and put options available after filtering.  

Our final sample contains 50,888 option-month observations for both call and put 

options on individual stocks over the 275-month sample period. On average, we have 185 

option observations for each month. Panel A and B of Table 1 show the summary statistics for 

our option return sample. 

[Insert Table 1] 

 

2.2. Variable Constructions 

Our main independent variables are the machine-learning (ML) textual predictors since 

machine-learning approaches are well suited to deal with text data. First, we follow Manela 

and Moreira (2017) to construct a large set of potential information unigrams (with bigram 

noun phrases identified by the NLTK Python package) and select useful words among all text 

features. Different from the lexicon-based approach and Manela and Moreira (2017), the 

contents of our machine learning dictionary are time-varying, as news media typically changes 

attention and coverage over time. For example, from 2016 to 2020, “Donald Trump” may 

significantly impact the financial markets and receive more attention from the public, although 

things will be largely different before 2016 and after 2020 when the political news had less 

attention on “Donald Trump.” Therefore, complementing the dictionaries of Tetlock (2007) and 

Loughran and McDonald (2011), we apply machine learning techniques to better capture the 

shift in the media focus by allowing words to be in and out of the important list over time.  

Instead of transferring word counts to a counting matrix that assigns equal weights to 

all words, we adjust the count numbers by the process of tf–idf (term frequency-inverse 
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document frequency) commonly used in natural language processing. For each word 𝑗 in the 

word list, the tf–idf weighted value for article ℎ about firm 𝑖 at time 𝑡 is defined as: 

𝑤𝑖,𝑡
ℎ,𝑗,𝑡𝑓𝑖𝑑𝑓

= {
1 + log(𝑡𝑓𝑖,𝑡

ℎ,𝑗
) 𝑤𝑡

𝑗,𝑖𝑑𝑓
,     if 𝑡𝑓𝑖,𝑡

ℎ,𝑗
> 0

0,                                           otherwise
, (1) 

where 𝑡𝑓𝑖,𝑡
ℎ,𝑗

 is the frequency of occurrence of the word j in the article, 𝑤𝑡
𝑗,𝑖𝑑𝑓

= log
𝐻𝑡

𝑑𝑓𝑡
𝑗 with 

𝐻𝑡 = ∑ 𝐻𝑖,𝑡
𝑁𝑡
𝑖=1  defined as the total number of news articles in the sample at time 𝑡, and 𝑑𝑓𝑡

𝑗
 

is the number of documents in which the word 𝑗 appears in the sample. The adjusted weight 

for each feature in the word list is used as input to fit the support vector regression with our 

target variable, delta-hedged call/put option returns. For each firm 𝑖, the word feature 𝑗 for 

firm 𝑖 is given by taking the average among all articles covering firm 𝑖 (𝐻𝑖,𝑡) at time 𝑡: 

𝑥𝑖,𝑡
𝑗

≡ 𝑤𝑖,𝑡
𝑗

=
1

𝐻𝑖,𝑡
∑ 𝑤𝑖,𝑡

ℎ,𝑗,𝑡𝑓𝑖𝑑𝑓

𝐻𝑖,𝑡

ℎ=1

. (2) 

Second, after obtaining the word features, we apply machine-learning techniques to the 

text data. In our study, the traditional statistical methods do not work well since the independent 

variables involve high-dimension data (e.g., more than 10,000 single words and dual-word 

combinations). In a seminal paper, Manela and Moreira (2017) apply the support vector 

regression to construct a news-based VIX through high-dimension textual information. 

Following the technique proposed by Manela and Moreira (2017), we consider the following 

linear regression problem in cross-section at the end of each month: 

𝑟𝑖,𝑡 = 𝛼𝑡 + 𝛽𝑡
′𝑥𝑖,𝑡−1 + 𝜖𝑖,𝑡,    𝑖 = 1, 2, … , 𝑁𝑡, (3) 

where 𝑟𝑖,𝑡 is the variable of interest, which is either call or put delta-hedged equity option 

returns, for firm 𝑖  at time 𝑡 . 𝑥𝑖,𝑡−1 = [𝑥𝑖,𝑡−1
1 , … , 𝑥𝑖,𝑡−1

𝐾 ]′  is a 𝐾 × 1  vector of (all the) 𝐾 

word features from the newspaper articles related to firm 𝑖  at time 𝑡 − 1 . We omit those 

words that appear less than three times in the entire sample. Since the linear regression above 

is with high dimensions (more than 10,000 words every month), the traditional OLS cannot be 

used to estimate 𝛽𝑡. To solve the problem above, we apply the support vector regression (SVR) 

approach, which can be formulated as: 

𝛽𝑡
∗ = arg min

𝑤

1

2
‖𝛽𝑡‖2 + 𝐶 ∑(𝜉𝑖,𝑡 + 𝜉𝑖,𝑡

∗ )

𝑁𝑡

𝑖=1

,   
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subject to {

𝑟𝑖,𝑡 − 𝛽𝑡′𝑥𝑖,𝑡−1 − 𝛼𝑡 ≤ 𝜀 + 𝜉𝑖,𝑡

𝛽𝑡
′𝑥𝑖,𝑡−1 + 𝛼𝑡 − 𝑟𝑖,𝑡 ≤ 𝜀 + 𝜉𝑖,𝑡

∗

𝜉𝑖,𝑡, 𝜉𝑖,𝑡
∗       ≥ 0 

, 𝑖 = 1, 2, … , 𝑁𝑡 . (4) 

The intuition is that such a linear function between 𝑟𝑖,𝑡  and 𝛽𝑡
′𝑥𝑖,𝑡−1  exists and 

approximates all pairs (𝑥𝑖,𝑡−1, 𝑟𝑖,𝑡)  with 𝜀  precision. However, optimization is not always 

feasible because some points fall outside the 𝜀 margin. As such, we need to account for the 

possibility of errors that are larger than 𝜀. Following Cortes and Vapnik (1995), we introduce 

slack variables 𝜉𝑖,𝑡, 𝜉𝑖,𝑡
∗   to cope with otherwise infeasible constraints of the optimization 

problem (i.e., soft margin). The soft margin gives flexibility to define how much error is 

acceptable to fall outside of 𝜀 . The constant 𝐶 > 0  determines the trade-off between the 

flatness of linear function and the amount up to which deviations larger than 𝜀 are tolerated. 

This corresponds to dealing with the so-called 𝜀- insensitive loss function |𝜉|𝜀 described by:  

|ξ|ε ≔ {
0,               if |𝜉| ≤ 𝜀

|𝜉| − 𝜀,     otherwise
. (5) 

The problem above can be solved in its dual formulation (see Schölkopf and Smola 

2002). To construct a pure out-of-sample signal, at each point of time 𝑡, we use all available 

word features extracted from the newspaper and equity option returns in the past three months 

to train the model. The textual information proxy (i.e., textual predictor) for future equity option 

returns at time 𝑡 + 1 based on available news media at time 𝑡 is then given by: 

𝑇𝑃𝑖,𝑡 ≡ �̂�𝑖,𝑡+1 = �̂�𝑡 + �̂�𝑡
′𝑥𝑖,𝑡,             𝑖 = 1, 2, … , 𝑁𝑡 . (6) 

This fitted value is used as the time 𝑡 textual signal for the next period’s equity option 

returns. We conduct various tests to evaluate the predictive performance of textual predictors 

for equity option returns. Using the rolling window to train the model, we also allow the 

dictionary (i.e., word features) to change over time. Our methodology can capture time 

variation in news media coverage and adapt to new textual information. When constructing 

textual predictors, we treat delta-hedged call and put option returns separately to train different 

models, although delta-hedged call and put option returns are highly correlated due to the put-

call parity relationship.  

Panel D of Table 1 reports the time-series average of the cross-sectional correlations 

between ML textual predictors and option or equity characteristics. Although ML textual 

predictors have relatively high correlations with each other, their correlations with option or 
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equity characteristics are generally low. 

In addition to the support vector regression, we also consider other machine learning 

methods, such as elastic net, random forest, and neural networks, to deal with the high-

dimensional data of news media and capture potential nonlinearity and interactions among 

independent variables. We use SVR for our main empirical results because it is more 

interpretable and stable with fewer hyper-parameters to adjust, therefore less subjected to data 

snooping issues. We apply alternative machine learning approaches as robustness checks on 

our empirical results (see detailed model specifications and their performances in Section 3.2). 

Our main dependent variable is the delta-hedged option returns. To eliminate the 

exposure to the underlying stock, we examine delta-hedged option returns.4 Our buy-and-hold 

delta-hedged option return (HRP) equals the total dollar gain at the end of the holding period 

scaled by the absolute value of the total cost of constructing the portfolio at the formation date. 

Specifically, the delta-hedged call option return over [𝑡, 𝑡 + 1] is given by: 

𝐻𝑅𝑃𝑖,𝑡+1
𝐶 =

𝐻𝑖,𝑡+1
𝐶

𝐻𝑖,𝑡
𝐶 =

(𝐶𝑖,𝑡+1 − 𝐶𝑖,𝑡) − Δ𝑖,𝑡
C (𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡)

|𝐶𝑖,𝑡 − Δ𝑖,𝑡
C × 𝑆𝑖,𝑡|

, (7) 

where the initial investment cost is 𝐻𝑖,𝑡
𝐶 = |𝐶𝑖,𝑡 − Δ𝑖,𝑡

C × 𝑆𝑖,𝑡|, with C and S denoting the call 

option price and the underlying stock price. Δ𝑖,𝑡
C  is the Black-Scholes call option delta for firm 

𝑖  at time 𝑡 . The total dollar gain at the end of the holding period is 𝐻𝑖,𝑡+1
𝐶 =

(𝐶𝑖,𝑡+1 − 𝐶𝑖,𝑡) − Δ𝑖,𝑡
C (𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡) . Similarly, delta-hedged put option return for firm 𝑖  is 

given by: 

𝐻𝑅𝑃𝑖,𝑡+1
𝑃 =

𝐻𝑖,𝑡+1
𝑃

𝐻𝑖,𝑡
𝑃 =

(𝑃𝑖,𝑡+1 − 𝑃𝑖,𝑡) − Δ𝑖,𝑡
P (𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡)

|𝑃𝑖,𝑡 − 𝛥𝑖,𝑡
𝑃 × 𝑆𝑖,𝑡|

, (8) 

note that put option’s delta, Δ𝑖,𝑡
P , is negative. Panel A (B) of Table 1 presents the summary 

statistics for delta-hedged call (put) option returns and call (put) option characteristics.    

 

 

 
4

 Tian and Wu (2021) show that the monthly rebalanced delta-hedging strategy can remove about 70% of the 

return variation of naked option portfolios. Several previous papers study the delta-hedged option returns, such as 

Cao and Han (2013), Ramachandran and Tayal (2021), Zhan et al. (2022), and Bali et al. (2021).  
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3. Empirical Results 

3.1. Baseline Results 

3.1.1. Single Portfolio Sorts 

To apply machine learning approaches to forecast equity option returns, we first use the support 

vector regression to fit the option returns with the textual information from the newspaper 

articles over the previous three months. Next, we refer to the predicted delta-hedged call or 

option returns over the next month by SVR based on the textual information over the previous 

three months as the textual predictors, denoted by Call_SVR and Put_SVR. We then sort firms 

based on textual predictors into quintiles and compare the next-month realized returns of the 

sorted portfolios. 

Each month, we track what words have the most important contributions to explaining 

the target variables across firms in the training sample. The feature importance of a given word 

is defined as the absolute value of the corresponding coefficient from the support vector 

regression. We will list those words in the newspapers with the largest magnitude of the 

coefficients averaged over time. In Section 4, we will classify these important words into 

different groups/topics such as sentiment, politics, macroeconomics, and firm-specific. This 

exercise provides useful insights into the underlying mechanism of the option return 

predictability by the textual information extracted through support vector regression.  

Table 2 shows that textual information provides significant and robust predictive power 

of delta-hedged equity option returns using various portfolio weighting schemes. The 

magnitude of the monthly long-short option strategy is economically significant and 

comparable to other option return predictors in the literature. For example, the option portfolio 

return spread between the bottom and the top sorted by the textual predictors using SVR can 

be as large as 1.48% (0.86%) on average per month for call (put) options. Following Eisdorfer, 

Goyal, Zhdanov, and Boulatov (2022), we also report the alphas after adjusting the delta-

hedged option returns using a 7-factor model, and our results are robust to the risk adjustment. 

The seven-factor model includes five stock factors in Fama and French (2015), the momentum 

factor, and the option factor in Coval and Shumway (2001). Although the absolute value of 

option return shrinks for each portfolio, the 7-factor alpha of the spread portfolio is barely 

different from the average raw return, indicating our results are robust to risk adjustments.   

[Insert Table 2] 
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In addition to conducting analysis assuming that options can be traded at their mid-

price, we also consider profits after various amount of transaction costs. Compared with the 

stock market, the equity option market has significantly higher transaction costs. In our sample, 

stocks are typically large and liquid, with a relatively low bid-ask spread of 0.39% on average. 

However, as shown in Table 1, call (put) options written on them have a 9.93% (10.38%) quoted 

bid-ask spread on average. As a result, it is essential that investors take transaction costs into 

account when they implement option trading signals.   

In practice, option investors do not need to pay the full quoted spread to the market 

makers but the effective spread (ESPR), which is much lower than the quoted spread (QSPR). 

Zhan et al. (2022) and Muravyev, Pearson, and Van Nieuwerburgh (2020) provide evidence 

that the actual effective spread is, on average, 55% of the quoted spread, and investors typically 

pay less than 40% of the conventional effective spread if they can employ execution timing. In 

this section, we recompute the buy-and-hold delta-hedged option returns corresponding to an 

assumed effective spread of 25%, 50%, 75%, and 100%. The “No Cost” column in Panel B of 

Table 2 refers to our main results in Panel A.  

Panel B of Table 2 shows that option portfolio strategy based on our ML textual 

predictor is still profitable for investors even when we assume they need to pay the 100% 

quoted option spread. Although the (5-1) return spread decreases monotonically with the 

effective spread, it remains statistically and economically significant for all effective spread 

values. For example, the return spread is 1.47% (0.87%) per month for call (put) options if we 

do not consider any transaction cost. When the effective spread increases to 25% of the quoted 

spread, the return spread decreases to 1.41% (0.80%) for call (put) options. With an effective 

spread that is 50% (75%) of quoted spread, the return spread further decreases to 1.34% (1.28%) 

for call options and 0.73% (0.65%) for put options. When we assume that investors must pay 

the full quoted spread, the return spread remains substantial, with 1.21% (0.58%) for call (put) 

options.  

3.1.2. Double Portfolio Sorts 

In this section, we individually control various option or equity characteristics using the 

double portfolio sorting strategy. We consider 14 control variables, including (1) 

idiosyncratic volatility (IVOL) estimated from the Fama-French 3-factor model as in Ang, 

Hodrick, Xing, and Zhang (2006); (2) volatility deviation (HV-IV), computed as the difference 

between realized volatility and implied volatility of the at-the-money (ATM) options as in 
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Goyal and Saretto (2009); (3) stock illiquidity (LOG_AMIHUD), which is the natural 

logarithm of the monthly average of daily absolute returns divided by daily dollar trading 

volume following Amihud (2002); (4) option liquidity (OSPREAD) which is the bid-ask option 

quoted spread scaled by the option mid-price; (5) stock return autocorrelation, calculated as the 

first-order autocorrelation of underlying stock’s return using daily return observations over a 

past six-month rolling window as in Jeon et al. (2019); (6) Gamma (Gamma) is the sensitivity 

of an option’s delta to the change in the underlying stock price; and (7) Vega (Vega) is the 

sensitivity of an option’s price to its implied volatility.  

Following Zhan et al. (2022), we further include the following seven 5  stock 

characteristics as control variables: (1) the cash-to-assets ratio (CH) proposed by Palazzo 

(2012), defined as the value of corporate cash holdings over the value of the firm’s total assets; 

(2) analyst earnings forecast dispersion (DISP) proposed by Diether, Malloy, and Scherbina 

(2002), computed as the standard deviation of annual earnings-per-share forecasts scaled by 

the absolute value of the average outstanding forecasts; (3) one-year new issues (ISSUE_1Y) 

proposed by Pontiff and Woodgate (2008), measured as the change in shares outstanding from 

eleven months ago; (4) the log of the stock price at the end of the current month (LNPRICE) 

proposed by Blume and Husic (1973); (5) profitability (PROFIT) proposed by Fama and 

French (2006), calculated as earnings divided by book equity, in which earnings is defined as 

income before extraordinary items; (6) total external financing (TEF), proposed by Bradshaw, 

Richardson, and Sloan (2006), is calculated as net share issuance plus net debt issuance minus 

cash dividends, scaled by total assets; (7) cash flow variance (CFV), as in Haugen and Baker 

(1996), is computed as the variance of the monthly ratio of cash flow to the market value of 

equity over the last 60 months. Cash flow is net income plus depreciation and amortization. 

Panel C of Table 1 reports the summary statistics of the control variables we include here.  

Each month, we first sort all options into quintiles based on one of the control variables. 

Then, we further sort the option sample into quintiles based on the ML textual predictors. 

Finally, we average returns for each textual predictor quintile across the groups of control 

variables, yielding five control-variable adjusted quintile returns. Panel A of Table 3 shows that 

none of the above control variables can subsume the effects of our ML textual predictors. After 

individually controlling these variables, the return spreads of call options vary from 1.13% to 

 
5
  For sample coverage consideration, we only include seven out of the ten stock characteristics that have 

predictive power for delta-hedged option returns documented by Zhan et al. (2022). Our main results remain 

robust when we include all ten stock characteristics. 
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1.48% per month, and those of put options vary from 0.58% to 0.84% per month. After 

performing the double portfolio sorting tests, our results remain significant both statistically 

and economically.     

[Insert Table 3] 

3.1.3. Fama-Macbeth Regressions 

To further affirm the ability of ML predictors based on news media to forecast the cross-section 

of option returns, we conduct the Fama and MacBeth (1973) regression to test whether the 

predictive power of textual predictors for delta-hedged option return is statistically significant, 

especially after simultaneously controlling for existing option return predictors. For each 

dependent variable (delta-hedged call or put option returns), we run the following cross-

sectional regressions where the key independent variable of interest is the SVR textual 

predicator: 

𝐻𝑃𝑅𝑖,𝑡 = 𝛼𝑡 + 𝛽𝑡𝑇𝑃𝑖,𝑡−1 + ∑ 𝛾𝑡
𝑗
𝑋𝑖,𝑡−1

𝑗

𝑀

𝑗=1

+ 𝜖𝑖,𝑡,   𝑖 = 1, … , 𝑁𝑡 , (9) 

where 𝐻𝑃𝑅𝑖,𝑡 is either delta-hedged call or put option returns for firm 𝑖 at time 𝑡. 𝑇𝑃𝑖,𝑡−1 

is the textual predictor (i.e., �̂�𝑖,𝑡)  for firm 𝑖 at time 𝑡 − 1, and 𝑋𝑖,𝑡−1
𝑗

 are control variables 

that we use to perform double portfolio sorts in Section 3.1.2. All independent variables are 

winsorized at the 0.5th and 99.5th percentiles and standardized cross-sectionally.   

We run the cross-sectional regression of Equation (9) each month. After obtaining the 

time series of the coefficients (e.g., 𝛽𝑡) for the independent variables, we conduct the t-test for 

each coefficient using Newey and West (1987) standard errors with four-lag correction. The 

hypothesis of the t-test is: 𝐻0: 𝛽 = 0 vs.  𝐻𝑎: 𝛽 ≠ 0.  The average of the time-series 

coefficients and the corresponding t-statistics are reported in Panel B of Table 3. 

The results of Panel B of Table 3 support our claim that ML textual predictors contain 

useful information about future equity option returns, and their predictability for delta-hedged 

option returns is robust to various controls. After controlling existing option return predictors, 

coefficients on ML textual predictors remain both economically and statistically significant. As 

for the economic magnitude, delta-hedged call (put) option returns increase by 0.259% 

(0.118%) when the ML textual predictor for call (put) options moves by one standard deviation 

after controlling existing option predictors. The regression results in Panel B of Table 3 are also 
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consistent with the previous findings of option return predictability in the literature. For 

example, idiosyncratic volatility is negatively related to delta-hedged option returns, while 

stock volatility deviation is also a strong predictor to forecast the cross-section of equity option 

returns. 

 

3.2. Robustness Checks  

3.2.1. Alternative Machine Learning Approaches 

So far, we have demonstrated the usefulness of using news media to forecast equity option 

returns and the benefit of applying the machine learning approach compared to the lexicon-

based approach to extract textual information from news media. However, there are potential 

concerns with the machine learning approach, such as model instability and data mining issues, 

as multiple hyper-parameters in machine learning approaches can lead to overfitting. To 

reconcile those concerns, we examine how robust our empirical results are to those hyper-

parameters. For our main results based on SVR, there are two primary tuning hyper-parameters: 

regularization parameter (C) and epsilon (𝜀). C parameter adds a penalty for each misclassified 

data point. If C is small, the penalty for misclassified points is low, so a decision boundary with 

a large margin is chosen at the expense of a greater number of misclassifications. C reflects the 

strength of the regularization, which can be specified as 𝐿2  penalty. The parameter 𝜀 

specifies the epsilon-tube within which no penalty is associated in the training loss function for 

points predicted within a distance 𝜀 from the actual value. In our main empirical results, all 

the hyperparameters are determined through a five-fold cross-validation procedure. We 

conduct robustness checks by using different parameters of C and 𝜀 to train the SVR model. 

In an untabulated table, we show that the predictive power is robust and significant to different 

hyperparameters in SVR. 

 Besides the model parameters, there are also different choices for the input variables. 

For example, when constructing the word frequency matrix, we need to decide the maximum 

number of features to input, such as 10,000, 8,000, or 6,000. Also, we can input both unigrams 

and bigrams into the algorithm. Another input choice is the set of words to be included. While 

we use all available words in the article in our empirical results, it is interesting to examine 

which types of words are more important and informative for our target variables. For example, 

we separate features into different groups based on their part of speech, including nouns, 
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adjectives, adverbs, and verbs. We then run the SVR of delta-hedged option returns on each of 

those groups and examine which groups are the main drivers of the predictive power of our 

textual predictors. In the unreported table (available upon request), we find that all types of 

words are important and necessary to generate significant option return predictability out of 

the sample. Another choice is the model training period. To investigate whether our results are 

sensitive to the length of the rolling window to train the model, we change our rolling window 

from three months to six months, nine months, or twelve months and re-run the SVR. The 

empirical results are significant and consistent in all cases. 

Our main results are based on the support vector regression approach. To verify that our 

results are not driven by the specific choice of the machine learning approach, we also apply 

alternative machine learning methods such as elastic net, random forest, and neural networks 

to extract useful information for news media for predicting option returns. 

A model choice close to SVR is elastic net, which has been successfully applied to solve 

various topics in asset pricing (see, e.g., Chinco, Clark‐Joseph, and Ye 2019) and Dong, Li, 

Rapach, and Zhou 2021)). The model can be expressed in the following way: 

𝛼𝑡, 𝛽𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼𝑡∈𝑅,𝛽𝑡∈𝑅𝐾

{
1

𝑁𝑡
∑ (𝑟𝑖,𝑡 − 𝛼𝑡 − ∑ 𝛽𝑡

𝑘𝑥𝑖,𝑡−1
𝑘

𝐾

𝑘=1

)

2𝑁𝑡

𝑖=1

+ 𝜆 ∑|𝛽𝑡
𝑘|

𝐾

𝑘=1

+ (1 − 𝜆) ∑(𝛽𝑡
𝑘)

2
𝐾

𝑘=1

} , (10) 

where 𝑟𝑖,𝑡  is the target variable (delta-hedged equity option returns), 𝑁𝑡  is the number of 

firms i in month t, 𝐾 is the number of word features 𝑥𝑖,𝑡−1 in the news articles, and 𝜆 is a 

hyper-parameter that specifies the weights between 𝐿1  norm and 𝐿2  norm in the loss 

function. The main difference between SVR and the elastic net is that while the loss function 

of the elastic net considers residuals for all data observations, the loss function of SVR only 

takes into account a subset of data observations within and on its support vectors. Statistically, 

LASSO and ridge regression are special cases of the elastic net when 𝜆 = 1 and 𝜆 = 0. To 

construct a pure out-of-sample signal, at each point of time 𝑡, we use a rolling window of most 

recent three months text data to fit the model above to obtain the coefficients of 𝛼𝑡 and 𝛽𝑡
𝑘. 

Similar to SVR, we first fit the text data using the elastic net method to obtain estimates of 𝛼𝑡 

and 𝛽𝑡
𝑘. We then use the fitted values from the model to construct the predicted delta-hedged 

option returns based on textual predictors: 

�̂�𝑖,𝑡+1 = �̂�𝑡 + ∑ �̂�𝑡
𝑘𝑥𝑖,𝑡

𝑘

𝐾

𝑘=1

,    𝑖 = 1, … , 𝑁𝑡. (11) 
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Another difference between elastic net and SVR is that elastic net can shrink some 

coefficients to zero (i.e., �̂�𝑡
𝑘 = 0), thus the model may have a sparse structure compared to 

SVR. Therefore, it is easier to determine the feature importance under the elastic net. While 

elastic net and SVR can select the most relevant textual information from news media, they do 

not allow nonlinearity and interactions among predictors which are likely important for 

predicting option returns using textual information because words are heavily dependent on 

each other. Different orders of words can indicate totally different meanings in linguistics. To 

incorporate nonlinearity and interactions among words, we consider more advanced machine 

learning approaches such as random forest and neural networks. Recent studies Gu, Kelly, and 

Xiu 2020 show that these methods are helpful in forecasting stock returns.  

The random forest regression is conducted in three steps: from the full sample data 𝑆, 

we first draw a subsample with replacement {𝑆𝑏}𝑏=1
𝐵   that has 𝑛  observations and m 

randomly sub-selected features. Second, we can train a decision tree and obtain a predictor �̂�𝑏 

on each 𝑆𝑏. Finally, we take the average among all subsamples with sub-selected features: 

�̂�𝑅𝐹(𝑥) = 𝐵−1 ∑ �̅�(𝑇𝑏
∗(𝑥))

𝐵

𝑏=1

, (12) 

where 𝑇𝑏
∗(𝑥) denotes a random-forest tree with bootstrapped data and sub-selected features, 

and 𝑥 is a certain predictor.  

For the neural networks, we use the simplest kind of feed-forward network, namely 

multilayer perceptron (MLP) regression. The units in the MLP regression are arranged into a 

set of layers, and each layer contains some number of identical units with a pre-specified 

activation function such as the rectified linear activation (ReLU), the logistic activation 

(Sigmoid), and the hyperbolic tangent activation (Tanh). Every unit in each layer is connected 

to every unit in the next layer. The first layer is the input layer, while the last one is the output 

layer, which is a single unit in our case. All the layers in between these are defined as hidden 

layers. To fix the idea, consider a simple case with two consecutive layers. The network’s 

computations can be written as: 

ℎ𝑖
(1)

= 𝜙(1) (∑ 𝑤𝑖𝑗
(1)

𝑥𝑗

𝑗

+ 𝑏𝑖
(1)

) , (13) 
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ℎ𝑖
(2)

= 𝜙(2) (∑ 𝑤𝑖𝑗
(2)

ℎ𝑗
(1)

𝑗

+ 𝑏𝑖
(2)

) , (14) 

𝑟𝑖 = 𝜙(3) (∑ 𝑤𝑖𝑗
(3)

ℎ𝑗
(2)

𝑗

+ 𝑏𝑖
(3)

).  (15) 

The nonlinearity and interaction among words can be captured by the nonlinear 

activation functions and full connections among the hidden layers. Under the Universal 

Approximation Theorem (Cybenko 1989, Hornik, Stinchcombe, and White 1989), a neural 

network with one hidden layer can approximate any continuous function for inputs within a 

specific range. For robustness concerns, we consider different numbers of hidden units and 

neuron sizes. To save space, Panel A of Table 4 presents the single portfolio sorting of each 

textual predictor trained by alternative machine learning approaches. The results of regressions 

are similar and available upon request. 

[Insert Table 4] 

Panel A of Table 4 provides consistent evidence that the textual information from news 

media obtained via alternative machine learning approaches has significant and robust 

predictive power for delta-hedged equity option returns. Moreover, the trading strategy based 

on the textual indicators under SVR generates the largest profits among the ML approaches we 

have implemented. Two things are worth mentioning here: first, the correlations between the 

alternative ML textual predictors and those from SVR are high, implying that different ML 

approaches extract similar useful information from news media. For example, textual 

predictors extracted using neural networks have an average correlation of 0.49 with those from 

SVR, while predictors extracted from the elastic net and the random forest have correlations of 

0.38 and 0.39 with SVR, respectively. Second, the results under elastic net are less robust than 

those under SVR, random forest, and neural networks. Since the independent variables of word 

frequencies are very sparse, there are cases when the elastic net could not find a set of non-zero 

features. 

3.2.2. Alternative Constructions of Word Features 

In our previous analyses, we use unigram word counts (adjusted by document frequency) to 

train the machine learning model. The unigram feature is easy to construct with fewer noises, 

especially in the lexicon-based approach, but also has some limitations. First, the unigram 
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feature does not consider word dependency in different scenarios. A different word adjacent to 

a certain unigram feature may change its semantic meaning. Second, a model with unigram 

features lacks interpretability. Many unigram features have meaningful semantics only when 

they are combined with other words, such as fixed collocations and noun phrases. A possible 

fix is to extend consecutive words in each feature, such as bigram, trigram, or n-gram. For 

example, a bigram feature is constructed by including a sequence of two adjacent words within 

a sentence.  

By constructing features in n-grams, we can largely resolve the semantic differences 

caused by word dependency and model interpretability in the case of unigram features. To 

check whether our empirical findings are special to the choice of unigram feature, we re-train 

our SVR model to forecast equity option returns using various n-gram features described above. 

We consider three types of n-grams (bigram, trigram, and fivegram) and train our model. When 

processing the text data into n-gram features, we first divide each newspaper article to the 

sentence level and make necessary adjustments, such as excluding stop words, reducing a word 

to its word stem, and switching a word to its base root mode (i.e., lemmatization). We then treat 

each n-gram as a new feature and count its feature frequency within the whole article. 

Following our steps in Section 2, we adjust the count numbers by the process of tf–idf (term 

frequency-inverse document frequency). The n-gram features are then used to train the SVR 

model specified in Equation (3) and construct the corresponding textual predictor based on 

Equation (6). The empirical results are provided in Panel B of Table 4. To save space, Panel B 

of Table 4 presents the single portfolio sorting test of each textual predictor trained by 

alternative machine learning approaches.    

Panel B of Table 4 provides consistent evidence that textual predictors extracted from 

news media using different n-gram features are still significant predictors for delta-hedged 

equity option returns. It is worth noting that although a larger n for the n-gram feature (e.g., 

fivegram) can provide a more interpretable model, the feature might become noisy and less 

combinable. More specifically, in our case of fivegram, there will be fewer identical features 

that will have the same five words in the same order. Consequently, the algorithm may classify 

two semantic fivegram features as different, even if they differ by only one word. To solve this 

issue, we apply some recently developed word embedding algorithms to measure the similarity 

between two different fivegram features and classify similar fivegrams as the same feature. 

Word embedding algorithms have been demonstrated to help identify semantic meanings in 

finance (see, e.g., Jha, Liu, and Manela 2020).  
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 To combine similar features together for our case of fivegram, we first use some well-

trained word embedding models, such as Word2Vec, GloVe, and Bidirectional Encoder 

Representations from Transformers (BERT), to transfer each word to a vector with a fixed 

dimension (e.g., 100, 300, 1000, etc.). Most of the word embedding models are pre-trained 

neural network models that project words to a high-dimensional vector space so that words 

with relevant semantic meanings can be closer to each other in the vector space. Word 

embedding also allows us to construct a vector representation for a certain n-gram feature and 

measure its semantic similarity with other n-gram features in the projected vector space. More 

specifically, we transfer each word 𝑗  to a 300 × 1  vector 𝑤𝑡
𝑗
  using Word2Vec. For each 

fivegram feature 𝑔 , its word embedding 𝑠𝑡
𝑔

  can be proxied by the average of the word 

embedding vectors for the words belonging to the fivegram: 

𝑠𝑡
𝑔

≡ [𝑠𝑡
𝑔1

, … , 𝑠𝑡
𝑔300

] =
1

5
∑ 𝑤𝑡

𝑗

𝑗∈𝑔

.  (16) 

The technique is well-known as the continuous bag of words (CBOW) approach. 

Although CBOW ignores word orders within the fivegram, the method is demonstrated to be 

an effective embedding model in practice. After obtaining the average word embedding vector 

for each fivegram, we compute the cosine similarity between 𝑠𝑡
𝑔

 and the word embedding 

vector of any other fivegrams in the training dataset at time 𝑡: 

𝑐𝑡
𝑔ℎ

=
𝑠𝑡

𝑔
⋅ 𝑠𝑡

ℎ 

|𝑠𝑡
𝑔

||𝑠𝑡
ℎ|

=
∑ 𝑠𝑡

𝑔𝑑
𝑠𝑡

ℎ𝑑
𝑑

√∑ (𝑠𝑡
𝑔𝑑

)
2

𝑑 √∑ (𝑠𝑡
ℎ𝑑)

2
𝑑

,   (17)
  

where 𝑑 = 1, … ,300  stands for the elements in the vector of 𝑠𝑡
𝑔

  and 𝑠𝑡
ℎ . The cosine 

similarity helps us find correlated fivegram features (in the sense of semantics) and combine 

them into one feature, thus reducing estimation noises for large n-gram features. In our case, 

we combine two fivegrams into one feature if the cosine similarity of their word embedding 

vectors is greater than 0.9. The rest of the empirical work proceeds in the same way as in the 

case of the unigram feature previously. 

3.2.3. Alternative Option Samples and Return Construction 

In this section, we investigate the robustness of our ML textual predictors in different option 

samples and the alternative construction of option returns. In our main analysis, we consider 
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options whose moneyness is closest to 1 within the range from 0.8 to 1.2. Here, we define in-

the-money (ITM) call options as options whose moneyness is closest to 0.9 within the range 

from 0.8 to 1.0, and out-of-money (OTM) call options as options whose moneyness is closest 

to 1.1 within the range from 1.0 to 1.2. ITM puts and OTM puts are defined correspondingly, 

i.e., ITM puts have moneyness closest to 1.1 within the range from 1.0 to 1.2 while OTM puts 

have moneyness closest to 0.9 within the range from 0.8 to 1.2.  

Apart from different moneyness, we also consider different maturities. In our baseline 

results, at the end of month t, our sample includes options expiring in month t+2, meaning they 

have 1.5 months to expire. Here we include at-the-money (ATM) options expiring in t+3 and 

t+4, respectively. This sample is equivalent to a sample that includes options with 2.5 months 

and 3.5 months to expire, respectively.  

Our ML textual predictors are trained by inputting buy-and-hold delta-hedged option 

returns. We investigate whether they still have predictive power on daily-rebalanced delta-

hedged option returns. The daily-rebalanced delta-hedged option returns are defined as the total 

dollar gains of daily-rebalanced option positions scaled by the absolute values of the initial 

costs. For example, the dollar gain of a daily-rebalanced call option position is defined as: 

𝛱𝑡,𝑡+𝜏 = 𝐶𝑡+𝜏 − 𝐶𝑡 − ∑ Δ𝑐,𝑡𝑛
(𝑆𝑡𝑛+1

− 𝑆𝑡𝑛
)

𝑁−1

𝑛=0
− ∑

𝑎𝑛𝑟𝑡𝑛

365
(𝐶𝑡𝑛

− Δ𝑐,𝑡𝑛
𝑆𝑡𝑛

),               (18)
𝑁−1

𝑛=0
 

where ∆𝑐,𝑡𝑛
 is the call delta of the call option on the date 𝑡𝑛, 𝑟𝑡𝑛

is the annualized risk-free 

rate on the date 𝑡𝑛, and 𝑎𝑛 is the number of calendar days between 𝑡𝑛 and 𝑡𝑛+1. The daily 

rebalanced delta-hedged put option gain is defined similarly. With a zero-net investment initial 

position, the delta-hedged option gain 𝛱𝑡,𝑡+𝜏 is the excess dollar return of the delta-hedged 

option. To make option returns comparable across stocks, we scale the dollar return by the 

initial costs of the portfolio, i.e., ∆𝑐,𝑡𝑆𝑡 − 𝐶𝑡 for call options and 𝑃𝑡 − ∆𝑝,𝑡𝑆𝑡 for puts.   

[Insert Table 5] 

 The predictability of our ML textual predictors remains significant in alternative option 

samples with different moneyness and maturity. As shown in Table 5, the (5-1) return spreads 

are statistically and economically significant, ranging from 0.74% to 1.78% for call options 

and 0.35% to 1.05% for put options. Our ML textual predictors can also predict daily 

rebalanced delta-hedged option returns with a return spread of 0.69% (0.39%) for call (put) 

options, suggesting that our results are not driven by the underlying stocks.  
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4. Interpretations of Textual Predictors and Economic Mechanisms 

4.1. Nature of the Textual Information 

4.1.1. Important Words in Constructing Textual Predictors  

We have provided comprehensive evidence that qualitative information from news media is 

useful for predicting delta-hedged option returns. Yet, the nature of such information extracted 

using machine learning approaches is ex-ante unclear. In this section, we aim to shed some 

lights on the interpretation of the SVR textual predictors. Following Manela and Moreira 

(2017), we measure the importance of each word feature by the magnitude of its coefficient in 

SVR. We select the top 1,000 words with the largest magnitude of the coefficients as the 

important information set. Unlike a pre-specified dictionary used to quantify sentiment or 

political risk in the literature, this dictionary of important words under SVR is time varying. 

We define the overall feature importance for each word as the fraction of time (percentage of 

months) in which the word appears in the top 1,000 most important words. 

We classify each word into various topics using pre-specified dictionaries, such as the 

LM dictionary, the GI dictionary, the political dictionary, and the macroeconomic dictionary. 

The politic and macroeconomics news are the main topics in addition to firm-specific news in 

newspaper articles about companies. The sentiment dictionary is the combination of the GI 

dictionary and the LM dictionary, the political dictionary is from Hassan et al. (2019) and 

constructed by us, and the macroeconomic dictionary is based on Bloom (2014) and Bybee, 

Kelly, Manela, and Xiu (2020). For the remaining words selected by SVR as important features, 

we refer to them as firm-idiosyncratic words reflecting firm-specific news media information. 

For example, some words are only related to certain industries, product markets, or certain 

companies. Table A1 provides a sample list of words belonging to each topic. For concision 

and simplicity, we list the top 20 words for each important feature set. 

We also examine the feature importance for the elastic net, random forest, and neural 

networks. The definition of feature importance for the elastic net is the same as that for SVR, 

while the feature importance for the random forest is obtained by computing the proportion of 

each word selected among all the random decision trees generated by the model. For the feature 

importance for neural networks, because of hidden layers and activation functions, we cannot 

use coefficients directly as the measure of its feature importance. Instead, we apply an 
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algorithm to approximate the feature importance, namely feature permutation importance. 

Feature permutation importance is a model-agnostic global explanation method that provides 

insights into a machine learning model’s behavior. It estimates and ranks feature importance 

based on each feature’s impact on the trained machine learning model’s predictions. The 

algorithm can be applied to any black-box estimator by evaluating how the prediction error 

increases when a feature is unavailable. In practice, instead of removing features and retraining 

the estimator for each feature, the algorithm randomly shuffles the feature values, effectively 

adding noise to the feature. Then the prediction error of the new dataset is compared with the 

prediction error of the original dataset. If the model heavily relies on those features being 

shuffled to better forecast the target variable, those features are identified as important inputs. 

Otherwise, the features are not important. 

Table 6 shows the average feature importance of each topic. To count the proportion of 

important words from each topic, we first select the top 1,000 words with the largest coefficient 

magnitudes from the SVR model in each month. Then we count the percentage of words in the 

feature important sets that belong to each topic and average it over time. The results are 

provided in Table 6.  

[Insert Table 6] 

As can be seen from Table 6, the proportion of words for each topic shows that most of 

the textual information extracted from news media is about sentiment words from the GI 

dictionary and the LM dictionary, which accounts for more than 60% of the selected important 

features. The rest of the important contribution is from firm-idiosyncratic words accounting for 

around 20%. On the contrary, macroeconomic information, such as economic policies and 

politics accounts for a small proportion of the information sets that explain the cross-sectional 

variations of delta-hedged equity option returns. The results for n-gram features are similar to 

those reported in Table 6 for unigram features: in terms of the relative explanatory power of 

the n-gram features, most of the important contributions come from sentiment words and firm-

specific words rather than macroeconomic information. 

While sentiment words account for a large proportion of feature importance, firm-

idiosyncratic words also play an essential role. In Panel A of Table A2, we further show that 

most of those firm-idiosyncratic words are accompanied by words from the GI and the LM 

dictionaries. Specifically, around 75% of the selected firm-idiosyncratic words appear in a 

sentence that includes a word from either the GI or the LM dictionary.  
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To obtain the results reported in Panel A of Table A2, we construct a synthetic bigram 

using both the firm-idiosyncratic words and the sentiment words selected from SVR to 

visualize the semantic interpretation of our model. The bigram is combined at the sentence 

level if and only if it contains both a firm-idiosyncratic word and a sentiment word. To combine 

the two words, we keep the firm-idiosyncratic word always as the first, followed by the 

sentiment word, so that the bigram is more interpretable. For example, in the sentence, “We are 

confident our accounting treatment was correct.”, treatment and confident are selected from the 

groups of firm-idiosyncratic words and sentiment words respectively. The combination is 

recorded as treatment-confident. In Panel A of Table A2, we list those top bigrams extracted by 

SVR that consist of both firm-idiosyncratic words and sentiment words. Most bigrams are 

related to either positive or negative firm-specific information or disagreement/uncertainty 

about firms’ future performance. For example, among these selected combinations, many 

bigrams involve modal verbs, such as would, could, may, or might, indicating some 

uncertainties or disagreements.  

As another attempt to interpret our textual predictors, we train the SVR model using 

fivegram features (which are more interpretable than unigram features) described in Section 

3.2.2. We list in Panel B of Table A2 those top fivegrams ranked by the feature importance rule 

for SVR. Consistent with the observation in Panel A of Table A2, most of the fivegrams include 

words in the GI dictionary and LM sentiment dictionary. Moreover, many fivegrams involve 

firm-specific words, such as chief executive officer, earnings, and analyst. 

In an untabulated table, we find that although the delta-hedged call and put options are 

highly correlated, the textual predictors extracted based on call and put options are quite 

different. For example, among the top 1,000 words of feature importance, only around 20% of 

words overlap between call and put option textual predictors. Low overlap between call and 

put option dictionaries could indicate that the textual information we extracted from news 

media to forecast call and put option returns are different. However, sentiment-related and firm-

idiosyncratic words account for the largest portion of all important word features for both call 

and put options. 

4.1.2. Relationships between SVR Predictors and Sentiment Measures 

As previously documented, most of the words that importantly contribute to the ML textual 

predictors are sentiment related, which motivates us to examine whether those ML textual 

predictors are related to investor sentiment measures. We apply the lexicon-based approach to 
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construct investor sentiment measures using some pre-specified dictionary, such as GI 

dictionary in Tetlock (2007) and Loughran-McDonald (LM) finance-specific dictionary in 

Loughran and McDonald (2011). Based on the Harvard-IV-4 psychosocial dictionary and the 

Lasswell value dictionary, the GI dictionary reflects Charles Osgood’s semantic differential 

findings regarding basic language universals. Recent studies show that the GI dictionary and 

the LM dictionary are both good approximations of sentiment measures for finance Shapiro, 

Sudhof, and Wilson 2022 but the LM dictionary is more effective in computing sentiment 

information of finance-related documents such as SEC EDGAR files and IPO prospectuses 

Jegadeesh and Wu 2013. We combine the GI dictionary and the LM dictionary since the news 

media we analyze covers broader topics than finance. Nevertheless, our results are robust if we 

use only one of the GI and the LM dictionaries. 

We construct two sentiment-related measures: sentiment level and sentiment 

disagreement. First, following previous studies, we compute the sentiment score that reflects 

the tone of each news article using the difference between the number of positive and negative 

words, scaled by the total number of sentiment words in each article. Then, during each time 

period 𝑡  (e.g., a given month) and for each firm 𝑖 , the media sentiment on the firm is 

measured as the average sentiment score of all articles on firm 𝑖 within this time period: 

𝐺𝐼𝐿𝑀𝑖,𝑡
1 =

1

𝐻𝑖,𝑡
∑

#(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝑖,ℎ − #(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑖,ℎ

#(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝑖,ℎ + #(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑖,ℎ

𝐻𝑖,𝑡

ℎ=1

,   𝑖 = 1, … , 𝑁𝑡, (19) 

where #(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)  or #(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)  denotes the number of positive or negative words 

detected based on the GI and LM dictionaries in each article. 𝐻𝑖,𝑡 stands for the total number 

of articles covering firm 𝑖 in time period 𝑡. A higher 𝐺𝐼𝐿𝑀1 indicates a more positive view 

in the news media about the firm and vice versa.  

Second, to capture the range of different sentiment among news articles on each firm 

during a time period 𝑡 , we follow Cookson and Niessner (2019) and define sentiment 

disagreement as the standard deviation of article-level sentiment: 

𝐺𝐼𝐿𝑀𝑖,𝑡
2 = √

1

𝐻𝑖,𝑡
∑ (

#(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝑖,ℎ − #(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑖,ℎ

#(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝑖,ℎ + #(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑖,ℎ
− 𝐺𝐼𝐿𝑀𝑖,𝑡

1 )

2
𝐻𝑖,𝑡

ℎ=1

,   𝑖 = 1, … , 𝑁𝑡. (20) 

As a special case, when there is only one article for the firm at a given point of time, 𝐺𝐼𝐿𝑀𝑖,𝑡
2  
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is measured as the absolute value of 𝐺𝐼𝐿𝑀𝑖,𝑡
1 . A higher 𝐺𝐼𝐿𝑀𝑖,𝑡

2  indicates more divergent 

sentiment about the company from the news media.  

Alternatively, we construct two similar sentiment related measures using the Composite 

Sentiment Score provided by a commercial database RavenPack News Analytics, a leading 

media database widely used in the finance literature. For each company and in each month, we 

define Raven1 (resp. Raven2) as the mean (resp. standard deviation) of the Composite Sentiment 

Score of all news articles covering the company during the given month. We only retain news 

articles with a relevance score equaling 100.  

In Table 7, we regress the lexicon-based or RavenPack sentiment measures averaged 

over the most recent three months (so as to match the training window of machine-learning 

algorithms) on SVR predictors. Panel A of Table 7 shows that SVR predictors are strongly 

associated with all sentiment-related measures at the 1% significance level. Specifically, SVR 

predictors are positively related to sentiment level measures and negatively related to sentiment 

disagreement measures.  

[Insert Table 7] 

Although SVR predictors are significantly correlated with sentiment-related measures, 

they capture more information than measures based on dictionaries (GILM1, GILM2) or 

RavenPack (Raven1, Raven2) in predicting cross-section of option returns. In Panel B of Table 

7, we compare the (5-1) portfolio returns generated by SVR predictors, lexicon-based 

sentiment measures, and RavenPack sentiment measures. The absolute values of (5-1) portfolio 

returns based on SVR predictors are much larger than those based on traditional sentiment-

related measures. For example, the largest absolute return spread generated by traditional 

sentiment measures is 0.68% for call options and 0.59% for put options, much less than those 

generated by SVR predictors (1.47% for call options and 0.87% for put options). Further in 

Panel C of Table 7, we regress the delta-hedged option returns on SVR predictors when 

controlling each sentiment-related measure. We find that the predictability of SVR predictors 

cannot be subsumed by any sentiment-related measure, indicating that SVR predictors capture 

information beyond the scope of sentiment-related information. Later in Section 4.3, we show 

that SVR predictors are related to the uncertainty about the implied volatility and can 

significantly predict future implied volatility changes.  

Our findings indicate that when extracting information from unstructured data to predict 
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option returns, our supervised machine-learning approaches perform better than traditional 

methods based on dictionaries. Signals obtained by machine-learning approaches are data-

driven and capture information from various perspectives, while traditional dictionaries-based 

methods focus on a specific factor that might affect option pricing (e.g., sentiment).  

To further illustrate the important information contained in non-sentiment words for 

predicting option returns, we form an alternative SVR predictor (SVR_GILM) based on news 

articles but keeping only words from the GI dictionary and the LM dictionary. The predictive 

performance of call and put option returns under this alternative approach is shown in column 

(6) of Table 7, Panel B. The return spread generated by SVR_GILM is only 0.12% (0.18%) per 

month for call (put) options. The predictive power of SVR predictors almost vanishes when 

only sentiment-related words are included, indicating the importance of non-sentiment related 

words.  

 

4.2. Potential Economic Channels 

In this section, we investigate potential economic channels that could explain the predictability 

of SVR predictors. Specifically, we consider the possibilities that machine learning approaches 

extract useful information from news media that capture uncertainty about firm volatility, jump 

risk, or option demand pressure which have been shown to be significantly related to expected 

option returns. We test whether SVR predictor is still significantly to delta-hedged option 

returns after controlling for proxies of uncertainty about firm volatility, jump risk, option 

demand pressure.  

First, delta-hedged options are sensitive to the underlying stock volatility, and the 

uncertainty about it expose option market makers to higher risk. Recent studies by Huang, 

Schlag, Shaliastovich, and Thimme (2019) and Cao, Vasquez, Xiao, and Zhan (2022) show that 

the volatility of volatility (VOL-of-VOL) is an important determinant of delta-hedged option 

return both theoretically and empirically. Following Cao et al. (2022), we measure the volatility 

of volatility as the standard deviation of the percentage changes of the daily implied volatility 

(VOIV) or realized volatility (VORV) of a given month. The implied volatility is obtained from 

the Volatility Surface file of OptionMetrics. The implied volatility of a given stock is the 

average of its call and put option’s implied volatilities with absolute delta of 0.5 and expiration 

of 30 days. The realized volatility is the five-minute intraday volatility calculated using the 

TAQ data. We record prices every five minutes starting from 9:30 EST and construct five-
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minute log-returns. We use the last recorded price within each five-minute period to calculate 

the log return.  

Second, although delta-hedged option portfolios are immune from small price changes 

of the underlying stocks, large price movements can cause the delta-hedging strategy to be 

ineffective. Green and Figlewski (1999) argue that option writers charge a premium for the 

jump risk, and Broadie, Chernov, and Johannes (2009) show that considering a jump risk 

premium can better understand the index option returns. Following Bakshi and Kapadia (2003) 

and Bakshi, Kapadia, and Madan (2003), we use the model-free implied skewness (MFIS) and 

kurtosis (MFIK) to measure the jump risk.  

Third, as shown by Bollen and Whaley (2004) and Gârleanu, Pedersen, and Poteshman 

(2009), option market makers cannot perfectly hedge their inventories and are thus exposed to 

inventory risk. Higher demand pressure from end-users causes option market makers to face 

higher inventory risk, and thus market makers charge a premium for the inventory risk. 

Muravyev (2016) empirically shows the importance of inventory risk in option pricing. We use 

two measures to proxy for the option demand pressure. First, we use the total market value of 

all options on a stock (open interest times option price), scaled by the underlying stock's market 

value to proxy for the option demand pressure. Second, we use the order imbalance of options 

to measure the demand pressure from end-users. Utilizing the Open/Close data from The 

Chicago Board Options Exchange (CBOE) and the International Securities Exchange (ISE), 

we construct the option order imbalance using the following equation: 

 𝑂𝐼𝐵𝑖,𝑡  =  (𝑂𝑝𝑒𝑛 𝐵𝑢𝑦𝑖,𝑡 − 𝑂𝑝𝑒𝑛 𝑆𝑒𝑙𝑙𝑖,𝑡) (𝑂𝑝𝑒𝑛 𝐵𝑢𝑦𝑖,𝑡 + 𝑂𝑝𝑒𝑛 𝑆𝑒𝑙𝑙𝑖,𝑡),                            (21)⁄  

where Open Buy (Sell) is the total volume of buyer (seller)-initiated orders to open new 

positions. For firm i and month t, the 𝑂𝑝𝑒𝑛 𝐵𝑢𝑦𝑖,𝑡 (𝑂𝑝𝑒𝑛 𝑆𝑒𝑙𝑙𝑖,𝑡) is the total buyer-(seller) 

initiated volume of all tradable options written on firm i across month t. Option demand 

pressure measures are separately calculated for call options and put options.  

In Panel A (B) of Table 8, we individually control for each proxy in the Fama-Macbeth 

regression for call (put) options. Although each proxy has a significant predictive power for 

delta-hedged option returns, none of them can subsume the significance of the SVR predictor. 

The coefficient of the SVR predictor barely changes when we control proxies for jump risk or 

option demand pressure. The maximum reduction of SVR predictor’ coefficient occurs after 

we control for the volatility of implied volatility, and the reduction is 16% (22%) for call (put) 
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options.6 These results indicate that the underlying economic mechanism of SVR predictors is 

not related to jump risk or option demand pressure from end-users. In comparison, uncertainty 

about the volatility accounts for some of the option return predictability by the SVR predictor. 

In the next section, we further investigate the information content of the SVR predictor. In 

particular, we show that SVR predictor contains valuable information about future volatility 

changes. 

[Insert Table 8] 

 

4.3. Information Contents of Textual Predictors 

To identify the information contents of textual predictors, we further examine whether they can 

predict implied volatility change or underlying stock fundamentals. Our motivation starts from 

the following decomposition of the buy-and-hold delta-hedged call option returns: 

𝐻𝑅𝑃𝑖,𝑡+1
𝐶 =

(𝐶𝑖,𝑡+1 − 𝐶𝑖,𝑡) − Δ𝑖,𝑡
C (𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡)

|𝐶𝑖,𝑡 − Δ𝑖,𝑡
C × 𝑆𝑖,𝑡|

= 𝑤 × 𝑅𝑜𝑝𝑡𝑖𝑜𝑛 − (1 + 𝑤) × 𝑅𝑠𝑡𝑜𝑐𝑘,           (22) 

where 𝑤 =  𝐶𝑖,𝑡 |𝐶𝑖,𝑡 − Δ𝑖,𝑡
C × 𝑆𝑖,𝑡|⁄ . The first part is related to the raw return of call options, 

while the second is related to the return of the underlying stocks. Therefore, the buy-and-hold 

delta-hedged call option return is the weighted average of the returns for the call option and the 

underlying stock. A similar decomposition applies to buy-and-hold delta-hedged put option 

returns. Since option price is an increasing function of implied volatility, option returns is 

positively related to the implied volatility change over the holding period. Moreover, the 

predictability of textual predictors can also stem from its information content about the 

underlying firm fundamentals and stock returns. 

Thus, we empirically test the relations between SVR predicators and future implied 

volatility change or the underlying stock return and future earnings surprise. First, we 

investigate whether SVR predictor can predict the implied volatility change over the following 

month. For each stock in our sample, we obtain the implied volatility for a call and a put with 

absolute delta of 0.5 and expiration of 30 days from the OptionMetrics volatility surface 

database. The implied volatility change is calculated as the percentage difference between the 

 
6
 When including option OIB as the control variable, the without-control coefficient of SVR predictors change 

to 0.349 (0.242) for call (put) options due to sample difference. Therefore, the reduction is only 1.7% (0.4%) for 

call (put) options.    
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next month’s and the current month’s implied volatility.  

Second, we test whether SVR predictors contain information that helps predict future 

earnings surprises or stock excess returns. Following Livnat and Mendenhall (2006), we 

calculate the standardized unexpected earnings (SUE) based on the assumption that earnings 

per share (EPS) follows a seasonal random walk, where the best expectation of the EPS in 

quarter 𝑡 is the firm’s reported EPS in the same quarter of the previous fiscal year. Hence, the 

SUE is given by the following equation:  

𝑆𝑈𝐸𝑖,𝑡 =
(𝑋𝑖,𝑡 − 𝑋𝑖,𝑡−4)

𝑃𝑖,𝑡
 ,       𝑖 = 1, … , 𝑁𝑡, (23) 

where 𝑋𝑖,𝑡  is primary earnings per share (EPS) before extraordinary items for firm 𝑖  in 

quarter 𝑡, and 𝑃𝑖,𝑡 is the price per share for firm 𝑖 at the end of quarter 𝑡 from Compustat. 

𝑋𝑖,𝑡 and 𝑃𝑖,𝑡 are unadjusted for stock splits, but 𝑋𝑖,𝑡−4 is adjusted for any stock splits and 

dividends during the period [𝑡 − 4, 𝑡]  using the Compustat adjustment factor (AJEXQ). 

“Special items” in Compustat are excluded from the calculation of the SUE. The higher SUE 

is, the more positive the earnings surprise is. Stock excess return is defined as the difference 

between the raw stock return and the risk-free return over the next month. 

To check the information contents of SVR predictors, we run predictive regressions 

with the implied volatility change or stock excess return as dependent variables 𝑍𝑖,𝑡: 

𝑍𝑖,𝑡 = 𝑎 + 𝑏 × 𝑆𝑉𝑅𝑖,𝑡−1 +  ∑ 𝛾𝑡
𝑗
𝑋𝑖,𝑡−1

𝑗

𝑀

𝑗=1

+ 𝜖𝑖,𝑡,     𝑖 = 1, … , 𝑁𝑡, (24) 

where 𝑆𝑉𝑅𝑖,𝑡−1  is the SVR predictor (i.e., �̂�𝑖,𝑡 ) for firm 𝑖  at time 𝑡 − 1 , and 𝑋𝑖,𝑡−1
𝑗

  are 

control variables. We run univariate regression of SUE or stock excess return on SVR 

predictors. When regressing next month implied volatility changes on SVR predictors, we 

control the implied volatility change in the current month, i.e., the percentage difference 

between the current month’s and the previous month’s implied volatility.  

[Insert Table 9] 

Table 9 shows that the SVR predictors are not significantly related to future earnings 

surprises or stock excess returns. Instead, SVR predictors show significant predictability to 

future implied volatility changes. This suggests that textual information from new media that 

predict delta-hedged option returns do not come from the underlying fundamentals.  
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On the other hand, we find that after controlling the lagged implied volatility change, 

SVR predictors still significantly predict future implied volatility change at 1% significance 

level for both call options and put options. This combined with the earlier result in Section 4.2 

(uncertainty about the implied volatility has the largest explanatory power for the option return 

predictability of SVR predictors) suggest that SVR predictors’ ability to predict delta-hedged 

option returns is intimately related to its information content about future volatility. Our work 

suggests that valuable and useful insights about stock volatility can be gleaned from news 

media coverage of the company using machine learning algorithms.  

We acknowledge that it is a challenging task to interpret signals obtained by machine-

learning algorithms and there could be additional channels underlying the option returns 

predictability by textual predictors we extract from news media using machine learning 

algorithms. We leave further explorations to future work.   

 

5. Conclusion 

In this paper, we study whether and how textual information from news media could predict 

the cross-section of delta-hedged option returns. First, we find that the textual information 

extracted from news media using machine learning techniques has a strong predictive power 

for delta-hedged option returns. The results are robust to different methodologies and 

controlling for various option return predictors documented in the literature. Second, a large 

proportion of the predictive power of the textual predictor is qualitative sentiment-related 

information, as the important word features from trained ML models have the largest overlap 

with sentiment dictionaries. Third, the predictive power of textual predictors for delta-hedged 

option return is unrelated to future returns of the underlying stock or future company earnings. 

Instead, we find that news media contains useful information about future change in stock 

volatility which helps to explain the predictive power of textual predictors for delta-hedged 

option return.  

Overall, our results demonstrate that machine-learning methods can extract useful 

information from news media that are both statistically and economically significant predictors 

of option returns. Our paper provides a novel angle to predict option returns and illustrate the 

importance of incorporating information from unstructured data when pricing options. Future 

research could explore more advanced machine learning approaches (such as recurrent neural 
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network and convolutional neural network) and incorporate dependency across words in a 

document to extract information from text data. More work is needed to better understand the 

underlying mechanisms for the delta-hedged option return predictability by textual information 

from news media. This exercise would also shed new lights on the cross-sectional determinants 

of expected delta-hedged option returns.  
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Table 1 Summary Statistics 

This table reports the descriptive statistics of option returns, option characteristics, textual predictors, 

and equity characteristics. The sample period is from February 1996 to December 2018. Panel A (B) 

reports the pooled summary of delta-hedged call (put) option returns and the characteristics of call (put) 

options involved. A delta-hedged call (put) option portfolio involves buying one contract of an equity 

call (put) and a short position of Δ shares of the underlying stock, where Δ is the Black-Scholes call 

(put) option delta. The position is held for 1 month or until option maturity. Delta-hedged option return 

is defined as the total dollar gain of the delta-hedged option portfolio scaled by the absolute value of 

the cost of the delta-hedged option portfolio at its formation date. Moneyness is the ratio of option strike 

price to stock price. Days to maturity is the number of calendar days until the option expires. Gamma 

is the Black-Scholes option gamma. Vega is the Black-Scholes option vega. Option bid-ask spread is 

the ratio of the difference between ask and bid quotes of option to the midpoint of the bid and ask quotes 

at the end of each month. Panel C reports the time-series average of cross-sectional statistics of textual 

predictors and equity characteristics (all independent variables are winsorized each month at the 1% 

level). Call_SVR (Put_SVR) is the textual predictor extracted from news media using support vector 

regression model. AUTO is the first-order autocorrelation of underlying stock’s return as in Jeon et al. 

(2019). CASH is the cash-to-assets ratio as in Palazzo (2012). CFV is the cash flow variance as in 

Haugen and Baker (1996). DISP is the analyst earnings forecast dispersion, as in Diether et al. (2002). 

ISSUE_1Y represents 1-year new issues as in Pontiff and Woodgate (2008). IVOL is the idiosyncratic 

volatility computed as in Ang et al. (2006). LNPRICE is the log of the underlying stock price at the end 

of last month. LOG_AMIHUD is the natural logarithm of the illiquidity measure from Amihud (2002). 

PROFIT is the profitability as in Fama and French (2006). TEF is total external finance. HV-IV is the 

difference between realized volatility and implied volatility as in Goyal and Saretto (2009). Panel D 

reports the cross-sectional Pearson correlations of textual predictors and various characteristics of 

options and stocks. All variables are winsorized each month at the 1% level. We report the cross-

sectional correlations each month and report the time-series average of these correlations. 
 

Panel A: Pooled Summary of Delta-hedged Call Option Returns and Option Characteristics (50,888 observations) 

 Mean 
Standard 

deviation 

10th 

percentile 

Lower 

quartile 
Median 

Upper 

quartile 

90th 

percentile 

Buy & hold until month-end (%) -2.67 4.76 -7.22 -4.56 -2.61 -0.92 1.49 

Buy & hold until maturity (%) -8.47 6.24 -15.91 -10.77 -7.09 -4.54 -2.76 

Moneyness (%) 99.98 3.20 96.34 98.36 100.00 101.59 103.65 

Days to Maturity 50 2 47 50 50 51 52 

Gamma 0.09 0.05 0.03 0.05 0.08 0.11 0.16 

Vega 0.14 0.01 0.13 0.14 0.14 0.15 0.15 

Quoted option bid-ask spread (%) 9.93 8.82 2.39 4.44 7.79 12.66 19.05 

Panel B: Pooled Summary of Delta-hedged Put Option Returns and Option Characteristics (50,888 observations) 

 Mean 
Standard 

deviation 

10th 

percentile 

Lower 

quartile 
Median 

Upper 

quartile 

90th 

percentile 

Buy & hold until month-end (%) -2.03 3.97 -5.99 -3.81 -2.11 -0.54 1.71 

Buy & hold until maturity (%) -7.75 5.01 -14.14 -9.93 -6.74 -4.47 -2.81 

Moneyness (%) 99.96 3.22 96.28 98.34 100.00 101.57 103.63 

Days to Maturity 50 2 47 50 50 51 52 

Gamma 0.09 0.05 0.03 0.05 0.08 0.11 0.16 

Vega 0.14 0.01 0.13 0.14 0.14 0.15 0.15 

Quoted option bid-ask spread (%) 10.38 9.45 2.41 4.65 8.00 13.33 20.00 
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Panel C: Equity Characteristics (Time-series Average of Cross-sectional Statistics) 

 
Mean 

Standard 

deviation 

10th 

percentile 

Lower 

quartile 
Median 

Upper 

quartile 

90th 

percentile 

Call_SVR (%) -1.54 2.34 -4.47 -2.63 -1.27 -0.35 0.82 

Put_SVR (%) -1.56 1.55 -3.59 -2.33 -1.33 -0.67 0.02 

AUTO -0.01 0.10 -0.14 -0.08 -0.01 0.05 0.11 

CASH 0.17 0.18 0.02 0.04 0.10 0.24 0.44 

CFV -0.05 0.36 -0.02 0.00 0.00 0.00 0.00 

DISP (%) 13.82 44.30 0.80 1.47 3.22 8.25 24.13 

HV-IV 0.02 0.09 -0.07 -0.03 0.01 0.05 0.11 

ISSUE_1Y -0.41 1.20 -1.14 -0.32 -0.01 0.02 0.05 

IVOL 0.02 0.01 0.01 0.01 0.02 0.02 0.03 

LNPRICE 3.71 0.71 2.78 3.28 3.76 4.17 4.54 

LOG_AMIHUD -8.36 1.53 -10.20 -9.39 -8.52 -7.44 -6.27 

PROFIT 0.28 0.42 0.02 0.14 0.24 0.36 0.55 

TEF 0.00 0.13 -0.14 -0.03 0.01 0.06 0.11 

Panel D: Time-series Average of Cross-sectional Correlations 

 Call_SVR Put_SVR IVOL HV-IV LOG_AMIHUD OSPREAD AUTO DISP 

Call_SVR 1.00 0.57 -0.09 0.00 -0.12 -0.04 -0.01 -0.04 

Put_SVR  1.00 -0.12 -0.03 -0.17 -0.06 -0.01 -0.06 

IVOL   1.00 0.12 0.41 0.08 0.11 0.24 

HV-IV    1.00 0.00 -0.03 -0.03 0.03 

LOG_AMIHUD     1.00 0.50 0.06 0.16 

OSPREAD      1.00 0.00 0.06 

AUTO       1.00 0.05 

DISP        1.00 
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Table 2: Option Portfolios Sorted by Textual Predictors Using Support Vector Regression 
Panel A reports the average monthly returns to the delta-hedged option portfolios sorted by Call_SVR 

(Put_SVR). At each end of month, we rank all underlying stocks into quintiles by their Call_SVR 

(Put_SVR). Detailed descriptions of Call_SVR (Put_SVR) are provided in Section 2.1. The portfolio is 

held for one month. This table reports the average return to the delta-hedged option portfolio for each 

quintile as well as the high-low return spread (i.e., the difference between the returns of the top and bottom 

quintile portfolios). At the end of each month, we use three weighting schemes when computing the 

average return of a portfolio: equal weight (EW), weight by the market capitalization of the underlying 

stock (Stock-VW), and weight by the market value of option open interest (Option-VW). We also adjust 

the average returns using a seven-factor model and report the corresponding alphas. Panel B examines 

the influence of transaction costs (bid-ask spread) on the profitability of our option portfolio strategy 

based on ML textual predictors. We form portfolio sorts just as in Panel A but take into consideration 

transaction costs when computing the realized returns. Each row corresponds to a given level of effective 

spread ESPR (e.g., equals to 50% of the quoted bid-ask spread QSPR). We report the (5-1) portfolio return 

spreads after accounting for the assumed option transaction costs. The weighting scheme in Panel B is 

equal-weighted. All returns are expressed in percentage. The sample period is from February 1996 to 

December 2018. To adjust for serial correlations, robust Newey-West (1987) t-statistics are reported in 

brackets. *, **, *** denote significance at the 10%, 5%, and 1% levels, respectively. 
 

Panel A: Average returns and Alphas for Portfolios Sorted by SVR   
Low 2 3 4 High H-L Alpha 

Call Options 

EW 
-3.22 -3.27 -2.85 -2.01 -1.75 1.47*** 1.48*** 

(-20.44) (-23.06) (-21.32) (-15.09) (-12.04) (12.47) (11.17) 

Stock-VW 
-3.04 -3.13 -2.77 -1.92 -1.62 1.42*** 1.43*** 

(-20.34) (-22.58) (-21.31) (-14.56) (-11.36) (12.55) (11.07) 

Option-VW 
-3.00 -3.30 -2.76 -1.55 -1.05 1.95*** 1.84*** 

(-17.92) (-18.53) (-19.61) (-10.93) (-5.00) (8.74) (7.94) 
  

Low 2 3 4 High H-L Alpha 

Put Options 

EW 
-2.40 -2.20 -2.05 -1.78 -1.53 0.87*** 0.86*** 

(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (13.58) (10.16) 

Stock-VW 
-2.26 -2.09 -1.95 -1.68 -1.43 0.83*** 0.83*** 

(-18.94) (-19.82) (-18.49) (-13.91) (-10.84) (12.91) (9.68) 

Option-VW 
-2.35 -2.05 -1.97 -1.46 -1.10 1.25*** 1.21*** 

(-15.03) (-15.12) (-17.26) (-9.69) (-5.64) (7.79) (7.49) 

Panel B: Portfolio Performances after Accounting for Transaction Costs  
ESPR/QSPR  

No Cost 25% 50% 75% 100% 

Call Options 
1.47*** 1.41*** 1.34*** 1.28*** 1.21*** 

(12.47) (12.11) (11.70) (11.25) (10.77) 

Put Options 
0.87*** 0.80*** 0.73*** 0.65*** 0.58*** 

(13.58) (12.56) (11.42) (10.18) (8.87) 
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Table 3: Dependent Double Sorts and Fama-MacBeth Regressions 
In Panel A of this table, we investigate whether several stock or option characteristics can explain the 

effect of ML textual predictors using dependent double sorts. We first sort all options into quintiles 

based on a given control variable such as idiosyncratic volatility (IVOL), volatility deviation (HV – IV), 

Amihud illiquidity measure (LOG_AMIHUD), options’ bid-ask spread, gamma, and vega (OSPREAD, 

Gamma, Vega), autocorrelation (AUTO), analyst earnings forecast dispersion (DISP), cash flow 

variance (CFV), cash-to-assets ratio (CASH), 1-year new issues (ISSUE_1Y), log of the underlying 

stock price (LNPRICE), profitability (PROFIT), total external finance (TEF). Then, within each quintile 

we further sort the options into five portfolios based on ML-based textual predictors. Finally, we average 

returns for each textual predictor quintile across the five groups sorted by the control variable, yielding 

five control-variable adjusted quintile returns. We report the baseline results based on univariate sort 

(i.e., the average difference in the equal-weighted monthly returns of the top and bottom quintile 

portfolios sorted by SVR textual predictors) in the first row, followed by the corresponding results after 

controlling for the variable labeled in each subsequent row. Panel B reports the Fama-Macbeth cross-

sectional regression results of delta-hedged equity option returns on SVR textual predictors, Call_SVR 

(Put_SVR). Detailed descriptions of Call_SVR (Put_SVR) and their constructions are provided in 

Section 2.2. The constructions of control variables are described in Table 1. The sample period is from 

February 1996 to December 2018. To adjust for serial correlations, robust Newey-West (1987) t-

statistics are reported in brackets. *, **, *** denote significance at the 10%, 5%, and 1% levels, 

respectively. 
 

Panel A: Portfolio Return Spread based on SVR Predictors after Controlling Stock or Option 

Characteristics  
 Call Options Put Options 

SVR 
1.47*** 0.87*** 

(12.47) (13.58) 

IVOL 
1.13*** 0.60*** 

(11.37) (9.59) 

HV-IV 
1.30*** 0.81*** 

(11.91) (13.55) 

LOG_AMIHUD 
1.32*** 0.58*** 

(10.62) (7.55) 

OSPREAD 
1.45*** 0.82*** 

(12.32) (12.07) 

AUTO 
1.42*** 0.84*** 

(12.27) (13.54) 

Gamma 
1.40*** 0.79*** 

(12.14) (13.63) 

Vega 
1.48*** 0.81*** 

(12.79) (12.25) 

DISP 
1.27*** 0.68*** 

(11.38) (10.64) 

CFV 
1.28*** 0.74*** 

(11.03) (10.13) 

CASH 
1.29*** 0.77*** 

(11.24) (10.80) 

ISSUE_1Y 
1.32*** 0.77*** 

(12.45) (12.60) 

LNPRICE 
1.16*** 0.59*** 

(10.38) (10.69) 

PROFIT 
1.26*** 0.73*** 

(10.39) (10.88) 

TEF 
1.32*** 0.78*** 

(11.10) (11.96) 
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Panel B: Fama-Macbeth Regressions 

 Call Options Put Options 

 (1) (2) (3) (4) (5) (6) 

SVR 
0.465*** 0.307*** 0.259*** 0.290*** 0.142*** 0.118*** 

(11.90) (8.69) (7.06) (13.92) (7.12) (4.32) 

IVOL 
 

-0.764*** -0.445*** 
 

-0.624*** -0.301*** 

 (-13.27) (-8.30)  (-15.78) (-6.77) 

HV-IV 
 

0.484*** 0.514*** 
 

0.434*** 0.446*** 

 (8.12) (9.38)  (9.76) (10.35) 

LOG_AMIHUD 
 

-0.357*** 0.012 
 

-0.355*** 0.021 

 (-11.06) (0.31)  (-13.08) (0.51) 

OSPREAD 
 

 -0.066* 
 

 -0.118*** 

 
 

(-1.81)  
 

(-2.90) 

AUTO 
 

 0.026 
 

 0.031 

 
 

(1.03)  
 

(1.55) 

Gamma 
 

 0.471*** 
 

 0.598*** 

 
 

(5.69)  
 

(8.32) 

Vega 
 

 -0.308*** 
 

 0.042 

 
 

(-14.22)  
 

(1.58) 

Stock Characteristics No No Yes No No Yes 

Adj. R2 (%) 1.615 14.143 22.536 1.177 13.687 21.951 
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Table 4: Option Portfolios Sorted by Alternative Machine Learning Textual Predictors 
Panel A reports average monthly returns of the delta-hedged option portfolios sorted by machine 

learning (ML) textual predictors trained by alternative machine learning algorithms. The row 

“ENET”/“RF”/“MLP” reports portfolio sorting results by textual predictors extracted based on elastic 

net, random forest, and neural networks. Detailed descriptions of these predictors are provided in 

Section 3.2.1. Panel B reports the average monthly returns of the delta-hedged option portfolios sorted 

by ML textual predictors trained by using alternative word constructions. The row 

“Bigram”/“Trigram”/“Fivegram” reports portfolio sorting results based on ML textual predictors 

extracted based on different word features to train the model, including bigram, trigram, and fivegram. 

Detailed descriptions of these predictors are provided in Section II.B.2. All returns are expressed in 

percentage. The sample period is from February 1996 to December 2018. To adjust for serial 

correlations, robust Newey-West (1987) t-statistics are reported in brackets. *, **, *** denote significance 

at the 10%, 5%, and 1% levels, respectively. 
 

Panel A: Portfolios Sorted by ML Textual Predictors using Alternative ML Algorithms   

Low 2 3 4 High H-L Alphas 

Call Options 

SVR 
-3.22 -3.27 -2.85 -2.01 -1.75 1.47*** 1.48*** 

(-20.44) (-23.06) (-21.32) (-15.09) (-12.04) (12.47) (11.17) 

ENET 
-3.21 -2.82 -2.49 -2.31 -2.27 0.94*** 0.93*** 

(-21.62) (-19.52) (-20.86) (-16.06) (-15.87) (9.39) (7.86) 

RF 
-3.15 -2.96 -2.70 -2.23 -2.06 1.09*** 1.02*** 

(-21.90) (-20.61) (-20.12) (-16.54) (-14.52) (11.41) (9.00) 

MLP 
-3.17 -3.23 -2.79 -2.12 -1.78 1.38*** 1.35*** 

(-21.83) (-20.27) (-20.78) (-15.61) (-12.37) (12.17) (10.62) 
  

Low 2 3 4 High H-L Alphas 

Put Options 

SVR 
-2.40 -2.20 -2.05 -1.78 -1.53 0.87*** 0.86*** 

(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (13.58) (10.16) 

ENET 
-2.31 -2.06 -1.98 -1.81 -1.80 0.51*** 0.47*** 

(-18.47) (-18.57) (-16.92) (-15.19) (-15.23) (8.01) (5.86) 

RF 
-2.34 -2.12 -1.99 -1.79 -1.71 0.63*** 0.55*** 

(-17.96) (-18.92) (-16.94) (-15.80) (-14.53) (10.02) (6.84) 

MLP 
-2.33 -2.21 -2.07 -1.80 -1.54 0.78*** 0.77*** 

(-17.54) (-20.76) (-19.39) (-14.48) (-11.55) (9.48) (8.55) 
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Panel B: Portfolios Sorted by ML Textual Predictors under Alternative Word Constructions   

Low 2 3 4 High H-L Alphas 

Call Options 

Unigram 
-3.22 -3.27 -2.85 -2.01 -1.75 1.47*** 1.48*** 

(-20.44) (-23.06) (-21.32) (-15.09) (-12.04) (12.47) (11.17) 

Bigram 
-3.13 -3.33 -2.88 -2.12 -1.63 1.50*** 1.47*** 

(-21.10) (-20.13) (-20.78) (-17.04) (-11.45) (11.77) (13.79) 

Trigram 
-3.22 -3.14 -2.97 -2.15 -1.62 1.60*** 1.64*** 

(-21.28) (-20.66) (-21.16) (-15.70) (-11.72) (11.54) (12.04) 

Fivegram 
-3.58 -2.90 -2.57 -2.30 -1.88 1.69*** 1.69*** 

(-21.45) (-20.12) (-17.31) (-18.58) (-15.05) (14.02) (14.26) 
  

Low 2 3 4 High H-L Alphas 

Put Options 

Unigram 
-2.40 -2.20 -2.05 -1.78 -1.53 0.87*** 0.86*** 

(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (13.58) (10.16) 

Bigram 
-2.28 -2.24 -2.06 -1.84 -1.54 0.74*** 0.79*** 

(-18.65) (-19.28) (-20.24) (-15.72) (-9.84) (7.66) (7.98) 

Trigram 
-2.29 -2.16 -2.08 -1.81 -1.61 0.68*** 0.74*** 

(-20.50) (-18.43) (-19.04) (-14.89) (-11.35) (7.05) (6.37) 

Fivegram 
-2.40 -2.16 -2.01 -1.81 -1.58 0.82*** 0.80*** 

(-19.11) (-17.85) (-18.50) (-15.20) (-12.69) (9.06) (8.56) 
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Table 5: Alternative Option Samples and Return Construction Method 
This table examines the robustness of the predictability by the SVR predictors in different option 

samples and using an alternative return construction method. We replicate the portfolio sorts in Table 2 

using options with different moneyness and maturities. ITM represents in-the-money option, and OTM 

represents out-of-the-money option. 2.5-month ATM (3.5-month ATM are at-the-money options with 

2.5-month (3.5-month) maturity. Daily-rebalance represents results using daily-rebalanced delta-

hedged option return. The weighting scheme is equal-weighted. The sample period is from February 

1996 to December 2018. To adjust for serial correlations, robust Newey-West (1987) t-statistics are 

reported in brackets. *, **, *** denote significance at the 10%, 5%, and 1% levels, respectively. 
 

Panel A: Alternative Samples and Return Construction - Call Options 

 Low 2 3 4 High H-L 

ITM 
-1.70 -1.77 -1.42 -1.00 -0.97 0.74*** 

(-15.99) (-15.59) (-15.69) (-11.34) (-9.83) (9.51) 

OTM 
-4.04 -4.15 -3.69 -2.83 -2.26 1.78*** 

(-20.02) (-23.06) (-21.27) (-16.49) (-10.61) (10.46) 

2.5-month ATM 
-2.40 -2.37 -2.21 -1.34 -1.04 1.35*** 

(-15.36) (-16.59) (-18.81) (-8.69) (-6.88) (8.95) 

3.5-month ATM 
-2.23 -2.22 -1.88 -1.34 -1.21 1.01*** 

(-16.32) (-16.69) (-16.58) (-10.41) (-9.09) (10.03) 

Daily rebalancing 
-0.98 -0.94 -0.70 -0.41 -0.29 0.69*** 

(-9.50) (-9.54) (-6.61) (-3.81) (-2.34) (9.12) 

 

Panel B: Alternative Samples and Return Construction - Put Options 

 Low 2 3 4 High H-L 

ITM 
-1.02 -0.91 -0.79 -0.67 -0.59 0.43*** 

(-14.30) (-15.15) (-14.00) (-10.96) (-8.16) (9.02) 

OTM 
-3.28 -3.01 -2.85 -2.55 -2.23 1.05*** 

(-16.26) (-19.50) (-14.80) (-12.91) (-10.46) (12.46) 

2.5-month ATM 
-1.55 -1.39 -1.35 -1.08 -0.79 0.76*** 

(-12.74) (-11.64) (-11.94) (-11.20) (-4.38) (5.79) 

3.5-month ATM 
-1.26 -1.22 -1.09 -0.97 -0.90 0.35*** 

(-11.58) (-12.45) (-11.03) (-8.75) (-9.19) (5.63) 

Daily rebalancing 
-0.79 -0.67 -0.58 -0.46 -0.40 0.39*** 

(-7.59) (-6.18) (-6.41) (-4.46) (-3.90) (10.31) 
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Table 6: Topic Contribution for Feature Importance 
Panel A and Panel B of this table list the proportion of important words from each topic category 

(labeled by the rows). The General Inquirer (GI) is a dictionary that reflects Charles Osgood’s semantic 

differential findings regarding basic language universals. The Loughran and McDonald (LM) dictionary 

is the sentiment dictionary developed in Loughran and McDonald (2011). The Political dictionary is 

from Hassan et al. (2019). The Macroeconomic dictionary is based on Bloom (2014) and Bybee et al. 

(2020). Idiosyncratic Words are the remaining words that do not fall into the four pre-defined 

dictionaries. The sample period is from February 1996 to December 2018. 
 

Panel A: Delta-hedged Call Option Feature Importance in Different Topics 

Topic SVR Elastic Net Random Forest Neural Networks 

GI Dictionary 37.40% 40.20% 40.60% 32.20% 

LM Dictionary 32.6% 30.40% 32.20% 22.80% 

Politics 4.60% 4.00% 6.0% 6.60% 

Macroeconomics 8.00% 8.40% 7.80% 6.60% 

Idiosyncratic Words 
17.40% 

17.00% 13.40% 31.80% 

Total 100.00% 100.00% 100.00% 100.00% 

 

Panel B: Delta-hedged Put Option Feature Importance in Different Topics 

Topic SVR Elastic Net Random Forest Neural Networks 

GI Dictionary 38.2% 44.60% 38.20% 28.40% 

LM Dictionary 32.8% 27.60% 32.60% 24.60% 

Politics 3.80% 6.40% 6.20% 5.20% 

Macroeconomics 7.80% 5.00% 5.40% 7.60% 

Idiosyncratic Words 17.40% 16.40% 17.60% 34.20% 

Total 100.00% 100.00% 100.00% 100.00% 
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Table 7: Relationships between SVR Predictor and Sentiment-related Measures 
Panel A reports Fama-Macbeth regression results of sentiment-related measures on the SVR predictor. 

GILM1 is a proxy for the general opinions about a specific company extracted from the news media. 

GILM2 is a measure of sentiment disagreement for each firm to reflect possible different opinions 

among the articles about a particular firm. Raven1 and Raven2 are sentiment level and disagreement 

measures from RavenPack News Analytics, respectively. Panel B reports the (5-1) portfolio return 

spreads generated by SVR predictors, sentiment-related measures, and SVR_GILM. SVR_GILM is an 

alternative SVR predictor that is trained using only sentences containing sentiment-related words in 

each article. The sample period is from February 1996 to December 2018. To adjust for serial 

correlations, robust Newey-West (1987) t-statistics are reported in brackets. *, **, *** denote significance 

at the 10%, 5%, and 1% levels, respectively. 

   

Panel A: Regressing Sentiment-related Measures on SVR Predictors 

 Call  Put 

 GILM1 GILM2 Raven1 Raven2  GILM1 GILM2 Raven1 Raven2 

SVR 
0.010*** -0.024*** 0.052*** -0.040*** 

 
0.012*** -0.034*** 0.060*** -0.052*** 

(5.96) (-12.32) (4.82) (-3.01)  (5.81) (-17.60) (5.19) (-3.75) 

Adj. R2 (%) 0.596 1.911 0.244 0.243  0.712 2.985 0.140 0.283 

Panel B: Portfolio Return Spreads Generated by SVR predictors, Sentiment-related Measures, and 

SVR_GILM predictors 

 (1) (2) (3) (4) (5) (6) 

 SVR GILM1 GILM2 Raven1 Raven2 SVR_GILM 

Call 
1.47*** 0.51*** -0.62*** 0.68*** -0.60*** 0.12* 

(12.47) (5.54) (-7.19) (7.54) (-6.64) (1.89) 

Put 
0.87*** 0.41*** -0.50*** 0.59*** -0.51*** 0.18*** 

(13.58) (5.48) (-7.67) (8.92) (-7.58) (3.38) 

Panel C: Regressing Delta-hedged Option Returns on SVR Predictors with Sentiment-related 

Measures as Control Variables 

 Call  Put 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

SVR 
0.460*** 0.447*** 0.454*** 0.460***  0.289*** 0.273*** 0.283*** 0.292*** 

(12.00) (11.38) (8.68) (8.86)  (13.91) (13.20) (9.80) (9.94) 

GILM1 
0.163***     0.124***    

(6.05)     (5.75)    

GILM2 
 -0.188***     -0.142***   

 (-7.46)     (-7.16)   

Raven1 
  0.248***     0.213***  

  (7.89)     (10.06)  

Raven2 
   -0.232***     -0.203*** 

   (-6.96)     (-8.48) 

Adj.R2 (%) 2.000  3.021 2.624  1.531 1.596 2.469 2.235 



45 

 

Table 8: Potential Economic Channels 
Panel A examines potential economic channels underlying the predictive power of SVR predictors for 

delta-hedged option returns. The dependent variable is the delta-hedged option returns, and the 

independent variables are SVR predictors and proxies for various potential economic channels. VOIV 

is the standard deviation of option implied volatility over the trading days within a given month, and 

the implied volatility is the at-the-money implied volatility obtained from Volatility Surface provided 

by OptionMetrics IvyDB database. VORV is the standard deviation of the daily realized volatility of a 

given month, and the realized volatility is calculated with five-minute log returns provided by TAQ. 

MFIS (resp. MFIK) is the model-free option-implied skewness (resp. kurtosis). OM is the total market 

value of options on a stock scaled by the stock market value. OIB is the option demand pressure, 

calculated as the difference between buyer and seller-initiated option trading volume scaled by the total 

option trading volume. Option trading volume for firm i in month t is the sum of trading volumes of all 

tradable options written on firm i in month t. The sample period is from February 1996 to December 

2018. To adjust for serial correlations, robust Newey and West (1987) t-statistics are reported in brackets. 
*, **, *** denote significance at the 10%, 5%, and 1% levels, respectively. 

 

Panel A: Call Options 
 (1) (2) (3) (4) (5) (6) 

SVR 
0.449*** 0.445*** 0.433*** 0.436*** 0.448*** 0.343*** 

(11.73) (11.41) (11.61) (11.73) (11.87) (12.09) 

VOIV 
-0.252***      

(-6.49)      

VORV 
 -0.242***     

 (-6.51)     

MFIS 
  -0.542***    

  (-15.31)    

MFIK 
   0.510***   

   (11.05)   

OM 
    -0.358***  

    (-8.20)  

OIB 
     -0.156*** 

     (-7.56) 

Adj.R2 (%) 8.129 5.443 4.049 4.379 4.344 1.974 

Panel B: Put Options 
 (1) (2) (3) (4) (5) (6) 

SVR 
0.285*** 0.281*** 0.272*** 0.270*** 0.255*** 0.241*** 

(13.87) (12.95) (13.41) (13.42) (12.14) (11.50) 

VOIV 
-0.218***      

(-7.20)      

VORV 
 -0.213***     

 (-6.62)     

MFIS 
  -0.260***    

  (-11.01)    

MFIK 
   0.389***   

   (12.48)   

OM 
    -0.538***  

    (-16.12)  

OIB 
     0.065*** 

     (3.49) 

Adj.R2 (%) 8.725 5.930 3.459 4.542 6.991 2.417 
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Table 9: Information Content of SVR Predictor  
In this table, we investigate the information content of the SVR predictor. We run predictive regression 

with future implied volatility changes over the next month, earnings surprises in the next month, or 

stock excess over the next month returns as the dependent variable The key independent variable here 

is the SVR predictor. When running regressions for future implied volatility changes, we add their lag 

values (𝐿𝑎𝑔_∆𝐶𝑉𝑂𝐿  or 𝐿𝑎𝑔_∆𝑃𝑉𝑂𝐿 ) as control variables. SUE is the standardized unexpected 

earnings excluding “special items” as in Livnat and Mendenhall (2006). Stock return is the excess stock 

return over the next month. The sample period is from February 1996 to December 2018. To adjust for 

serial correlations, robust Newey and West (1987) t-statistics are reported in brackets. *, **, *** denote 

significance at the 10%, 5%, and 1% levels, respectively.  

 

 

 

 Call  Put 

 Δ𝐶𝑉𝑂𝐿 SUE 
Stock 

Return 
 Δ𝑃𝑉𝑂𝐿 SUE 

Stock 

Return 

SVR 
0.559*** 0.004 0.075  0.194*** 0.004 0.073 

(7.13) (1.04) (1.44) 
 

(2.87) (1.53) (1.38) 

𝐿𝑎𝑔_∆𝐶𝑉𝑂𝐿 (Δ𝑃𝑉𝑂𝐿)  
-5.008***    -4.894***   
(-27.54) 

 

  
(-24.50) 

  

Adj.R2 (%) 11.111 0.089 0.494  11.064 0.039 0.433 
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Table A1: Feature Importance with Different Topics and Dictionaries 
This table lists the word feature importance from the support vector regression (SVR) model on average 

over time. Feature importance is defined as the top 1000 words with the largest magnitudes (i.e., the 

absolute value of the coefficients) from the SVR model. For abbreviation, we list the first twenty words 

which appear most often over time for both call and put options. The sample period is from February 

1996 to December 2018. 
 

Topic Delta-hedged Call Option Return Delta-hedged Put Option Return 

GI Dictionary 

excessive, aggregate, parasite, endear, 

tolerable, unpopular, discretion, 

grumble, purity, heartily, foolish, 

simplistic, stark, vitality, conscience, 

reactive, intelligent, flaw, godliness, 

capability 

fiery, animosity, learner, upright, 

glorify, massacre, obstinate, capitalize, 

stability, transgress, enthusiasm, 

lowly, evict, guilt, discretion, 

fashionable, fullness, veto, devious, 

peril 

LM Dictionary 

exposing, overstate, miscalculating, 

acquitting, underestimate, forgers, 

perfects, defamatory, overshadowed, 

purported, cancelled, exacerbated, 

annulments, revolutionizing, ridiculed, 

exculpatory, inaction, deceived, 

demotion, dysfunction 

irreparable, mishandling, forecloses, 

overshadowed, unremedied, exclusive, 

abolishes, inadequacies, provoked, 

revocations, summons, breakthrough, 

confesses, noncompliances, 

overlooked, distressed, insufficiently, 

stressed, expropriates, inappropriately 

Politics 

caviar, apparatchik, white house, 

command, floor, autocracy, trojan, 

wets, taliban, dynasty, political, roots, 

libertarianism, rotherham, bureaucracy, 

republican, legislature, humanism, 

religion, congress 

polling, pravda, election, bien, senate, 

levellers, proportional, governor, 

president, ombudsman, belli, white 

house, mission, patrician, political, 

government, reform, obama, court, 

religion, republican 

Macroeconomics 

group president, deadlock, price 

earnings, aeronautic defence, definitive 

agreement, secondary offer, aeronautic, 

nonprofit group, noncompetly, operate 

loss, commodity market, stock market, 

nasdaq, london interbank, bilateral 

trade, charity, export country, omnicom 

group, report conclude, ambitious plan 

rose slight, creditcard issuer, credit 

agreement, transportation safety, 

complexity, issue bond, kim jong, grid, 

warn sign, traffic safety, york cotton, 

misappropriated, aid virus, fargo, 

redeemable, commodity oil, retiree, 

stanley capital, criminal trial 

Idiosyncratic Words 

exception, interpleader, contract, 

despair, lawyer, internet, electronic, 

fighting, bioteh, indemnitee, shot, 

properly, contravention, statutorily, 

tech, admissions, hospital, aerospace, 

entailing, pledgors 

crowd, willfulness, blood, passenger, 

nurse, increase, obligee, offered, 

subrogated, iphone, counsel, 

indemnifications, necessitated, 

shopper, mandamus, aforedescribed, 

rebate, mediation, supersedeas, 

advertising, truck 
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Table A2: Important Words to Understand the SVR Textual Predictors 
In Panel A, we construct synthetic bigrams using both important firm-idiosyncratic words and sentiment 

words selected by SVR. To make the bigram more interpretable, we first list the firm-idiosyncratic word 

followed by the sentiment word. In Panel B, we list some fivegram words that have the highest average 

feature importance (i.e., those with largest average absolute value of coefficients under support vector 

regression model). For abbreviation, we list the first eighty words which appear most often over time 

for both call and put options. The sample period is from February 1996 to December 2018. 
 

Panel A: Important Features based on Bigrams using Sentiment and Firm-idiosyncratic 

Words 

said-good, fell-lost, department-justice, comment-declined, said-never, financial-crisis, electronics-

success, added-gained, said-able, shares-lost, said-justice, general-attorney, said-might, said-late, shares-

closed, said-contract, still-good, news-good, would-risk, corporate-lawyers, said-risk, said-could, advice-

lawyers, said-best, last-strong, said-great, said-investigation, shares-gained, would-warned, cents-lost, 

said-probably, said-confident, would-able, years-could, first-lost, another-could, many-could, many-

never, advice-defendant, billion-could, results-strong, companies-could, market-could, says-good, 

earnings-strong, million-loss, price-could, think-good, chance-good, companies-good, case-could, said-

better, would-probably, said-arrest, nasdaq-gained, fell-declined, ground-lost, advice-counsel, would-

concerns, federal-court, team-success, much-could, executive-fraud, means-lawyers, basis-lawyers, 

earnings-gains, billion-nearly, advice-fraud, conduct-argue, hosts-suspects, business-could, said-

abolished, said-stronger, annually-illegal, actually-negative, started-assault, would-restructuring, another-

weaker, amazon-could, largest-assault, fallen-doubt, statement-confident, consumer-success 

Panel B: Important Features based on Fivegrams 

be-determine-difference-price-face, chief-executive-say-conference-call, figure-sale-million-firm-

distributor, cent-share-compare-net-loss, chairman-chief-executive-officer-say, boxoffice-figure-sale-

million-firm, continue-follow-fashion-lifestyle-coverage, chief-executive-say-company-be, executive-

vice-president-chief-financial, be-issue-advance-decline-unchanged, call-gain-volume-contract-compare, 

chief-executive-officer-say-company, excellent-very-good-good-satisfactory, change-discounter-million-

year-early, compare-net-loss-cent-share, foreign-noncompetitively-auction-price-rate, advance-issue-top-

decliner-board, apple-chief-executive-steve-job, executive-say-conference-call-analyst, comparable-sale-

store-change-change, possible-be-payable-earning-share, be-name-executive-vice-president, chief-

executive-chief-financial-officer, decline-issue-finish-well-ahead, have-be-appoint-nonexecutive-

director, agree-acquire-banking-concern-stock, be-name-president-chief-executive, compare-

outstanding-contract-gain-cent, earning-late-beat-wall-street, easily-top-wall-street-forecast, executive-

tell-analyst-conference-call, invite-question-computerbase-technology-tech, be-close-replace-samestore-

sale, be-develop-show-positive-result, be-measure-bad-performer-drop, be-much-strong-analyst-be, 

capital-gain-loss-dividend-theoretical, change-million-year-early-year, computer-lose-international-

business-machine, concern-report-fiscal-firstquarter-result, concern-report-fiscal-thirdquarter-result, 

executive-vice-president-sale-marketing, fund-troubled-asset-relief-program, government-trouble-asset-

relief-program, loss-cent-share-compare-profit 

     

  

 


