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Abstract

This paper investigates whether news articles on companies contain useful information about
future equity option returns. We apply machine-learning approaches to extract signals from text
data that can significantly predict delta-hedged option returns. Our results are robust after
controlling for known option return predictors. More than half of the important words are
sentiment-related. We find evidence that one channel underlying the explanatory power of the
textual predictors based on machine-learning approaches is their information content about
change in future volatility. Our work highlights the importance of analyzing unstructured data
like texts for pricing derivatives and provides new evidence for machine-learning approaches’
superiority in extracting information from unstructured data.
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1. Introduction

Unstructured data, such as texts, images, and videos, contain important information about firm
fundamentals and stock performances. For example, the seminal work of Tetlock (2007, 2010)
and Loughran and McDonald (2011) extract information from texts using dictionary-based
methods and find that linguistic media content can capture otherwise hard-to-quantify aspects

of firms’ fundamentals.! Some recent work starts exploring more advanced natural language

processing tools to extract information from unstructured data. For example, Frankel, Jennings,

and Lee (2022) document that machine-learning (ML) methods can produce more powerful

and reliable disclosure sentiment measures than dictionary-based methods.?

Despite the rich application of text data to study the equity market, little is known about
the applicability of textual analysis in the options market. In this paper, we fill the gap by
extracting novel information from news media via machine-learning approaches that can be
used to predict cross-sectional equity option returns. Such text-based option return
predictability is robust and generates sizeable option trading profits. Furthermore, we document
that machine-learning approaches capture information from various perspectives, such as
investor sentiment and future change in volatility. Our results showcase the usefulness of text

data and machine learning tools for a better understanding of the options market.

We start our investigation by training a support vector regression (SVR) model to learn
the relation between texts and future option returns using over five million news articles. SVR
is a supervised machine-learning algorithm that can effectively handle large dimensional
feature space and has been shown to work well in finance (Manela and Moreira 2017).3 Our
SVR predictor based on news media coverage of companies significantly predicts equity option
returns. When we sort options into quintile portfolios based the SVR predictor, the 5-minus-1
portfolio return spread is significantly positive averaging 1.48% (0.86%) per month for call

(put) options and survives realistic option transaction costs. Such predictability holds for

1 Tetlock (2007, 2010) and Tetlock, Saar-Tsechansky, and Macskassy (2008) show that linguistic media content
can capture otherwise hard-to-quantify aspects of firms’ fundamentals. Loughran and McDonald (2011) develop
a sentiment dictionary that can better reflect the tone of financial text from firms’ 10-Ks. Hassan, Hollander, van
Lent, and Tahoun (2019) and Engle, Giglio, Kelly, Lee, and Stroebel (2020) utilize textual analysis to measure
firm-level political and climate change risks, respectively.

2 From methodological perspectives, Ke, Kelly, and Xiu (2019) and Kelly, Manela, and Moreira (2021) improve
the ability of machine-learning approaches to extract information from text data.

3 Manela and Moreira (2017) construct a text-based measure of uncertainty using support vector regression and
apply the measure to predicting VIX.



different option moneyness or maturity. Our results are robust under alternative machine-
learning methods, including elastic net, random forest, and neural networks, and hold for
different word constructions (such as bigram, trigram, and fivegram). Furthermore, the SVR
predictor based on text data from newspaper is distinct from existing option return predictors
such as volatility deviation (Goyal and Saretto 2009), idiosyncratic volatility (Cao and Han
2013), stock return autocorrelation (Jeon, Kan, and Li 2019), and various underlying stock

characteristics (Zhan, Han, Cao, and Tong 2022).

We conduct further tests to understand the nature of SVR textual predictors for equity
option returns. We find that the majority of the important word features selected by SVR comes
from sentiment-related dictionaries. For example, more than half of the important words that
contribute to the textual predictors come from two sentiment dictionaries widely used in the
literature, namely the General Inquirer dictionary and the Loughran-McDonald dictionary. We
then construct two sentiment-related measures based on these two dictionaries using traditional
methods. One measure reflects the sentiment level, and the other reflects the sentiment
disagreement. SVR predictors are closely related to lexicon-based sentiment measures as well
as RavenPack sentiment measures. The predict power of SVR predictors for option returns is
more significant (both economically and statistically) than lexicon-based sentiment measures

and remains robust after controlling for the latter.

In addition to capturing sentiment-related information, we find that the SVR predictor
is significantly positively related to the implied volatility change over the next month. In
contrast, we do not find similar predictability for lexicon-based sentiment measures. We also

find that the SVR textual predictor is not related to future stock returns or earnings surprises.

Our paper contributes to the growing literature of option return predictability. Recent
studies have documented many predictors for equity option returns (see e.g., Zhan et al. (2022)).
To the best of our knowledge, we are the first to forecast equity option returns using
information from news media and machine learning approaches. We demonstrate that machine
learning techniques are powerful in extracting important information embedded in the news
media. Our paper is closely related to Bali, Beckmeyer, Moerke, and Weigert (2021), which
applies machine learning techniques in forecasting option returns. Their predictors, stock
characteristics and option-based characteristics, are distinct from the textual predictors we
extract from news media. Our paper complements their study by demonstrating the benefit of
machine learning techniques applied to alternative data that generate useful information for



predicting future option returns.

The remainder of the paper is organized as follows. Section 2 provides sample
descriptions and variable constructions. Section 3 provides empirical evidence and robustness
checks. Section 4 examines the different economic channels and potential explanations of the

equity option return predictability based on news media information. Section 5 concludes the

paper.

2. Data and Sample
2.1. Data and Sample Descriptions

The newspaper data is mainly collected from ProQuest and complemented with Factiva. From
February 1996 to December 2018, at the end of each day, we collect all news articles from the
most popular newspapers in the U.S., including Wall Street Journal, New York Times,
Washington Post, and Financial Times. Since most articles in ProQuest and Factiva do not have
firm-specific tags, we need to identify and match each article to the corresponding firms. We
first collect a list of all company names from the Center for Research in Security Prices (CRSP)
and conduct a textual fuzzy matching algorithm to search if any firms’ names appeared (at least
twice) in the article. A textual fuzzy match, such as Jaro-Winkler distance or Levenshtein
distance, is applied to define how similar a specific string is to the target string. We then assign
each article to its corresponding firms by the textual fuzzy matching algorithm. Note that an
article may be assigned to multiple firms since the content may cover multiple companies. To
avoid mismatches between news articles and company names, we exclude those firms that are
difficult to be identified by company names (e.g., including common words). Every month, we
remove the outliers (firms with more than 50 articles) to minimize matching errors. Further,
we manually go through a randomly selected subsample with all available company names
from our matched article database to ensure each article is correctly assigned to affiliated
companies by the fuzzy matching algorithm. Since we are interested in equity option returns,
we only select firms that have both newspaper coverages and equity options traded. After all
the filtering, we have 5,928,866 article-month observations in total. Compared with other
studies, our dataset covers a broader scope of news media information for firms traded in the

U.S. market.

For option return sample, we collect equity option data, including best bid, best offer,



expiration date, and strike price from the OptionMetrics database. The underlying stock
variables, such as stock return, stock price, trading volume, and shares outstanding, are
collected from the CRSP database. Analyst forecast dispersion data is obtained from IBES. The
sample period is from February 1996 to December 2018. For each month, we choose individual
equity options that are closest to being at-the-money and have the shortest maturity among
those with more than one month to expiration. Following the existing literature, we exclude
observations that violate no-arbitrage conditions, have no trading volumes or open interests,
have a quoted mid-price less than $0.125, and have paid cash dividends during the holding
period. The holding period is from the beginning to the end of each month. We only retain
stocks with both call and put options available after filtering.

Our final sample contains 50,888 option-month observations for both call and put
options on individual stocks over the 275-month sample period. On average, we have 185
option observations for each month. Panel A and B of Table 1 show the summary statistics for

our option return sample.

[Insert Table 1]

2.2. Variable Constructions

Our main independent variables are the machine-learning (ML) textual predictors since
machine-learning approaches are well suited to deal with text data. First, we follow Manela
and Moreira (2017) to construct a large set of potential information unigrams (with bigram
noun phrases identified by the NLTK Python package) and select useful words among all text
features. Different from the lexicon-based approach and Manela and Moreira (2017), the
contents of our machine learning dictionary are time-varying, as news media typically changes
attention and coverage over time. For example, from 2016 to 2020, “Donald Trump” may
significantly impact the financial markets and receive more attention from the public, although
things will be largely different before 2016 and after 2020 when the political news had less
attention on “Donald Trump.” Therefore, complementing the dictionaries of Tetlock (2007) and
Loughran and McDonald (2011), we apply machine learning techniques to better capture the

shift in the media focus by allowing words to be in and out of the important list over time.

Instead of transferring word counts to a counting matrix that assigns equal weights to

all words, we adjust the count numbers by the process of #~idf (term frequency-inverse



document frequency) commonly used in natural language processing. For each word j in the

word list, the #/~idf weighted value for article h about firm i at time t is defined as:
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where t flizj is the frequency of occurrence of the word j in the article, wtj wdr — log% with
t

H, = Zf’;l H;, defined as the total number of news articles in the sample at time ¢, and d ftj
is the number of documents in which the word j appears in the sample. The adjusted weight
for each feature in the word list is used as input to fit the support vector regression with our
target variable, delta-hedged call/put option returns. For each firm i, the word feature j for
firm i is given by taking the average among all articles covering firm i (H;,) at time t:
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Second, after obtaining the word features, we apply machine-learning techniques to the
text data. In our study, the traditional statistical methods do not work well since the independent
variables involve high-dimension data (e.g., more than 10,000 single words and dual-word
combinations). In a seminal paper, Manela and Moreira (2017) apply the support vector
regression to construct a news-based VIX through high-dimension textual information.
Following the technique proposed by Manela and Moreira (2017), we consider the following

linear regression problem in cross-section at the end of each month:
ri,t = + ﬁ;xi,t—l + Ei,t! [ = 1: 2! "-;Nt; (3)

where 7;, is the variable of interest, which is either call or put delta-hedged equity option
returns, for firm i at time t. x;,_q = [xil,t_l, ...,xi’,{t_l]' is a K X1 vector of (all the) K
word features from the newspaper articles related to firm i at time t — 1. We omit those
words that appear less than three times in the entire sample. Since the linear regression above
is with high dimensions (more than 10,000 words every month), the traditional OLS cannot be
used to estimate f3;. To solve the problem above, we apply the support vector regression (SVR)

approach, which can be formulated as:

* . 1 Nt *
Bi = argrg;nillﬁtllz +C E (fi,t + fi,t);
i=1
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The intuition is that such a linear function between 7;, and fB{x;,_, exists and
approximates all pairs (x;._4,7;;) with & precision. However, optimization is not always
feasible because some points fall outside the & margin. As such, we need to account for the
possibility of errors that are larger than €. Following Cortes and Vapnik (1995), we introduce
slack variables ¢&;., &/, to cope with otherwise infeasible constraints of the optimization
problem (i.e., soft margin). The soft margin gives flexibility to define how much error is
acceptable to fall outside of ¢. The constant C > 0 determines the trade-off between the
flatness of linear function and the amount up to which deviations larger than ¢ are tolerated.

This corresponds to dealing with the so-called &- insensitive loss function ||, described by:

=0, ot ©)
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The problem above can be solved in its dual formulation (see Scholkopf and Smola

2002). To construct a pure out-of-sample signal, at each point of time ¢, we use all available
word features extracted from the newspaper and equity option returns in the past three months
to train the model. The textual information proxy (i.e., textual predictor) for future equity option

returns at time t + 1 based on available news media at time t is then given by:
TPi,t = fi,t+1 = &t + ﬁt,xi't, l = 1, 2, ""Nt' (6)

This fitted value is used as the time t textual signal for the next period’s equity option
returns. We conduct various tests to evaluate the predictive performance of textual predictors
for equity option returns. Using the rolling window to train the model, we also allow the
dictionary (i.e., word features) to change over time. Our methodology can capture time
variation in news media coverage and adapt to new textual information. When constructing
textual predictors, we treat delta-hedged call and put option returns separately to train different
models, although delta-hedged call and put option returns are highly correlated due to the put-

call parity relationship.

Panel D of Table 1 reports the time-series average of the cross-sectional correlations
between ML textual predictors and option or equity characteristics. Although ML textual

predictors have relatively high correlations with each other, their correlations with option or



equity characteristics are generally low.

In addition to the support vector regression, we also consider other machine learning
methods, such as elastic net, random forest, and neural networks, to deal with the high-
dimensional data of news media and capture potential nonlinearity and interactions among
independent variables. We use SVR for our main empirical results because it is more
interpretable and stable with fewer hyper-parameters to adjust, therefore less subjected to data
snooping issues. We apply alternative machine learning approaches as robustness checks on

our empirical results (see detailed model specifications and their performances in Section 3.2).

Our main dependent variable is the delta-hedged option returns. To eliminate the
exposure to the underlying stock, we examine delta-hedged option returns.* Our buy-and-hold
delta-hedged option return (HRP) equals the total dollar gain at the end of the holding period
scaled by the absolute value of the total cost of constructing the portfolio at the formation date.

Specifically, the delta-hedged call option return over [t,t + 1] is given by:

Hic,t+1 _ (Ci,t+1 - Ci,t) - Azc,t(si,tﬂ - Si,t)

HRPiCt+1 = -
, C C
Hi, |Ci,t — A7 X Si,tl

: (7)

where the initial investment cost is Hft = |Ci,t — Agt X Si_t|, with C and S denoting the call
option price and the underlying stock price. Aic,t is the Black-Scholes call option delta for firm
i at time t. The total dollar gain at the end of the holding period is Hft_,_l =
(City1 — Cip) — Agt(Sl-'Hl — S;¢). Similarly, delta-hedged put option return for firm i is
given by:

HRPP. = Hier  (Pierr = Pie) = A (Siter — Sie)
L+l = TP T 5 , (8)
it |Pic — AF X Sy

note that put option’s delta, Alzt, is negative. Panel A (B) of Table 1 presents the summary

statistics for delta-hedged call (put) option returns and call (put) option characteristics.

4 Tian and Wu (2021) show that the monthly rebalanced delta-hedging strategy can remove about 70% of the
return variation of naked option portfolios. Several previous papers study the delta-hedged option returns, such as
Cao and Han (2013), Ramachandran and Tayal (2021), Zhan et al. (2022), and Bali et al. (2021).

8



3. Empirical Results
3.1. Baseline Results

3.1.1. Single Portfolio Sorts

To apply machine learning approaches to forecast equity option returns, we first use the support
vector regression to fit the option returns with the textual information from the newspaper
articles over the previous three months. Next, we refer to the predicted delta-hedged call or
option returns over the next month by SVR based on the textual information over the previous
three months as the textual predictors, denoted by Call SVR and Put SVR. We then sort firms
based on textual predictors into quintiles and compare the next-month realized returns of the

sorted portfolios.

Each month, we track what words have the most important contributions to explaining
the target variables across firms in the training sample. The feature importance of a given word
is defined as the absolute value of the corresponding coefficient from the support vector
regression. We will list those words in the newspapers with the largest magnitude of the
coefficients averaged over time. In Section 4, we will classify these important words into
different groups/topics such as sentiment, politics, macroeconomics, and firm-specific. This
exercise provides useful insights into the underlying mechanism of the option return

predictability by the textual information extracted through support vector regression.

Table 2 shows that textual information provides significant and robust predictive power
of delta-hedged equity option returns using various portfolio weighting schemes. The
magnitude of the monthly long-short option strategy is economically significant and
comparable to other option return predictors in the literature. For example, the option portfolio
return spread between the bottom and the top sorted by the textual predictors using SVR can
be as large as 1.48% (0.86%) on average per month for call (put) options. Following Eisdorfer,
Goyal, Zhdanov, and Boulatov (2022), we also report the alphas after adjusting the delta-
hedged option returns using a 7-factor model, and our results are robust to the risk adjustment.
The seven-factor model includes five stock factors in Fama and French (2015), the momentum
factor, and the option factor in Coval and Shumway (2001). Although the absolute value of
option return shrinks for each portfolio, the 7-factor alpha of the spread portfolio is barely

different from the average raw return, indicating our results are robust to risk adjustments.

[Insert Table 2]



In addition to conducting analysis assuming that options can be traded at their mid-
price, we also consider profits after various amount of transaction costs. Compared with the
stock market, the equity option market has significantly higher transaction costs. In our sample,
stocks are typically large and liquid, with a relatively low bid-ask spread of 0.39% on average.
However, as shown in Table 1, call (put) options written on them have a 9.93% (10.38%) quoted
bid-ask spread on average. As a result, it is essential that investors take transaction costs into

account when they implement option trading signals.

In practice, option investors do not need to pay the full quoted spread to the market
makers but the effective spread (ESPR), which is much lower than the quoted spread (QSPR).
Zhan et al. (2022) and Muravyev, Pearson, and Van Nieuwerburgh (2020) provide evidence
that the actual effective spread is, on average, 55% of the quoted spread, and investors typically
pay less than 40% of the conventional effective spread if they can employ execution timing. In
this section, we recompute the buy-and-hold delta-hedged option returns corresponding to an
assumed effective spread of 25%, 50%, 75%, and 100%. The “No Cost” column in Panel B of

Table 2 refers to our main results in Panel A.

Panel B of Table 2 shows that option portfolio strategy based on our ML textual
predictor is still profitable for investors even when we assume they need to pay the 100%
quoted option spread. Although the (5-1) return spread decreases monotonically with the
effective spread, it remains statistically and economically significant for all effective spread
values. For example, the return spread is 1.47% (0.87%) per month for call (put) options if we
do not consider any transaction cost. When the effective spread increases to 25% of the quoted
spread, the return spread decreases to 1.41% (0.80%) for call (put) options. With an effective
spread that is 50% (75%) of quoted spread, the return spread further decreases to 1.34% (1.28%)
for call options and 0.73% (0.65%) for put options. When we assume that investors must pay
the full quoted spread, the return spread remains substantial, with 1.21% (0.58%) for call (put)

options.
3.1.2. Double Portfolio Sorts

In this section, we individually control various option or equity characteristics using the
double portfolio sorting strategy. We consider 14 control variables, including (1)
idiosyncratic volatility (IVOL) estimated from the Fama-French 3-factor model as in Ang,
Hodrick, Xing, and Zhang (2006); (2) volatility deviation (HV-IV), computed as the difference

between realized volatility and implied volatility of the at-the-money (ATM) options as in

10



Goyal and Saretto (2009); (3) stock illiquidity (LOG_AMIHUD), which is the natural
logarithm of the monthly average of daily absolute returns divided by daily dollar trading
volume following Amihud (2002); (4) option liquidity (OSPREAD) which is the bid-ask option
quoted spread scaled by the option mid-price; (5) stock return autocorrelation, calculated as the
first-order autocorrelation of underlying stock’s return using daily return observations over a
past six-month rolling window as in Jeon et al. (2019); (6) Gamma (Gamma) is the sensitivity
of an option’s delta to the change in the underlying stock price; and (7) Vega (Vega) is the

sensitivity of an option’s price to its implied volatility.

5 stock

Following Zhan et al. (2022), we further include the following seven
characteristics as control variables: (1) the cash-to-assets ratio (CH) proposed by Palazzo
(2012), defined as the value of corporate cash holdings over the value of the firm’s total assets;
(2) analyst earnings forecast dispersion (DISP) proposed by Diether, Malloy, and Scherbina
(2002), computed as the standard deviation of annual earnings-per-share forecasts scaled by
the absolute value of the average outstanding forecasts; (3) one-year new issues (ISSUE 1Y)
proposed by Pontiff and Woodgate (2008), measured as the change in shares outstanding from
eleven months ago; (4) the log of the stock price at the end of the current month (LNPRICE)
proposed by Blume and Husic (1973); (5) profitability (PROFIT) proposed by Fama and
French (2006), calculated as earnings divided by book equity, in which earnings is defined as
income before extraordinary items; (6) total external financing (TEF), proposed by Bradshaw,
Richardson, and Sloan (2006), is calculated as net share issuance plus net debt issuance minus
cash dividends, scaled by total assets; (7) cash flow variance (CFV), as in Haugen and Baker
(1996), is computed as the variance of the monthly ratio of cash flow to the market value of
equity over the last 60 months. Cash flow is net income plus depreciation and amortization.

Panel C of Table 1 reports the summary statistics of the control variables we include here.

Each month, we first sort all options into quintiles based on one of the control variables.
Then, we further sort the option sample into quintiles based on the ML textual predictors.
Finally, we average returns for each textual predictor quintile across the groups of control
variables, yielding five control-variable adjusted quintile returns. Panel A of Table 3 shows that
none of the above control variables can subsume the effects of our ML textual predictors. After

individually controlling these variables, the return spreads of call options vary from 1.13% to

> For sample coverage consideration, we only include seven out of the ten stock characteristics that have
predictive power for delta-hedged option returns documented by Zhan et al. (2022). Our main results remain
robust when we include all ten stock characteristics.

11



1.48% per month, and those of put options vary from 0.58% to 0.84% per month. After
performing the double portfolio sorting tests, our results remain significant both statistically

and economically.
[Insert Table 3]
3.1.3. Fama-Macbeth Regressions

To further affirm the ability of ML predictors based on news media to forecast the cross-section
of option returns, we conduct the Fama and MacBeth (1973) regression to test whether the
predictive power of textual predictors for delta-hedged option return is statistically significant,
especially after simultaneously controlling for existing option return predictors. For each
dependent variable (delta-hedged call or put option returns), we run the following cross-
sectional regressions where the key independent variable of interest is the SVR textual

predicator:

M
HPR;; = az + B TPy + Z)’tjxi],t_l +e 1=1,.,N, )
=1

where HPR; . is either delta-hedged call or put option returns for firm i at time ¢. TP;;_4

is the textual predictor (i.e., #;;) for firm i attime ¢ —1,and X l] ¢+, are control variables

that we use to perform double portfolio sorts in Section 3.1.2. All independent variables are

winsorized at the 0.5" and 99.5" percentiles and standardized cross-sectionally.

We run the cross-sectional regression of Equation (9) each month. After obtaining the
time series of the coefficients (e.g., [;) for the independent variables, we conduct the #-test for
each coefficient using Newey and West (1987) standard errors with four-lag correction. The
hypothesis of the t-test is: Hy:ff = 0vs. Hy: f # 0. The average of the time-series

coefficients and the corresponding ¢-statistics are reported in Panel B of Table 3.

The results of Panel B of Table 3 support our claim that ML textual predictors contain
useful information about future equity option returns, and their predictability for delta-hedged
option returns is robust to various controls. After controlling existing option return predictors,
coefficients on ML textual predictors remain both economically and statistically significant. As
for the economic magnitude, delta-hedged call (put) option returns increase by 0.259%
(0.118%) when the ML textual predictor for call (put) options moves by one standard deviation

after controlling existing option predictors. The regression results in Panel B of Table 3 are also

12



consistent with the previous findings of option return predictability in the literature. For
example, idiosyncratic volatility is negatively related to delta-hedged option returns, while
stock volatility deviation is also a strong predictor to forecast the cross-section of equity option

returns.

3.2. Robustness Checks
3.2.1. Alternative Machine Learning Approaches

So far, we have demonstrated the usefulness of using news media to forecast equity option
returns and the benefit of applying the machine learning approach compared to the lexicon-
based approach to extract textual information from news media. However, there are potential
concerns with the machine learning approach, such as model instability and data mining issues,
as multiple hyper-parameters in machine learning approaches can lead to overfitting. To
reconcile those concerns, we examine how robust our empirical results are to those hyper-
parameters. For our main results based on SVR, there are two primary tuning hyper-parameters:
regularization parameter (C) and epsilon (¢). C parameter adds a penalty for each misclassified
data point. If C is small, the penalty for misclassified points is low, so a decision boundary with
a large margin is chosen at the expense of a greater number of misclassifications. C reflects the
strength of the regularization, which can be specified as L, penalty. The parameter ¢
specifies the epsilon-tube within which no penalty is associated in the training loss function for
points predicted within a distance ¢ from the actual value. In our main empirical results, all
the hyperparameters are determined through a five-fold cross-validation procedure. We
conduct robustness checks by using different parameters of C and ¢ to train the SVR model.
In an untabulated table, we show that the predictive power is robust and significant to different

hyperparameters in SVR.

Besides the model parameters, there are also different choices for the input variables.
For example, when constructing the word frequency matrix, we need to decide the maximum
number of features to input, such as 10,000, 8,000, or 6,000. Also, we can input both unigrams
and bigrams into the algorithm. Another input choice is the set of words to be included. While
we use all available words in the article in our empirical results, it is interesting to examine
which types of words are more important and informative for our target variables. For example,

we separate features into different groups based on their part of speech, including nouns,

13



adjectives, adverbs, and verbs. We then run the SVR of delta-hedged option returns on each of
those groups and examine which groups are the main drivers of the predictive power of our
textual predictors. In the unreported table (available upon request), we find that all types of
words are important and necessary to generate significant option return predictability out of
the sample. Another choice is the model training period. To investigate whether our results are
sensitive to the length of the rolling window to train the model, we change our rolling window
from three months to six months, nine months, or twelve months and re-run the SVR. The

empirical results are significant and consistent in all cases.

Our main results are based on the support vector regression approach. To verify that our
results are not driven by the specific choice of the machine learning approach, we also apply
alternative machine learning methods such as elastic net, random forest, and neural networks

to extract useful information for news media for predicting option returns.

A model choice close to SVR is elastic net, which has been successfully applied to solve

various topics in asset pricing (see, e.g., Chinco, Clark-Joseph, and Ye 2019) and Dong, Li,

Rapach, and Zhou 2021)). The model can be expressed in the following way:

1 N¢ K 2 K K

. 2

@ e = argmin 4= (ri,t —a- ) ﬁé‘x!ft_1> +2 ) |sE+ -2 (80 a0
k=1 k=1

at€R,BERK ti= =
where 17, 1s the target variable (delta-hedged equity option returns), N, is the number of
firms i in month 7, K is the number of word features x;,_, in the news articles, and A is a
hyper-parameter that specifies the weights between L; norm and L, norm in the loss
function. The main difference between SVR and the elastic net is that while the loss function
of the elastic net considers residuals for all data observations, the loss function of SVR only
takes into account a subset of data observations within and on its support vectors. Statistically,
LASSO and ridge regression are special cases of the elastic net when 4 = 1and A = 0. To
construct a pure out-of-sample signal, at each point of time ¢, we use a rolling window of most
recent three months text data to fit the model above to obtain the coefficients of a, and B¥.
Similar to SVR, we first fit the text data using the elastic net method to obtain estimates of «;
and BF. We then use the fitted values from the model to construct the predicted delta-hedged

option returns based on textual predictors:

K
f'i,t-l'l = &t +Zﬁ,\z(xllft' i = 1""'Nt' (11)



Another difference between elastic net and SVR is that elastic net can shrink some
coefficients to zero (i.e., B¥ = 0), thus the model may have a sparse structure compared to
SVR. Therefore, it is easier to determine the feature importance under the elastic net. While
elastic net and SVR can select the most relevant textual information from news media, they do
not allow nonlinearity and interactions among predictors which are likely important for
predicting option returns using textual information because words are heavily dependent on
each other. Different orders of words can indicate totally different meanings in linguistics. To
incorporate nonlinearity and interactions among words, we consider more advanced machine
learning approaches such as random forest and neural networks. Recent studies Gu, Kelly, and

Xiu 2020 show that these methods are helpful in forecasting stock returns.

The random forest regression is conducted in three steps: from the full sample data S,
we first draw a subsample with replacement {S?}5_, that has n observations and m
randomly sub-selected features. Second, we can train a decision tree and obtain a predictor #?

on each S?. Finally, we take the average among all subsamples with sub-selected features:

PG = BT Y A (T;00), (12)
b=1

where Ty (x) denotes a random-forest tree with bootstrapped data and sub-selected features,

and x is a certain predictor.

For the neural networks, we use the simplest kind of feed-forward network, namely
multilayer perceptron (MLP) regression. The units in the MLP regression are arranged into a
set of layers, and each layer contains some number of identical units with a pre-specified
activation function such as the rectified linear activation (ReLU), the logistic activation
(Sigmoid), and the hyperbolic tangent activation (Tanh). Every unit in each layer is connected
to every unit in the next layer. The first layer is the input layer, while the last one is the output
layer, which is a single unit in our case. All the layers in between these are defined as hidden
layers. To fix the idea, consider a simple case with two consecutive layers. The network’s

computations can be written as:

h® = p™ Z wlx + b |, (13)
7
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B = @ > wPn® + 5 |, (14)
j

r=¢® Z wr® + 5@ |. (15)
J

The nonlinearity and interaction among words can be captured by the nonlinear
activation functions and full connections among the hidden layers. Under the Universal
Approximation Theorem (Cybenko 1989, Hornik, Stinchcombe, and White 1989), a neural
network with one hidden layer can approximate any continuous function for inputs within a
specific range. For robustness concerns, we consider different numbers of hidden units and
neuron sizes. To save space, Panel A of Table 4 presents the single portfolio sorting of each
textual predictor trained by alternative machine learning approaches. The results of regressions

are similar and available upon request.
[Insert Table 4]

Panel A of Table 4 provides consistent evidence that the textual information from news
media obtained via alternative machine learning approaches has significant and robust
predictive power for delta-hedged equity option returns. Moreover, the trading strategy based
on the textual indicators under SVR generates the largest profits among the ML approaches we
have implemented. Two things are worth mentioning here: first, the correlations between the
alternative ML textual predictors and those from SVR are high, implying that different ML
approaches extract similar useful information from news media. For example, textual
predictors extracted using neural networks have an average correlation of 0.49 with those from
SVR, while predictors extracted from the elastic net and the random forest have correlations of
0.38 and 0.39 with SVR, respectively. Second, the results under elastic net are less robust than
those under SVR, random forest, and neural networks. Since the independent variables of word
frequencies are very sparse, there are cases when the elastic net could not find a set of non-zero

features.
3.2.2. Alternative Constructions of Word Features

In our previous analyses, we use unigram word counts (adjusted by document frequency) to
train the machine learning model. The unigram feature is easy to construct with fewer noises,

especially in the lexicon-based approach, but also has some limitations. First, the unigram
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feature does not consider word dependency in different scenarios. A different word adjacent to
a certain unigram feature may change its semantic meaning. Second, a model with unigram
features lacks interpretability. Many unigram features have meaningful semantics only when
they are combined with other words, such as fixed collocations and noun phrases. A possible
fix is to extend consecutive words in each feature, such as bigram, trigram, or n-gram. For
example, a bigram feature is constructed by including a sequence of two adjacent words within

a sentence.

By constructing features in n-grams, we can largely resolve the semantic differences
caused by word dependency and model interpretability in the case of unigram features. To
check whether our empirical findings are special to the choice of unigram feature, we re-train
our SVR model to forecast equity option returns using various n-gram features described above.
We consider three types of n-grams (bigram, trigram, and fivegram) and train our model. When
processing the text data into n-gram features, we first divide each newspaper article to the
sentence level and make necessary adjustments, such as excluding stop words, reducing a word
to its word stem, and switching a word to its base root mode (i.e., lemmatization). We then treat
each n-gram as a new feature and count its feature frequency within the whole article.
Following our steps in Section 2, we adjust the count numbers by the process of #~idf (term
frequency-inverse document frequency). The n-gram features are then used to train the SVR
model specified in Equation (3) and construct the corresponding textual predictor based on
Equation (6). The empirical results are provided in Panel B of Table 4. To save space, Panel B
of Table 4 presents the single portfolio sorting test of each textual predictor trained by

alternative machine learning approaches.

Panel B of Table 4 provides consistent evidence that textual predictors extracted from
news media using different n-gram features are still significant predictors for delta-hedged
equity option returns. It is worth noting that although a larger » for the n-gram feature (e.g.,
fivegram) can provide a more interpretable model, the feature might become noisy and less
combinable. More specifically, in our case of fivegram, there will be fewer identical features
that will have the same five words in the same order. Consequently, the algorithm may classify
two semantic fivegram features as different, even if they differ by only one word. To solve this
issue, we apply some recently developed word embedding algorithms to measure the similarity
between two different fivegram features and classify similar fivegrams as the same feature.
Word embedding algorithms have been demonstrated to help identify semantic meanings in

finance (see, e.g., Jha, Liu, and Manela 2020).
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To combine similar features together for our case of fivegram, we first use some well-
trained word embedding models, such as Word2Vec, GloVe, and Bidirectional Encoder
Representations from Transformers (BERT), to transfer each word to a vector with a fixed
dimension (e.g., 100, 300, 1000, etc.). Most of the word embedding models are pre-trained
neural network models that project words to a high-dimensional vector space so that words
with relevant semantic meanings can be closer to each other in the vector space. Word
embedding also allows us to construct a vector representation for a certain n-gram feature and

measure its semantic similarity with other n-gram features in the projected vector space. More

specifically, we transfer each word j to a 300 X 1 vector Wtj using Word2Vec. For each

fivegram feature g, its word embedding Sf can be proxied by the average of the word

embedding vectors for the words belonging to the fivegram:

1 .
s¢ =[50 s =5 ) wl. (16)

The technique is well-known as the continuous bag of words (CBOW) approach.
Although CBOW ignores word orders within the fivegram, the method is demonstrated to be
an effective embedding model in practice. After obtaining the average word embedding vector
for each fivegram, we compute the cosine similarity between s and the word embedding

vector of any other fivegrams in the training dataset at time ¢:

gh _ 529'5? _ stfqugld
t T 19|k T ’
|St ”St | \/Zd(sfd)z \/Zd(sfd)z

where d =1,...,300 stands for the elements in the vector of sf and sf. The cosine

(17)

similarity helps us find correlated fivegram features (in the sense of semantics) and combine
them into one feature, thus reducing estimation noises for large n-gram features. In our case,
we combine two fivegrams into one feature if the cosine similarity of their word embedding
vectors is greater than 0.9. The rest of the empirical work proceeds in the same way as in the

case of the unigram feature previously.
3.2.3. Alternative Option Samples and Return Construction

In this section, we investigate the robustness of our ML textual predictors in different option

samples and the alternative construction of option returns. In our main analysis, we consider
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options whose moneyness is closest to 1 within the range from 0.8 to 1.2. Here, we define in-
the-money (ITM) call options as options whose moneyness is closest to 0.9 within the range
from 0.8 to 1.0, and out-of-money (OTM) call options as options whose moneyness is closest
to 1.1 within the range from 1.0 to 1.2. ITM puts and OTM puts are defined correspondingly,
i.e., ITM puts have moneyness closest to 1.1 within the range from 1.0 to 1.2 while OTM puts

have moneyness closest to 0.9 within the range from 0.8 to 1.2.

Apart from different moneyness, we also consider different maturities. In our baseline
results, at the end of month #, our sample includes options expiring in month #+2, meaning they
have 1.5 months to expire. Here we include at-the-money (ATM) options expiring in #+3 and
t+4, respectively. This sample is equivalent to a sample that includes options with 2.5 months

and 3.5 months to expire, respectively.

Our ML textual predictors are trained by inputting buy-and-hold delta-hedged option
returns. We investigate whether they still have predictive power on daily-rebalanced delta-
hedged option returns. The daily-rebalanced delta-hedged option returns are defined as the total
dollar gains of daily-rebalanced option positions scaled by the absolute values of the initial

costs. For example, the dollar gain of a daily-rebalanced call option position is defined as:

N-1 N-1 AnTt
Miprr = Coar=Com ) Doty (Stnes =S0) = ), e (G, =BeS) (18)
n= n=

where A, is the call delta of the call option on the date t,, 7y, is the annualized risk-free
rate on the date t,, and a, is the number of calendar days between t,, and ¢,,,. The daily
rebalanced delta-hedged put option gain is defined similarly. With a zero-net investment initial
position, the delta-hedged option gain I, .., is the excess dollar return of the delta-hedged
option. To make option returns comparable across stocks, we scale the dollar return by the

initial costs of the portfolio, i.e., A, Sy — C; for call options and P, — A, S, for puts.
[Insert Table 5]

The predictability of our ML textual predictors remains significant in alternative option
samples with different moneyness and maturity. As shown in Table 5, the (5-1) return spreads
are statistically and economically significant, ranging from 0.74% to 1.78% for call options
and 0.35% to 1.05% for put options. Our ML textual predictors can also predict daily
rebalanced delta-hedged option returns with a return spread of 0.69% (0.39%) for call (put)

options, suggesting that our results are not driven by the underlying stocks.
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4. Interpretations of Textual Predictors and Economic Mechanisms

4.1. Nature of the Textual Information
4.1.1. Important Words in Constructing Textual Predictors

We have provided comprehensive evidence that qualitative information from news media is
useful for predicting delta-hedged option returns. Yet, the nature of such information extracted
using machine learning approaches is ex-ante unclear. In this section, we aim to shed some
lights on the interpretation of the SVR textual predictors. Following Manela and Moreira
(2017), we measure the importance of each word feature by the magnitude of its coefficient in
SVR. We select the top 1,000 words with the largest magnitude of the coefficients as the
important information set. Unlike a pre-specified dictionary used to quantify sentiment or
political risk in the literature, this dictionary of important words under SVR is time varying.
We define the overall feature importance for each word as the fraction of time (percentage of

months) in which the word appears in the top 1,000 most important words.

We classify each word into various topics using pre-specified dictionaries, such as the
LM dictionary, the GI dictionary, the political dictionary, and the macroeconomic dictionary.
The politic and macroeconomics news are the main topics in addition to firm-specific news in
newspaper articles about companies. The sentiment dictionary is the combination of the GI
dictionary and the LM dictionary, the political dictionary is from Hassan et al. (2019) and
constructed by us, and the macroeconomic dictionary is based on Bloom (2014) and Bybee,
Kelly, Manela, and Xiu (2020). For the remaining words selected by SVR as important features,
we refer to them as firm-idiosyncratic words reflecting firm-specific news media information.
For example, some words are only related to certain industries, product markets, or certain
companies. Table Al provides a sample list of words belonging to each topic. For concision

and simplicity, we list the top 20 words for each important feature set.

We also examine the feature importance for the elastic net, random forest, and neural
networks. The definition of feature importance for the elastic net is the same as that for SVR,
while the feature importance for the random forest is obtained by computing the proportion of
each word selected among all the random decision trees generated by the model. For the feature
importance for neural networks, because of hidden layers and activation functions, we cannot

use coefficients directly as the measure of its feature importance. Instead, we apply an
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algorithm to approximate the feature importance, namely feature permutation importance.
Feature permutation importance is a model-agnostic global explanation method that provides
insights into a machine learning model’s behavior. It estimates and ranks feature importance
based on each feature’s impact on the trained machine learning model’s predictions. The
algorithm can be applied to any black-box estimator by evaluating how the prediction error
increases when a feature is unavailable. In practice, instead of removing features and retraining
the estimator for each feature, the algorithm randomly shuffles the feature values, effectively
adding noise to the feature. Then the prediction error of the new dataset is compared with the
prediction error of the original dataset. If the model heavily relies on those features being
shuffled to better forecast the target variable, those features are identified as important inputs.

Otherwise, the features are not important.

Table 6 shows the average feature importance of each topic. To count the proportion of
important words from each topic, we first select the top 1,000 words with the largest coefficient
magnitudes from the SVR model in each month. Then we count the percentage of words in the
feature important sets that belong to each topic and average it over time. The results are

provided in Table 6.
[Insert Table 6]

As can be seen from Table 6, the proportion of words for each topic shows that most of
the textual information extracted from news media is about sentiment words from the GI
dictionary and the LM dictionary, which accounts for more than 60% of the selected important
features. The rest of the important contribution is from firm-idiosyncratic words accounting for
around 20%. On the contrary, macroeconomic information, such as economic policies and
politics accounts for a small proportion of the information sets that explain the cross-sectional
variations of delta-hedged equity option returns. The results for n-gram features are similar to
those reported in Table 6 for unigram features: in terms of the relative explanatory power of
the n-gram features, most of the important contributions come from sentiment words and firm-

specific words rather than macroeconomic information.

While sentiment words account for a large proportion of feature importance, firm-
idiosyncratic words also play an essential role. In Panel A of Table A2, we further show that
most of those firm-idiosyncratic words are accompanied by words from the GI and the LM
dictionaries. Specifically, around 75% of the selected firm-idiosyncratic words appear in a

sentence that includes a word from either the GI or the LM dictionary.
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To obtain the results reported in Panel A of Table A2, we construct a synthetic bigram
using both the firm-idiosyncratic words and the sentiment words selected from SVR to
visualize the semantic interpretation of our model. The bigram is combined at the sentence
level if and only if it contains both a firm-idiosyncratic word and a sentiment word. To combine
the two words, we keep the firm-idiosyncratic word always as the first, followed by the
sentiment word, so that the bigram is more interpretable. For example, in the sentence, “We are
confident our accounting treatment was correct.”, treatment and confident are selected from the
groups of firm-idiosyncratic words and sentiment words respectively. The combination is
recorded as treatment-confident. In Panel A of Table A2, we list those top bigrams extracted by
SVR that consist of both firm-idiosyncratic words and sentiment words. Most bigrams are
related to either positive or negative firm-specific information or disagreement/uncertainty
about firms’ future performance. For example, among these selected combinations, many
bigrams involve modal verbs, such as would, could, may, or might, indicating some

uncertainties or disagreements.

As another attempt to interpret our textual predictors, we train the SVR model using
fivegram features (which are more interpretable than unigram features) described in Section
3.2.2. We list in Panel B of Table A2 those top fivegrams ranked by the feature importance rule
for SVR. Consistent with the observation in Panel A of Table A2, most of the fivegrams include
words in the GI dictionary and LM sentiment dictionary. Moreover, many fivegrams involve

firm-specific words, such as chief executive officer, earnings, and analyst.

In an untabulated table, we find that although the delta-hedged call and put options are
highly correlated, the textual predictors extracted based on call and put options are quite
different. For example, among the top 1,000 words of feature importance, only around 20% of
words overlap between call and put option textual predictors. Low overlap between call and
put option dictionaries could indicate that the textual information we extracted from news
media to forecast call and put option returns are different. However, sentiment-related and firm-
idiosyncratic words account for the largest portion of all important word features for both call

and put options.
4.1.2. Relationships between SVR Predictors and Sentiment Measures

As previously documented, most of the words that importantly contribute to the ML textual
predictors are sentiment related, which motivates us to examine whether those ML textual

predictors are related to investor sentiment measures. We apply the lexicon-based approach to
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construct investor sentiment measures using some pre-specified dictionary, such as Gl
dictionary in Tetlock (2007) and Loughran-McDonald (LM) finance-specific dictionary in
Loughran and McDonald (2011). Based on the Harvard-1V-4 psychosocial dictionary and the
Lasswell value dictionary, the GI dictionary reflects Charles Osgood’s semantic differential
findings regarding basic language universals. Recent studies show that the Gl dictionary and
the LM dictionary are both good approximations of sentiment measures for finance Shapiro,
Sudhof, and Wilson 2022 but the LM dictionary is more effective in computing sentiment
information of finance-related documents such as SEC EDGAR files and IPO prospectuses
Jegadeesh and Wu 2013. We combine the Gl dictionary and the LM dictionary since the news
media we analyze covers broader topics than finance. Nevertheless, our results are robust if we

use only one of the GI and the LM dictionaries.

We construct two sentiment-related measures: sentiment level and sentiment
disagreement. First, following previous studies, we compute the sentiment score that reflects
the tone of each news article using the difference between the number of positive and negative
words, scaled by the total number of sentiment words in each article. Then, during each time
period t (e.g., a given month) and for each firm i, the media sentiment on the firm is

measured as the average sentiment score of all articles on firm i within this time period:

Hit
1 #(Positive);, — #(Negative);
cim}, = Ly HPosttive)y — BNegative)yn - _ (19)
* Hpy &~ #(Positive); , + #(Negative);

where #(Positive) or #(Negative) denotes the number of positive or negative words
detected based on the GI and LM dictionaries in each article. H;, stands for the total number
of articles covering firm i in time period t. A higher GILM* indicates a more positive view

in the news media about the firm and vice versa.

Second, to capture the range of different sentiment among news articles on each firm
during a time period t, we follow Cookson and Niessner (2019) and define sentiment

disagreement as the standard deviation of article-level sentiment:

Hit
GILM?. — 1 Z #(Positive); , — #(Negative);
Y IH, #(Positive); , + #(Negative);

2
—GILMi1_t> , i=1,..,N,. (20)
h=1

As a special case, when there is only one article for the firm at a given point of time, GILMft
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is measured as the absolute value of GILM;,. A higher GILM?, indicates more divergent

sentiment about the company from the news media.

Alternatively, we construct two similar sentiment related measures using the Composite
Sentiment Score provided by a commercial database RavenPack News Analytics, a leading
media database widely used in the finance literature. For each company and in each month, we
define Raven? (resp. Raven?) as the mean (resp. standard deviation) of the Composite Sentiment
Score of all news articles covering the company during the given month. We only retain news
articles with a relevance score equaling 100.

In Table 7, we regress the lexicon-based or RavenPack sentiment measures averaged
over the most recent three months (so as to match the training window of machine-learning
algorithms) on SVR predictors. Panel A of Table 7 shows that SVR predictors are strongly
associated with all sentiment-related measures at the 1% significance level. Specifically, SVR
predictors are positively related to sentiment level measures and negatively related to sentiment

disagreement measures.
[Insert Table 7]

Although SVR predictors are significantly correlated with sentiment-related measures,
they capture more information than measures based on dictionaries (GILM?, GILM?) or
RavenPack (Raven!, Raven?) in predicting cross-section of option returns. In Panel B of Table
7, we compare the (5-1) portfolio returns generated by SVR predictors, lexicon-based
sentiment measures, and RavenPack sentiment measures. The absolute values of (5-1) portfolio
returns based on SVR predictors are much larger than those based on traditional sentiment-
related measures. For example, the largest absolute return spread generated by traditional
sentiment measures is 0.68% for call options and 0.59% for put options, much less than those
generated by SVR predictors (1.47% for call options and 0.87% for put options). Further in
Panel C of Table 7, we regress the delta-hedged option returns on SVR predictors when
controlling each sentiment-related measure. We find that the predictability of SVR predictors
cannot be subsumed by any sentiment-related measure, indicating that SVR predictors capture
information beyond the scope of sentiment-related information. Later in Section 4.3, we show
that SVR predictors are related to the uncertainty about the implied volatility and can
significantly predict future implied volatility changes.

Our findings indicate that when extracting information from unstructured data to predict
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option returns, our supervised machine-learning approaches perform better than traditional
methods based on dictionaries. Signals obtained by machine-learning approaches are data-
driven and capture information from various perspectives, while traditional dictionaries-based

methods focus on a specific factor that might affect option pricing (e.g., sentiment).

To further illustrate the important information contained in non-sentiment words for
predicting option returns, we form an alternative SVR predictor (SVR_GILM) based on news
articles but keeping only words from the GI dictionary and the LM dictionary. The predictive
performance of call and put option returns under this alternative approach is shown in column
(6) of Table 7, Panel B. The return spread generated by SVR_GILM is only 0.12% (0.18%) per
month for call (put) options. The predictive power of SVR predictors almost vanishes when
only sentiment-related words are included, indicating the importance of non-sentiment related

words.

4.2. Potential Economic Channels

In this section, we investigate potential economic channels that could explain the predictability
of SVR predictors. Specifically, we consider the possibilities that machine learning approaches
extract useful information from news media that capture uncertainty about firm volatility, jump
risk, or option demand pressure which have been shown to be significantly related to expected
option returns. We test whether SVR predictor is still significantly to delta-hedged option
returns after controlling for proxies of uncertainty about firm volatility, jump risk, option

demand pressure.

First, delta-hedged options are sensitive to the underlying stock volatility, and the
uncertainty about it expose option market makers to higher risk. Recent studies by Huang,
Schlag, Shaliastovich, and Thimme (2019) and Cao, Vasquez, Xiao, and Zhan (2022) show that
the volatility of volatility (VOL-0f-VOL) is an important determinant of delta-hedged option
return both theoretically and empirically. Following Cao et al. (2022), we measure the volatility
of volatility as the standard deviation of the percentage changes of the daily implied volatility
(VOIV) or realized volatility (VORV) of a given month. The implied volatility is obtained from
the Volatility Surface file of OptionMetrics. The implied volatility of a given stock is the
average of its call and put option’s implied volatilities with absolute delta of 0.5 and expiration
of 30 days. The realized volatility is the five-minute intraday volatility calculated using the

TAQ data. We record prices every five minutes starting from 9:30 EST and construct five-
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minute log-returns. We use the last recorded price within each five-minute period to calculate

the log return.

Second, although delta-hedged option portfolios are immune from small price changes
of the underlying stocks, large price movements can cause the delta-hedging strategy to be
ineffective. Green and Figlewski (1999) argue that option writers charge a premium for the
jump risk, and Broadie, Chernov, and Johannes (2009) show that considering a jump risk
premium can better understand the index option returns. Following Bakshi and Kapadia (2003)
and Bakshi, Kapadia, and Madan (2003), we use the model-free implied skewness (MFIS) and
kurtosis (MFIK) to measure the jump risk.

Third, as shown by Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman
(2009), option market makers cannot perfectly hedge their inventories and are thus exposed to
inventory risk. Higher demand pressure from end-users causes option market makers to face
higher inventory risk, and thus market makers charge a premium for the inventory risk.
Muravyev (2016) empirically shows the importance of inventory risk in option pricing. We use
two measures to proxy for the option demand pressure. First, we use the total market value of
all options on a stock (open interest times option price), scaled by the underlying stock's market
value to proxy for the option demand pressure. Second, we use the order imbalance of options
to measure the demand pressure from end-users. Utilizing the Open/Close data from The
Chicago Board Options Exchange (CBOE) and the International Securities Exchange (ISE),

we construct the option order imbalance using the following equation:
OIB;; = (Open Buy;, — Open Selli,t)/(Open Buy; . + Open Selli_t), (21)

where Open Buy (Sell) is the total volume of buyer (seller)-initiated orders to open new
positions. For firm i and month t, the Open Buy;, (Open Sell;,) is the total buyer-(seller)
initiated volume of all tradable options written on firm i across month t. Option demand
pressure measures are separately calculated for call options and put options.

In Panel A (B) of Table 8, we individually control for each proxy in the Fama-Macbeth
regression for call (put) options. Although each proxy has a significant predictive power for
delta-hedged option returns, none of them can subsume the significance of the SVR predictor.
The coefficient of the SVR predictor barely changes when we control proxies for jump risk or
option demand pressure. The maximum reduction of SVR predictor’ coefficient occurs after

we control for the volatility of implied volatility, and the reduction is 16% (22%) for call (put)
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options.6 These results indicate that the underlying economic mechanism of SVR predictors is
not related to jump risk or option demand pressure from end-users. In comparison, uncertainty
about the volatility accounts for some of the option return predictability by the SVR predictor.
In the next section, we further investigate the information content of the SVR predictor. In
particular, we show that SVR predictor contains valuable information about future volatility

changes.

[Insert Table §]

4.3. Information Contents of Textual Predictors

To identify the information contents of textual predictors, we further examine whether they can
predict implied volatility change or underlying stock fundamentals. Our motivation starts from
the following decomposition of the buy-and-hold delta-hedged call option returns:

_ (Citer = Cie) = DY (Siear = Sit)

HRPS, ., = : =w X Ryption — (1 + W) X Rerockr 22
i,t+1 |Ci,t _ Agt x Si,tl option ( ) stock ( )

where w = C;,/ |Ci,t — A(i:,t X Si,t|. The first part is related to the raw return of call options,
while the second is related to the return of the underlying stocks. Therefore, the buy-and-hold
delta-hedged call option return is the weighted average of the returns for the call option and the
underlying stock. A similar decomposition applies to buy-and-hold delta-hedged put option
returns. Since option price is an increasing function of implied volatility, option returns is
positively related to the implied volatility change over the holding period. Moreover, the
predictability of textual predictors can also stem from its information content about the

underlying firm fundamentals and stock returns.

Thus, we empirically test the relations between SVR predicators and future implied
volatility change or the underlying stock return and future earnings surprise. First, we
investigate whether SVR predictor can predict the implied volatility change over the following
month. For each stock in our sample, we obtain the implied volatility for a call and a put with
absolute delta of 0.5 and expiration of 30 days from the OptionMetrics volatility surface

database. The implied volatility change is calculated as the percentage difference between the

® When including option OIB as the control variable, the without-control coefficient of SVR predictors change
to 0.349 (0.242) for call (put) options due to sample difference. Therefore, the reduction is only 1.7% (0.4%) for
call (put) options.
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next month’s and the current month’s implied volatility.

Second, we test whether SVR predictors contain information that helps predict future
earnings surprises or stock excess returns. Following Livnat and Mendenhall (2006), we
calculate the standardized unexpected earnings (SUE) based on the assumption that earnings
per share (EPS) follows a seasonal random walk, where the best expectation of the EPS in
quarter t is the firm’s reported EPS in the same quarter of the previous fiscal year. Hence, the

SUE is given by the following equation:

(Xlt Lt 4)

SUE;, = -
It

i=1,..N, (23)

where X;. is primary earnings per share (EPS) before extraordinary items for firm i in
quarter t, and P;, is the price per share for firm i at the end of quarter ¢t from Compustat.
Xi+ and P;, are unadjusted for stock splits, but X;._, is adjusted for any stock splits and
dividends during the period [t —4,t] using the Compustat adjustment factor (AJEXQ).
“Special items” in Compustat are excluded from the calculation of the SUE. The higher SUE
is, the more positive the earnings surprise is. Stock excess return is defined as the difference

between the raw stock return and the risk-free return over the next month.

To check the information contents of SVR predictors, we run predictive regressions

with the implied volatility change or stock excess return as dependent variables Z; ;:

Zir=a+bXxXSVR;y_ 1 + Zyt] iiertEn =1, N, (24)
j=1

where SVR;._; is the SVR predictor (i.e., 7;¢) for firm i at time ¢ — 1, and Xi];t_l are
control variables. We run univariate regression of SUE or stock excess return on SVR
predictors. When regressing next month implied volatility changes on SVR predictors, we
control the implied volatility change in the current month, i.e., the percentage difference

between the current month’s and the previous month’s implied volatility.
[Insert Table 9]

Table 9 shows that the SVR predictors are not significantly related to future earnings
surprises or stock excess returns. Instead, SVR predictors show significant predictability to
future implied volatility changes. This suggests that textual information from new media that

predict delta-hedged option returns do not come from the underlying fundamentals.
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On the other hand, we find that after controlling the lagged implied volatility change,
SVR predictors still significantly predict future implied volatility change at 1% significance
level for both call options and put options. This combined with the earlier result in Section 4.2
(uncertainty about the implied volatility has the largest explanatory power for the option return
predictability of SVR predictors) suggest that SVR predictors’ ability to predict delta-hedged
option returns is intimately related to its information content about future volatility. Our work
suggests that valuable and useful insights about stock volatility can be gleaned from news

media coverage of the company using machine learning algorithms.

We acknowledge that it is a challenging task to interpret signals obtained by machine-
learning algorithms and there could be additional channels underlying the option returns
predictability by textual predictors we extract from news media using machine learning

algorithms. We leave further explorations to future work.

5. Conclusion

In this paper, we study whether and how textual information from news media could predict
the cross-section of delta-hedged option returns. First, we find that the textual information
extracted from news media using machine learning techniques has a strong predictive power
for delta-hedged option returns. The results are robust to different methodologies and
controlling for various option return predictors documented in the literature. Second, a large
proportion of the predictive power of the textual predictor is qualitative sentiment-related
information, as the important word features from trained ML models have the largest overlap
with sentiment dictionaries. Third, the predictive power of textual predictors for delta-hedged
option return is unrelated to future returns of the underlying stock or future company earnings.
Instead, we find that news media contains useful information about future change in stock
volatility which helps to explain the predictive power of textual predictors for delta-hedged

option return.

Overall, our results demonstrate that machine-learning methods can extract useful
information from news media that are both statistically and economically significant predictors
of option returns. Our paper provides a novel angle to predict option returns and illustrate the
importance of incorporating information from unstructured data when pricing options. Future

research could explore more advanced machine learning approaches (such as recurrent neural
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network and convolutional neural network) and incorporate dependency across words in a
document to extract information from text data. More work is needed to better understand the
underlying mechanisms for the delta-hedged option return predictability by textual information
from news media. This exercise would also shed new lights on the cross-sectional determinants

of expected delta-hedged option returns.
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Table 1 Summary Statistics

This table reports the descriptive statistics of option returns, option characteristics, textual predictors,
and equity characteristics. The sample period is from February 1996 to December 2018. Panel A (B)
reports the pooled summary of delta-hedged call (put) option returns and the characteristics of call (put)
options involved. A delta-hedged call (put) option portfolio involves buying one contract of an equity
call (put) and a short position of A shares of the underlying stock, where A is the Black-Scholes call
(put) option delta. The position is held for 1 month or until option maturity. Delta-hedged option return
is defined as the total dollar gain of the delta-hedged option portfolio scaled by the absolute value of
the cost of the delta-hedged option portfolio at its formation date. Moneyness is the ratio of option strike
price to stock price. Days to maturity is the number of calendar days until the option expires. Gamma
is the Black-Scholes option gamma. Vega is the Black-Scholes option vega. Option bid-ask spread is
the ratio of the difference between ask and bid quotes of option to the midpoint of the bid and ask quotes
at the end of each month. Panel C reports the time-series average of cross-sectional statistics of textual
predictors and equity characteristics (all independent variables are winsorized each month at the 1%
level). Call_SVR (Put_SVR) is the textual predictor extracted from news media using support vector
regression model. AUTO is the first-order autocorrelation of underlying stock’s return as in Jeon et al.
(2019). CASH is the cash-to-assets ratio as in Palazzo (2012). CFV is the cash flow variance as in
Haugen and Baker (1996). DISP is the analyst earnings forecast dispersion, as in Diether et al. (2002).
ISSUE_1Y represents 1-year new issues as in Pontiff and Woodgate (2008). IVOL is the idiosyncratic
volatility computed as in Ang et al. (2006). LNPRICE is the log of the underlying stock price at the end
of last month. LOG_AMIHUD is the natural logarithm of the illiquidity measure from Amihud (2002).
PROFIT is the profitability as in Fama and French (2006). TEF is total external finance. HV-IV is the
difference between realized volatility and implied volatility as in Goyal and Saretto (2009). Panel D
reports the cross-sectional Pearson correlations of textual predictors and various characteristics of
options and stocks. All variables are winsorized each month at the 1% level. We report the cross-
sectional correlations each month and report the time-series average of these correlations.

Panel A: Pooled Summary of Delta-hedged Call Option Returns and Option Characteristics (50,888 observations)

Mean itapdgrd 10t _ Lower Median Upper 9ot _
eviation  percentile quartile quartile percentile
Buy & hold until month-end (%) -2.67 476 -7.22 -4.56 -2.61 -0.92 1.49
Buy & hold until maturity (%) -8.47 6.24 -15.91 -10.77 -7.09 -4.54 -2.76
Moneyness (%) 99.98 3.20 96.34 98.36 100.00 101.59 103.65
Days to Maturity 50 2 47 50 50 51 52
Gamma 0.09 0.05 0.03 0.05 0.08 0.11 0.16
Vega 0.14 0.01 0.13 0.14 0.14 0.5 0.5
Quoted option bid-ask spread (%) 9.93 8.82 2.39 4.44 7.79 12.66 19.05
Panel B: Pooled Summary of Delta-hedged Put Option Returns and Option Characteristics (50,888 observations)

Mean gte?/?gt?c:g perltgat:tile qll_Jc;vrvglre Median qllJJgfte}lre pe?coet:tile
Buy & hold until month-end (%) -2.03 3.97 -5.99 -3.81 2,11 -0.54 1.71
Buy & hold until maturity (%) -7.75 5.01 -14.14 -9.93 -6.74 -4.47 -2.81
Moneyness (%) 99.96 3.22 96.28 98.34 100.00 101.57 103.63
Days to Maturity 50 2 47 50 50 51 52
Gamma 0.09 0.05 0.03 0.05 0.08 0.11 0.16
Vega 0.14 0.01 0.13 0.14 0.14 0.15 0.15
Quoted option bid-ask spread (%) 10.38 9.45 241 4.65 8.00 13.33 20.00
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Panel C: Equity Characteristics (Time-series Average of Cross-sectional Statistics)

Mean Star)dgrd 10th_ Lower Median Upper 90th_
deviation percentile quartile quartile percentile
Call_SVR (%) -1.54 2.34 -4.47 -2.63 -1.27 -0.35 0.82
Put_SVR (%) -1.56 1.55 -3.59 -2.33 -1.33 -0.67 0.02
AUTO -0.01 0.10 -0.14 -0.08 -0.01 0.05 0.11
CASH 0.17 0.18 0.02 0.04 0.10 0.24 0.44
CFrv -0.05 0.36 -0.02 0.00 0.00 0.00 0.00
DISP (%) 13.82 44.30 0.80 1.47 3.22 8.25 24.13
HV-IV 0.02 0.09 -0.07 -0.03 0.01 0.05 0.11
ISSUE_1Y -0.41 1.20 -1.14 -0.32 -0.01 0.02 0.05
VoL 0.02 0.01 0.01 0.01 0.02 0.02 0.03
LNPRICE 371 071 278 3.28 3.76 417 454
LOG_AMIHUD -8.36 153 -10.20 -9.39 -8.52 -7.44 -6.27
PROFIT 0.28 042 0.02 0.14 0.24 0.36 055
TEF 0.00 0.13 -0.14 -0.03 0.01 0.06 011
Panel D: Time-series Average of Cross-sectional Correlations

call SVR  Put SVR IVOL HV-IV  LOG_AMIHUD OSPREAD AUTO  DISP

Call_SVR 1.00 057 -0.09 0.00 -0.12 -0.04 -0.01 -0.04

Put_SVR 1.00 -0.12 -0.03 -0.17 -0.06 -0.01 -0.06
IVOL 1.00 0.12 0.41 0.08 0.11 0.24
HV-IV 1.00 0.00 -0.03 -0.03 0.03
LOG_AMIHUD 1.00 0.50 0.06 0.16
OSPREAD 1.00 0.00 0.06
AUTO 1.00 0.05
DISP 1.00
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Table 2: Option Portfolios Sorted by Textual Predictors Using Support Vector Regression
Panel A reports the average monthly returns to the delta-hedged option portfolios sorted by Call SVR
(Put_SVR). At each end of month, we rank all underlying stocks into quintiles by their Call SVR
(Put_SVR). Detailed descriptions of Call SVR (Put_SVR) are provided in Section 2.1. The portfolio is
held for one month. This table reports the average return to the delta-hedged option portfolio for each
quintile as well as the high-low return spread (i.e., the difference between the returns of the top and bottom
quintile portfolios). At the end of each month, we use three weighting schemes when computing the
average return of a portfolio: equal weight (EW), weight by the market capitalization of the underlying
stock (Stock-VW), and weight by the market value of option open interest (Option-VW). We also adjust
the average returns using a seven-factor model and report the corresponding alphas. Panel B examines
the influence of transaction costs (bid-ask spread) on the profitability of our option portfolio strategy
based on ML textual predictors. We form portfolio sorts just as in Panel A but take into consideration
transaction costs when computing the realized returns. Each row corresponds to a given level of effective
spread ESPR (e.g., equals to 50% of the quoted bid-ask spread QSPR). We report the (5-1) portfolio return
spreads after accounting for the assumed option transaction costs. The weighting scheme in Panel B is
equal-weighted. All returns are expressed in percentage. The sample period is from February 1996 to
December 2018. To adjust for serial correlations, robust Newey-West (1987) t-statistics are reported in

s ksk skokok

brackets. , ', " denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Average returns and Alphas for Portfolios Sorted by SVR
Low 2 3 4 High H-L  Alpha

-3.22 -3.27 -2.85 -2.01 -1.75 1477 1.48™

EW  (2044) (-23.06) (-21.32) (-15.00) (-12.04) (12.47) (11.17)

. 304 313 277 192 -162 142 143"

Call Options Stock-VW - 20.34) (-22.58) (-21.31) (-14.56) (-11.36) (12.55) (11.07)

ooty 300 330 276 155 105 1957 184™

P (-17.92) (-1853) (-19.61) (-10.93) (-5.00) (8.74) (7.94)

Low 2 3 4 High H-L  Alpha

W 240 220 205 -178 -153 087 086™

(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (1358) (10.16)

. 226 209 -195 -1.68 -143 083" 083"

Put Options Stock-VW - 18.94) (-19.82) (-18.49) (-13.91) (-10.84) (12.91) (9.68)
optonvw 235 205 L7 46 110 1257 121

(-15.03) (-15.12) (-17.26) (-9.69) (-5.64) (7.79) (7.49)

Panel B: Portfolio Performances after Accounting for Transaction Costs

ESPR/QSPR
No Cost 25% 50% 75% 100%
Call Ontions 147" 1417 1.34™ 1.28" 1.21™
P (12.47) (12.11) (11.70) (11.25) (10.77)
DUt Ontions 0.87" 0.80™ 0.73™ 0.65™ 0.58™
P (13.58) (12.56) (11.42) (10.18) (8.87)
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Table 3: Dependent Double Sorts and Fama-MacBeth Regressions

In Panel A of this table, we investigate whether several stock or option characteristics can explain the
effect of ML textual predictors using dependent double sorts. We first sort all options into quintiles
based on a given control variable such as idiosyncratic volatility (IVOL), volatility deviation (HV — IV),
Amihud illiquidity measure (LOG_AMIHUD), options’ bid-ask spread, gamma, and vega (OSPREAD,
Gamma, Vega), autocorrelation (AUTO), analyst earnings forecast dispersion (DISP), cash flow
variance (CFV), cash-to-assets ratio (CASH), 1-year new issues (ISSUE_1Y), log of the underlying
stock price (LNPRICE), profitability (PROFIT), total external finance (TEF). Then, within each quintile
we further sort the options into five portfolios based on ML-based textual predictors. Finally, we average
returns for each textual predictor quintile across the five groups sorted by the control variable, yielding
five control-variable adjusted quintile returns. We report the baseline results based on univariate sort
(i.e., the average difference in the equal-weighted monthly returns of the top and bottom quintile
portfolios sorted by SVR textual predictors) in the first row, followed by the corresponding results after
controlling for the variable labeled in each subsequent row. Panel B reports the Fama-Macbeth cross-
sectional regression results of delta-hedged equity option returns on SVR textual predictors, Call SVR
(Put_SVR). Detailed descriptions of Call SVR (Put SVR) and their constructions are provided in
Section 2.2. The constructions of control variables are described in Table 1. The sample period is from
February 1996 to December 2018. To adjust for serial correlations, robust Newey-West (1987) t-
statistics are reported in brackets. *, , ™" denote significance at the 10%, 5%, and 1% levels,
respectively.

Panel A: Portfolio Return Spread based on SVR Predictors after Controlling Stock or Option

Characteristics
Call Options Put Options

147" 087"

SVR (12.47) (13.58)
113" 0.60"

IVOL (11.37) (9.59)
130" 0.81°"

HV-IV (11.91) (13.55)
132" 0.58"

LOG_AMIHUD o) 755
1,45 0.82"

OSPREAD (12.32) (12.07)
1.42° 0.84"

AUTO (12.27) (13.54)
Gamma 140" 0.79"
(12.14) (13.63)

Veus 148" 0.81°
& (12.79) (12.25)
127" 0.68"

DISP (11.38) (10.64)
128" 0.74"

CFV (11.03) (10.13)
1.2 0.77"

CASH (11.24) (10.80)
1327 0.77"

ISSUE_1Y (12.45) (12.60)
1.16™ 0.59™

LNPRICE (10.38) (10.69)
126" 0.73"

PROFIT (10.39) (10.88)
1327 0.78"

TEF (11.10) (11.96)
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Panel B: Fama-Macbeth Regressions

Call Options Put Options
1) (2) 3) 4) (5) (6)
SVR 0.465™ 0307  0.259™  0200™ 0142  0.118™
(11.90)  (869)  (7.06) (1392  (7.12) (4.32)
VoL 0.764™  -0.445™ 0.624™  -0.301"
(-1327)  (-8.30) (-15.78)  (-6.77)
vy 0.484™ 0514 0434 0.446™
812  (9.38) 9.76)  (10.35)
0357 0012 0355 0.021
LOG_AMIHUD (-1.06)  (0.31) (-13.08) (051
-0.066° 0.118™
OSPREAD (-1.81) (-2.90)
0.026 0.031
AUTO (1.03) (1.55)
— 0.471" 0.508"
(5.69) (8.32)
Veda 10.308™ 0.042
g (-14.22) (1.58)
Stock Characteristics No No Yes No No Yes
Adj. R? (%) 1615 14143 2253 1177 13687  21.951
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Table 4: Option Portfolios Sorted by Alternative Machine Learning Textual Predictors
Panel A reports average monthly returns of the delta-hedged option portfolios sorted by machine
learning (ML) textual predictors trained by alternative machine learning algorithms. The row
“ENET”/“RF”/“MLP” reports portfolio sorting results by textual predictors extracted based on elastic
net, random forest, and neural networks. Detailed descriptions of these predictors are provided in
Section 3.2.1. Panel B reports the average monthly returns of the delta-hedged option portfolios sorted
by ML textual predictors trained by wusing alternative word constructions. The row
“Bigram”/“Trigram”/“Fivegram” reports portfolio sorting results based on ML textual predictors
extracted based on different word features to train the model, including bigram, trigram, and fivegram.
Detailed descriptions of these predictors are provided in Section II1.B.2. All returns are expressed in
percentage. The sample period is from February 1996 to December 2018. To adjust for serial
correlations, robust Newey-West (1987) t-statistics are reported in brackets. *, ™, ™" denote significance
at the 10%, 5%, and 1% levels, respectively.

Panel A: Portfolios Sorted by ML Textual Predictors using Alternative ML Algorithms

Low 2 3 4 High H-L Alphas
SVR -3.22 -3.27 -2.85 -2.01 -1.75 1477 1.48™
(-20.44) (-23.06) (-21.32) (-15.09) (-12.04) (12.47) (11.17)
ENET -3.21 -2.82 -2.49 -2.31 -2.27 0.94™  0.93™
(-21.62) (-19.52) (-20.86) (-16.06) (-15.87)  (9.39) (7.86)
Call Options
RE -3.15 -2.96 -2.70 -2.23 -2.06 1.09"  1.02™
(-21.90) (-20.61) (-20.12) (-16.54) (-14.52) (11.41)  (9.00)
MLP -3.17 -3.23 -2.79 -2.12 -1.78 138"  1.35™
(-21.83) (-20.27) (-20.78) (-15.61) (-12.37) (12.17) (10.62)
Low 2 3 4 High H-L Alphas
SVR -2.40 -2.20 -2.05 -1.78 -1.53 0.87""  0.86™
(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (13.58) (10.16)
ENET -2.31 -2.06 -1.98 -1.81 -1.80 0.51™ 047
(-18.47) (-18.57) (-16.92) (-15.19) (-15.23) (8.01) (5.86)
Put Options
RE -2.34 -2.12 -1.99 -1.79 -1.71 0.63™  0.55™
(-17.96) (-18.92) (-16.94) (-15.80) (-14.53) (10.02) (6.84)
MLP -2.33 -2.21 -2.07 -1.80 -1.54 0.78 0.77

(-17.54) (-20.76) (-19.39) (-14.48) (-11.55) (9.48)  (8.55)
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Panel B: Portfolios Sorted by ML Textual Predictors under Alternative Word Constructions

Low 2 3 4 High H-L Alphas
Uniaram -3.22 -3.27 -2.85 -2.01 -1.75 1477 1.48™
g (-20.44) (-23.06) (-21.32) (-15.09) (-12.04) (12.47) (11.17)
Biaram -3.13 -3.33 -2.88 -2.12 -1.63 150" 147
g (-21.10) (-20.13) (-20.78) (-17.04) (-11.45) (11.77) (13.79)
Call Options

Triaram -3.22 -3.14 -2.97 -2.15 -1.62 1.60™"  1.64™
g (-21.28) (-20.66) (-21.16) (-15.70) (-11.72) (11.54) (12.04)
Fivearam -3.58 -2.90 -2.57 -2.30 -1.88 1.69™  1.69™
g (-21.45) (-20.12) (-17.31) (-18.58) (-15.05) (14.02) (14.26)
Low 2 3 4 High H-L Alphas

Unigram -2.40 -2.20 -2.05 -1.78 -1.53 0.87 0.86
(-19.81) (-20.66) (-18.67) (-14.53) (-11.66) (13.58) (10.16)
Biaram -2.28 -2.24 -2.06 -1.84 -1.54 0.74™  0.79™
g (-18.65) (-19.28) (-20.24) (-15.72) (-9.84) (7.66) (7.98)

Put Options

Triaram -2.29 -2.16 -2.08 -1.81 -1.61 0.68™  0.74™
g (-20.50) (-18.43) (-19.04) (-14.89) (-11.35) (7.05) (6.37)
Fivearam -2.40 -2.16 -2.01 -1.81 -1.58 0.82™"  0.80™
g (-19.11) (-17.85) (-18.50) (-15.20) (-12.69) (9.06) (8.56)
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Table 5: Alternative Option Samples and Return Construction Method
This table examines the robustness of the predictability by the SVR predictors in different option
samples and using an alternative return construction method. We replicate the portfolio sorts in Table 2
using options with different moneyness and maturities. I[TM represents in-the-money option, and OTM
represents out-of-the-money option. 2.5-month ATM (3.5-month ATM are at-the-money options with
2.5-month (3.5-month) maturity. Daily-rebalance represents results using daily-rebalanced delta-
hedged option return. The weighting scheme is equal-weighted. The sample period is from February
1996 to December 2018. To adjust for serial correlations, robust Newey-West (1987) t-statistics are

* okk o kokk

reported in brackets. *, ', denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Alternative Samples and Return Construction - Call Options

Low 2 3 4 High H-L
IT™ -1.70 -1.77 -1.42 -1.00 -0.97 0.74™
(-1599)  (-1559)  (-15.69)  (-11.34)  (-9.83) (9.51)
oM 4,04 415 -3.69 2.83 2.26 1.78™
(-2002)  (-23.06)  (-2127)  (-16.49)  (-10.61)  (10.46)
-2.40 237 221 1,34 -1.04 1.35"

2.5-month ATM (-1536)  (-1659)  (-18.81)  (-8.69) (-6.88) (8.95)
223 222 -1.88 1,34 1.21 1,017

3:5-month ATM (1632)  (-1669)  (-1658)  (-10.41)  (-9.09)  (10.03)

-0.98 -0.94 -0.70 -0.41 -0.29 0.69""

Daily rebalancing (950) (954  (661)  (381) (234  (9.12)

Panel B: Alternative Samples and Return Construction - Put Options

Low 2 3 4 High H-L
™ -1.02 -0.91 -0.79 -0.67 -0.59 0.43™
(-1430)  (-1515)  (-14.00)  (-10.96)  (-8.16) (9.02)
oM -3.28 -3.01 -2.85 -2.55 223 1.05"
(-16.26)  (-1950)  (-14.80)  (-1291)  (-10.46)  (12.46)
1155 -1.39 1135 -1.08 -0.79 0.76™"

2.5-month ATM (-1274)  (-11.64)  (-11.94)  (-11.20) (-4.38) (5.79)
11.26 122 -1.09 -0.97 -0.90 0.35™"

3.5-month ATM (-1158)  (-12.45)  (-11.03)  (8.75)  (-9.19) (5.63)
Dailv rebalancin -0.79 -0.67 -0.58 -0.46 -0.40 0.39™"
y g (-7.59) (-6.18) (-6.41) (-4.46) (-3.90) (10.31)
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Table 6: Topic Contribution for Feature Importance

Panel A and Panel B of this table list the proportion of important words from each topic category
(labeled by the rows). The General Inquirer (Gl) is a dictionary that reflects Charles Osgood’s semantic
differential findings regarding basic language universals. The Loughran and McDonald (LM) dictionary
is the sentiment dictionary developed in Loughran and McDonald (2011). The Political dictionary is
from Hassan et al. (2019). The Macroeconomic dictionary is based on Bloom (2014) and Bybee et al.
(2020). Idiosyncratic Words are the remaining words that do not fall into the four pre-defined
dictionaries. The sample period is from February 1996 to December 2018.

Panel A: Delta-hedged Call Option Feature Importance in Different Topics

Topic SVR Elastic Net Random Forest  Neural Networks
Gl Dictionary 37.40% 40.20% 40.60% 32.20%
LM Dictionary 32.6% 30.40% 32.20% 22.80%
Politics 4.60% 4.00% 6.0% 6.60%
Macroeconomics 8.00% 8.40% 7.80% 6.60%
Idiosyncratic Words 17.40% 17.00% 13.40% 31.80%
Total 100.00% 100.00% 100.00% 100.00%
Panel B: Delta-hedged Put Option Feature Importance in Different Topics
Topic SVR Elastic Net Random Forest  Neural Networks
Gl Dictionary 38.2% 44.60% 38.20% 28.40%
LM Dictionary 32.8% 27.60% 32.60% 24.60%
Politics 3.80% 6.40% 6.20% 5.20%
Macroeconomics 7.80% 5.00% 5.40% 7.60%
Idiosyncratic Words 17.40% 16.40% 17.60% 34.20%
Total 100.00% 100.00% 100.00% 100.00%
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Table 7: Relationships between SVR Predictor and Sentiment-related Measures
Panel A reports Fama-Macbeth regression results of sentiment-related measures on the SVR predictor.
GILM! is a proxy for the general opinions about a specific company extracted from the news media.
GILM? is a measure of sentiment disagreement for each firm to reflect possible different opinions
among the articles about a particular firm. Raven! and Raven? are sentiment level and disagreement
measures from RavenPack News Analytics, respectively. Panel B reports the (5-1) portfolio return
spreads generated by SVR predictors, sentiment-related measures, and SVR_GILM. SVR_GILM is an
alternative SVR predictor that is trained using only sentences containing sentiment-related words in
each article. The sample period is from February 1996 to December 2018. To adjust for serial
correlations, robust Newey-West (1987) t-statistics are reported in brackets. *, **, ™" denote significance
at the 10%, 5%, and 1% levels, respectively.

Panel A: Regressing Sentiment-related Measures on SVR Predictors

Call Put
GILM! GILM? Raven!  Raven? GILM!  GILM? Raven!  Raven’
SVR 0.010™"  -0.024™ 0.052™"  -0.040"" 0.012™ -0.034™ 0.060™"  -0.052""
(5.96) (-12.32) (4.82)  (-3.01) (5.81) (-17.60) (5.19)  (-3.75)
Adj.R? (%)  0.596 1911 0.244 0.243 0.712 2.985 0.140 0.283

Panel B: Portfolio Return Spreads Generated by SVR predictors, Sentiment-related Measures, and
SVR_GILM predictors

1) (2) 3 “4) ®) (6)
SVR GILM! GILM? Raven! Raven? SVR_GILM
Call 1477 0.51 -0.62°" 0.68" -0.60"™ 0.12*
(12.47) (5.54) (-7.19) (7.54) (-6.64) (1.89)
Put 0.87" 0.41 -0.50"" 0.59" -0.51"" 0.18"
(13.58) (5.48) (-7.67) (8.92) (-7.58) (3.38)

Panel C: Regressing Delta-hedged Option Returns on SVR Predictors with Sentiment-related
Measures as Control Variables

Call Put
(€] (2 ©) ) ®) (6) ) (8)
SVR 0.460™"  0.447™"  0.454™  0.460™" 0.289™" 0273 0283  0.292"
(12.00) (11.38) (8.68)  (8.86) (13.91)  (1320)  (9.80)  (9.94)
0.163™ 0.124"™
1
GILM (6.05) (5.75)
-0.188" -0.1427"
2
GILM (-7.46) (-7.16)
Raven 0.248" 0.213"
(7.89) (10.06)
-0.232" -0.203™"
Raven?
(-6.96) (-8.48)
AdiR?Z(%)  2.000 3021  2.624 1531 1596 2469  2.235
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Table 8: Potential Economic Channels
Panel A examines potential economic channels underlying the predictive power of SVR predictors for
delta-hedged option returns. The dependent variable is the delta-hedged option returns, and the
independent variables are SVR predictors and proxies for various potential economic channels. VOIV
is the standard deviation of option implied volatility over the trading days within a given month, and
the implied volatility is the at-the-money implied volatility obtained from Volatility Surface provided
by OptionMetrics IvyDB database. VORYV is the standard deviation of the daily realized volatility of a
given month, and the realized volatility is calculated with five-minute log returns provided by TAQ.
MFIS (resp. MFIK) is the model-free option-implied skewness (resp. kurtosis). OM is the total market
value of options on a stock scaled by the stock market value. OIB is the option demand pressure,
calculated as the difference between buyer and seller-initiated option trading volume scaled by the total
option trading volume. Option trading volume for firm 7 in month ¢ is the sum of trading volumes of all
tradable options written on firm i in month t. The sample period is from February 1996 to December
2018. To adjust for serial correlations, robust Newey and West (1987) t-statistics are reported in brackets.

* okck skokek

, ,  denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Call Options

€)) 2 3) (4) ) (6)
SUR 0449 0445 0433 0436 0448 0343
(11.73) (11.41) (11.61) (11.73) (11.87) (12.09)
0.252"
Vo (-6.49)
0,242
VORV (6.8
0,542
MFIS (-15.31)
0.510"
MFIK 05
10.358"
oM (-8.20)
0.156™"
ols (-7.56)
Adj.R2 (%) 8.129 5.443 4.049 4379 4.344 1.974
Panel B: Put Options
€)) 2 (3) (4) (5) (6)
SUR 0285 0281 0272 02707 02557 0241
(13.87) (12.95) (13.41) (13.42) (12.14) (11.50)
0.218™
VOIV (720
0.213™
VORV (oo
-0.260™
MFIS (-11.01)
0.389™
MFIK 1245)
0,538
oM (-16.12)
0.065™
oIB (3.49)
Adj.R? (%) 8.725 5.930 3.459 4,542 6.991 2417
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Table 9: Information Content of SVR Predictor
In this table, we investigate the information content of the SVR predictor. We run predictive regression
with future implied volatility changes over the next month, earnings surprises in the next month, or
stock excess over the next month returns as the dependent variable The key independent variable here
is the SVR predictor. When running regressions for future implied volatility changes, we add their lag
values (Lag_ACVOL or Lag APVOL) as control variables. SUE is the standardized unexpected
earnings excluding “special items” as in Livnat and Mendenhall (2006). Stock return is the excess stock
return over the next month. The sample period is from February 1996 to December 2018. To adjust for

serial correlations, robust Newey and West (1987) t-statistics are reported in brackets. , ~, = denote
significance at the 10%, 5%, and 1% levels, respectively.

Call Put
ACVOL  SUE Rsé(t)lfl:I[T’I APVOL  SUE Ff;‘t’gr';
SVR 0.559™  0.004  0.075 0.194™ 0004 0073
(7.13)  (1.04)  (L44) 2.87)  (153) (139
Lag_ACVOL (APVOL) '5'207923* _é284?g;;*
Adj.R? (%) 11111 0089  0.494 11.064 0039 0433
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Table Al: Feature Importance with Different Topics and Dictionaries
This table lists the word feature importance from the support vector regression (SVR) model on average
over time. Feature importance is defined as the top 1000 words with the largest magnitudes (i.e., the
absolute value of the coefficients) from the SVR model. For abbreviation, we list the first twenty words
which appear most often over time for both call and put options. The sample period is from February

1996 to December 2018.

Topic Delta-hedged Call Option Return Delta-hedged Put Option Return
excessive, aggregate, parasite, endear, fiery, animosity, learner, upright,
tolerable, unpopular, discretion,  glorify, massacre, obstinate, capitalize,

Gl Dictionary g_rumt_)le_, purity, _he_artily, fo_olish, stability, '_[ransgress:, ent_husia_sm,
simplistic, stark, vitality, conscience, lowly, evict, guilt, discretion,
reactive, intelligent, flaw, godliness, fashionable, fullness, veto, devious,
capability peril

exposing, overstate, miscalculating, irreparable, mishandling, forecloses,
acquitting, underestimate, forgers, overshadowed, unremedied, exclusive,
perfects, defamatory, overshadowed, abolishes, inadequacies, provoked,
LM Dictionary purported, cancelled, exacerbated, revocations, summons, breakthrough,
annulments, revolutionizing, ridiculed, confesses, noncompliances,
exculpatory, inaction, deceived, overlooked, distressed, insufficiently,
demotion, dysfunction stressed, expropriates, inappropriately
caviar, apparatchik, white house, polling, pravda, election, bien, senate,
command, floor, autocracy, trojan, levellers, proportional, governor,

Politics

wets, taliban, dynasty, political, roots,
libertarianism, rotherham, bureaucracy,

president, ombudsman, belli, white
house, mission, patrician, political,

Macroeconomics

republican, legislature, humanism, government, reform, obama, court,
religion, congress religion, republican
group president, deadlock, price

earnings, aeronautic defence, definitive
agreement, secondary offer, aeronautic,
nonprofit group, noncompetly, operate
loss, commodity market, stock market,
nasdag, london interbank, bilateral
trade, charity, export country, omnicom
group, report conclude, ambitious plan

rose slight, creditcard issuer, credit
agreement,  transportation  safety,
complexity, issue bond, kim jong, grid,
warn sign, traffic safety, york cotton,
misappropriated, aid virus, fargo,
redeemable, commodity oil, retiree,
stanley capital, criminal trial

Idiosyncratic Words

exception, interpleader,  contract,
despair, lawyer, internet, electronic,
fighting, bioteh, indemnitee, shot,
properly, contravention, statutorily,

tech, admissions, hospital, aerospace,
entailing, pledgors

crowd, willfulness, blood, passenger,
nurse, increase, obligee, offered,
subrogated, iphone, counsel,
indemnifications, necessitated,
shopper, mandamus, aforedescribed,
rebate, mediation, supersedeas,
advertising, truck
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Table A2: Important Words to Understand the SVR Textual Predictors
In Panel A, we construct synthetic bigrams using both important firm-idiosyncratic words and sentiment
words selected by SVR. To make the bigram more interpretable, we first list the firm-idiosyncratic word
followed by the sentiment word. In Panel B, we list some fivegram words that have the highest average
feature importance (i.e., those with largest average absolute value of coefficients under support vector
regression model). For abbreviation, we list the first eighty words which appear most often over time
for both call and put options. The sample period is from February 1996 to December 2018.

Panel A: Important Features based on Bigrams using Sentiment and Firm-idiosyncratic
Words

said-good, fell-lost, department-justice, comment-declined, said-never, financial-crisis, electronics-
success, added-gained, said-able, shares-lost, said-justice, general-attorney, said-might, said-late, shares-
closed, said-contract, still-good, news-good, would-risk, corporate-lawyers, said-risk, said-could, advice-
lawyers, said-best, last-strong, said-great, said-investigation, shares-gained, would-warned, cents-lost,
said-probably, said-confident, would-able, years-could, first-lost, another-could, many-could, many-
never, advice-defendant, billion-could, results-strong, companies-could, market-could, says-good,
earnings-strong, million-loss, price-could, think-good, chance-good, companies-good, case-could, said-
better, would-probably, said-arrest, nasdag-gained, fell-declined, ground-lost, advice-counsel, would-
concerns, federal-court, team-success, much-could, executive-fraud, means-lawyers, basis-lawyers,
earnings-gains, billion-nearly, advice-fraud, conduct-argue, hosts-suspects, business-could, said-
abolished, said-stronger, annually-illegal, actually-negative, started-assault, would-restructuring, another-
weaker, amazon-could, largest-assault, fallen-doubt, statement-confident, consumer-success

Panel B: Important Features based on Fivegrams

be-determine-difference-price-face,  chief-executive-say-conference-call,  figure-sale-million-firm-
distributor, cent-share-compare-net-loss, chairman-chief-executive-officer-say, boxoffice-figure-sale-
million-firm, continue-follow-fashion-lifestyle-coverage, chief-executive-say-company-be, executive-
vice-president-chief-financial, be-issue-advance-decline-unchanged, call-gain-volume-contract-compare,
chief-executive-officer-say-company, excellent-very-good-good-satisfactory, change-discounter-million-
year-early, compare-net-loss-cent-share, foreign-noncompetitively-auction-price-rate, advance-issue-top-
decliner-board, apple-chief-executive-steve-job, executive-say-conference-call-analyst, comparable-sale-
store-change-change, possible-be-payable-earning-share, be-name-executive-vice-president, chief-
executive-chief-financial-officer,  decline-issue-finish-well-ahead,  have-be-appoint-nonexecutive-
director, agree-acquire-banking-concern-stock, be-name-president-chief-executive, compare-
outstanding-contract-gain-cent, earning-late-beat-wall-street, easily-top-wall-street-forecast, executive-
tell-analyst-conference-call, invite-question-computerbase-technology-tech, be-close-replace-samestore-
sale, be-develop-show-positive-result, be-measure-bad-performer-drop, be-much-strong-analyst-be,
capital-gain-loss-dividend-theoretical, change-million-year-early-year, = computer-lose-international-
business-machine, concern-report-fiscal-firstquarter-result, concern-report-fiscal-thirdquarter-result,
executive-vice-president-sale-marketing, fund-troubled-asset-relief-program, government-trouble-asset-
relief-program, loss-cent-share-compare-profit
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