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Slope Beta and Cross-Sectional Stock Returns 

 

 

Abstract 

We construct a slope measure (   ) by regressing at-the-money put-over-call implied 

volatility ratio on the maturity, and theoretically and empirically show that     is negatively 

related to the discount rate. In the time-series,     significantly and negatively predicts 

aggregate stock market return. In the cross-section, the exposure to     (slope beta) negatively 

predicts stock returns, implying a positive price of discount rate risk. Stocks with low slope beta 

significantly outperform stocks with high slope beta by 0.51% (0.74%) per month under equal 

(value) weight, which is not explained by various factor models and robust to various stock 

characteristics as controls. 
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1.  Introduction 

The price of discount rate risk is an important and contentious topic. To estimate the risk 

price, we first need a measure of the discount rate. The traditional VAR approach (vector 

autoregression) extracts this information from the future realized stock return
1
, which equals the 

discount rate plus noise. As the signal-to-noise ratio is low, the results are typically in-sample, 

often insignificantly different from zero, and sensitive to the choice of predictors for the future 

return. 

In this paper, we propose a new approach that utilizes information from the derivatives 

market. Taking advantage of the forward-looking nature of options, we start by constructing a 

new measure of the discount rate that can be observed in real time, thus allowing us to estimate 

each stock’s covariance with the discount rate news using a short past rolling window rather than 

full-sample data. We then proceed with the standard asset pricing tests and find a significant and 

robust positive price of discount rate risk. 

Specifically, our measure is constructed by regressing at-the-money put-over-call implied 

volatility ratio on the maturity, using S&P 500 index options
2
. We call this measure    , as it 

represents the slope of this put-call ratio. Naturally, the primary driver of the option prices is the 

second moment of return. Our measure joins the recent effort to extract the information on the 

first moment of return from the option prices (e.g., Martin, 2017). By focusing on the ratio 

between two implied volatilities, we aim to isolate the effect of transitory volatility and thus 

capture the effect of expected return. 

                                                 
1
 See, e.g., Campbell (1991), Campbell (1996), Campbell and Vuolteenaho (2004), Bansal, Kiku, Shaliastovich, and 

Yaron (2014), and Campbell, Giglio, Polk, and Turley (2018). 
2
 In the main specification, we use data for put at delta -0.5 and call at delta 0.5 because they are directly readable 

from the volatility surface. In the robustness test, we calculate     from (interpolated) put and call implied 

volatility ratio at same strike price            , and obtain similar results. 
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We quantitatively illustrate our point with the rare disaster model of Gabaix (2012), in which 

there is no in-sample disaster realization (so that there is no cash flow news) and the volatility is 

a constant (so that there is no volatility news). The spread between the implied volatilities of put 

and call is driven by the mean-reverting resilience to future disasters, which determines the 

discount rate. We show that     is approximately linear in the resilience and hence the discount 

rate. 

More generally, based on put-call parity, the price difference between a pair of at-the-money 

put option and call option equals the present value of dividends up to the maturity of the options, 

which is increasing in the maturity and decreasing in the level of the discount rate for dividends. 

Our slope measure,    , becomes larger when the discount rate for dividend is lower, as the 

present value of the dividend per unit time increases. This argument holds both for models with 

exogenous variation in the discount rate, and for models with endogenous discount rate by the 

representative agent.
3
 They share the same prediction in the time-series:     should negatively 

predict future market return. However, they differ in the price of discount rate risk obtained from 

the cross-section of stocks since they disagree on whether the discount rate is high during good 

times (low marginal utility) or bad times (high marginal utility), as pointed out by Kozak and 

Santosh (2020). For the first type of models, a stock that positively co-varies with     provides 

a hedge against deterioration of investment opportunity, and thus earns a lower expected return. 

For the second type of models, the same stock performs badly when the primitive bad shocks 

drive the discount rate to rise, and thus is considered risky and may earn a higher expected 

return.
4
 

                                                 
3
 Models with exogenous variation include the ICAPM framework of, e.g., Campbell (1993), as well as behavioral 

models featuring one group of investors with erratic demand, e.g., Barberis, Greenwood, Jin, and Shleifer (2015). 
4
 This prediction depends on the choice of parameter in the model. Kozak and Santosh (2020) clarify this issue in 

the context of the habit model and the long run risk model. 
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We start by verifying the predictability in the time-series. Indeed, we find that     

significantly and negatively predicts future stock market return at 6-months, 1-year, and 2-years 

horizons, and this relation is robust to a list of time-series predictors as controls. The economic 

magnitude is sizable (and comparable to the prediction from Gabaix (2012) model), with a 

one-standard-deviation increase of     associated with 0.91%, 2.41%, and 3.46% decrease of 

next 6-months, 1-year, and 2-years market excess returns. 

In the cross-section, we estimate individual stock’s slope beta (    ) as its exposure to     

using past 12-months daily data and examine its relationship with future stock returns. We find a 

negative relation between the slope beta and future stock returns, in support of the positive price 

of discount rate risk
5
. The univariate portfolio analysis shows that portfolios sorted by      can 

generate a monthly high-minus-low return spread about -0.51% (-0.74%) with t-statistics of 

-2.82 (-3.75) in the equal-weighted (value-weighted) case, which corresponds to -6.12% (-8.88%) 

annually. In addition, the alphas adjusted for a list of factor models, including CAPM, 

Fama-French three-factor and five-factor models, Carhart four-factor model, and the Q5 model 

in Hou, Mo, Xue, and Zhang (2021), still remain statistically significant and economically large. 

Furthermore, by tracking the return of     -sorted short-long strategy over time, we find that the 

predictive ability of      is not restricted to any specific period. 

We also perform bivariate portfolio analysis and Fama-Macbeth regression with commonly 

used stock risks or characteristics as controls, including CAPM beta, volatility beta, size, 

book-to-market ratio, momentum, reversal, illiquidity, idiosyncratic volatility, asset growth, and 

profitability. The results suggest that the slope beta effect is not explained by these variables. 

                                                 
5
 Note that the price of discount rate risk is measured by examining the relation between stock’s exposure to 

discount rate shocks and its future returns. Since our spc is negatively related to discount rate, the cross-sectional 

negative relation between slope beta and future stock returns actually implies a positive price for discount rate risk. 
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In the main analysis, we construct     using put (call) implied volatility at delta -0.5 (0.5) 

in Volatility Surface for convenience. However, the theoretical analysis uses at-the-money 

options. Therefore, we estimate alternative     from interpolation of put and call implied 

volatility at same strike            . The results show that our findings are robust. We also 

conduct robustness tests for alternative slope betas (1) as exposure to     innovations rather 

than exposure to    , (2) with different factor returns as controls, or (3) after excluding some 

maturities in     construction. The results are robust across these different specifications. 

The results from the time series and the cross-section are consistent with the idea that     

contains information about the discount rate. However, it is also possible that the slope changes 

due to informed trading. For example, a strong demand to hedge future crash increases the 

implied volatility of long maturity put options, which could be the reason that     negatively 

predicts future return. To distinguish between these two alternative explanations, we turn to 

individual stock options. Specifically, the informed trading argument would also apply to the 

options on individual stocks, whereas our discount rate hypothesis does not apply to individual 

stock options as the dividends of individual stock are discretely paid out. After constructing      

from individual stock options, we find that it does not provide additional information after 

controlling for other option-based predictors in the literature, while      always exhibits 

significantly negative predictive ability, which helps us to rule out the informed trading 

explanation. 

This paper is primarily a study of the price of discount rate risk. As pointed out by Chen and 

Zhao (2009), the traditional vector autoregressive approach that extracts discount rate news from 

realized return, such as Campbell and Vuolteenaho (2004), generate non-robust results. Recently, 

Kozak and Santosh (2020) estimate the covariance with discount rate directly and find a 



 

 6 

significantly negative risk price. However, their method requires a long time series of future 

realized return, uses full-sample information, and applies to portfolios. Our approach utilizes 

only historical data, applies to individual stocks, and thus corresponds to tradable strategies. We 

find a significant and positive risk price, consistent with the recent finding of Badidi, Boons, and 

Frehen (2022) who use the returns around macroeconomic announcement days. 

Our work also contributes to the enormous research about option-implied information (See, 

e.g., the survey of Christoffersen, Jacobs, and Chang, 2013) and is particularly related to two 

strands of them. First, it complements the literature about put-call implied volatility spread by 

studying the term structure information. Cremers and Weinbaum (2010) document that the 

put-call implied volatility spread extracted from individual stock options predicts stock returns in 

the cross-section, and they explain it through the informed trading in option market. Bali and 

Hovakimian (2009) and Yan (2011) find similar evidence, but they attribute the predictive ability 

to its proxy for jump risk. Different from them, we focus on the term structure information and 

calculate     from index option to examine it as both a time-series predictor and a systematic 

risk in the cross-section, rather than treating it as characteristics. 

Second, this paper is also related to the literature about term structure of implied volatility. 

The term structure of implied volatility has been shown to predict future changes of short-term 

implied volatility (Mixon, 2007), cross-sectional option returns (Vasquez, 2017), and returns of 

variance-related assets (Johnson, 2017). However, to our knowledge, there seems to be no 

evidence that it can predict aggregate stock market return. In contrast, we study the term 

structure of put-over-call implied volatility spread and find that it is a good time-series predictor. 

Related to our cross-sectional part, a working paper of Xie (2014) explores if term structure 

of implied volatility is a priced risk in the cross-section of stocks and finds that individual stock’s 
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exposure to changes of volatility term structure is related to its future return. However, the 

predictability seems to be limited, as the paper mainly focuses on the triple-sort and the 

high-minus-low return spread is small. This paper differs by looking at term structure of 

put-over-call implied volatility spread, and our slope beta is a much stronger return predictor in 

the cross-section. 

2.      and Aggregate Stock Market Return 

2.1.  Estimation of     

We start by constructing     to capture the term structure of put-over-call implied volatility 

ratio, which largely alleviates the influence of common volatility shocks. First, we define the 

put-call implied volatility ratio as
6
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) is the date-t implied volatility of put (call) option with delta -0.5 

(0.5) and maturity T for S&P 500 index option (secid=108105), which can be readily obtained 

from Volatility Surface in OptionMetrics. Here, we choose at-the-money option due to liquidity 

concern and our theoretical analysis below. In the robustness tests, we would try alternative 

definition of at-the-money option through strike price            , instead of delta. 

Next, for each day t, we run OLS regression of    
   

 on the corresponding maturity   

using all available maturities in Volatility Surface (10, 30, 60, 91, 122, 152, 182, 273, 365, 547, 

and 730 days) to obtain the slope      

   
   

                 
 

   
    

                                                 
6
 Here, -1 does not affect the regression slope     below. 
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The daily      ranges from Jan 4, 1996 to Dec 31, 2019, a total of 6040 days. Figure 1 

shows the time-series of      at both daily and monthly frequency (month-end value)
7
. We can 

see that     varies much over time, showing less persistence. This is confirmed in the summary 

statistics of Table 1. In particular, the mean of     is much smaller than its standard deviation 

in magnitude, and     sometimes can be quite high or low, with several standard deviations 

away from its mean. The first-order autocorrelation for     is about 0.51 (0.33) at daily 

(monthly) frequency. The low persistence of     seems to suggest that we can approximately 

treat the level of     as shocks to    , which we would utilize in the cross-sectional tests later. 

[Insert Figure 1 here] 

[Insert Table 1 here] 

2.2.  What does     measure? 

In this section, we show that     is negatively related to the discount rate. We 

quantitatively assess this argument with a calibration of the Gabaix (2012) model, in which there 

is no in-sample disaster realization (so that there is no cash flow news) and the volatility is a 

constant (so that there is no volatility news). The dividend discount rate and the expected return 

on stock are one and the same thing in Gabaix (2012).
8
 We use    to represent this discount rate, 

which is also the expected return on the stock. 

Approximately, at-the-money option price is proportional to its implied volatility, i.e., 

                                         . Hence, the put-call implied volatility ratio for 

at-the-money option is close to the at-the-money put-call option price ratio, i.e., 

                                                 
7
 Although our focus is on the daily     since we need to estimate individual stock’s exposure to it using short 

rolling window in the cross-sectional test, we also use monthly     in the time-series part for some purposes. 
8
 In the model, the impact of a disaster varies over time. However, the level of dividend across different maturities 

is always affected equally. Therefore, the term structure of dividend discount rate is flat with a countercyclical level 

(see Appendix VII.B in Gabaix (2012)). 
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put-call parity for at-the-money options, the numerator measures the present value of dividends 

from time t to time T, which inversely depends on the discount rate of dividend. Hence, 
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where   is the maturity,    is the dividend level, and          is the dividend yield. In 

Gabaix (2012), the dividend level    grows at a deterministic rate, which we simply set it to be 

0 for illustration
9
. This is why, in the above formula, we discount the same    till the maturity 

of options. Using ∫
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which is evaluated at     as it is the average maturity of the observations in the data. It is 

straightforward to rewrite the formula as a predictive regression:  

   
 

 
 

     

   
     

                                                 
9
 If we assume the dividend level    grows at a deterministic rate    rather than 0, then we can simply replace 

the    with       in all the equations in this section. Finally, we would have    
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In the specification of Gabaix (2012) (see Section III.C.), dividend yield    and volatility 

         (in Gabaix's Equation (22)) are both increasing functions of the expected return. 

However, the ratio of the two is essentially a constant with the calibration in the paper. Therefore, 

the above equation suggests that      negatively predicts future stock return with the 

coefficient on      being  
     

   
  

        

      
     , if we plug in        and      . 

To conclude,     is theoretically a (negative) proxy for the discount rate, which we verify 

in the empirical analysis below. 

2.3.  𝐬𝐩𝐜 and aggregate stock market returns 

We run the predictive regression of future h-days market excess return       
  on      

      
              

where       
  is calculated by compounding daily market excess returns from t+1 to t+h (both 

inclusively), and the horizon h can be 21, 63, 126, 252, or 504 trading days. The regression is run 

at daily frequency and the t-statistics are adjusted according to Newey and West (1987) with lags 

equal to the predictive horizon, i.e., 21, 63, 126, 252, or 504 lags. Here, we map 1 month 

calendar days with 21 trading days. 

Table 2 shows the regression results. In the first five columns where we do not add any 

control variables, the coefficients on     are negative across all predictive horizons, and they 

are significant at 6-months, 1-year, and 2-years horizons. As for the magnitude, a 

one-standard-deviation increase of     is associated with a 0.91%, 2.41%, and 3.46% decrease 

of next 6-months, 1-year, and 2-years market excess returns (recall that the standard deviation of 

    is 3.24% in Table 1), which are economically large. 

For the horizons in which     has a significant coefficient, we further control for the 

expected return bound in Martin (2017), which is a well-known predictor at daily frequency. The 
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results are shown in the last three columns. We can see that the coefficients on     are still 

significantly negative, which implies that     carries additional information with respect to the 

return bound. For the return bound, the coefficients are all close to 1, consistent with Martin 

(2017), and they are significant at 6-months and 1-year horizons, although weaker at 2-years 

horizon. 

[Insert Table 2 here] 

To include more time-series predictors (mostly at monthly frequency) as controls, we need 

to perform the predictive regression at monthly frequency. First, we check if the predictive 

ability of     still exists at monthly frequency. Panel A of Table 3 shows the regression results 

of next h-months market excess return       
  on      at the end of month s. The horizon h can 

be 1, 3, 6, 12, or 24 months, and       
  is calculated by compounding monthly market excess 

returns from month s+1 to s+h (both inclusively). The t-statistics are adjusted according to 

Newey and West (1987) with lags equal to the predictive horizon, i.e., 1, 3, 6, 12, or 24 lags. We 

can see that the coefficients on     are all negative and they are significant at 1-year and 

2-years horizons, broadly consistent with Table 2. 

Second, to examine if     can provide additional information for return prediction, we add 

other popular time-series predictors, which include the comprehensive time-series predictors in 

Goyal and Welch (2008) from Amit Goyal’s website
10

, the variance risk premium in Bollerslev, 

Tauchen, and Zhou (2009) with the realized variance part from lag or statistical forecast (denoted 

                                                 
10

 The predictors in Goyal and Welch (2008) include the log of dividend to price ratio (dp), log of dividend to 

lagged price ratio (dy), log of earnings to price ratio (ep), log of dividends to earnings ratio (de), the sum of squared 

daily returns on the S&P 500 (svar), the cross-sectional beta premium (csp) in Polk, Thompson, and Vuolteenaho 

(2006), the book value to market value ratio for the Dow Jones Industrial Average (bm), the net issues to market 

capitalization ratio (ntis), the Treasury-bill rates (tbl), the long-term government bond yield (lty), the long-term rate 

of returns (ltr), the term spread which is the difference between the long-term yield on government bonds and the 

Treasury-bill (tms), the default yield spread which is the difference between BAA and AAA-rated corporate bond 

yields (dfy), the default return spread which is the difference between long-term corporate bond and long-term 

government bond returns (dfr), and the Consumer Price Index (infl). 
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by vrp and evrp), which are obtained from Hao Zhou’s website, and the expected return bound in 

Martin (2017) at each month-end (rbound). Here, we focus on 1-year horizon. Panel B (except 

the “All Sig.” column) of Table 3 shows the results when adding these predictors as control one 

by one. As is shown, the coefficient on     is always significantly negative no matter which 

predictor is added as control. 

Finally, notwithstanding the multicollinearity issue, in the “All Sig.” column of Panel B, we 

simultaneously control for dy, de, svar, bm, tbl, tms, dfy, infl, vrp, and rbound, which are 

significant in the bivariate regression with    .
11

 The coefficient on     remains significantly 

negative with all these variables as controls. 

[Insert Table 3 here] 

Notice that the point estimates of regression slope for the 1-year horizon, i.e., -0.745 in 

Table 2 and -1.113 in Table 3, are comparable to the theoretical prediction of -1.6 in Section 2.2, 

but the regression intercept differs much. Therefore, an out-of-sample analysis which takes the 

coefficients from the model will not generate a good out-of-sample R
2
. This is reasonable since 

our theoretical analysis involves simplified assumptions and we only use it to reveal the negative 

relation between     and expected return. In unreported test, we also examine the 

out-of-sample performance using traditional rolling or expanding window regression, though fail 

to obtain good results. However, this does not necessarily mean     is useless, especially when 

considering the unstable parameter estimates in traditional out-of-sample approach (Goyal and 

Welch, 2008). Since     is only available from 1996, the short sample period is hard for us to 

balance between obtaining reliable parameter estimates from as long initial sample as possible 

                                                 
11

 We exclude dp since it is highly correlated with dy (about 0.98) and dy has a higher t-statistics than dp in the 

bivariate regression with    . Nonetheless, including dp does not affect the significant level of    . 
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and evaluating out-of-sample performance through enough evaluation sample. We would like to 

reexamine the out-of-sample performance when more data becomes available. 

3.  Slope Beta and Cross-Sectional Stock Returns 

The time-series regression results validate our conjecture that     carries information about 

the discount rate, which makes it a potential state variable for future investment opportunities 

(Campbell, 1993; Maio and Santa-Clara, 2012). According to ICAPM, shocks to     should be 

priced in the cross-section, which we test in this section. 

3.1.  Slope Beta 

Individual stock’s slope beta (    ) is defined as its exposure to market     shocks. 

However, as is shown in Section 2.1,     varies much over time and is not very persistent. 

Hence, we directly use the level of     to represent shocks to    .
12

 Specifically, at the end of 

each month, for each stock,      is estimated by regressing its daily excess return on the daily 

    while controlling for some common factors 

          
          

        
          

          
             

where      is the excess return (over risk free rate) of stock i at day s.     ,     ,     , 

and      are the contemporaneous daily factor returns of Carhart four-factor model. In the 

robustness tests, we also consider alternative factor returns as control. The regression is run at 

the end of each month using past 12-month daily data, requiring at least 200 valid observations. 

The daily stock return data is obtained from CRSP. Since the daily     starts from Jan 4th 1996, 

the data for      is available from the end of Dec 1996. 

                                                 
12

 In the robustness tests, we use AR(1) model to extract the     innovations and estimate      accordingly. 
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3.2.  Sample and Controls 

In the cross-sectional analysis, the monthly stock return and characteristics that we use are 

mainly obtained from the open source asset pricing dataset provided by Chen and Zimmermann 

(2021), which is described in detail in the Internet Appendix A. We restrict the sample to be all 

US common stocks listed in NYSE, NASDAQ, and AMEX. In addition, to mitigate the influence 

of micro-cap stocks, we focus on those stocks with market capitalization above NYSE size 20
th

 

cut-off at the end of each month, where the NYSE size breakpoint data is from Kenneth French’s 

website.
13

 

To examine if      contains some distinct information for return prediction, we add a list 

of commonly used stock risks or characteristics as controls, including the CAPM beta (     ), 

volatility beta (    ) in Ang, Hodrick, Xing, and Zhang (2006), market capitalization in millions 

of dollars (SIZE), book-to-market ratio (BM) in Fama and French (1992), momentum (MOM) in 

Jegadeesh and Titman (1993), reversal (REV) in Jegadeesh (1990), illiquidity (ILLIQ) in 

Amihud (2002), idiosyncratic volatility (IVOL) in Ang, Hodrick, Xing, and Zhang (2006), total 

asset growth rate (AG) in Fama and French (2015), and the R&D-adjusted operating profitability 

(OPR) in Ball, Gerakos, Linnainmaa, and Nikolaev (2015)
14

. Most of these control variables are 

obtained from the open source asset pricing dataset with some small modifications. Internet 

Appendix B provides the detailed descriptions. 

Our final sample contains monthly      and other stock characteristics from Dec 1996 to 

Dec 2019 and the one month-ahead stock return data from Jan 1997 to Jan 2020, a total of 277 

months. For our purpose, we keep only those stock-month observations with valid      and 

                                                 
13

 In the Internet Appendix C, we also repeat the main cross-sectional analysis using the all-stocks sample that does 

not restrict market capitalization and the large-cap sample that requires stocks to have market capitalization above 

NYSE size 50
th

 cut-off at the end of each month. The results are still significant and the conclusions do not change. 
14

 Our results are robust to replacing OPR with the cash-based operating profitability in Ball, Gerakos, Linnainmaa, 

and Nikolaev (2016). 
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one-month-ahead stock return. Table 4 shows the summary statistics, with the time-series 

averages of cross-sectional statistics and correlation matrix in Panel A and B respectively. For 

the main sample (above-NYSE-size-20
th

), we have on average 1919 stocks with valid      each 

month and the average cross-sectional mean of market capitalization is around 8.6 billion dollars. 

From Panel A of Table 4, we can see that the cross-sectional mean, median, and skewness of 

     are all close to zero on average, which means that at each cross-section, approximately half 

of the stocks have positive      and serve as hedging assets for deterioration of future 

investment opportunities under the ICAPM context. Panel B shows that      has very mild 

correlation with other stock characteristics, suggesting that      captures distinct information 

from them. 

[Insert Table 4 here] 

3.3.  Univariate Portfolio Analysis 

As a first step of cross-sectional tests, we conduct univariate portfolio analysis to examine 

the relation between      and one-month-ahead stock excess returns. At the end of each month 

t, stocks are sorted into 10 groups based on ascending order of     . Then, for each portfolio, 

we calculate its equal-weighted and value-weighted excess returns in month t+1. Table 5 shows 

the time-series averages of each portfolio’s month t+1 excess returns (Raw) and the month t+1 

high-minus-low returns (H-L), as well as their alphas adjusted by a long list of factor models. 

The factor models include CAPM, Fama-French three-factor and five-factor models (FF3 and 

FF5), Carhart four-factor model (FFC), Fama-French five-factor model plus momentum (FF6), 

and the Q5 model in Hou, Mo, Xue, and Zhang (2021). The t-statistics are adjusted according to 

Newey and West (1987) with 6 lags, which is approximately equal to             , as 

suggested in Bali, Engle, and Murray (2016). 
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From Table 5, we can see a clear negative relation between      and one-month-ahead 

portfolio excess returns. Panel A shows that in the equal-weighted case, the average portfolio 

excess return drops almost monotonically from 0.95% to 0.43% as      increases, yielding a 

high-minus-low return about -0.51% per month (t-statistics of -2.82). This corresponds to a 

simple annualized return around -6.12%, which is sizable. In addition, the alphas of 

high-minus-low return with respect to different factor models are close to the raw return, and 

they are all statistically significant. The value-weighted results in Panel B are even stronger, with 

high-minus-low return and alphas ranging from -0.66% to -0.74% per month (or -7.92% to -8.88% 

annually) and t-statistics almost all above 3. 

[Insert Table 5 here] 

Table 6 reports the factor loadings of the high-minus-low returns on different factors. As is 

shown, the loadings are never significantly negative, but significantly positive on momentum 

factor (the equal-weighted case) and value or investment factor
15

 (the value-weighted case), 

which actually amplify the magnitude of alphas. In addition, the adjusted R squares remain low 

across different factor models. These suggest that factor models explain little about the return 

spread sorted by     . 

[Insert Table 6 here] 

To examine if the predictive ability of      for next-month stock return is stable over time, 

we plot in Figure 2 the cumulative sum of monthly low-minus-high return spread sorted by     , 

with equal-weighted (value-weighted) case on the left (right) panel. Both panels show a clearly 

upward trend, albeit more evident for the value-weighted case. We therefore conclude that the 

predictive ability of      is not restricted to any specific periods. 

                                                 
15

 Note that the HML in Fama-French models and R_IA in Q5 model are related due to the investment-q relation. 
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[Insert Figure 2 here] 

Table C1 and C4 in the Internet Appendix C present the results of univariate portfolio 

analysis for the all-stocks sample and above-NYSE-size-50
th

 sample. As one might expect, the 

magnitude and t-stats for the high-minus-low return and alphas are higher in all-stocks sample 

and lower in above-NYSE-size-50
th

 sample. Nonetheless, they are all significantly negative. 

Especially for the above-NYSE-size-50
th

 sample that consists of large cap and liquid stocks, the 

significant result further confirms the predictive ability of     . 

3.4.  Average Characteristics 

To examine whether the     -sorting manifests the information of other stock 

characteristics, we first analyze the average characteristics of     -sorted portfolios. At the end 

of each month t, for each stock characteristic, we calculate its month-t equal-weighted average 

value across stocks within each     -sorted portfolio. The time-series averages of each 

portfolio’s characteristics and the average difference between high-      and low-      

portfolios are shown in Table 7. 

We can see that, in addition to     , which increases monotonically by construction, only 

momentum and profitability exhibit significant difference between high-     and low-     

portfolios, although the patterns are not that monotone. This is consistent with Table 4 that      

has relatively low correlation (in magnitude) with other stock characteristics. High-     

portfolio seems to have lower profitability and experience lower returns in the past, compared 

with low-     portfolio. Since momentum and profitability are positively related to future stock 

returns, they might explain the predictive ability of     . However, as we will show later in the 

bivariate portfolio analysis and Fama-Macbeth regression, this is not the case. 

[Insert Table 7 here] 
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3.5.  Bivariate Portfolio Analysis 

We now perform bivariate portfolio analysis to formally test if the predictive ability of      

for future stock return can be explained by other stock characteristics one by one. Specifically, at 

the end of each month t, stocks are first sorted into 10 groups based on the control variables one 

at a time, and then within each control group, stocks are further sorted into 10 groups based on 

ascending order of     . The month t+1 equal-weighted and value-weighted excess returns for 

each of the 10*10 portfolios are calculated. For each      group, its month t+1 excess return is 

the average month t+1 excess return across 10 control groups. 

Table 8 shows the time-series average of month t+1 excess return for each      group, as 

well as the high-minus-low portfolio, after accounting for the effect of control variables one at a 

time. For the high-minus-low portfolio, we only report its raw return and six-factor alpha for 

brevity, but the alphas adjusted for other factor models are all significant as well. From Table 8, 

we can see that both the high-minus-low return spread and its six-factor alpha remain 

significantly negative no matter which control variable we control for or which kind of weighting 

method is used. This suggests that the negative relation between      and future stock returns 

cannot be explained by any one of these control variables. 

[Insert Table 8 here] 

Table C2 and C5 in the Internet Appendix C report the results of bivariate portfolio analysis 

for the all-stocks sample and above-NYSE-size-50
th

 sample. In both samples, the 

high-minus-low return and its six-factor alpha are all significantly negative across different 

control variables and weighting methods, which strengthens the conclusion that        contains 

some distinct information from other stock characteristics. 
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3.6.  Fama-Macbeth Regression 

To control for multiple control variables simultaneously, we run Fama and Macbeth (1973) 

regression of month t+1 stock excess return on the      and control variables at the end of 

month t. The results are shown in Table 9. All the independent variables are winsorized at 0.5% 

and 99.5% levels on a monthly basis. The t-statistics in parenthesis are adjusted according to 

Newey and West (1987) with 6 lags. 

In specification 1 where we do not add any control variables, the coefficient on      is 

significantly negative, with a t-statistics of -3.23. As for the magnitude, a one-standard-deviation 

increase of      is associated with a 0.18% drop of next-month return (-2.99%*0.061, where 

0.061 is the average cross-sectional standard deviation of        in Table 4), or 2.16% annually. 

In specification 2, we further control for the CAPM beta. The magnitude and significance level 

of the coefficient on      remain largely unchanged, suggesting that      contains distinct 

information from CAPM beta. Meanwhile, the coefficient on CAPM beta is slightly negative and 

insignificant, consistent with literature about flat SML (e.g., Fama and French, 1992). In 

specification 3, we further control for the volatility beta in Ang, Hodrick, Xing, and Zhang 

(2006), which measures stock’s sensitivity to changes in expected volatility (also related to 

changes in future investment opportunities). Again, the coefficient on      does not change 

much and is still quite significant, implying that      also cannot explain the predictive ability 

of     . This is expected since we use implied volatility ratio in     construction to mitigate 

the influence of common volatility shocks. The coefficient on      is positive, inconsistent with 

Ang, Hodrick, Xing, and Zhang (2006), but it is insignificant. This may be due to the different 

stock samples and time periods we use. 
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In specification 4, we further control for some commonly used stock characteristics, 

including book-to-market ratio, size, momentum, reversal, illiquidity, idiosyncratic volatility, 

asset growth, and profitability. Although the magnitude of the coefficient on      drops, it still 

remains significant at 1% level. This indicates that      contains some distinct information 

from these characteristics.
16

 

[Insert Table 9 here] 

Table C3 and C6 in the Internet Appendix C show that the coefficients on      are 

significantly negative across all the regression specifications under both the all-stocks sample 

and above-NYSE-size-50
th

 sample. In particular, the significant negative coefficients on      at 

1% level for the above-NYSE-size-50
th

 sample give us more confidence about the predictive 

ability of     . 

3.7.  Longer Horizons 

As a further test, we examine if the predictive ability of      goes beyond the one month 

horizon. To do this, we perform Fama-Macbeth regression of next h-months stock excess returns 

      
  on      at the end of month t, under the four different regression specifications in 

Table 9. The       
  is calculated by compounding monthly stock returns from month t+1 to 

month t+h (both inclusively) and then minus the corresponding risk-free rate. Here, the horizon h 

can be 3, 6, 9, or 12 months. 

The results are summarized in Table 10. We see that the regression coefficients on      are 

significantly negative across different regression specifications under the 3-months and 6-months 

                                                 
16

 As for the coefficients on characteristics, they are significantly negative for size, reversal, and asset growth, and 

significantly positive for profitability, consistent with prior literature. The coefficients on book-to-market ratio, 

momentum, illiquidity, and idiosyncratic volatility are insignificant and some even have wrong signs. This may 

result from the larger and more liquid stocks we use and different time periods from prior literature. In fact, for the 

all-stocks sample in Table C3 of the Internet Appendix C, the control variables have generally significant 

coefficients with correct signs. 
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horizons. For the 9-months and 12-months horizons,      still shows some predictive ability, 

although not always significant. 

[Insert Table 10 here] 

4.  Robustness 

4.1.  Alternative     

Previously, we calculate     as the slope of the implied volatility ratio of put (delta -0.5) 

over call (delta 0.5), which can be easily mapped to Volatility Surface data. However, the strike 

prices at delta -0.5 and 0.5 are different and the slope cannot be directly mapped to the 

theoretical prediction in Section 2.2. Therefore, for robustness, we use at-the-money options with 

strike price at            , where  ,  ,  , and   represent strike price, stock price, 

risk-free rate, and maturity. The risk-free rates at different maturities are obtained from linear 

interpolation of zero-coupon yield curve in OptionMetrics. 

To calculate the alternative    , we first interpolate to obtain the put and call implied 

volatility at strike             through natural cubic spline. The data we use to interpolate is 

either from Volatility Surface (implied volatility and implied strike at regular maturities) or from 

option trading data in OptionMetrics
17

 (implied volatility and strike price at irregular maturities). 

After obtaining the interpolated put and call implied volatility, we calculate the put-call implied 

volatility ratio and the slope of it against maturity as new    . These two alternative slopes are 

denoted by              and             , respectively. 

                                                 
17

 We filter the option trading data from OptionMetrics (“opprcd” file) as follows: (1) the implied volatility field is 

required to not be missing; (2) the maturity should be at least 10 days; (3) the best bid price should be larger than 0; 

(4) if there are duplicate records with same date, maturity, strike price, and cp_flag, then just keep the one with 

largest volume or open interest. 
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Table 11 shows the time-series predictive regression results for these alternative    . We 

focus on the 1-year predictive horizon (the dependent variable is         
  in Table 2, or        

  

in Table 3). For the        
  case, we only present the regression results without control and with 

“All Sig.” control in Table 3 for brevity, but the coefficients on new     with control variables 

one by one in Panel B of Table 3 are all significant. From Table 11, we can see that the 

coefficients for both              and              are significantly negative across 

specifications, consistent with the results in Table 2 and 3. 

Next, we reexamine the cross-sectional results by estimating slope beta as stock’s exposure 

to these new    , denoted by           
   

 and           
   

, respectively. Table 12 summarizes the 

main cross-sectional results for alternative slope betas, with high-minus-low return spread of 

univariate sort and its six-factor alpha in Panel A, and the Fama-Macbeth regression coefficients 

on slope beta in Panel B. From the first two columns, we can see that both slope betas generate 

significantly negative high-minus-low return spreads and Fama-Macbeth regression coefficients. 

Overall, the results suggest that our findings are not driven by the definition of at-the-money 

option. 

4.2.  Exposure to     Innovations 

In Section 3, we directly estimate slope beta as individual stock’s exposure to market     

by observing the fact that     is not very persistent. Here, for robustness, we rely on AR(1) 

model to first extract     innovations and then estimate slope beta as stock’s exposure to them. 

Using the full sample to estimate     innovations is more accurate. However, this is not 

feasible for real-time investors. Therefore, we also consider using only available information till 

the end of each month: rolling past 12-month data or all available data until current month end 

(with at least 12 months). We choose 12-month window to match the estimation window of slope 
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beta. After obtaining the     innovations, the new slope beta is estimated in the same way as 

Section 3.1 except that     is now replaced by     innovations over the past 12 months. 

These alternative slope betas are denoted by         
   

,         
   

, and           
   

, respectively. 

From the 3
rd

 to 5
th

 column in Table 12, we can see that the new slope betas from     

innovations still yield significantly negative high-minus-low return spreads and Fama-Macbeth 

regression coefficients. However, by comparing the magnitude and significance level with the 

results of original slope beta in Section 3, we notice that the predictive ability for these three new 

slope betas is weaker. This is possibly because     is not persistent and therefore it is hard to 

estimate its conditional expectations and innovations accurately. 

4.3.  Different Factor Controls 

We now test if estimating slope beta with different combinations of factor returns as controls 

would affect the results much. The new        is now estimated via 

          
          ∑  

 
    

 

      

where      is the daily factor return for factor j at day t. In Section 3, we choose   to be Carhart 

(1997) four factors, while now it can be market excess return only, Fama-French three factors, 

five factors, five factors plus momentum, or Q5 factors in Hou, Mo, Xue, and Zhang (2021). The 

corresponding slope betas are denoted by     
   

,     
   

,     
   

,     
   

, and    
   

, respectively. 

The 6th to 10th columns in Table 12 show the main cross-sectional results for these 

alternative slope betas. We can see that the high-minus-low return spreads and alphas are all 

negative and almost always significant. For the Fama-Macbeth regression coefficients on slope 

beta, they are all significantly negative across different regression specifications. These results 

are broadly consistent with those of the original slope beta. 
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4.4.  Maturity Selection 

So far, we use all available maturities in Volatility Surface to construct     and estimate 

slope beta accordingly. For robustness, we now examine if excluding some maturities in     

construction would make any large difference. Two variants are tested. The first is to exclude the 

10-days maturity since it is not available before Nov 2005. The second is to exclude maturities 

above 1 year due to liquidity concern. After obtaining these new    , the new slope betas (     
   

 

and       
   

) are estimated in the same way as Section 3.1. 

The last two columns in Table 12 show that our results are robust to these alternative slope 

betas
18

, with significantly negative high-minus-low return spreads and alphas and the 

Fama-Macbeth regression coefficients. 

[Insert Table 11 here] 

[Insert Table 12 here] 

4.5.      from Individual Stock Option 

We propose that     captures information about discount rate. Alternatively,     might 

be related to investors’ relatively pessimistic view about the long term, such as slowly unfolding 

crisis. By definition,     is high when long maturity put options become expensive, which 

could be the result of informed trading in the option market (Easley, O'Hara, and Srinivas, 1998). 

This hypothesis also implies that     negatively predicts future stock market return, and that 

stocks which positively co-vary with     provide hedges against slowly unfolding crisis. 

We take this hypothesis to the individual stock options, where the presence of informed 

investors is likely far more prevalent than in the index options market. On the other hand, our 

theoretical analysis about     in Section 2.2 requires continuous dividend paying and involves 

                                                 
18

 Here, we only report the cross-sectional results, but the time-series results for these two alternative     are quite 

similar to those in Section 2. 
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put-call parity which is often violated for individual stock options that are American style, face 

more stringent short sell constraints, etc. (e.g., Ofek, Richardson, and Whitelaw, 2004). Hence, 

we are able to distinguish between these two alternative hypothesis by exploring whether the 

    extracted from individual stock options can negatively predicts future individual stock 

return. To this end, we calculate      at individual stock level following the same procedure in 

Section 2.1. This further restricts our above-NYSE-size-20
th

 sample to those stocks with options. 

We also require individual stock options to have valid    
   

 for at least 10 maturities in 

Volatility Surface (11 maturities in total) because the      calculated from too few maturities is 

likely to be more extreme. We keep only the month-end      and use the CRSP-OptionMetrics 

linkage provided by WRDS to link datasets. 

We examine the pricing of      in the cross-sectional stock returns through Fama-Macbeth 

regression in Table 13. In the first four columns, we regress month t+1 stock excess return on 

     at the end of month t, under the four kinds of control variable combinations in Table 9. The 

coefficient on      is significantly positive, contrary to the informed trading hypothesis. Since 

we now focus on those stocks with options, we need to control for other option-based predictors 

to see if      provides additional information. In column 5, we further control for the implied 

volatility skew of Xing, Zhang, and Zhao (2010), implied volatility spread of Yan (2011), and 

risk-neutral skewness of Stilger, Kostakis, and Poon (2017)
19

, denoted by IVSKEW, IVSPREAD, 

and RNS. The coefficient on      becomes negative, but not significant. In contrast, the 

coefficients on IVSKEW, IVSPREAD, and RNS are all significant and the signs are consistent 

with prior literature. This suggests that the significant positive coefficients on      in the first 

                                                 
19

 We follow Yan (2011) to construct IVSKEW and IVSPREAD directly from Volatility Surface data. Specifically, 

the implied volatility spread is the implied volatility difference between put (delta=-0.5) and call (delta=0.5) with 30 

days maturity, and the implied volatility skew is the implied volatility difference between put (delta=-0.1) and call 

(delta=0.5) with 30 days maturity. Similarly, RNS is also constructed using the 30-days maturity data from 

Volatility Surface, following the formulas in Bakshi, Kapadia, and Madan (2003). 
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four columns are due to its correlation with the three option-based predictors and      itself 

does not contain additional information. 

In the next five columns, we include both      and     , with the same sets of control 

variables as the first five columns. Similarly, the coefficient on      changes from significantly 

positive to insignificantly negative when the three option-based predictors are added as controls. 

On the contrary, the coefficient on      is always significantly negative across different 

regression specifications. Therefore, the result does not support the informed trading hypothesis, 

but in favor of our initial argument. 

[Insert Table 13 here] 

5.  Conclusions 

In this paper, we explore the information content in term structure of implied volatility 

spread. We compute at-the-money put-over-call implied volatility ratio from S&P 500 index 

options and regress them on the corresponding maturities to obtain a slope measure (   ). We 

theoretically show that     captures information about the discount rate, with high     

associating with low expected return, which we verify empirically in the time-series predictive 

regression. 

In the cross-section, by treating     as a state variable for future investment opportunities 

in ICAPM, we show that stocks’ exposure to market     (slope beta, or     ) negatively 

predicts their future returns. Low-     stocks significantly outperform high-     stocks by 0.51% 

(0.74%) per month under equal (value) weight, which is robust to various controls and 

specifications. The result suggests that the price of discount rate risk is positive.  
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Figure 1: Time-series of    . The top and bottom panels refer to the daily and monthly     

(month-end value), respectively, with the red dashed line as the sample mean. The data ranges 

from Jan 1996 to Dec 2019. 

 

 

Figure 2: Cumulative Sum of     -sorted Low-minus-high Return. The left and right panels 

show the equal-weighted and value-weighted results, respectively. 
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Table 1: Summary Statistics for     

This table shows the summary statistics for daily and monthly    . The monthly     is the month-end 

value of daily spc. In the last column, we also present the first-order autocorrelation coefficient. The data 

ranges from Jan 1996 to Dec 2019. 

 
Mean Std. Min P25 P50 P75 Max Skew N AR1 

Daily         -0.74 3.24 -50.25 -2.52 -0.87 0.95 14.97 -0.55 6040 0.51 

Monthly         -0.90 3.24 -12.04 -2.88 -0.89 1.01 11.81 -0.02 288 0.33 

 

Table 2:     and Future Stock Market Return (Daily Frequency) 

This table shows the predictive regression of future stock market excess return with different horizons 

      
  on     . The regression is run at daily frequency.       

  represents the h-days market excess 

returns by compounding daily market excess returns from t+1 to t+h (both inclusively). The horizon h can 

be 21, 63, 126, 252, or 504 trading days. In the last three columns, the RBound at daily frequency, which 

is the lower bound of expected market excess return for different horizons (Martin, 2017), is added as 

control. The Newey and West (1987) t-statistics with lags equal to the predictive horizon are reported in 

parenthesis. The date t ranges from Jan 4th 1996 to Dec 31th 2019. 

        
         

          
          

          
          

          
          

  

Const. 0.007*** 0.019*** 0.037*** 0.077*** 0.172*** -0.012 0.001 0.066 

 
(2.93) (2.80) (2.77) (2.70) (2.98) (-0.64) (0.02) (0.61) 

     -0.008 -0.115 -0.280* -0.745*** -1.068*** -0.366** -0.827*** -1.183*** 

 
(-0.16) (-1.14) (-1.92) (-2.72) (-2.64) (-2.40) (-2.88) (-3.04) 

RBound 
     

2.350*** 1.889** 1.366 

      
(2.91) (2.28) (1.24) 

Adj. R
2
 -0.01% 0.20% 0.60% 1.98% 1.64% 6.80% 7.18% 5.08% 

N 6040 6040 6040 6040 6040 6040 6040 6040 
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Table 3:     and Future Stock Market Return (Monthly Frequency) 

Panel A shows the predictive regression of future stock market excess return at different horizons       
  

on      at the end of each month. The regression is run at monthly frequency.       
  represents the 

h-months market excess returns by compounding monthly market excess returns from month s+1 to 

month s+h (both inclusively). The horizon h can be 1, 3, 6, 12, or 24 months. Panel B (except the “All 

Sig.” column) presents the regression results of        
  on     , with other popular time-series 

predictors as control one by one (the column name is the control variable). In the “All Sig.” column, we 

simultaneously control for dy, de, svar, bm, tbl, tms, dfy, infl, vrp, and rbound, which are significant in 

the bivariate regression with    . We exclude dp since it is highly correlated with dy (about 0.98) and dy 

has a higher t-statistics than dp in the bivariate regression with    . In both panels, the Newey and West 

(1987) t-statistics with lags equal to the predictive horizon are reported in parenthesis (4 lags for the “cay” 

column of Panel B since it is at quarterly frequency). The month s ranges from Jan 1996 to Dec 2019. 

Panel A: Predictive regression without control variables 

       
        

        
         

         
  

Const. 0.006** 0.017** 0.035** 0.072** 0.168*** 

 
(2.34) (2.35) (2.57) (2.49) (2.87) 

     -0.017 -0.168 -0.325 -1.113*** -1.286** 

 (-0.26) (-1.11) (-1.52) (-3.90) (-2.43) 

Adj. R
2
 -0.33% 0.12% 0.51% 4.22% 2.07% 

N 288 288 288 288 288 

Panel B: Predictive regression with control variables in the column name (dependent variable is        
 ) 

 dp dy ep de svar csp bm ntis tbl lty 

Const. 1.721*** 1.732*** 0.130 0.142*** 0.060** -0.030 -0.200** 0.073** 0.128*** 0.188*** 

 
(4.07) (4.50) (0.49) (3.58) (2.10) (-0.37) (-2.14) (2.57) (4.61) (2.85) 

     -0.927*** -0.847** -1.114*** -1.074*** -1.177*** -1.923*** -1.186*** -1.012*** -1.324*** -1.200*** 

 
(-2.83) (-2.53) (-3.94) (-3.49) (-3.87) (-5.23) (-3.91) (-3.49) (-4.48) (-4.01) 

Control 0.411*** 0.414*** 0.018 0.081** 3.693* -37.127 1.016*** 1.430 -2.679** -2.690 

 
(3.94) (4.33) (0.21) (2.15) (1.69) (-1.05) (3.33) (0.87) (-2.15) (-1.56) 

Adj.R
2
 27.84% 28.07% 4.04% 7.89% 5.04% 13.49% 21.57% 6.46% 14.08% 9.39% 

N 288 288 288 288 288 84 288 288 288 288 

 ltr tms dfy dfr infl cay vrp evrp rbound All Sig. 

Const. 0.071** 0.007 -0.009 0.072** 0.087*** 0.076*** 0.057** 0.060** 0.003 1.727** 

 
(2.45) (0.14) (-0.18) (2.51) (3.40) (2.87) (2.05) (2.16) (0.07) (2.28) 

     -1.114*** -1.249*** -1.172*** -1.103*** -1.165*** -1.655*** -1.065*** -1.129*** -1.147*** -0.698** 

 
(-3.85) (-4.31) (-3.93) (-3.94) (-3.88) (-3.99) (-3.59) (-3.86) (-3.70) (-2.06) 

Control 0.176 2.931* 8.128* 0.607 -8.981** -0.295 0.096* 0.068 1.708** ----- 

 
(0.63) (1.80) (1.96) (1.03) (-2.39) (-0.35) (1.70) (1.52) (2.12) ----- 

Adj.R
2
 3.98% 9.04% 7.83% 4.28% 7.32% 7.11% 5.38% 4.67% 8.23% 41.88% 

N 288 288 288 288 288 96 288 288 288 288 
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Table 4: Summary Statistics 

This table shows the summary statistics for the cross-sectional variables, including slope beta (    ), 

CAPM beta (     ), volatility beta (    ), book-to-market ratio (BM), market capitalization in millions 

of dollars (SIZE), momentum (MOM), reversal (REV), illiquidity (ILLIQ), idiosyncratic volatility 

(IVOL), asset growth (AG), and profitability (OPR). Panel A presents the time-series averages of the 

cross-sectional statistics while Panel B shows the time-series average of cross-sectional correlation matrix, 

with the lower (upper) triangle referring to the Pearson (Spearman) correlation coefficient. The data 

ranges from Dec 1996 to Dec 2019, and includes only those common stocks that have valid      and are 

above NYSE size 20
th
 cut-off at the end of each month. 

Panel A: Average cross-sectional statistics 

 
Mean Std. Min 5% 25% 50% 75% 95% Max Skew N 

     -0.001 0.061 -0.411 -0.096 -0.032 0.000 0.032 0.093 0.420 0.09 1919 

      1.081 0.465 -0.204 0.446 0.757 1.010 1.337 1.957 3.247 0.75 1919 

     0.001 0.009 -0.065 -0.012 -0.004 0.000 0.005 0.014 0.071 0.15 1919 

BM 0.543 0.443 0.003 0.105 0.268 0.451 0.709 1.235 6.739 3.86 1738 

SIZE 8566.8 26824.2 496.9 563.0 950.1 1966.7 5419.3 33144.3 481753.0 8.97 1919 

MOM 0.211 0.571 -0.784 -0.349 -0.069 0.117 0.350 1.036 9.247 5.06 1906 

REV 0.018 0.119 -0.473 -0.143 -0.043 0.011 0.069 0.197 1.398 2.10 1919 

ILLIQ 0.020 0.282 0.000 0.000 0.001 0.003 0.009 0.051 10.862 27.30 1906 

IVOL 0.018 0.012 0.001 0.007 0.011 0.015 0.022 0.038 0.183 4.45 1919 

AG 0.202 0.738 -0.745 -0.130 0.005 0.081 0.209 0.834 19.567 13.61 1786 

OPR 0.171 0.123 -0.964 0.018 0.111 0.162 0.225 0.358 0.969 -0.59 1360 

Panel B: Average cross-sectional correlation 

 
                BM SIZE MOM REV ILLIQ IVOL AG OPR 

      -0.019 -0.003 0.002 -0.007 -0.046 -0.020 -0.008 0.010 -0.013 -0.022 

      -0.021  0.057 -0.099 -0.115 -0.014 -0.006 0.056 0.431 0.086 -0.109 

     -0.002 0.055  -0.001 -0.049 -0.031 0.000 0.041 0.048 0.012 -0.011 

BM 0.000 -0.056 -0.006  -0.165 -0.002 0.006 0.198 -0.123 -0.202 -0.471 

SIZE 0.002 -0.062 -0.027 -0.079  0.062 0.017 -0.891 -0.325 -0.013 0.172 

MOM -0.038 0.043 -0.024 0.006 -0.005  -0.001 0.083 -0.034 -0.032 0.003 

REV -0.020 0.004 0.001 0.009 -0.004 0.011  0.056 0.035 -0.006 -0.001 

ILLIQ 0.005 -0.057 0.000 0.076 -0.037 0.069 0.038  0.232 -0.020 -0.203 

IVOL 0.008 0.375 0.042 -0.049 -0.138 0.064 0.168 0.051  0.104 -0.120 

AG -0.005 0.092 0.010 -0.055 -0.012 -0.010 -0.008 0.004 0.096  0.107 

OPR -0.021 -0.120 -0.009 -0.329 0.106 -0.064 -0.022 -0.077 -0.129 -0.049  
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Table 5: Portfolio Returns Sorted by      

This table shows the results of univariate portfolio analysis. At the end of each month t, stocks are sorted 

into 10 groups based on ascending order of     . Then, for each portfolio, the equal-weighted and 

value-weighted excess returns in month t+1 are calculated. The table shows the time-series averages of 

each portfolio’s month t+1 excess returns (Raw) and the month t+1 high-minus-low returns (H-L), as well 

as their alphas adjusted for factor models, which include CAPM, Fama-French three-factor and 

five-factor models (FF3 and FF5), Carhart four-factor model (FFC), Fama-French five-factor model plus 

momentum (FF6), and the Q5 model in Hou, Mo, Xue, and Zhang (2021). The t-statistics in parenthesis 

are adjusted according to Newey and West (1987) with 6 lags. The month-end t ranges from Dec 1996 to 

Dec 2019, and the sample includes only those common stocks above NYSE size 20
th
 cut-off at the end of 

each month. 

Panel A: Equal-weighted return 

 
Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 0.95 0.88 0.92 0.86 0.79 0.77 0.77 0.73 0.67 0.43 -0.51*** 

 
(2.28) (2.59) (2.94) (3.01) (2.85) (2.75) (2.57) (2.34) (1.97) (0.96) (-2.82) 

       (%) 0.01 0.14 0.22 0.22 0.16 0.14 0.12 0.05 -0.08 -0.50 -0.51*** 

 
(0.06) (1.01) (1.42) (1.57) (1.20) (0.92) (0.79) (0.38) (-0.64) (-2.35) (-2.66) 

      (%) 0.02 0.11 0.17 0.17 0.12 0.09 0.07 0.01 -0.10 -0.49 -0.52*** 

 (0.17) (1.32) (1.86) (2.33) (1.39) (1.07) (0.92) (0.09) (-1.39) (-3.69) (-2.62) 

      (%) 0.18 0.17 0.23 0.20 0.15 0.13 0.11 0.06 -0.07 -0.44 -0.62*** 

 (1.66) (2.29) (2.67) (2.71) (1.93) (1.70) (1.31) (0.90) (-0.90) (-3.49) (-3.35) 

      (%) 0.26 0.11 0.10 0.05 0.04 -0.02 -0.01 -0.04 -0.12 -0.26 -0.51** 

 (1.81) (1.31) (1.35) (0.87) (0.57) (-0.32) (-0.19) (-0.60) (-1.64) (-2.17) (-2.50) 

      (%) 0.36 0.16 0.15 0.08 0.08 0.01 0.02 -0.00 -0.10 -0.23 -0.59*** 

 (3.03) (2.14) (2.25) (1.35) (1.08) (0.23) (0.19) (-0.01) (-1.26) (-1.98) (-3.20) 

     (%) 0.47 0.20 0.14 0.10 0.11 0.04 0.06 0.06 0.02 -0.09 -0.55** 

 (2.98) (2.24) (1.56) (1.21) (1.23) (0.40) (0.67) (0.82) (0.31) (-0.78) (-2.58) 

Panel B: Value-weighted return 

 Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 1.01 0.81 0.70 0.64 0.56 0.62 0.56 0.65 0.61 0.27 -0.74*** 

 (2.28) (2.28) (2.69) (2.42) (2.07) (2.38) (1.97) (2.30) (1.94) (0.63) (-3.75) 

       (%) 0.12 0.09 0.07 0.07 -0.02 0.06 -0.04 0.07 -0.04 -0.54 -0.66*** 

 (0.59) (0.65) (0.71) (0.74) (-0.29) (0.83) (-0.39) (0.73) (-0.44) (-3.21) (-3.05) 

      (%) 0.16 0.11 0.06 0.05 -0.03 0.05 -0.05 0.06 -0.06 -0.54 -0.69*** 

 (1.04) (0.86) (0.66) (0.64) (-0.44) (0.68) (-0.50) (0.68) (-0.55) (-3.23) (-3.42) 

      (%) 0.26 0.18 0.10 0.05 -0.02 0.02 -0.08 0.04 -0.06 -0.45 -0.70*** 

 (1.64) (1.40) (1.01) (0.61) (-0.24) (0.33) (-0.74) (0.46) (-0.60) (-2.73) (-3.23) 

      (%) 0.42 0.18 0.07 -0.09 -0.03 -0.03 -0.10 -0.01 -0.13 -0.31 -0.73*** 

 (2.70) (1.28) (0.85) (-1.11) (-0.49) (-0.37) (-1.16) (-0.11) (-1.06) (-2.14) (-3.40) 

      (%) 0.48 0.23 0.10 -0.08 -0.02 -0.04 -0.12 -0.02 -0.13 -0.25 -0.73*** 

 (3.18) (1.63) (1.12) (-1.04) (-0.34) (-0.53) (-1.22) (-0.23) (-1.07) (-1.72) (-3.31) 

     (%) 0.49 0.19 0.07 -0.06 -0.02 -0.12 -0.14 -0.00 -0.10 -0.20 -0.69*** 

 (3.04) (1.36) (0.74) (-0.75) (-0.31) (-1.47) (-1.38) (-0.04) (-0.81) (-1.24) (-2.98) 
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Table 6: Factor Loadings of     -sorted High-minus-low Returns 

This table shows the regression results of the     -sorted high-minus-low return on common factors, 

with the equal-weighted (value-weighted) case in Panel A (Panel B). The factor models include CAPM, 

Fama-French three-factor and five-factor models (FF3 and FF5), Carhart four-factor model (FFC), 

Fama-French five-factor model plus momentum (FF6), and the Q5 model in Hou, Mo, Xue, and Zhang 

(2021). Both the return spread and factor returns are in percentage. Note that the SMB in FF3 and FFC 

models are different from that in FF5 and FF6 models due to different construction methods. The 

t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. The data for 

month t+1 high-minus-low return and factor returns ranges from Jan 1997 to Jan 2020. 

Panel A: Dependent variable=high-minus-low return spread (equal-weighted) in percentage 

 
CAPM FF3 FFC FF5 FF6 

 
Q5 

Alpha -0.507*** -0.516*** -0.616*** -0.514** -0.589*** Alpha -0.553** 

 (-2.66) (-2.62) (-3.35) (-2.50) (-3.20)  (-2.58) 

MKT -0.009 -0.027 0.034 -0.026 0.023 R_MKT -0.013 

 (-0.14) (-0.48) (0.62) (-0.48) (0.41)  (-0.22) 

SMB 
 

0.127 0.108 0.097 0.067 R_ME 0.152 

 
 

(1.26) (1.24) (1.23) (0.85)  (1.43) 

HML 
 

0.055 0.119 0.006 0.103 R_IA 0.095 

 
 

(0.56) (1.29) (0.05) (0.92)  (0.70) 

RMW 
   

-0.076 -0.115 R_ROE 0.044 

 
   

(-0.58) (-0.98)  (0.38) 

CMA 
   

0.122 0.086 R_EG -0.024 

 
   

(0.91) (0.71)  (-0.19) 

UMD 
  

0.150*** 
 

0.153*** 
  

 
  

(2.65) 
 

(2.67) 
  

Adj.R
2
 -0.35% 0.98% 6.84% 1.14% 7.20% Adj.R

2
 1.43% 

N 277 277 277 277 277 N 277 

Panel B: Dependent variable=high-minus-low return spread (value-weighted) in percentage 

 
CAPM FF3 FFC FF5 FF6 

 
Q5 

Alpha -0.657*** -0.693*** -0.703*** -0.725*** -0.732*** Alpha -0.686*** 

 
(-3.05) (-3.42) (-3.23) (-3.40) (-3.31) 

 
(-2.98) 

MKT -0.127 -0.100 -0.093 -0.082 -0.078 R_MKT -0.102 

 
(-1.30) (-1.20) (-1.22) (-0.93) (-0.95) 

 
(-1.22) 

SMB  -0.030 -0.032 -0.042 -0.045 R_ME -0.017 

 
 (-0.21) (-0.23) (-0.33) (-0.32) 

 
(-0.17) 

HML 
 

0.251** 0.258** 0.190 0.198 R_IA 0.331** 

  
(2.16) (2.15) (1.50) (1.46) 

 
(2.05) 

RMW 
   

-0.040 -0.043 R_ROE -0.054 

    
(-0.24) (-0.25) 

 
(-0.31) 

CMA 
   

0.201 0.198 R_EG -0.034 

    
(1.14) (1.16) 

 
(-0.14) 

UMD 
  

0.016 
 

0.013 
  

   
(0.16) 

 
(0.13) 

  
Adj.R

2
 1.62% 5.05% 4.73% 4.96% 4.63% Adj.R

2
 2.92% 

N 277 277 277 277 277 N 277 
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Table 7: Characteristics of     -sorted Portfolios 

This table shows the average characteristics of     -sorted portfolios. At the end of each month t, stocks 

are sorted into 10 groups based on ascending order of     . Then, for each stock characteristic, its 

month-t equal-weighted average value across stocks within each     -sorted portfolio is calculated. The 

table presents the time-series averages of each portfolio’s characteristics and the average characteristics 

difference between high-     and low-     portfolios (H-L). The t-statistics for the H-L in the last 

column are adjusted according to Newey and West (1987) with 6 lags. The sample ranges from Dec 1996 

to Dec 2019, and the sample includes only those common stocks above NYSE size 20
th
 cut-off at the end 

of each month. 

 
Low 2 3 4 5 6 7 8 9 High H-L t(H-L) 

     -0.111 -0.054 -0.033 -0.018 -0.006 0.005 0.017 0.032 0.052 0.107 0.219*** (17.65) 

      1.302 1.113 1.047 1.007 0.988 0.985 0.991 1.025 1.089 1.261 -0.042 (-1.61) 

     0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 -0.000 (-0.83) 

BM 0.543 0.539 0.549 0.546 0.547 0.544 0.543 0.544 0.535 0.542 -0.001 (-0.05) 

SIZE 4428.7 7094.8 8779.1 10286.3 11205.5 11715.6 11217.9 9352.9 7235.0 4327.5 -101.2 (-0.37) 

MOM 0.352 0.220 0.191 0.179 0.175 0.174 0.173 0.186 0.196 0.267 -0.085** (-2.15) 

REV 0.031 0.019 0.017 0.016 0.015 0.015 0.014 0.014 0.015 0.023 -0.008 (-1.28) 

ILLIQ 0.024 0.016 0.017 0.017 0.022 0.020 0.018 0.021 0.020 0.025 0.001 (0.18) 

IVOL 0.025 0.019 0.017 0.016 0.015 0.015 0.016 0.017 0.019 0.025 0.000 (0.65) 

AG 0.300 0.205 0.186 0.172 0.161 0.161 0.170 0.175 0.204 0.281 -0.020 (-0.77) 

OPR 0.158 0.174 0.176 0.177 0.178 0.177 0.175 0.172 0.169 0.150 -0.008** (-2.10) 
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Table 8: Portfolio Returns Sorted by     : Control for Other Variables 

This table shows the results of bivariate portfolio analysis. At the end of each month t, stocks are first 

sorted into 10 groups based on the control variables one at a time, and then within each control group, 

stocks are further sorted into 10 groups based on ascending order of     . The equal-weighted and 

value-weighted excess returns in month t+1 for each of the 10*10 portfolios are calculated. For each 

     group, its return is the average month t+1 return across 10 control groups, and their time-series 

averages are shown in percentage in the table. The table also reports the high-minus-low return (H-L), its 

alpha adjusted for Fama-French five-factor plus momentum model (FF6  ), and their t-statistics. The 

t-statistics are adjusted according to Newey and West (1987) with 6 lags. The month-end t ranges from 

Dec 1996 to Dec 2019, and the sample includes only those common stocks above NYSE size 20
th
 cut-off 

at the end of each month. 

Panel A: Equal-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      0.98 0.87 0.87 0.86 0.79 0.80 0.70 0.71 0.67 0.49 -0.49*** (-2.85) -0.50*** (-2.94) 

     0.99 0.87 0.87 0.85 0.77 0.76 0.80 0.70 0.72 0.42 -0.57*** (-3.52) -0.61*** (-3.62) 

BM 1.01 0.94 0.86 0.87 0.88 0.78 0.76 0.77 0.68 0.57 -0.43*** (-2.93) -0.55*** (-3.46) 

SIZE 1.00 0.79 0.90 0.88 0.84 0.78 0.74 0.74 0.64 0.45 -0.56*** (-3.15) -0.64*** (-3.57) 

MOM 0.88 0.88 0.89 0.86 0.82 0.78 0.79 0.76 0.67 0.48 -0.39*** (-2.67) -0.44*** (-2.76) 

REV 1.01 0.84 0.85 0.82 0.84 0.76 0.76 0.72 0.67 0.47 -0.54*** (-3.82) -0.59*** (-3.86) 

ILLIQ 0.99 0.84 0.91 0.84 0.85 0.80 0.72 0.76 0.68 0.42 -0.57*** (-3.59) -0.65*** (-3.83) 

IVOL 0.98 0.85 0.86 0.77 0.80 0.82 0.74 0.66 0.74 0.52 -0.47*** (-3.48) -0.53*** (-3.67) 

AG 1.05 0.88 0.90 0.89 0.75 0.85 0.73 0.76 0.73 0.54 -0.50*** (-3.04) -0.60*** (-3.57) 

OPR 1.00 0.94 0.85 0.87 0.77 0.81 0.74 0.68 0.69 0.46 -0.54*** (-3.30) -0.67*** (-3.52) 

Panel B: Value-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      0.97 0.66 0.75 0.72 0.66 0.66 0.57 0.61 0.67 0.33 -0.64*** (-3.92) -0.62*** (-3.44) 

     0.91 0.83 0.65 0.74 0.53 0.63 0.66 0.64 0.63 0.30 -0.62*** (-3.96) -0.61*** (-3.49) 

BM 0.98 0.93 0.78 0.64 0.68 0.72 0.59 0.66 0.64 0.49 -0.50*** (-2.92) -0.55*** (-2.83) 

SIZE 1.00 0.79 0.91 0.87 0.84 0.77 0.74 0.74 0.64 0.43 -0.57*** (-3.17) -0.65*** (-3.54) 

MOM 0.83 0.75 0.89 0.65 0.65 0.68 0.64 0.60 0.63 0.33 -0.50*** (-3.31) -0.53*** (-2.94) 

REV 0.99 0.77 0.80 0.67 0.64 0.60 0.63 0.61 0.64 0.41 -0.59*** (-3.86) -0.65*** (-3.53) 

ILLIQ 1.00 0.83 0.89 0.81 0.83 0.79 0.67 0.72 0.64 0.43 -0.57*** (-3.31) -0.58*** (-3.16) 

IVOL 1.02 0.77 0.74 0.60 0.64 0.59 0.61 0.59 0.69 0.33 -0.69*** (-4.40) -0.72*** (-3.76) 

AG 0.99 0.89 0.83 0.63 0.59 0.70 0.64 0.63 0.61 0.44 -0.55*** (-3.43) -0.66*** (-3.47) 

OPR 0.94 0.90 0.71 0.59 0.61 0.66 0.67 0.53 0.48 0.30 -0.63*** (-3.19) -0.84*** (-3.84) 
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Table 9: Fama-Macbeth Regression 

This table shows the Fama and Macbeth (1973) regression of month t+1 stock excess return (in 

percentage) on the      and control variables at the end of month t. All the independent variables are 

winsorized at 0.5% and 99.5% levels on a monthly basis. The “Ln()” means the natural log transformation. 

The t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. The month t 

ranges from Dec 1996 to Dec 2019, and the sample includes only those common stocks above NYSE size 

20
th
 cut-off at the end of each month. 

 Dependent variable:     
  in percentage 

 (1) (2) (3) (4) 

     -2.990*** -2.893*** -2.775*** -1.937*** 

 (-3.23) (-3.36) (-3.34) (-2.80) 

       -0.005 0.013 -0.009 

  (-0.01) (0.04) (-0.03) 

       3.428 -4.266 

   (0.52) (-0.70) 

Ln(BM)    -0.018 

    (-0.21) 

Ln(SIZE)    -0.096* 

    (-1.97) 

MOM    -0.038 

    (-0.13) 

REV    -1.407** 

    (-2.13) 

ILLIQ    3.554 

    (0.40) 

IVOL    -5.979 

    (-0.87) 

AG    -0.328*** 

    (-3.83) 

OPR    1.378*** 

    (2.72) 

Intercept 0.779** 0.804*** 0.797*** 1.240** 

 (2.43) (3.09) (3.11) (2.40) 

Observations 531483 531483 531483 345587 

adj. R
2
 0.3% 4.7% 5.0% 9.2% 



 

 40 

Table 10: Predicting Stock Returns at Longer Horizons 

This table shows the Fama and Macbeth (1973) regression coefficients of stock excess return from month 

t+1 to t+h (both inclusively) on      at the end of month t, with each row representing one of the four 

specifications in Table 9. The coefficients on control variables are omitted for simplicity. All the 

independent variables are winsorized at 0.5% and 99.5% levels on a monthly basis. The t-statistics in 

parenthesis are adjusted according to Newey and West (1987) with 6 lags. The month t ranges from Dec 

1996 to Dec 2019, and the sample includes only those common stocks above NYSE size 20
th
 cut-off at 

the end of each month. 

 Fama-Macbeth regression coefficients of       
  (in percentage) on      

 h=3 h=6 h=9 h=12 

(1) -5.697** -8.587** -8.405* -11.937* 

 (-2.55) (-2.50) (-1.67) (-1.95) 

(2) -6.085*** -10.067*** -11.491** -15.967*** 

 (-3.00) (-3.21) (-2.49) (-2.79) 

(3) -5.988*** -9.797*** -11.117** -15.725*** 

 (-3.01) (-3.16) (-2.45) (-2.79) 

(4) -4.067** -5.959** -5.413 -7.204 

 (-2.47) (-2.09) (-1.19) (-1.21) 

 

Table 11: Robustness of Alternative     

This table shows the robustness of time-series predictive regression with alternative    . We regress 

future 1-year market excess return (        
  in Table 2, and        

  in Table 3) on alternative    , with 

or without control variables. The alternative     is now the slope of put-over-call implied volatility ratio 

at strike            , with the implied volatility interpolated from Volatility Surface (    
         

), or 

from option trading data (    
         

). As for the controls, RBound is the lower bound of 1-year 

expected market excess return at daily frequency in Martin (2017), while “All Sig.” means that we 

simultaneously control for all other time-series predictors in Table 3 that are significant in the bivariate 

regression with     (we exclude dp for the same reason as Table 3). The Newey and West (1987) 

t-statistics with lags equal to the predictive horizon are reported in parenthesis (252 lags for the daily 

frequency and 12 lags for the monthly frequency). The data ranges from Jan 1996 to Dec 2019. 

        
         

         
         

 

 Daily Frequency  Monthly Frequency  Daily Frequency  Monthly Frequency 

         
          

          
         

           
          

          
         

  

Const. 0.085*** 0.011  0.084*** 1.756**  0.084*** 0.011  0.082*** 1.736** 

 (3.05) (0.25)  (3.01) (2.41)  (2.99) (0.25)  (2.93) (2.31) 

   -0.509** -0.582**  -0.905*** -0.697**  -0.321** -0.368**  -0.676*** -0.548** 

 
(-2.04) (-2.19)  (-3.05) (-2.20)  (-2.22) (-2.29)  (-2.94) (-2.40) 

Control            

RBound  √      √    

All Sig.     √      √ 

Adj. R
2
 0.94% 5.98%  2.70% 42.1%  0.63% 5.57%  2.69% 41.34% 

N 6040 6040  288 288  6040 6040  288 288 
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Table 12: Robustness of Alternative Slope Betas 

This table shows the main cross-sectional results for alternative slope betas. In the first two columns, we 

estimate slope beta as stock’s exposure to the alternative     in Table 11, denoted by           
   

 and 

          
   

, respectively. In the next three columns, we estimate slope beta as stock’s exposure to     

innovations rather than     levels, where the     innovations are residuals from AR(1) model using 

full sample data (        
   

), rolling 12-month daily data (        
   

), or expanding window data 

(          
   

). In the next five columns, the slope betas are estimated with different factor returns as 

control, instead of the Carhart 4 factors. In the last two columns, we exclude 10-days maturity or exclude 

maturities above 1 year in     construction, and then estimate slope beta accordingly (     
   

 and 

      
   

). Panel A presents the high-minus-low return spread (H-L) and its 6-factor alpha (     ) in the 

univariate sort by these alternative slope betas, while Panel B summarizes the Fama-Macbeth regression 

coefficients of month t+1 stock excess return on these alternative slope betas at the end of month t, with 

each row representing one of the four different regression specifications in Table 9. The t-statistics in 

parenthesis are adjusted according to Newey and West (1987) with 6 lags. The month t ranges from Dec 

1996 to Dec 2019, and the sample includes only those common stocks above NYSE size 20
th
 cut-off at 

the end of each month. 

Panel A: High-minus-low return spread of univariate sort by alternative      

           
   

           
   

         
   

         
   

           
   

     
   

     
   

     
   

     
   

    
   

      
   

       
   

 

 Equal-weighted 

H-L (%) -0.53*** -0.53*** -0.46*** -0.37** -0.44** -0.41* -0.43** -0.38* -0.50*** -0.31* -0.52*** -0.47*** 

 (-2.88) (-2.93) (-2.62) (-2.20) (-2.40) (-1.77) (-2.09) (-1.94) (-2.73) (-1.75) (-2.81) (-2.94) 

      (%) -0.61*** -0.59*** -0.52*** -0.51*** -0.53*** -0.57** -0.58*** -0.40* -0.48*** -0.29* -0.59*** -0.53*** 

 (-3.19) (-3.07) (-2.86) (-2.82) (-2.79) (-2.42) (-2.61) (-1.97) (-2.61) (-1.70) (-3.10) (-3.13) 

 Value-weighted 

H-L (%) -0.73*** -0.78*** -0.52** -0.57** -0.52** -0.23 -0.51** -0.40** -0.60*** -0.26 -0.76*** -0.59*** 

 (-3.64) (-3.72) (-2.36) (-2.44) (-2.30) (-0.77) (-2.27) (-1.99) (-2.92) (-1.15) (-3.94) (-3.25) 

      (%) -0.69*** -0.80*** -0.65** -0.64** -0.64** -0.40 -0.62** -0.37 -0.49** -0.17 -0.75*** -0.66*** 

 (-2.79) (-2.92) (-2.48) (-2.27) (-2.38) (-1.28) (-2.36) (-1.47) (-2.12) (-0.76) (-3.48) (-3.05) 

Panel B: Fama-Macbeth regression on alternative      under different regression specifications in Table 9 

           
   

           
   

         
   

         
   

           
   

     
   

     
   

     
   

     
   

    
   

      
   

       
   

 

(1) -3.096*** -4.009*** -2.121*** -1.926** -2.175*** -2.328** -2.506** -2.028* -2.756*** -1.679* -2.666*** -5.269*** 

 (-3.13) (-3.41) (-2.66) (-2.54) (-2.73) (-2.07) (-2.32) (-1.95) (-2.87) (-1.95) (-3.03) (-3.38) 

(2) -3.000*** -3.802*** -1.902** -1.906*** -2.007*** -2.498** -2.609** -2.228** -2.739*** -1.782** -2.567*** -5.270*** 

 (-3.25) (-3.45) (-2.54) (-2.60) (-2.67) (-2.56) (-2.59) (-2.29) (-3.07) (-2.12) (-3.14) (-3.54) 

(3) -2.876*** -3.662*** -1.832** -1.857*** -1.932*** -2.399** -2.522** -2.122** -2.612*** -1.652** -2.463*** -5.072*** 

 (-3.23) (-3.41) (-2.52) (-2.61) (-2.66) (-2.49) (-2.59) (-2.24) (-3.01) (-2.01) (-3.13) (-3.47) 

(4) -1.996*** -2.211** -1.178* -1.278** -1.262** -1.975** -1.828** -1.681** -1.916** -1.305* -1.648** -3.811*** 

 (-2.70) (-2.43) (-1.91) (-2.22) (-2.07) (-2.53) (-2.32) (-2.15) (-2.59) (-1.86) (-2.57) (-3.01) 
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Table 13:      from Individual Stock Options 

This table shows the Fama and Macbeth (1973) regression of month t+1 stock excess return (in 

percentage) on the     ,  
     , and control variables at the end of month t, where      is the slope of 

at-the-money put-over-call implied volatility ratio extracted from individual stock options. The control 

variables in the first four columns and column 6 to 9 are same as the four regression specifications in 

Table 9. In column 5 and 10, we add three additional option-based predictors as controls, including 

implied volatility skew (IVSKEW), implied volatility spread (IVSPREAD), and risk-neutral skewness 

(RNS). All the independent variables are winsorized at 0.5% and 99.5% levels on a monthly basis. The 

t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. The month t 

ranges from Dec 1996 to Dec 2019, and the sample includes only those common stocks that are above 

NYSE size 20
th
 cut-off and have valid      at the end of each month. 

 Dependent variable:     
  in percentage 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

     2.638** 2.568*** 2.470*** 2.516*** -0.852 2.619** 2.577*** 2.483*** 2.528*** -0.86 

 (2.45) (3.31) (3.22) (3.68) (-1.51) (2.41) (3.28) (3.20) (3.65) (-1.53) 

          -2.681*** -2.594*** -2.482*** -1.732** -1.703** 

      (-2.81) (-2.98) (-2.97) (-2.52) (-2.47) 

IVSKEW     -0.714*     -0.739* 

     (-1.84)     (-1.91) 

IVSPREAD     -4.631***     -4.632*** 

     (-5.12)     (-5.12) 

RNS     0.220**     0.211** 

     (2.15)     (2.12) 

Control           

       √ √ √ √  √ √ √ √ 

       √ √ √   √ √ √ 

Characteristics    √ √    √ √ 

Observations 452494 452494 452494 310554 310553 452494 452494 452494 310554 310553 
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Internet Appendix for “Slope Beta and Cross-Sectional Stock Returns” 

A. Open Source Asset Pricing Data 

The open source asset pricing website of Chen and Zimmermann provides code to obtain 

data for a comprehensive list of stock characteristics conveniently. To get the monthly data of 

stock return and control variables, we run the “dl_signals_add_crsp.R” file in 

https://github.com/OpenSourceAP/CrossSectionDemos with data release to be 2022 March. The 

output contains 5056633 observations. The stock returns are not in the output in default and 

therefore we add a line (line 129) to the original code to obtain the monthly stock returns: 

 

The monthly stock returns are then used to get the one-month-ahead returns in the 

cross-sectional tests. Note that the accounting-related variables in open source dataset are already 

matched to each month end by considering lags and the monthly stock returns are already 

adjusted for delisting. 

B. Details of Control Variables 

In the followings, we provide detailed descriptions about the control variables we use in the 

cross-sectional analysis, and how we obtain them from open source asset pricing dataset. 

https://github.com/OpenSourceAP/CrossSectionDemos
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     : CAPM beta, estimated by regressing daily stock excess return on daily market 

excess return over the past 12 months, with at least 200 observations. Here, the 12-month 

window matches that of        estimation. 

    : the volatility beta in Ang, Hodrick, Xing, and Zhang (2006), defined as the exposure to 

daily VXO changes while controlling for market excess return. It is estimated using past 

one-month daily data. 

SIZE: the market capitalization at each month end, in millions of dollars. 

BM: book-to-market ratio in Fama and French (1992), defined as book equity divided by 

December market capitalization. 

MOM: momentum in Jegadeesh and Titman (1993), defined as return over past 12 months 

while skipping the most recent month. 

REV: reversal in Jegadeesh (1990), defined as return of the previous month. 

ILLIQ: illiquidity in Amihud (2002), defined as daily absolute return divided by daily dollar 

trading volume (in millions of dollars), averaged over past 12 months. 

IVOL: idiosyncratic volatility in Ang, Hodrick, Xing, and Zhang (2006), defined as standard 

deviation of the residual returns with respect to Fama-French three-factor model. It is estimated 

using daily data in the past one month. 

AG: annual growth rate of total asset in Fama and French (2015). 

OPR: R&D-adjusted operating profitability in Ball, Gerakos, Linnainmaa, and Nikolaev 

(2015), defined as revenue minus cost of goods sold, minus selling, general, and administrative 

expenses, plus research and development expense, then divided by total asset. 

All these control variables except CAPM beta are fetched from the open source dataset in 

the Internet Appendix A with some small modifications, which are described in the following 
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table. For the CAPM beta, we calculate it ourselves since we cannot find the exact 

correspondence we need
1
, but the results are robust to the beta in open source dataset. 

Table B1: Control Variables Mapping 

This table shows the mapping between the control variables used in this paper and the data library in 

Chen and Zimmermann (CZ). Note that the characteristics in CZ are signed according to their relationship 

with future returns, and therefore we need to adjust them back. 

This paper CZ data library Relation 

     betaVIX     =-betaVIX 

BM BMdec BM=BMdec; if BM<=0, then set it to missing 

SIZE Size SIZE=exp(-Size)/1000 

MOM Mom12 MOM=Mom12 

REV STreversal REV=-STreversal/100 

IVOL IdioVol3F IVOL=-IdioVol3F 

ILLIQ Illiquidity ILLIQ=Illiquidity*1000000 

AG AssetGrowth AG=-AssetGrowth 

OPR OperProfRD OPR=OperProfRD 

 

C. Alternative Stock Samples 

In the following tables, we repeat the main cross-sectional analysis in Section 3, including 

univariate portfolio analysis, dependent bivariate sort, and Fama-Macbeth regression, for the 

all-stocks sample and above-NYSE-size-50th sample to show that our results are robust. The 

results are significant in both samples. 

                                                 
1
 The “beta” field in the open source dataset is the rolling 60-months regression coefficient of monthly stock excess 

return on monthly equal-weighted market return, rather than rolling 12-months daily data and value-weighted 

market return. 
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Table C1: Portfolio Returns Sorted by      (All-Stocks Sample) 

This table shows the results of univariate portfolio analysis for the all-stocks sample. At the end of each 

month t, stocks are sorted into 10 groups based on ascending order of     . Then, for each portfolio, the 

equal-weighted and value-weighted excess returns in month t+1 are calculated. The table shows the 

time-series averages of each portfolio’s month t+1 excess returns (Raw) and the month t+1 

high-minus-low returns (H-L), as well as their alphas adjusted for different factor models, which include 

CAPM, Fama-French three-factor and five-factor models (FF3 and FF5), and Carhart four-factor model 

(FFC), Fama-French five-factor model plus momentum (FF6), and the Q5 model in Hou, Mo, Xue, and 

Zhang (2021). The t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. 

The month-end t ranges from Dec 1996 to Dec 2019, and the sample includes all common stocks listed in 

NYSE, NASDAQ, and AMEX at the end of each month. 

Panel A: Equal-weighted return 

 
Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 0.90 1.12 1.00 0.95 0.97 0.79 0.82 0.72 0.62 0.31 -0.59*** 

 
(1.65) (2.64) (2.70) (2.82) (3.05) (2.56) (2.51) (2.05) (1.52) (0.55) (-3.66) 

       (%) -0.01 0.36 0.32 0.31 0.36 0.18 0.18 0.04 -0.16 -0.61 -0.60*** 

 
(-0.02) (1.53) (1.47) (1.66) (1.97) (1.02) (1.09) (0.22) (-0.80) (-1.86) (-3.65) 

      (%) -0.01 0.33 0.27 0.26 0.31 0.13 0.14 0.00 -0.19 -0.60 -0.59*** 

 (-0.05) (2.17) (2.06) (2.56) (3.04) (1.37) (1.48) (0.02) (-1.79) (-2.62) (-3.48) 

      (%) 0.32 0.52 0.38 0.38 0.41 0.23 0.24 0.14 -0.03 -0.33 -0.64*** 

 (1.28) (3.46) (3.16) (3.72) (4.20) (2.29) (2.66) (1.47) (-0.26) (-1.25) (-3.89) 

      (%) 0.33 0.48 0.28 0.22 0.27 0.10 0.13 0.04 -0.06 -0.21 -0.54*** 

 (1.16) (2.69) (2.01) (2.05) (2.58) (0.98) (1.23) (0.41) (-0.46) (-0.83) (-3.13) 

      (%) 0.56 0.61 0.37 0.31 0.34 0.17 0.20 0.14 0.05 -0.02 -0.58*** 

 (2.12) (3.85) (3.10) (3.21) (3.74) (1.84) (2.19) (1.42) (0.35) (-0.09) (-3.60) 

     (%) 0.75 0.66 0.38 0.34 0.38 0.21 0.29 0.22 0.20 0.14 -0.61*** 

 (2.40) (3.45) (2.49) (2.58) (2.94) (1.42) (2.21) (1.51) (1.09) (0.46) (-3.34) 

Panel B: Value-weighted return 

 Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 0.96 0.96 0.88 0.73 0.63 0.60 0.61 0.57 0.47 -0.03 -0.99*** 

 (1.91) (2.53) (2.77) (2.87) (2.36) (2.27) (2.21) (1.95) (1.30) (-0.06) (-3.74) 

       (%) -0.06 0.19 0.20 0.15 0.06 0.02 0.02 -0.04 -0.23 -0.97 -0.92*** 

 (-0.19) (1.40) (1.79) (1.75) (0.70) (0.24) (0.35) (-0.52) (-1.69) (-4.41) (-3.09) 

      (%) -0.02 0.20 0.19 0.14 0.04 0.01 0.02 -0.05 -0.23 -0.96 -0.94*** 

 (-0.08) (1.69) (1.73) (1.64) (0.57) (0.10) (0.30) (-0.68) (-1.67) (-4.68) (-3.29) 

      (%) 0.17 0.30 0.24 0.16 0.05 0.00 -0.01 -0.09 -0.19 -0.88 -1.06*** 

 (0.82) (2.44) (2.11) (1.86) (0.58) (0.02) (-0.08) (-1.14) (-1.46) (-4.43) (-3.81) 

      (%) 0.33 0.32 0.19 0.06 -0.01 -0.05 -0.02 -0.11 -0.19 -0.66 -1.00*** 

 (1.35) (2.36) (1.73) (0.84) (-0.16) (-0.74) (-0.28) (-1.35) (-1.27) (-3.72) (-3.26) 

      (%) 0.46 0.39 0.23 0.08 -0.01 -0.05 -0.03 -0.14 -0.17 -0.62 -1.08*** 

 (2.10) (2.88) (2.09) (1.08) (-0.09) (-0.74) (-0.51) (-1.70) (-1.14) (-3.37) (-3.74) 

     (%) 0.57 0.33 0.16 0.06 -0.02 -0.12 -0.06 -0.12 -0.08 -0.55 -1.11*** 

 (2.25) (2.42) (1.47) (0.65) (-0.31) (-1.61) (-0.73) (-1.47) (-0.54) (-2.68) (-3.38) 
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Table C2: Portfolio Returns Sorted by     : Control for Other Variables (All-Stocks 

Sample) 

This table shows the results of bivariate portfolio analysis for the all-stocks sample. At the end of each 

month t, stocks are first sorted into 10 groups based on the control variables one at a time, and then within 

each control group, stocks are further sorted into 10 groups based on ascending order of     . The 

equal-weighted and value-weighted excess returns in month t+1 for each of the 10*10 portfolios are 

calculated. For each      group, its return is the average month t+1 return across 10 control groups, and 

their time-series averages are shown in percentage in the table. The table also shows the high-minus-low 

return (H-L), its alpha adjusted for Fama-French five-factor plus momentum model (FF6  ), and their 

t-statistics. The t-statistics are adjusted according to Newey and West (1987) with 6 lags. The month-end t 

ranges from Dec 1996 to Dec 2019, and the sample includes all common stocks listed in NYSE, 

NASDAQ, and AMEX at the end of each month. 

Panel A: Equal-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      0.94 1.12 0.96 0.94 0.97 0.83 0.78 0.69 0.65 0.30 -0.63*** (-3.82) -0.63*** (-4.01) 

     0.95 1.01 0.96 0.91 0.98 0.84 0.76 0.78 0.63 0.36 -0.59*** (-4.14) -0.57*** (-4.00) 

BM 1.02 1.14 1.02 0.94 0.99 0.90 0.86 0.80 0.77 0.46 -0.57*** (-3.98) -0.59*** (-3.91) 

SIZE 0.82 0.96 1.07 0.98 0.92 0.90 0.85 0.79 0.58 0.31 -0.51*** (-3.30) -0.53*** (-3.43) 

MOM 0.91 0.93 1.00 0.94 0.93 0.80 0.83 0.75 0.73 0.41 -0.50*** (-3.95) -0.53*** (-3.96) 

REV 0.92 0.96 0.96 1.00 0.94 0.87 0.83 0.74 0.71 0.27 -0.65*** (-4.33) -0.69*** (-4.45) 

ILLIQ 0.83 1.10 0.99 0.98 0.92 0.94 0.81 0.76 0.65 0.27 -0.56*** (-3.55) -0.58*** (-3.80) 

IVOL 1.01 0.93 0.95 0.86 0.94 0.81 0.82 0.71 0.65 0.50 -0.50*** (-3.98) -0.53*** (-4.16) 

AG 0.97 1.14 1.03 1.00 0.94 0.91 0.84 0.86 0.66 0.43 -0.54*** (-3.74) -0.55*** (-3.73) 

OPR 0.98 1.08 0.99 0.87 0.96 0.85 0.77 0.75 0.74 0.44 -0.55*** (-3.38) -0.60*** (-3.62) 

Panel B: Value-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      0.96 0.85 0.83 0.79 0.69 0.67 0.57 0.66 0.56 0.31 -0.65*** (-3.52) -0.62*** (-3.13) 

     0.77 0.94 0.84 0.67 0.67 0.68 0.66 0.60 0.46 0.26 -0.51** (-2.52) -0.49* (-1.95) 

BM 1.21 1.00 0.94 0.76 0.69 0.70 0.69 0.61 0.62 0.16 -1.05*** (-5.41) -1.10*** (-4.97) 

SIZE 0.77 0.88 1.00 0.95 0.86 0.85 0.78 0.71 0.51 0.26 -0.51*** (-3.30) -0.53*** (-3.28) 

MOM 0.83 0.66 0.77 0.60 0.64 0.46 0.70 0.51 0.47 0.02 -0.81*** (-4.38) -0.80*** (-3.75) 

REV 1.05 0.90 0.94 0.76 0.60 0.64 0.65 0.72 0.49 0.28 -0.76*** (-4.04) -0.83*** (-4.00) 

ILLIQ 0.79 0.97 0.92 0.90 0.82 0.89 0.80 0.65 0.57 0.22 -0.57*** (-3.65) -0.49*** (-3.20) 

IVOL 0.84 0.75 0.60 0.58 0.65 0.46 0.56 0.58 0.45 0.27 -0.57*** (-3.08) -0.60*** (-2.81) 

AG 1.18 0.97 0.99 0.73 0.72 0.70 0.55 0.61 0.61 0.31 -0.86*** (-4.21) -0.97*** (-3.99) 

OPR 0.72 0.85 0.69 0.56 0.56 0.51 0.52 0.37 0.32 0.18 -0.54** (-2.14) -0.70*** (-2.61) 
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Table C3: Fama-Macbeth Regression (All-Stocks Sample) 

This table shows the Fama and Macbeth (1973) regression of month t+1 stock excess returns on the      

and control variables at the end of month t, for the all-stocks sample. All the independent variables are 

winsorized at 0.5% and 99.5% levels on a monthly basis. The “Ln()” means the natural log transformation. 

The t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. The 

month-end t ranges from Dec 1996 to Dec 2019, and the sample includes all common stocks listed in 

NYSE, NASDAQ, and AMEX at the end of each month. 

 Dependent variable:     
  in percentage 

 (1) (2) (3) (4) 

     -2.336*** -2.406*** -2.310*** -0.995* 

 (-4.02) (-4.15) (-4.04) (-1.91) 

       -0.156 -0.148 0.053 

  (-0.67) (-0.64) (0.22) 

       -2.401 -3.391 

   (-0.46) (-0.83) 

Ln(BM)    0.014 

    (0.15) 

Ln(SIZE)    -0.140*** 

    (-2.74) 

MOM    0.041 

    (0.13) 

REV    -1.842*** 

    (-3.05) 

ILLIQ    0.039*** 

    (4.54) 

IVOL    -21.501*** 

    (-4.80) 

AG    -0.596*** 

    (-5.68) 

OPR    1.887*** 

    (5.16) 

Intercept 0.811** 0.933*** 0.934*** 1.695*** 

 (2.14) (2.89) (2.91) (3.49) 

Observations 1249288 1249288 1249284 769548 

adj. R
2
 0.1% 1.9% 2.0% 5.4% 
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Table C4: Portfolio Returns Sorted by      (Above-NYSE-Size-50
th

 Sample) 

This table shows the results of univariate portfolio analysis for the above-NYSE-size-50
th
 sample. At the 

end of each month t, stocks are sorted into 10 groups based on ascending order of     . Then, for each 

portfolio, the equal-weighted and value-weighted excess returns in month t+1 are calculated. The table 

shows the time-series averages of each portfolio’s month t+1 excess returns (Raw) and the month t+1 

high-minus-low returns (H-L), as well as their alphas adjusted for different factor models, which include 

CAPM, Fama-French three- and five-factor models (FF3 and FF5), and Carhart four-factor model (FFC), 

Fama-French five-factor model plus momentum (FF6), and the Q5 model in Hou, Mo, Xue, and Zhang 

(2021). The t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 lags. The 

month-end t ranges from Dec 1996 to Dec 2019, and the sample includes only those common stocks 

above NYSE size 50
th
 cut-off at the end of each month. 

Panel A: Equal-weighted return 

 
Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 0.85 0.83 0.87 0.78 0.69 0.79 0.73 0.66 0.62 0.38 -0.47** 

 
(2.11) (2.49) (3.14) (2.90) (2.52) (2.94) (2.54) (2.19) (1.95) (0.89) (-2.57) 

       (%) -0.02 0.12 0.25 0.18 0.09 0.21 0.10 0.02 -0.06 -0.46 -0.44** 

 
(-0.12) (1.15) (2.18) (1.57) (0.79) (1.50) (0.82) (0.13) (-0.55) (-2.60) (-2.01) 

      (%) 0.01 0.10 0.21 0.14 0.05 0.17 0.07 -0.02 -0.08 -0.45 -0.46** 

 (0.06) (1.13) (2.62) (1.79) (0.64) (1.77) (0.80) (-0.16) (-0.90) (-3.03) (-2.19) 

      (%) 0.13 0.13 0.23 0.15 0.06 0.17 0.07 0.01 -0.06 -0.42 -0.55*** 

 (1.20) (1.54) (2.66) (1.82) (0.75) (1.78) (0.81) (0.14) (-0.69) (-2.87) (-2.74) 

      (%) 0.25 0.08 0.11 -0.00 -0.06 0.02 -0.03 -0.11 -0.17 -0.26 -0.51** 

 (1.84) (0.83) (1.63) (-0.01) (-0.73) (0.24) (-0.26) (-1.15) (-1.75) (-1.86) (-2.33) 

      (%) 0.33 0.10 0.13 0.01 -0.04 0.03 -0.02 -0.09 -0.15 -0.24 -0.57*** 

 (2.78) (1.12) (1.72) (0.10) (-0.56) (0.32) (-0.21) (-0.93) (-1.56) (-1.75) (-2.75) 

     (%) 0.46 0.13 0.12 0.04 -0.01 0.03 0.02 -0.02 -0.03 -0.08 -0.54** 

 (2.94) (1.51) (1.50) (0.54) (-0.08) (0.37) (0.17) (-0.17) (-0.29) (-0.62) (-2.33) 

Panel B: Value-weighted return 

 Low 2 3 4 5 6 7 8 9 High H-L 

Raw (%) 0.93 0.78 0.72 0.63 0.51 0.62 0.67 0.53 0.63 0.34 -0.59*** 

 (2.30) (2.23) (2.94) (2.40) (1.81) (2.30) (2.51) (1.88) (2.04) (0.88) (-3.11) 

       (%) 0.09 0.08 0.12 0.07 -0.06 0.05 0.10 -0.07 0.01 -0.39 -0.48** 

 (0.59) (0.56) (1.09) (0.74) (-0.72) (0.57) (0.94) (-0.72) (0.10) (-2.53) (-2.43) 

      (%) 0.13 0.10 0.12 0.06 -0.08 0.04 0.10 -0.07 0.00 -0.38 -0.52*** 

 (1.17) (0.77) (1.02) (0.72) (-0.95) (0.46) (0.99) (-0.82) (0.01) (-2.50) (-2.67) 

      (%) 0.23 0.15 0.13 0.06 -0.05 0.01 0.08 -0.10 -0.04 -0.34 -0.57*** 

 (2.00) (1.24) (1.13) (0.62) (-0.66) (0.17) (0.66) (-1.07) (-0.38) (-2.24) (-2.89) 

      (%) 0.35 0.17 0.09 -0.05 -0.09 -0.02 0.03 -0.12 -0.07 -0.27 -0.62*** 

 (2.70) (1.27) (0.91) (-0.62) (-1.14) (-0.27) (0.31) (-1.28) (-0.66) (-1.65) (-2.72) 

      (%) 0.41 0.21 0.11 -0.05 -0.07 -0.04 0.02 -0.14 -0.10 -0.24 -0.66*** 

 (3.35) (1.61) (1.01) (-0.59) (-0.89) (-0.43) (0.16) (-1.45) (-0.90) (-1.50) (-2.90) 

     (%) 0.39 0.16 0.07 -0.04 -0.06 -0.14 -0.04 -0.11 -0.07 -0.18 -0.57** 

 (2.71) (1.28) (0.61) (-0.46) (-0.78) (-1.44) (-0.34) (-1.13) (-0.63) (-1.15) (-2.33) 
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Table C5: Portfolio Returns Sorted by     : Control for Other Variables 

(Above-NYSE-Size-50
th

 Sample) 

This table shows the results of bivariate portfolio analysis for the above-NYSE-size-50
th
 sample. At the 

end of each month t, stocks are first sorted into 10 groups based on the control variables one at a time, and 

then within each control group, stocks are further sorted into 10 groups based on ascending order of     . 

The equal-weighted and value-weighted excess returns in month t+1 for each of the 10*10 portfolios are 

calculated. For each      group, its return is the average month t+1 return across 10 control groups, and 

their time-series averages are shown in percentage in the table. The table also shows the high-minus-low 

return (H-L), its alpha adjusted for Fama-French five-factor plus momentum model (FF6  ), and their 

t-statistics. The t-statistics are adjusted according to Newey and West (1987) with 6 lags. The month-end t 

ranges from Dec 1996 to Dec 2019, and the sample includes only those common stocks above NYSE size 

50
th
 cut-off at the end of each month. 

Panel A: Equal-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      0.92 0.76 0.82 0.84 0.79 0.72 0.66 0.66 0.61 0.40 -0.52*** (-3.16) -0.51*** (-2.81) 

     0.86 0.79 0.88 0.81 0.67 0.77 0.71 0.65 0.64 0.43 -0.43*** (-2.91) -0.47*** (-2.79) 

BM 0.89 0.91 0.76 0.86 0.72 0.77 0.72 0.71 0.66 0.44 -0.45*** (-2.62) -0.50** (-2.37) 

SIZE 0.84 0.83 0.85 0.71 0.84 0.75 0.73 0.71 0.50 0.45 -0.39** (-2.06) -0.50** (-2.35) 

MOM 0.84 0.81 0.87 0.81 0.76 0.72 0.78 0.69 0.55 0.41 -0.42*** (-2.81) -0.48*** (-2.74) 

REV 0.92 0.83 0.78 0.75 0.76 0.70 0.71 0.62 0.66 0.45 -0.46*** (-3.22) -0.52*** (-3.18) 

ILLIQ 0.85 0.86 0.84 0.79 0.76 0.70 0.82 0.66 0.54 0.42 -0.43** (-2.53) -0.50** (-2.51) 

IVOL 0.88 0.82 0.84 0.73 0.75 0.66 0.80 0.58 0.60 0.54 -0.33** (-2.24) -0.37** (-2.28) 

AG 0.92 0.86 0.85 0.80 0.74 0.74 0.73 0.64 0.65 0.52 -0.40** (-2.38) -0.41** (-2.12) 

OPR 0.88 0.82 0.85 0.85 0.68 0.78 0.69 0.66 0.57 0.38 -0.51*** (-2.92) -0.67*** (-3.29) 

Panel B: Value-weighted return 

Control Low 2 3 4 5 6 7 8 9 High H-L t(H-L)       t(     ) 

      1.01 0.62 0.81 0.69 0.65 0.68 0.59 0.62 0.63 0.40 -0.61*** (-3.96) -0.58*** (-3.19) 

     0.90 0.76 0.75 0.70 0.57 0.65 0.59 0.61 0.69 0.39 -0.52*** (-3.57) -0.51*** (-3.04) 

BM 0.95 0.85 0.71 0.73 0.61 0.70 0.65 0.62 0.58 0.50 -0.45** (-2.57) -0.49** (-2.34) 

SIZE 0.83 0.80 0.85 0.72 0.82 0.76 0.73 0.71 0.50 0.42 -0.41** (-2.15) -0.52** (-2.43) 

MOM 0.80 0.79 0.84 0.67 0.67 0.62 0.76 0.64 0.64 0.36 -0.44*** (-2.84) -0.52*** (-2.92) 

REV 0.88 0.81 0.71 0.59 0.76 0.53 0.66 0.52 0.79 0.47 -0.41*** (-2.63) -0.48*** (-2.73) 

ILLIQ 0.86 0.84 0.85 0.76 0.74 0.72 0.78 0.64 0.56 0.46 -0.40** (-2.29) -0.44** (-2.11) 

IVOL 0.95 0.71 0.78 0.57 0.67 0.54 0.74 0.53 0.62 0.35 -0.61*** (-3.88) -0.62*** (-3.41) 

AG 0.95 0.82 0.79 0.70 0.53 0.62 0.71 0.57 0.55 0.56 -0.39** (-2.46) -0.40** (-2.12) 

OPR 0.93 0.83 0.71 0.67 0.58 0.68 0.64 0.67 0.52 0.45 -0.48*** (-2.62) -0.64*** (-2.99) 
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Table C6: Fama-Macbeth Regression (Above-NYSE-Size-50
th

 Sample) 

This table shows the Fama and Macbeth (1973) regression of month t+1 stock excess returns on the      

and control variables at the end of month t, for the above-NYSE-size-50
th
 sample. All the independent 

variables are winsorized at 0.5% and 99.5% levels on a monthly basis. The “Ln()” means the natural log 

transformation. The t-statistics in parenthesis are adjusted according to Newey and West (1987) with 6 

lags. The month-end t ranges from Dec 1996 to Dec 2019, and the sample includes only those common 

stocks above NYSE size 50
th
 cut-off at the end of each month. 

 Dependent variable:     
  in percentage 

 (1) (2) (3) (4) 

     -3.570*** -3.756*** -3.618*** -2.785*** 

 (-2.86) (-3.28) (-3.34) (-2.99) 

       -0.044 -0.016 -0.056 

  (-0.12) (-0.04) (-0.17) 

       0.909 -8.277 

   (0.10) (-1.00) 

Ln(BM)    0.034 

    (0.44) 

Ln(SIZE)    -0.093* 

    (-1.73) 

MOM    0.047 

    (0.15) 

REV    -1.256* 

    (-1.74) 

ILLIQ    -49.519 

    (-0.85) 

IVOL    -5.622 

    (-0.83) 

AG    -0.259*** 

    (-3.04) 

OPR    1.329** 

    (2.11) 

Intercept 0.721** 0.780*** 0.767*** 1.376** 

 (2.37) (2.96) (2.95) (2.35) 

Observations 268801 268801 268801 176231 

adj. R
2
 0.6% 6.5% 7.0% 12.0% 

 


