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I Introduction

Standard and Poors (S&P) regularly announces changes to the membership of its

�agship S&P 500 index. Each announcement speci�es the name of the new index member

as well as the date when the change becomes e�ective.1 A large literature, dating back

to Harris and Gurel (1986) and Shleifer (1986), documents a signi�cant positive reaction

in the stock price of the soon-to-be index member and a sizeable trading volume in the

stock around the e�ective date.2

A common interpretation of this result is that, because index trackers aim to minimize

their tracking error, they generally purchase the stock of the incumbent index member

around the e�ective date (Bessembinder et al., 2016).3 Essentially, the S&P announcement

makes the rebalancing trades of index trackers and the associated stock price pressure

somewhat predictable. In order to e�ciently exploit this predictability, an investor can

engage in �risk arbitrage� and open positions in call option contracts as soon as the news

is public.4 This insight raises a number of questions: Do investors trade in the option

market around the recomposition news? If so, which options are most in demand? What

are the pricing implications of this option demand-pressure? To date, these questions

have received very little attention from the literature.

We use a large sample of S&P 500 inclusion announcements between 1996 and 2020

1Over our sample period, there are on average 6 trading days between the date of the announcement
and the e�ective date.

2For an overview of this literature, we refer the reader to Patel and Welch (2017) and the references
therein.

3It is worth pointing out that the demand for the new index member does not solely stem from index
trackers. Indeed, theoretical work by Cuoco and Kaniel (2011) and Basak and Pavlova (2013) shows that
institutional investors who are benchmarked against the index allocate a fraction of their wealth to the
index constituents. Pavlova and Sikorskaya (2022) document that this result applies to both active and
passive institutional investors.

4Beneish and Whaley (1996) coin the expression �risk arbitrage� to denote the strategy whereby the
investor purchases the stock of the soon-to-be index member immediately after the S&P index recompo-
sition announcement and sells it, presumably at a higher price, around the e�ective date. Implementing
the risk arbitrage trade via option securities is attractive due to the embedded leverage.

1



to examine the impact of index inclusion news on individual equity options. We be-

gin by characterizing the trading activity in individual equity options around the news

announcements. We �nd that the trading volume in the options associated with the

soon-to-be index member more than doubles immediately after the announcement. 76%

of the announcement e�ect stems from increases in the call, rather than the put, option

volume. The trading activity declines by the e�ective date and subsequently returns to

its pre-announcement level.

Next, we analyze the impact of the index inclusion news on the price of outright call

options. We �nd a positive and statistically signi�cant announcement response in event

windows extending to the e�ective date. These results hold up to placebo- and risk-

adjustments. Our �ndings are reminiscent of the response of stocks to inclusion news,

e.g., Patel and Welch (2017), raising the possibility that delta, i.e., the sensitivity of

option prices to the underlying price, may explain the e�ects. This insight motivates us

to analyze delta-hedged option positions, which neutralize the e�ect of underlying shocks

on option prices. We �nd that, on a placebo- and risk-adjusted basis, the delta-hedged

call option exhibits a positive (0.90%) and signi�cant short-term response to inclusion

news. This announcement response is signi�cant in every 5-year subsample and reverses

over the long event window, which ends 63 days after the e�ective date.

In order to rationalize our empirical �ndings, we build on the demand-based option

pricing model of Garleanu et al. (2009). The intuition is as follows: Once S&P makes its

announcement, the risk arbitrageurs purchase call options. By doing this, they enter a

leveraged trade to bene�t from the expected stock price pressure arising from the trading

of benchmarked institutional investors. The option market maker absorbs the option

demand shock and hedges the delta risk by trading the underlying security. However, she

is exposed to unhedgeable risks that arise from jump risk and stochastic volatility, among
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others. As the option demand intensi�es, the market maker, who has limited risk-bearing

capacity, raises the price of the option contracts to account for the increase in unhedgeable

risks. This mechanism explains why the option trading volume peaks immediately after

the announcement, while the stock trading volume peaks at the e�ective date. More

importantly, it helps connect the positive and temporary response of the (i) option trading

volume and (ii) delta-hedged option prices.

We test and validate several predictions of the model. First, we show that, consis-

tent with the theory, the option-implied volatility responds positively to the inclusion

announcements. In fact, 42% of the short-term placebo- and risk-adjusted response of the

delta-hedged options can be traced back to the revision in the implied volatility.

Second, we document that the announcement e�ect is stronger for options that are

likely subject to more demand pressure owing to their greater embedded leverage. For

instance, short-term delta-hedged call options react more than long-term delta-hedged

options. Similarly, the announcement e�ect monotonically declines as we move from the

out-of-the-money to the in-the-money delta-hedged call options.

Third, we estimate a pooled regression of the short-term placebo- and risk-adjusted

announcement return on a constant and several variables that are informative about the

option demand pressure and the constraints faced by the �nancial intermediary. We �nd

that the announcement e�ect is stronger for the delta-hedged call options of companies

with low-priced stocks and increases with the funding cost of the intermediary. Further-

more, the announcement e�ect is stronger for stocks that were not part of the S&P 400

midcap index prior to the announcement than for stocks that came from that index.

Fourth, the theory predicts that the demand-pressure in a particular option a�ects the

pricing of all other options which unhedgeable risk comoves with that of the in-demand

option. By documenting a similar announcement e�ect for put options, which attract
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considerably lower trading volume around the inclusion announcement, we show that this

prediction is also borne out by the data.

We perform several additional tests. To begin with, we sort companies into high and

low portfolios based on the growth in their call option trading volume over the short event

window. We document that the high portfolio displays a signi�cantly higher short-term

response than the low portfolio. This analysis thus con�rms that there is a link between

the trading volume and the announcement response. Next, we show that, consistent with

the demand-based explanation, there is long-term reversal of the announcement e�ect at

the �rm level. Additionally, we establish that our results are robust to the methodology

underpinning the choice of placebo �rms. Moreover, we establish that the potential noise

in the option prices does not materially a�ect our results. We further evaluate the impact

of potential biases in the delta-hedge ratio and reach similar conclusions. Finally, we show

that our results are distinct from the earnings announcement e�ect of Gao et al. (2018).

Our paper contributes to the extensive literature that quanti�es the index e�ect. Most

of this literature focuses on the response of stock prices. Harris and Gurel (1986), Shleifer

(1986), Chen et al. (2004), Baker et al. (2010), Chang et al. (2014), and Patel and Welch

(2017), among others, document a signi�cantly positive response of stocks to inclusion

news. Brennan (1993), Cuoco and Kaniel (2011), Basak and Pavlova (2013), and Pavlova

and Sikorskaya (2022) develop theoretical models that rationalize the empirical evidence.

We complement these studies by showing that S&P 500 index inclusion news a�ects

�nancial markets much more broadly than previously thought. In particular, we show

that equity options react to inclusion news, even after accounting for the underlying

response, i.e., the delta e�ect. Thus, a comprehensive analysis of the index e�ect should

go beyond individual equities and account for the response of related securities.

Our research is directly related to the small number of studies that analyze the impact
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of S&P recomposition news on the option market. Dhillon and Johnson (1991) and Dash

and Liu (2008) document the positive (negative) response of outright call (put) options

to index inclusion news. To the best of our knowledge, we are the �rst to document

that the response of outright options is not solely due to the directional response of the

underlying. We show that there is another channel through which recomposition news

moves option prices. This new channel is related to the change in the implied volatility

and accounts for more than 20% of the response of outright options. Furthermore, we

broaden our understanding of the index e�ect in the option market by identifying, in the

cross-section, the characteristics that a�ect the strength of the announcement response.

Our main �ndings are consistent with the insights from the literature analyzing the

impact of demand-pressure shocks on constrained intermediaries. Garleanu et al. (2009)

develop a demand-based option pricing model that sheds light on how the demand pressure

of an option a�ects its price and that of related options. Fournier and Jacobs (2020)

present a related model. Bollen and Whaley (2004) empirically study the e�ect of the

option demand pressure on the implied volatility. Lemmon and Ni (2014) analyze the

impact of investor sentiment on the demand and pricing of stock options. Ramachandran

and Tayal (2021) study the impact of short-sale constraints in individual equities on

the demand and pricing of put options. To the best of our knowledge, we are the �rst to

document the impact of index inclusion news on the demand and pricing of (delta-hedged)

options. We �nd that the impact of the option demand pressure is economically large and

consistent with the demand-based theory of option pricing.

The remainder of this paper proceeds as follows. Section II presents the data and

methodology. Section III summarizes our main results. Section IV discusses the mecha-

nism underpinning our results. Section V evaluates alternative explanations for our main

�ndings. Section VI provides various additional analyses and robustness checks. Finally,
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Section VII concludes.

II Data and Methodology

A Data

Stock Data We obtain daily data on stock prices, the associated returns, and shares

outstanding from the Center for Research in Security Prices (CRSP). We download this

information for all stocks traded on the New York Stock Exchange (NYSE), the American

Stock Exchange (AMEX), and the National Association of Securities Dealers Automated

Quotations (NASDAQ).5 Standard and Poors (S&P) has a detailed set of eligibility cri-

teria related to the domicile, exchange listing, organizational structure, and share type of

securities added to the S&P 500 index.6 Accordingly, we only include stocks with CRSP

share codes 10, 11, 12, 18, or 48 in our analysis.

Option Data We retrieve the option data for the period starting in January 1996 and

ending in December 2020 from OptionMetrics.7 The dataset includes the daily bid�ask

option prices, the option trading volume, the open interest, and the option sensitivities.

We discard options that are likely illiquid and noisy. First, we remove options with

(i) AM settlement (Boyer and Vorkink, 2014) and (ii) time-to-maturity smaller than 8

calendar days or greater than 120 calendar days (Bollerslev et al., 2015). Second, we

only retain regular options (Baltussen et al., 2018) with (i) standard settlement (Boyer

5One may ask: why do we cover a broad range of companies, irrespective of whether they belonged
to the S&P 500 index at any point in time? Our decision is motivated by the need to have a large pool
of companies from which we can draw �rms that will form the placebo group.

6For more details about these criteria, we refer the interested reader to the following webpage: https:
//us.spindices.com/indices/equity/sp-500.

7The beginning of our sample period is driven by the fact that the OptionMetrics dataset starts in
January 1996. In a similar vein, our sample ends in 2020, which is the latest observation available to us
at the time we downloaded the data.
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and Vorkink, 2014), (ii) positive bid�ask prices, (iii) positive bid�ask spread that ranges

from the minimum tick size (Goyal and Saretto, 2009) to $5 (Boyer and Vorkink, 2014),

and (iv) positive open interest. Third, we discard options with missing implied volatility

(Driessen et al., 2009). Fourth, we expunge all call options with deltas outside of the

interval starting at 0 and ending at 1. Similarly, we discard put options with deltas

outside of the interval beginning at −1 and ending at 0. Fifth, we only keep options with

a moneyness level, de�ned as the ratio of the strike price over the spot price, between 0.80

and 1.20. By taking this step, we focus on option contracts that are likely liquid. Sixth,

we discard observations that violate the no-arbitrage conditions: max (Sj,t − PV (K), 0) ≤

Cj,t ≤ Sj,t and max (PV (K)− Sj,t, 0) ≤ Pj,t ≤ K, where Sj,t is the ex-dividend stock price

of company j at time t. PV (K) is the present value of the strike price K computed using

the term-structure of interest rates available from OptionMetrics. Cj,t and Pj,t denote the

time-t call and put option prices of strike priceK associated with company j, respectively.8

In order to avoid the bid�ask bounce from daily closing option prices, we use the mid-

quote price as representative of the option price (Gao et al., 2018).9 Following Boyer and

Vorkink (2014), we eliminate any option with a price below 50% of the intrinsic value or

$100 above the intrinsic value. Finally, we aim to mitigate the impact of early exercise

by implementing the approach of Pool et al. (2008). Speci�cally, we follow Shafaati

et al. (2021) and remove all options for which early exercise might be pro�table on the

ex-dividend day.

8Although the option price depends on the strike price K, we have decided to not re�ect this in the
notation. This decision is motivated by our desire to make the notation as simple as possible.

9As a robustness check, we follow Eisdorfer et al. (2022) and assume that the option price is either
the 75%/25% or the 25%/75% weighted average of the bid�ask prices. As Section VI.D shows, our results
are robust to this alternative approach.
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Index Recomposition Events The S&P 500 index consists of 500 companies selected

at the discretion of the index committee.10 The committee only considers �rms that

satisfy the index inclusion criteria such as a minimum market capitalization, of $14.6

billion as of January 2023, positive earnings in the most recent quarter, as well as positive

average earnings over the past 4 quarters, to name but a few.11,12 The index committee

pays close attention to sector balance in the selection of companies for the index.

We hand-collect information on the changes in the composition of the S&P 500 index,

the announcement dates, the e�ective dates, and the reason for the index changes.13 We

extract this information from the o�cial S&P press releases on PR Newswire. Following

Barberis et al. (2005), we exclude all index changes that are related to �rm-speci�c cor-

porate events, such as acquisitions, bankruptcies, mergers, or spino�s. We only focus on

companies that have an associated option market prior to, on, and after the announce-

ment date. To be more speci�c, for each company included in our analysis, either as a

treated �rm or in the placebo group, we require at least 100 option return observations

during the period starting from 10 trading days before the announcement date until 252

trading days after. This �lter is necessary because our main goal is to study the impact

of index recomposition events on the option market.

10The index committee meets on a monthly basis and consists of full-time employ-
ees working for S&P Dow Jones Indices. It is important to stress that the iden-
tity of the index members is kept con�dential. See https://www.wsj.com/articles/

gamestop-stocks-possible-return-to-s-p-500-in-hands-of-anonymous-committee-11630494001?

mod=hp_lead_pos4.
11The complete list of inclusion criteria is available at the following webpage: https://us.spindices.

com/documents/methodologies/methodology-sp-us-indices.pdf. It is worth pointing out that these
are criteria for inclusion and not for continued membership in the index. For a detailed discussion of the
evolution of the inclusion criteria over time, we refer the interested reader to the study of Li et al. (2021).

12The index committee's decision to include a �rm in the S&P 500 index is based on a combination of
both art and science. A company's stock may be among the largest �rms in terms of market capitalization
and meet all the eligibility criteria and still not be immediately included in the S&P 500 index, as the
decision of the index committee is discretionary.

13Some studies, e.g., Cao et al. (2019), analyze the recomposition of the Russell 2000 index using a
regression discontinuity design. It is tempting to analyze this index. However, we caution that such
analysis would involve fairly small �rms, for which the option contracts are likely not liquid enough to
carry out a robust analysis.
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Overall, the �ltered sample consists of 497 inclusion, but only 133 exclusion events.

The limited number of exclusion events makes it di�cult to conduct a robust statistical

analysis of index deletions.14 Consequently, we focus solely on the inclusion events. Figure

A1 of the Online Appendix depicts the number of index inclusions over time. We can

see that these events take place throughout the sample period. Our untabulated analysis

reveals that, on average, there are 18 days between two consecutive inclusion events.

B Methodology

Overview S&P publicly announces the changes to the index composition at 05:15 PM

Eastern Time, after the regular trading hours. As a result, the impact of the index

recomposition announcements can only be seen on the next trading day. Throughout the

paper, we refer to that day as the announcement date (AD). We denote the e�ective date

(ED), the last trading day before the change becomes e�ective.15,16

Figure 1 illustrates our timing convention. We focus on three event windows: short,

medium, and long. The short window starts at AD−1 and ends at AD. It is mostly

informative about the immediate response of asset prices to news. The medium window,

which spans the period from AD − 1 to ED, is useful to assess the response of �nancial

markets until the change becomes e�ective. Finally, the long event window begins at

14Intuitively, one would expect the samples of inclusion and exclusion events to be of comparable size.
Yet, the �nal exclusion sample is much smaller than the inclusion sample. This �nding arises from the
fact that (i) we discard recomposition events that occur around �rm-speci�c corporate events, including
bankruptcies, mergers, takeovers, and exchange delisting and (ii) we require the availability of market
data several days after the announcement date. These requirements are more demanding for the exclusion
events. The imbalance between the sample sizes of included and excluded �rms is also apparent in the
literature. For instance, Chen et al. (2004) �nd 760 additions and 235 deletions for the period beginning
from July 1962 and ending in December 2000. Barberis et al. (2005) obtain 455 inclusion and 76 deletion
events between September 22, 1976 and December 31, 2000.

15The index tracker who purchases the stock of the incumbent �rm at the close of this day will perfectly
track the index.

16Generally, the AD and the ED are well spread across the week. The minimum number of calendar
days between AD and ED is 0 and the maximum is 99 calendar days. The standard deviation amounts
to 7 calendar days.
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AD−1 and ends at ED+63. It sheds light on the long-term e�ects of the news.

Option Returns In order to carry out our analysis, we need to compute the option

returns. We distinguish between the (i) outright and (ii) delta-hedged option return.

The outright option return involves a long position in the option, whereas the delta-

hedged option return consists of a long option position that is delta-hedged by trading

the underlying security every day.17 By studying the response of the delta-hedged option

position, we are able to strip out the e�ect of shocks to the underlying stock price.18

For each optionable stock and trading day, we calculate the daily pro�t and loss of

the outright and delta-hedged option strategies as follows:

Πoutright
j,t = Oj,t −Oj,t−1︸ ︷︷ ︸

Option Gain/Loss

− (erf,t−1 − 1)Oj,t−1︸ ︷︷ ︸
Interest Rate Component

(1)

Πhedged
j,t = Oj,t −Oj,t−1︸ ︷︷ ︸

Option Gain/Loss

− δj,t−1 [Sj,t − Sj,t−1]︸ ︷︷ ︸
Delta-hedging Gain/Loss

− (erf,t−1 − 1) [Oj,t−1 − δj,t−1Sj,t−1]︸ ︷︷ ︸
Interest Rate Component

(2)

where Πoutright
j,t and Πhedged

j,t denote the time-t pro�t and loss of the outright and delta-

hedged option position associated with company j, respectively. Oj,t is the price at time

t of the option contract written on company j. δj,t−1 is the delta of the option at time

t− 1.19 rf,t−1 is the continuously compounded interest rate, expressed on a per day basis,

of the same maturity as the option. The interest rate data come from OptionMetrics.

Unfortunately, the pro�t and loss formulas described above are not well-suited for our

17Our interest in the daily rebalancing scheme is consistent with the literature, e.g., Bakshi and
Kapadia (2003) and Cao and Han (2013).

18An alternative approach might be to study the variance swap rate, proxied with the model-free
implied variance as in Carr and Wu (2008), of constant time-to-maturity around S&P 500 recomposition
events. We refrain from pursuing this analysis for several reasons. First, such analysis introduces a
number of issues linked to the numerical method used to compute the variance swap rate. Second, the
market for variance swaps on single names has dried up since the crisis of 2008 (Hollstein and Wese Simen,
2020).

19One concern may be that the delta-hedge ratio is not accurate. Section VI.E explores this possibility
and shows that the main results are robust to measurement errors in the hedge ratio.
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empirical analysis, because the option price is homogeneous of degree one in the underlying

price. An upshot of this is that the pro�t and loss amounts are not comparable across

stocks that have di�erent underlying prices, making it di�cult to aggregate the �gures

across �rms. To address this issue, we follow Cao and Han (2013) and compute the option

return as:20

ROption,j,t =
Πj,t

|Oj,t−1 − δj,t−1Sj,t−1|
(3)

where ROption,j,t is the return at time t on the option associated with company j.21 Πj,t

is the pro�t and loss, at time t, of the option on company j. To calculate the return

of the outright (delta-hedged) option position, we use the pro�t and loss of the outright

(delta-hedged) option position.

For each �rm and trading day in our sample, we use Equation (3) to calculate the

daily returns of each option contract. Next, we aggregate the returns on all the option

positions by weighting them by the U.S. Dollar open interest, de�ned as the product of

the option price and the open interest of the option (Gao et al., 2018).22 By using this

weighting scheme, we give more weight to option contracts that are of greater economic

interest to market participants. We repeat these steps every day, thus obtaining the time

20The reader may wonder: Why do we use the same denominator when computing the returns on the
outright and delta-hedged option positions? This approach enables us to decompose the return of the
outright position into a component that solely depends on the directional movement of the underlying
and a component related to other sources of risk, e.g., jump and volatility risks. There are alternative
ways to normalize the pro�t and loss of the option position. For instance, Huang et al. (2019) use the
underlying price in the denominator. We also consider this alternative and reach qualitatively similar
conclusions. As an additional check, we only use the option price in the denominator and obtain similar
results. These �ndings are not tabulated for brevity.

21To be precise, Equation (3) is the formula for the excess return on the delta-hedged option. This can
be seen from the fact that the pro�t and loss formulas in Equations (1) and (2) already take into account
the cost of funding the position. Throughout this paper, we commit a slight abuse of terminology by
referring to this quantity as the option return (Cao and Han, 2013).

22Note that the option positions that underpin the aggregation at the �rm level may di�er in terms of
strike prices and/or maturity dates. Section VI.F discusses the results based on two alternative weighting
schemes, namely the volume-weighting and the equal-weighting schemes. Overall, the weighting scheme
has very little bearing on the main results.
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series of daily option returns aggregated at the �rm level. We compound the daily return

series to obtain returns for longer horizons.

Risk-Adjusted Option Returns We compute the risk-adjusted return as the dif-

ference between the observed option return and the expected return generated from a

benchmark model. Although intuitive, this computation is challenging, since there is

no consensus in the literature about the correct model for expected option returns. We

build on Zhan et al. (2022) and use a 3-factor model. The 3 factors are the S&P 500

index option return and the market-capitalization weighted returns of option portfolios

sorted on the stock (i) idiosyncratic volatility (IVOL) and (ii) illiquidity (ILLIQUIDITY)

characteristics.23

Equipped with this empirical model, we compute the risk-adjusted option return as-

sociated with company j as:

AROption,j,t = ROption,j,t −
3∑

k=1

β̂j,kfk,t (4)

where AROption,j,t is the risk-adjusted return at time t of the option associated with �rm

j. β̂j,k is the estimated sensitivity of the option return with respect to the risk factor k.

fk,t denotes the factor k at time t. We estimate the factor sensitivities by pooling together

the return data from (i) 130 to 11 days before the AD and (ii) from 64 trading days after

23Our methodology follows closely that of Zhan et al. (2022). For each stock and month, we use all
daily data to regress the time series of the stock excess returns on the 3 factors of Fama and French (1993).
We compute the idiosyncratic volatility of the stock as the standard deviation of the regression residuals.
We also compute the illiquidity measure as the monthly average of the daily ratio of the absolute value of
the stock return over the dollar trading volume. For each end-of-month date, we sort the relevant option
positions into decile portfolios based on the characteristic of interest and create a high-minus-low spread
portfolio of market capitalization weighted option positions. The upshot of this is that when we compute
the risk-adjusted returns of outright (delta-hedged) option positions, the factors are based on outright
(delta-hedged) option positions.
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the ED to 183 trading days later.24

Control Group Patel and Welch (2017) caution that the positive risk-adjusted long-

term return of added stocks reported in the literature does not necessarily shed light on the

magnitude of the inclusion e�ect. Indeed, the authors show that a group of placebo �rms

exhibits an economically large positive risk-adjusted stock return of more than 1.9% over

a longer event window. Given this �nding, it is prudent to carry out a placebo adjustment.

Our approach is similar to that of Patel and Welch (2017). For each stock added to

the S&P 500 index, we draw a control �rm from the list of companies (i) that are outside

the S&P 500 index and (ii) have a market capitalization rank between #200 and #800 on

the day before the announcement of the index recomposition.25 We then repeat our main

analyses on this pseudo-sample. We perform this experiment 1,000 times, thus obtaining

the placebo distribution of returns.

C Summary Statistics

It is useful to look at the key descriptive statistics contained in Table 1. All returns

are expressed in percentage points per day. For each day, we compute the summary

statistics based on the cross-section of companies ranked between #200 and #800 by

market capitalization. We then average these results in the time series. In order to

shed light on whether there are systematic di�erences between the constituent and non-

24Hollstein et al. (2019) show that an estimation window of roughly 1 year of daily observations
performs well for the beta estimation. As a robustness check, we also consider shorter or longer estimation
windows and obtain similar results. We do not tabulate these �ndings for brevity.

25As a robustness check, we implement the often-used matching algorithm of Barber and Lyon (1997).
Section VI.C shows that this alternative approach does not materially a�ect our results. One may also
consider a more complicated matching algorithm that involves a list of variables that accurately predict
the decision of the index committee. In principle, this approach is appealing. However, if the forecasting
power is limited, the matches will be very noisy. Li et al. (2021) empirically document that it is di�cult
to predict the additions to the index. This is consistent with the knowledge that the decision of the index
committee is discretionary (see Section II.A). Given this �nding, we do not pursue this approach. See
also the discussion in Patel and Welch (2017).
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constituent stocks, we divide the �rms into two groups. The �rst is made up of constituent

�rms, i.e., the �rms that belonged to the S&P 500 index at that point in time, while the

second contains the non-constituent �rms.

Starting with the excess return of stocks, we �nd a daily average of 0.083%. The

average returns of the outright call and put options are positive and negative, respectively.

Turning to the delta-hedged option returns, we observe negative average estimates for both

constituent and non-constituent �rms. This �nding is in line with the work of Bakshi and

Kapadia (2003) and Cao and Han (2013), to name only a few. Interestingly, there is very

little to distinguish between the delta-hedged option returns of both constituent and non-

constituent �rms. The cross-sectional distribution of the option returns displays positive

skewness and high kurtosis, indicating that it is non-normal.

III The Impact of S&P 500 Index Inclusion News on...

This section focuses on the impact of S&P 500 index recomposition news on �nancial

markets. We begin by analyzing the trading activity around inclusion news. By taking

this step, we shed light on whether, and if so how, market participants trade around

inclusion news. Next, we study the price response to the announcements.

A Trading Activity

Figure 2 characterizes the dynamics of stock trading volume for the included �rms.

The trading volume more than doubles from AD − 1 to the AD, suggesting that market

participants react to inclusion news. Moreover, the trading activity continues to rise at

the ED, where it peaks. The peak trading volume observed at the ED is consistent with

the notion that index funds trade the stocks of included �rms at the ED in order to
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minimize tracking error (Bessembinder et al., 2016).

Figure 3 repeats this analysis for the option market. For ease of exposition, we report

the stock equivalent numbers rather than the number of option contracts.26 We can see

a rapid increase in option trading volume from AD − 1 to its peak observed at the AD.

This �nding is interesting for several reasons. First, it suggests that market participants

trade in the option market following inclusion news. Second, the �nding that the option

trading volume peaks at the AD, whereas that of the stock peaks at the ED, raises

the prospect that the option traders may have di�erent trading motives from the stock

traders. Possibly, the option traders are risk arbitrageurs who position themselves in the

option market as soon as the information is public to take advantage of the predictable

trading of benchmarked institutional investors.

While the graphs suggest that market participants react to inclusion news, they do

not speak directly to the impact of these news events on the price of �nancial securities.

To shed light on this, we begin by analyzing the response of the individual stock prices.

In so doing, we revisit and update the �ndings of the existing literature. We then study

the response of option prices to index recomposition news, the main novelty of our paper.

B Stock Prices

Table 2 documents the response of equity prices to inclusion news. Throughout this

paper, we follow Patel and Welch (2017) and winsorize the (i) return and (ii) risk-adjusted

return associated with each company at −4.74%
√
T and 5%

√
T , where T denotes the

length of the event window in trading days.27 We use the 5% signi�cance level for all

statistical tests. The statistical inference for the average (i) return and (ii) risk-adjusted

26For each option contract, the stock equivalent number corresponds to the contract size, i.e., the
number of stocks associated with an option contract, adjusted to account for stock splits.

27The winsorization scheme does not a�ect our main conclusions.

15



return is based on the asymptotic distribution, while that of the average placebo- and

risk-adjusted return is based on the placebo distribution.28

Starting with the average return, we observe a signi�cantly positive announcement

e�ect of 3.21% over the short window. While this result is economically congruent with

the literature, the magnitude of the announcement e�ect is somewhat smaller than that

documented in earlier studies. This �nding echoes the conclusion of Kappou (2018),

Bennett et al. (2020), and Greenwood and Sammon (2022), who document a weaker

index e�ect in the more recent sample. Looking at other horizons, we can see that the

cumulative announcement e�ect continues to grow from 3.21% at the AD to 4.72% at the

ED before falling to 4.56% by ED+63.

Next, we examine the average risk-adjusted return. As benchmark model for equity

returns, we use the 6-factor model of Fama and French (2018). Table 2 shows that the

average risk-adjusted return is highly signi�cant and comparable to the average return.

This is true for all horizons, suggesting that the factor model cannot explain the pattern

of announcement responses.

Finally, we study the impact of the placebo adjustment. This analysis is important

to rule out the possibility that the results stem from a force unrelated to the inclusion

announcement that a�ects both the treated and placebo �rms. The last set of results

of Table 2 shows that, at the short horizon, the average placebo- and risk-adjusted re-

turn (3.21%) is signi�cant and very similar to the average stock return (3.21%). Over

the medium horizon, the average placebo- and risk-adjusted return remains positive and

signi�cant (3.85%). Turning to the long-horizon, we can see that the placebo- and risk-

adjustment result in an economically smaller and insigni�cant average return (1.49%).

Our placebo- and risk-adjusted results con�rm that there is an inclusion e�ect. This

28By using the placebo distribution, we aim to deal with the non-normal features of the return distri-
bution.
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�nding is particularly discernible at both the short and medium horizons.29 The analysis

also reveals that the announcement response reverses over the long event window. Taken

as a whole, the pattern of results associated with both the stock trading volume and the

stock price response appears to be consistent with an explanation of the index e�ect based

on price pressure in the equity market (Harris and Gurel, 1986).

C Call Option Positions

We now turn our attention to the price response of options. We focus speci�cally on

call options, since they represent an attractive way to trade on the inclusion news using

option contracts.30 Indeed, a risk arbitrageur who anticipates an increase in the stock

price of the soon-to-be index member will likely open a long call, rather than a short

put, option position. This is because a long call option position has limited downside and

provides more leverage than a short put position (Augustin et al., 2022). Christo�ersen

et al. (2017) document that, on average, most of the stock option trading takes place in

call options. We verify that this result holds around inclusion news. Figure 4 depicts

the trading volume in the call options around the inclusion announcements. This plot

is comparable to that of the total option trading volume (see Figure 3). By comparing

Figures 3 and 4, we deduce that 76% of the increase in the total option trading volume

observed at the AD relates to call options.

Outright Call Option Positions Panel A of Table 3 summarizes the results associated

with the outright call options position. Several �ndings are worth highlighting. First, the

call options react strongly to inclusion news, as evidenced by the signi�cant announcement

29This positive inclusion e�ect is consistent with the �ndings of the literature, see Patel and Welch
(2017) and the references therein.

30We repeat our analysis using put instead of call options and obtain qualitatively similar results. See
Section IV.D for further details.
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response of 4.55% observed over the short window.31 Implementing the placebo- and risk-

adjustment does not materially change the estimate of the inclusion e�ect, as evidenced

by the signi�cant short-term response (4.50%). A similar result holds for the medium

window. Second, the inclusion e�ect weakens over the long window, as evidenced by the

smaller placebo- and risk-adjusted average return (2.89%).

Overall, our analysis reveals that the positive response of call options to inclusion

news is strongest over the short window and declines over the long window. This pattern

is reminiscent of the response of stocks, and raises the possibility that the response of

the outright call option may mechanically mirror that of the underlying. We next study

the response of delta-hedged call options, which neutralize the e�ect of a shock in the

underlying security on the option price.

Delta-Hedged Call Option Positions Panel B of Table 3 is instructive regarding the

response of delta-hedged options. We can see a positive and signi�cant average response

(0.95%) over the short event window. This announcement response is interesting for a

number of reasons. To begin with, it is positive, whereas the unconditional average daily

delta-hedged option return is negative (−0.006%).32 Moreover, the short-term announce-

31Analyzing a short event window, Dhillon and Johnson (1991) and Dash and Liu (2008) report that
option prices rise by 26.22% and 83.87%, respectively. Clearly, our estimate of the short-term inclusion
e�ect (4.55%) is noticeably smaller than theirs. To understand the di�erence in the empirical results, it
is important to consider how the authors compute option returns:

RDash&Liu,j,t =
Oj,t −Oj,t−1

Oj,t−1
(5)

Since their object of interest (see Equation (5)) is di�erent from ours (see Equation (3)), the two sets
of results are not directly comparable. As an additional analysis, we compute option returns as in Dash
and Liu (2008) and repeat the analysis. Table A1 of the Online Appendix documents a short-term
announcement e�ect of 39.9%, which is of similar order of magnitude to the estimates of Dhillon and
Johnson (1991) and Dash and Liu (2008).

32In order to calculate this unconditional average, we take the complete time series of delta-hedged
option returns associated with all companies added to the S&P 500 index. We calculate the U.S. Dollar
open interest weighted average daily delta-hedged option return �rst at the company level and then take
the mean of the resulting estimates across all companies added to the index during that period. These
�ndings are not tabulated for brevity.
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ment response is at least an order of magnitude larger than the unconditional average

delta-hedged option return. Collectively, these observations lead us to the conclusion that

index inclusion news signi�cantly impacts on the delta-hedged call option return over the

short window. We analyze the extent to which the announcement e�ect is stable over

our sample period. Table 4 documents a signi�cant short-term announcement response

in every 5-year subsample. Unlike the �ndings for stocks documented in Greenwood and

Sammon (2022), we do not �nd any evidence to suggest a declining announcement e�ect

in the recent sample for delta-hedged call options.

Intuitively, we can think of the 1-period outright option return as the sum of the delta-

hedged option return and other terms that depend on the current and past stock prices.

More formally, we decompose the average short-term outright option return as follows:

E
(
Routright

j,t

)
= E

(
Rhedged

j,t

)
+ E

(
δj,t−1 [Sj,t − Sj,t−1]− (erf,t−1 − 1)δj,t−1Sj,t−1

|Oj,t−1 − δj,t−1Sj,t−1|

)
(6)

where E(·) denotes the expectation operator. Routright
j,t and Rhedged

j,t denote the return at

time t of the outright and delta-hedged options associated with �rm j, respectively.

The expression above enables us to quantify the extent to which the response of the

outright option is solely driven by a directional shock to the stock price. If all of the

response relates to the delta e�ect, we should observe that the average return on the delta-

hedged option accounts for a negligible fraction of the average response of the outright

option return. A comparison of the average short-term announcement response of the

outright option position (4.55%) with that of the delta-hedged call option (0.95%) in

Table 3 reveals that more than 20% of the response of the outright call option is due to

forces di�erent from the directional movement in the underlying. We thus conclude that

the shock to the spot price is not the only conduit through which inclusion news impacts
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the pricing of options.

In summary, we con�rm that equity prices respond positively to inclusion news and

most of the stock trading volume takes place on the ED. This pattern of trading activity

is consistent with the notion that, in order to minimize their tracking error, benchmarked

institutional investors, such as index trackers, wait until the ED to purchase the stock of

the added �rm. Interestingly, trading activity in the option market peaks earlier (at the

AD), and most of the trading volume is in call options. This pattern raises the possibility

that risk arbitrageurs open long call option positions as soon as possible to position

themselves ahead of the trading of benchmarked institutional investors, who mostly trade

at the ED. The next section focuses on the impact of the call option demand pressure

on the pricing of options.

IV An Explanation of the Response of the Option Mar-

ket

Garleanu et al. (2009) develop a demand-based theory of option prices that features

two players: the option market maker and the option end-user. In our setting, the option

end-user purchases call option i possibly to take advantage of the predictable demand for

stocks by the index trackers around the ED. Since options are in zero net supply, the

option market maker facilitates the trade by absorbing the end-user's option demand. As

a result, she faces two types of risk: hedgeable risk and unhedgeable risk. She manages

the hedgeable risk by trading δ units of the underlying. In contrast, she cannot eliminate

the unhedgeable risk which may arise from several sources � among others, jumps, or

stochastic volatility. Since the option market maker (i) cannot perfectly hedge the risk

inherent in her inventory and (ii) has limited risk-bearing capacity, she increases the price
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and implied volatility of the call option i.33

There are several reasons to think that this theory is consistent with our results.

First, we document a signi�cant increase in call option trading volume at the AD. This

increase in volume likely re�ects the demand pressure that the option market maker

faces.34 Second, we observe a signi�cantly positive announcement response of delta-hedged

call options over the same event window. Third, the announcement e�ect subsides over

the long event window, where trading activity returns to its pre-announcement level. The

remainder of this section tests the demand-based option pricing theory further.

A Evidence from the Implied Volatility Channel

The demand-based theory of Garleanu et al. (2009) posits that a positive option de-

mand pressure results in a higher implied volatility. This prediction is consistent with

the empirical evidence of Bollen and Whaley (2004), and suggests that the revision in

the implied volatility may help explain the announcement response of the delta-hedged

option portfolios. To see this, consider a simple Taylor approximation of the 1-period

daily pro�t and loss of a delta-hedged option:

Πhedged
j,t ≈ 1

2
Γj,t−1S

2
j,t−1

(
Sj,t − Sj,t−1

Sj,t−1

)2

+ νj,t−1(σj,t − σj,t−1) (7)

where Γj,t−1 is the second-order sensitivity of the option price associated with �rm j to

the underlying price at time t−1. νj,t−1 denotes the sensitivity at time t−1 of the option

33There is growing evidence that market-makers in derivatives markets face a broad range of frictions,
including regulatory capital and liquidity requirements, shareholder costs arising from debt overhang
(Andersen et al., 2019), and desk-speci�c risk limits to name a few. For more details on these frictions,
we refer the interested reader to the work of Andersen et al. (2019), Fleckenstein and Longsta� (2020),
and Hazelkorn et al. (2023).

34We acknowledge that an increase in trading volume does not necessarily imply an order imbalance.
Section VI.A shows that the increase in call option trading volume around the AD appears to be a good
proxy for the call option demand pressure.
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price to changes in the implied volatility of the option associated with �rm j.

Combining Equations (3) and (7), it is straightforward to show that the 1-period

delta-hedged option return is approximately equal to:35

Rhedged
Option,j,t ≈

1
2
Γj,t−1S

2
j,t−1

(
Sj,t−Sj,t−1

Sj,t−1

)2
|Oj,t−1 − δj,t−1Sj,t−1|︸ ︷︷ ︸
Realized Variance Channel

+
νj,t−1

|Oj,t−1 − δj,t−1Sj,t−1|
(σj,t − σj,t−1)︸ ︷︷ ︸

Implied Volatility Channel

(8)

Equation (8) reveals that we can decompose the 1-period delta-hedged return into the

(i) realized variance and (ii) implied volatility channels. The realized variance channel

depends on the square of the 1-period return of the underlying, among others.36 Since the

underlying moves by a large amount following the inclusion news (see Table 2), we expect

this channel to make a meaningful contribution to the delta-hedged option return. The

implied volatility channel depends on the change in implied volatility. If the option market

maker faces a transitory demand pressure and temporarily adjusts the implied volatility

upwards, as predicted by Garleanu et al. (2009), then the implied volatility channel will

have a positive e�ect on the delta-hedged option return.37 This intuition motivates us to

focus speci�cally on the response of the implied volatility channel to inclusion news.

Each trading day, we use all market data to compute the realized variance and the

implied volatility channels. We then analyze the placebo- and risk-adjusted response of

the two channels to index recomposition news. Table 5 summarizes the results. Consistent

with our intuition, the realized variance channel exhibits a positive and signi�cant response

35Note that the approximation is most accurate for the 1-period delta-hedged return. It does not
naturally extend to longer horizons. This problem arises because the long-horizon returns are obtained
by compounding daily returns.

36Our use of the expression �realized variance� is a slight abuse of terminology. The literature on
high-frequency �nancial econometrics typically uses the term �realized� variance to indicate the variance
computed based on intraday data. If we were to delta-hedge the option positions at the intraday (rather
than daily) frequency, our use of the expression would be entirely consistent with this literature.

37The implied volatility may react for a number of other reasons. Section V explores some of these
alternative explanations, and shows that they are unlikely to explain our main results.
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(0.55%) over the short window. More interestingly, the implied volatility channel exhibits

an economically large (0.38%) and statistically signi�cant response over the same window.

The magnitude of the e�ect is noteworthy: it accounts for 42% of the placebo- and risk-

adjusted response of delta-hedged call options observed over the same window. We thus

conclude that the innovation in the implied volatility is an important conduit through

which the index recomposition news moves the delta-hedged call options over the short

window.

We also study the response of the 30-day model-free implied volatility of Bakshi et al.

(2003) to index recomposition news. Our analysis reveals a positive and statistically

signi�cant response over the short and medium windows. Consistent with the intuition

that the demand pressure weakens over the long window, we observe a reversal. This

pattern is consistent with the demand-based option pricing theory. We do not tabulate

these results for brevity.38

B Evidence from Options of Di�erent Moneyness and Maturity

Levels

It is plausible that the option end-user exhibits a stronger preference for some op-

tions than for others. For instance, out-of-the-money and short-maturity options are

particularly attractive to the option end-user since they provide �more bang for the buck �

(Augustin et al., 2019, p. 5703). Accordingly, the demand pressure and ensuing pricing

e�ects should be stronger for these options than for others.

Moneyness Motivated by this insight, we repeat our main analyses for options of

di�erent moneyness levels. Speci�cally, we distinguish between the out-of-the-money

38Given the discussion in Footnote 18, please note that the results of the analysis of the response of
the 30-day model-free implied volatility should be interpreted cautiously.
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(1.05 ≤ K/S < 1.2), at-the-money (0.95 ≤ K/S < 1.05), and in-the-money call options

(0.8 ≤ K/S < 0.95). Because of their high embedded leverage, the out-of-the-money

options are likely the most attractive to the option trader. They are then followed by the

at-the-money and in-the-money options, respectively. Accordingly, we expect the direct

demand pressure and thus the announcement e�ect to ease as we transition from the

out-of-the-money options to the at-the-money and then the in-the-money options.

Table 6 characterizes the placebo- and risk-adjusted response of delta-hedged call

options of di�erent moneyness levels. The out-of-the-money options react strongly to the

inclusion news at the short horizon, as evidenced by a signi�cant announcement e�ect of

1.87%. Consistent with our intuition, the strength of the short-term announcement e�ect

declines as we move to at-the-money (0.84%) and then in-the-money (0.35%).39 We notice

a similar pattern over the medium window too. We also analyze the long horizon, where

the demand pressure likely disappears. Based on the model of Garleanu et al. (2009), we

expect to �nd little to distinguish between the response of options of di�erent moneyness

levels. Table 6 documents precisely this result. The delta-hedged options do not display

a signi�cant placebo- and risk-adjusted return at the long horizon. This is true for all

moneyness levels.

Maturity We also anticipate that the option end-user has a preference for short-term

options due to their high embedded leverage. This insight motivates us to separately

repeat our analysis for short- and long-term options. Speci�cally, we identify options of

maturity less (more) than 60 days as short (long) maturity options.

Table 6 con�rms that the placebo- and risk-adjusted response of the short-term op-

tions (1.06%) is stronger than that of the long-term options (0.73%). Using the relevant

39We also implement the monotonicity test of Patton and Timmermann (2010) with 1,000 bootstrap
repetitions and a block size of 10. The test statistic leads us to reject the null hypothesis, indicating that
the relationship is monotonic. We do not tabulate the results for brevity.
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information in the table, we test and formally reject the null hypothesis that the two

announcement e�ects are equal. This result holds for both the short and medium event

windows. Since the demand pressure likely disappears over the long window, we expect

to �nd little di�erence between the responses of short and long maturity options. Table

6 con�rms this intuition.

As an additional analysis, we focus on out-of-the-money call options of short maturity.

Our untabulated analysis reveals a signi�cant announcement e�ect over the short (1.98%)

and medium (1.18%) windows that reverses over the long horizon. Collectively, these

results are consistent with the demand-based option pricing theory of Garleanu et al.

(2009).

C Regression-Based Evidence

The logic of the demand-based explanation suggests that variables that a�ect the

demand of option end-users and the ability of market makers to intermediate are both

important drivers of the short-term response of the placebo- and risk-adjusted delta-

hedged option returns. This insight motivates us to consider a broad range of variables.

The �rst variable is the TED spread (TED), which is a proxy for the funding cost of

the market maker. This variable is computed as the di�erence between the 3-month

London Interbank O�ered Rate (LIBOR) and the 3-month Treasury bill rate. Intuitively,

a higher cost of funding makes it more di�cult for the market maker to accommodate

the customers' option demand (Lou et al., 2013). As a result, she will increase the option

price more when the cost of funding increases.

The second variable (PRICE) is the stock price of the new index member on AD− 1.

As Boulatov et al. (2022) point out, investors may perceive options on low-priced stocks

as cheap or �good deals�. Accordingly, there will likely be more option demand pressure
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for low-priced companies, resulting in a higher price response by the option market maker.

The third variable (MIDCAP) is a dummy variable that takes the value 1 if the new

index member is upgraded from the S&P 400 midcap index to the S&P 500 index. Our

motivation stems from the model of Pavlova and Sikorskaya (2022). When a stock tran-

sitions from the S&P 400 midcap index to the S&P 500 index, it is subject to buying

pressure from institutional investors benchmarked against the S&P 500 index. However,

that buying pressure is partly o�set by the selling pressure of institutional investors bench-

marked against the S&P 400 midcap index.40 The net result is that the response of the

stock to the recomposition news is likely weaker for a company that transitions from the

S&P 400 midcap index to the S&P 500 index compared to a company that joins the S&P

500 index from outside the S&P 400 midcap index.41 To the extent that the option end-

user accounts for the smaller expected stock response of �rms that transition from the

midcap index, she will exert less option demand pressure for companies that are upgraded

from the S&P 400 midcap index. The upshot of this is that the MIDCAP variable should

have a negative impact on the response of delta-hedged option positions.

The last two variables are DAYS and SENT. DAYS captures the number of trading

40The ownership of index investors is determined by the product of the weight of the company in the
new index and the amount of money passively tracking that index. When a stock moves from the S&P
400 midcap index to the S&P 500 index, its weight in the new index is likely to drop. However, the
drop in the index weight can be largely counteracted by the fact that the amount of money benchmarked
against the S&P 500 index is signi�cantly larger than that tracking the S&P 400 midcap index. Saglam
et al. (2019) empirically show that the combined ownership of exchange traded funds (ETFs) and index
funds generally increases as a stock transitions from the S&P 400 midcap index to the S&P 500 index.

41In our sample, there are 314 �rms that transition from the S&P 400 midcap index to the S&P 500
index. We separately analyze the stock price response to index news when the dummy MIDCAP is equal
to 0 and 1. Starting with the stocks that transition from outside the S&P 400 midcap index to the
S&P 500 index (MIDCAP=0), we observe a placebo- and risk-adjusted announcement response of 5.01%,
7.67%, and 2.7% over the short, medium, and long window, respectively. Repeating the same analysis for
added stocks that were part of the midcap index (MIDCAP=1), we obtain a placebo- and risk-adjusted
stock announcement response of 2.16%, 1.63%, and 0.78%, respectively. We do not tabulate these results
for brevity. In addition to the 314 upgrades from the S&P 400 midcap index to the S&P 500 index, there
are 5 companies that moved from the S&P 600 smallcap index to the S&P 500 index. All other inclusions
relate to �rms outside the S&P indices. Our main results hold when we create an S&P dummy variable
that takes the value 1 if the added �rm was previously part of the S&P midcap or smallcap index.
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days between the ED and the AD. When there is very little time between the two dates,

option end-users are likely to trade with more intensity. SENT is based on the sentiment

measure of Baker and Wurgler (2006). When sentiment is high, option end-users are

likely to have a strong demand for options. In turn, this strong demand pressure leads to

a stronger response of the delta-hedged options.

We perform a pooled regression of the (short-term) placebo- and risk-adjusted return

of the delta-hedged option on a constant and the lagged observation of each of the afore-

mentioned variables. For ease of comparison, we standardize all explanatory variables,

except for the dummy, to have 0 mean and a unit standard deviation. Table 7 summarizes

the regression results. Starting with the univariate speci�cation, each slope parameter has

the expected sign. Moreover, the results suggest that TED, PRICE, and MIDCAP have

a statistically signi�cant impact on the placebo- and risk-adjusted response of the delta-

hedged option returns. The last column shows the results of the multivariate regression:

the slope estimates associated with TED, PRICE, and MIDCAP remain highly signi�cant.

This set of results lends further support to the demand-based explanation.

D Evidence from Put Options

Up to this point, our main analysis has focused on call options. This choice was

motivated by the observation that most of the option trading activity takes place in call,

rather than put, options (see Figures 3 and 4). However, the theory of Garleanu et al.

(2009) posits that the demand pressure associated with option i also a�ects the pricing

of option j, for which the unhedgeable risk comoves with that of option i: the higher

the comovement, the stronger is the e�ect on option j. Conceptually, a delta-hedged

put option exposes the market maker to similar unhedgeable risks as does a delta-hedged

call option. Thus, if our results are consistent with the demand-based option theory, we
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should observe qualitatively similar announcement e�ects for put options.

Table 8 documents a positive and signi�cant average placebo- and risk-adjusted re-

sponse over the short (0.60%) and medium (0.72%) windows. These estimates are smaller

but qualitatively similar to the corresponding estimates for the call option. Similar to

the call option results, the announcement e�ect reverses over the long horizon. Taken as

a whole, these results lend further support to the demand-based option pricing model of

Garleanu et al. (2009).

V Possible but not Probable Explanations

Although the demand-based option pricing theory explains our main empirical �nd-

ings, the reader may wonder about alternative explanations. In this section, we consider

and evaluate two potential mechanisms. The �rst builds on the dispersion trading strat-

egy presented in Driessen et al. (2009), while the second relies on the noise trading insights

of Black (1986). We show that these explanations make predictions that are at odds with

the empirical evidence, leading us to conclude that they cannot explain our main �ndings.

A Dispersion Trading

Existing studies, e.g., Driessen et al. (2009) and Hollstein and Wese Simen (2020),

document a sizeable correlation risk premium in the S&P 500 index option market. In

order to capture this correlation risk premium, the authors implement a dispersion trade

which consists of a short position in the index options and long positions in the options

of all the index stocks. If a stock is added to the index, the dispersion trader will buy

the options of the new index member. In turn, this permanent demand pressure of the

dispersion trader will result in a permanent inclusion e�ect. Empirically, the prediction
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of a permanent addition e�ect is at odds with the temporary announcement response

reported in Table 3.

Furthermore, conversations with market participants reveal that, in practice, the dis-

persion trading strategy typically does not involve positions in the options on all the S&P

500 constituent stocks. This is because of the high costs associated with trading the

derivatives. Instead, practitioners only trade the options of a subset of large and very

liquid �rms. A case in point is the CBOE S&P 500 implied correlation index, which is

based only on the 50 largest stocks in the S&P 500 index.42 It is therefore unlikely that

dispersion traders take positions in the derivatives of the newly included stocks.

B Noise Trading

Index-related products, such as index futures and ETFs, are liquid assets. In turn, the

ease of trading these products attracts noise traders who have a high-frequency and non-

fundamental demand (Black, 1986). Since the index is linked to the constituent stocks by

the absence of arbitrage, the high-frequency trading of noise traders in the index product

essentially imports non-fundamental volatility into the stock prices of index constituents.

Consistent with this mechanism, Ben-David et al. (2018) �nd that an increase in ETF

ownership is associated with more volatile stock returns.43

If option prices re�ect this increased volatility, we expect to see a positive and perma-

42For further details on the construction of this index, we refer the reader to: https://

www.cboe.com/micro/impliedcorrelation/impliedcorrelationindicator.pdf. For practical exam-
ples of dispersion strategies, see https://www.newconstructs.com/wp-content/uploads/2010/10/

JP-Morgan-and-Correlation.
43Harris (1989) compares the volatility of the returns of stocks included in the S&P 500 index to

that of a placebo group of �rms. Analyzing the period after 1985, the author �nds that stocks added
to the index witness a signi�cant increase in the short-term volatility of their returns of 14 basis points.
Interestingly, there is no signi�cant di�erence between the short-term volatility estimates of the included
and placebo �rms before 1983. Taken together, these results leave open the possibility that the higher
short-term volatility of included �rms in the post-1983 sample may be linked to the introduction of index
products such as the S&P 500 index futures and option contracts.

29

https://www.cboe.com/micro/impliedcorrelation/impliedcorrelationindicator.pdf
https://www.cboe.com/micro/impliedcorrelation/impliedcorrelationindicator.pdf
https://www.newconstructs.com/wp-content/uploads/2010/10/JP-Morgan-and-Correlation
https://www.newconstructs.com/wp-content/uploads/2010/10/JP-Morgan-and-Correlation


nent placebo- and risk-adjusted response of the delta-hedged options of included �rms.

Clearly, this prediction is not borne out by the data, as Table 3 reports a temporary

announcement response.

VI What About...

In this section, we conduct several additional checks to evaluate the robustness of our

�ndings. We begin by examining the extent to which the increase in trading volume prox-

ies for the demand pressure. We then analyze the evidence of reversal at the asset, rather

than portfolio, level. Next, we select the placebo �rms following a matching algorithm

similar to that of Barber and Lyon (1997). Additionally, we assess the e�ect of measure-

ment errors in the option price and the hedge ratio. We also analyze the sensitivity of

our results to the weighting scheme used to aggregate option positions at the �rm level.

Finally, we show that our results are distinct from the earnings news e�ect documented

by Gao et al. (2018).

A The Proxy for Demand Pressure?

So far, we have interpreted the increase in call option trading volume as indicative

of the call option demand pressure. If this interpretation is valid, we expect to see a

stronger announcement e�ect when there is a higher growth in the call option trading

volume. Motivated by this insight, we sort the added �rms into high and low portfolios

based on the percentage change of the call option trading volume observed at the AD

compared to the average volume over the 5 preceding days. For each �rm, we calculate the

placebo- and risk-adjusted response of the delta-hedged call options over the short-term

event window. We then aggregate the results across all �rms of each portfolio.
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The �rst row of Table A2 of the Online Appendix presents the results of this analysis.

We can see that the high portfolio of �rms exhibits a stronger response (1.18%) than

the low portfolio of �rms (0.59%). This di�erence is statistically signi�cant, as evidenced

by the last column. As an additional check, we repeat the analysis after replacing the

percentage change in volume with the logarithmic growth rate of the call option trading

volume. As the last row of the table shows, the conclusion remains the same. Taken to-

gether, these �ndings reinforce our interpretation of the increase in option trading volume

as evidence of option demand pressure.

B The Evidence of Reversal?

To the extent that the delta-hedged option positions respond to the temporary demand

pressure of option end-users, the announcement e�ect should subside over the long event

window. Up to this point, our evidence of reversal is based on the long-term results

aggregated across �rms. However, the reversal should also be discernible at the asset

level and not just at the portfolio level. As pointed out by Patel and Welch (2017), the

portfolio-level reversal is not necessarily evidence of reversal at the security level.

To assuage this concern, we follow Patel and Welch (2017) and estimate a cross-

sectional regression of the placebo- and risk-adjusted returns of the delta-hedged options

observed over the period from AD+2 to ED+63 on a constant and the 1-period placebo-

and risk-adjusted return of the delta-hedged call option observed at (and around) the AD.

Table A3 of the Online Appendix reveals that the AD return signi�cantly predicts the

return from AD+2 to ED+63 with a negative and economically large coe�cient of −0.57.

This result clearly points to reversal at the security level and lends further support to the

demand-based theory of option pricing.
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C The Control Group?

We analyze the robustness of our results to the selection of the control �rms. Our

approach broadly follows the matching algorithm of Barber and Lyon (1997). For each

�rm added to the index, we draw up a list of �rms that are outside the S&P 500 index

with an announcement day market capitalization corresponding to between 70% and

130% of that of the treated �rm. Next, we separately sort the resulting �rms based on

how close their (i) book-to-market, (ii) investment, (iii) pro�tability, and (iv) momentum

characteristics are to those of the treated �rm. We then compute the average rank across

all 4 sorts. We select the closest �rm overall as control �rm.

Armed with the control group, we re-compute the placebo- and risk-adjusted returns.

Table A4 of the Online Appendix reports results that are similar to our benchmark es-

timates (see Table 3). We thus conclude that the main �ndings are not a�ected by the

method of selecting the group of control �rms.

D Noise in the Option Price?

Our main analysis focuses on the midpoint between the bid and ask option prices.

It is, however, interesting to consider alternative approaches. We follow Eisdorfer et al.

(2022) and use two speci�c alternative estimates of the option price. First, we assume

that the option price corresponds to the sum of 75% of the bid and 25% of the ask prices.

Second, we compute the option price as the sum of 25% of the bid price and 75% of the

ask price. We then repeat our main analysis.

Table A4 of the Online Appendix summarizes the placebo- and risk-adjusted response

of the delta-hedged call option. There is a positive and signi�cant announcement response

at the short and medium windows that reverses over the long window. The magnitude of

the announcement e�ects is similar to our baseline estimates, leading us to conclude that
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the results are robust to noise in the option price.

E Measurement Errors in the Hedge Ratio?

Our construction of the delta-hedged option position requires accurate delta estimates.

Unfortunately, the �true� delta is not directly observable but instead needs to be estimated

using a speci�c option pricing model. It is possible that the delta estimates of Option-

Metrics are a�ected by errors arising from model misspeci�cation. To the extent that the

�true� delta di�ers from the estimated delta, our analysis will be a�ected by measurement

errors.

Smile Adjustment One concern may be that the delta should be adjusted to account

for the implied volatility smile. Building on Alexander et al. (2012), we compute the

smile-adjusted delta as the sum of the estimated delta and an adjustment term that

corresponds to the product of the option vega with the sensitivity of the implied volatility

to the underlying price. More formally, we have:

δadjj,t = δj,t + νj,tσ
′ (9)

where δadjj,t denotes the smile-adjusted delta, at time t, associated with option j. σ′ is the

sensitivity of the implied volatility to the underlying price.

Since the implied volatility depends on the strike price of the option, i.e., the smile

e�ect, the last term on the right-hand-side of Equation (9) essentially adjusts the baseline

delta for the smile e�ect. In order to characterize the sensitivity of the implied volatility

to the underlying price, we implement the skew tilt in the same way as Alexander et al.

(2012). We then compute the smile-adjusted delta and repeat our key analyses. Table

A4 of the Online Appendix shows that, if anything, the adjustment slightly strengthens
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our main results.

Perturbation As an additional check, we follow Coval and Shumway (2001) in pertur-

bating the computed delta.44 More speci�cally, we assume that the �true� delta is equal

to 95% or 105% (Huang et al., 2019) of the estimated delta and repeat the analysis using

the new hedge ratio.45 Table A4 of the Online Appendix presents the results for the delta-

hedged call options based on the new hedge ratios. Generally, these results are consistent

with our main �ndings. The delta-hedged call option positively reacts to inclusion news

at the short and medium horizons and the announcement response reverses at the long

horizon.

F The Method of Aggregation?

So far, we have used weights based on the U.S. Dollar open interest to aggregate

the delta-hedged option returns at the �rm level each day. We now consider alternative

choices. Speci�cally, we repeat our main analysis after separately implementing (i) a

volume-weighting scheme, which puts more emphasis on options that attract more trading

volume, and (ii) an equal-weighting scheme (Christo�ersen et al., 2017), which treats all

option contracts in the same manner. By comparing the results based on these alternative

weights with our benchmark estimates, we can evaluate the importance of the weighting

scheme.

Table A4 of the Online Appendix reports estimates that are very similar to our bench-

44Another approach consists in formulating and estimating an empirical model for the delta. That is,
one assumes that the delta of an option depends on several characteristics. One then empirically estimates
the sensitivity of delta to the various characteristics and uses the parameter estimates to compute the
model-implied hedge ratio. Huang et al. (2019) follow this approach, and document that the resulting
hedge ratio is quite noisy. Given this conclusion, we refrain from pursuing this approach.

45It is worth pointing out that, given our formula for the delta-hedged option return (see Equation
(3)), the impact of measurement errors in the hedge ratio on this return is non-linear. This is because
the hedge ratio a�ects both the numerator and the denominator.
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mark results. Over the short event window, we see a placebo- and risk-adjusted response

of 1.20% and 1.18% when implementing the volume- and equal-weight schemes, respec-

tively. This is comparable to our baseline estimate of 0.90% (see Table 3). The dynamics

of the announcement response is consistent too: it is signi�cantly positive over both the

short and medium event windows and then reverses over the long window.

G Concurrent Earnings News?

Our �nding of a signi�cant positive short-term announcement response of the delta-

hedged option market to index recomposition news is reminiscent of the work of Gao et al.

(2018), who document that, while the straddle returns of individual stocks are negative

on average, there is a signi�cantly positive average straddle return around earnings an-

nouncements. Naturally, one may wonder if the index inclusion news coincides with the

earnings announcements of the treated �rms. If this is the case, the inclusion news e�ect

we document could be driven by the earnings news e�ect of Gao et al. (2018).

To address this concern, we discard all observations associated with an AD that falls

within 2 trading days of an earnings announcement. This criterion only a�ects 26 of

the 497 inclusion events. Table A4 of the Online Appendix documents a statistically

signi�cant placebo- and risk-adjusted response of the delta-hedged call over the short and

medium windows. This announcement e�ect disappears over the long window. Overall,

these results are qualitatively and quantitatively similar to our benchmark �ndings. We

thus conclude that our main results are distinct from the earnings announcement �ndings

of Gao et al. (2018).
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VII Conclusion

We study the impact of S&P 500 index inclusion news on equity options. There is a

signi�cant spike in option trading volume shortly after the announcement. The lion's share

of this option trading volume relates to call options. We thus analyze the price impact of

the inclusion news on delta-hedged call options. On a placebo- and risk-adjusted basis,

the delta-hedged call options respond positively to the inclusion news over the short and

medium event windows. This announcement e�ect subsides and becomes insigni�cant

over the longer horizon.

The pattern of announcement e�ects in the options is consistent with the demand-

based option pricing model of Garleanu et al. (2009). We �nd that revisions in the

implied volatility account for 42% of the short-term response of delta-hedged call options.

Additionally, the announcement response is stronger for call options that likely attract

more demand from risk arbitrageurs and reverses at the long horizon as the option demand

pressure subsides. Furthermore, we show that several well-motivated variables can explain

the cross-sectional di�erences in the announcement response. Finally, we document that

the delta-hedged put options, which attract considerably less trading volume, also react

positively to the index inclusion news. Collectively, these results reveal that the impact

of S&P index recompositions news extends from the equity market to the option market.
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Figure 1: Event Study: Timeline

This �gure illustrates the timeline used in the paper. S&P publicly announces the changes to the index

composition at 05:15 PM Eastern Time, after the regular trading hours. Thus, the impact of the index re-

composition announcements can only be seen on the next trading day, which we denote the announcement

date (AD). ED indicates the last trading day before the index recomposition event becomes e�ective.

The di�erence in dates is expressed in trading days. For example, ED + 63 indicates 63 trading days

after ED.
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Figure 2: Stock Trading Volume around Inclusion News

This �gure characterizes the average stock trading volume around key dates related to the inclusion

events along with the corresponding 95% con�dence interval. The horizontal axis shows di�erent dates.

AD denotes the �rst trading day after the index inclusion news is public. ED denotes the last trading

day before the index inclusion becomes e�ective. The vertical axis shows the number of shares traded.
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Figure 3: Option Trading Volume around Inclusion News

This �gure characterizes the average option trading volume around key dates related to the inclusion

events and the associated 95% con�dence interval. The horizontal axis shows di�erent dates. The AD

denotes the �rst trading day after the index inclusion news is public. The ED denotes the last trading

day before the index inclusion becomes e�ective. The vertical axis shows the option trading volume,

expressed in stock equivalent.
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Figure 4: Call Option Trading Volume around Inclusion News

This �gure characterizes the average call option trading volume around key dates related to the inclusion

events and the associated 95% con�dence interval. The horizontal axis shows di�erent dates. The AD

denotes the �rst trading day after the index inclusion news is public. The ED denotes the last trading

day before the index inclusion becomes e�ective. The vertical axis shows the call option trading volume,

expressed in stock equivalent.
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Table 1: Summary Statistics

This table presents the summary statistics of daily stock and (outright and delta-hedged) option returns.

At each point in time, we compute the summary statistics using the returns related to the companies

ranked between #200 and #800 by market capitalization. We then compute and present the time-series

average of these summary statistics. Avg reports the average of the [name in row] returns. All returns

are expressed in percentage points per day. Med, Std, Skew, Kurt, Q0.10, and Q0.90 report the median,

standard deviation, skewness, kurtosis, as well as the 10% and 90% quantiles, respectively. The subscripts

C and nC indicate that the calculation relates to S&P 500 index constituent and non-constituent stocks,

respectively.

Avg AvgC AvgnC MedC MednC Std StdC StdnC Skew Kurt Q0.10 Q0.90

Stocks 0.083 0.042 0.119 0.010 0.039 2.089 1.872 2.208 0.716 21.53 −2.014 2.210

Outright calls 0.089 0.045 0.131 −0.075 −0.065 2.597 2.246 2.805 1.883 30.62 −2.366 2.610

Outright puts −0.088 −0.055 −0.120 −0.115 −0.167 1.830 1.660 1.933 1.227 23.69 −1.939 1.764

Delta-hedged calls −0.013 −0.010 −0.016 −0.040 −0.048 0.831 0.691 0.905 2.064 61.44 −0.630 0.601

Delta-hedged puts −0.013 −0.013 −0.013 −0.047 −0.061 0.771 0.623 0.859 2.708 62.86 −0.566 0.544
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Table 2: Announcement E�ect: Stocks

This table summarizes the response of stocks to index inclusion news. The AD denotes the �rst trading

day after the index inclusion news is public. The ED is the last trading day before the index inclusion

becomes e�ective. We present the results for di�erent event windows with the length of the window

expressed in trading days. We report the average (i) raw (R), (ii) risk-adjusted (AR), and (iii) placebo-

and risk-adjusted (AR∗) excess return. In order to carry out the risk-adjustment, we use the 6-factor

model of Fama and French (2018). In parentheses, we report the Newey and West (1987) standard

errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗ indicate statistical signi�cance at the 10%, 5%, and 1% level,

respectively.

AD− 5 to AD− 1 to AD− 1 to AD− 1 to

AD− 1 AD ED ED + 63

R
0.73∗∗∗ 3.21∗∗∗ 4.72∗∗∗ 4.56∗∗∗

(0.22) (0.20) (0.42) (1.18)

AR
0.77∗∗∗ 3.36∗∗∗ 4.46∗∗∗ 3.22∗∗∗

(0.20) (0.19) (0.36) (0.97)

AR∗
0.38∗ 3.21∗∗∗ 3.85∗∗∗ 1.49∗

(0.20) (0.19) (0.36) (0.93)
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Table 3: Announcement E�ect: Call Options

This table summarizes the response of call options to index recomposition news. Panels A and B summa-

rize the results associated with the (i) outright and (ii) delta-hedged option positions, respectively. The

AD denotes the �rst trading day after the index inclusion news is public. The ED is the last trading day

before the index inclusion becomes e�ective. We present the results for di�erent event windows with the

length of the window expressed in trading days. For each panel, we report the average (i) raw (R), (ii)

risk-adjusted (AR), and (iii) placebo- and risk-adjusted (AR∗) excess return. In order to carry out the

risk-adjustment, we use the 3-factor model of Zhan et al. (2022). In parentheses, we report the Newey

and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗ indicate statistical signi�cance at the

10%, 5%, and 1% level, respectively.

Panel A. Outright Options

AD− 5 to AD− 1 to AD− 1 to AD− 1 to

AD− 1 AD ED ED + 63

R
0.71∗∗∗ 4.55∗∗∗ 6.28∗∗∗ 6.14∗∗∗

(0.23) (0.26) (0.53) (1.48)

AR
1.01∗∗∗ 4.74∗∗∗ 6.39∗∗∗ 8.00∗∗∗

(0.22) (0.26) (0.46) (1.32)

AR∗
0.52∗∗ 4.50∗∗∗ 5.32∗∗∗ 2.89∗∗

(0.22) (0.26) (0.46) (1.23)

Panel B. Delta-Hedged Options

AD− 5 to AD− 1 to AD− 1 to AD− 1 to

AD− 1 AD ED ED + 63

R
−0.09 0.95∗∗∗ 0.91∗∗∗ 0.73∗

(0.08) (0.09) (0.14) (0.38)

AR
−0.02 0.95∗∗∗ 1.06∗∗∗ 2.24∗∗∗

(0.09) (0.09) (0.14) (0.36)

AR∗
−0.11 0.90∗∗∗ 0.92∗∗∗ 0.24

(0.08) (0.09) (0.14) (0.30)
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Table 4: The Announcement Response of Delta-Hedged Call Options Over
Time

This table summarizes the short-term, i.e., from AD − 1 to AD, response of delta-hedged call options

to index recomposition news. We present the results for di�erent 5-year subsamples. Speci�cally, we

report the average (i) raw (R), (ii) risk-adjusted (AR), and (iii) placebo- and risk-adjusted (AR∗) excess

return. In order to carry out the risk-adjustment, we use the 3-factor model of Zhan et al. (2022). In

parentheses, we report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗

indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively.

1996�2000 2001-2005 2006�2010 2011�2015 2016�2020

R
2.07∗∗∗ 0.57∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.36∗∗∗

(0.24) (0.16) (0.10) (0.09) (0.08)

AR
2.03∗∗∗ 0.58∗∗∗ 0.52∗∗∗ 0.58∗∗∗ 0.40∗∗∗

(0.24) (0.16) (0.10) (0.10) (0.08)

AR∗
1.95∗∗∗ 0.55∗∗∗ 0.49∗∗∗ 0.57∗∗∗ 0.33∗∗∗

(0.25) (0.16) (0.12) (0.10) (0.08)
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Table 5: Realized Variance and Implied Volatility Channels

This table summarizes the placebo- and risk-adjusted response of the realized variance and implied

volatility channels to index recomposition news. In order to carry out the risk-adjustment, we use the

3-factor model of Zhan et al. (2022). The AD denotes the �rst trading day after the index inclusion

news is public. The ED is the last trading day before the index inclusion becomes e�ective. We present

the results for di�erent event windows with the length of the window expressed in trading days. In

parentheses, we report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗

indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively.

AD− 5 to AD− 1 to AD− 1 to AD− 1 to

AD− 1 AD ED ED + 63

Realized Variance Channel
−0.02 0.55∗∗∗ 0.52∗∗∗ 0.21

(0.06) (0.07) (0.11) (0.44)

Implied Volatility Channel
−0.05 0.38∗∗∗ 0.42∗∗∗ 0.16

(0.06) (0.06) (0.08) (0.20)
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Table 6: Moneyness and Maturity E�ects: Placebo- and Risk-Adjusted
Delta-Hedged Option Returns

This table summarizes the average placebo- and risk-adjusted response of delta-hedged call options to

index recomposition news. We separately analyze options of di�erent moneyness and maturity as indi-

cated in the �rst column. The AD denotes the �rst trading day after the index inclusion news is public.

The ED denotes the last trading day before the index inclusion becomes e�ective. We present the results

for di�erent event windows with the length of the window expressed in trading days. In order to carry

out the risk-adjustment, we use the 3-factor model of Zhan et al. (2022). In parentheses, we report the

standard errors based on the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗

indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively.

AD− 5 to AD− 1 to AD− 1 to AD− 1 to
AD− 1 AD ED ED + 63

Moneyness

Out-of-the-Money: 1.05 ≤ K/S ≤ 1.2
−0.17 1.87∗∗∗ 1.31∗∗∗ 0.30
(0.14) (0.20) (0.21) (0.36)

At-the-Money: 0.95 ≤ K/S < 1.05
−0.05 0.84∗∗∗ 0.81∗∗∗ 0.53
(0.08) (0.07) (0.12) (0.30)

In-the-Money: 0.8 ≤ K/S < 0.95
−0.04 0.35∗∗∗ 0.45∗∗∗ 0.35
(0.05) (0.05) (0.08) (0.19)

Maturity

Short-term: 8 to 60 days
−0.06 1.06∗∗∗ 1.02∗∗∗ 0.35
(0.09) (0.11) (0.15) (0.33)

Long-term: 61 to 120 days
−0.07 0.73∗∗∗ 0.52∗∗∗ 0.23
(0.08) (0.11) (0.10) (0.22)
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Table 7: Announcement E�ect: Regression

This table summarizes the results of a pooled regression of the short-term, placebo, and risk-adjusted

announcement response of delta-hedged call options on a constant and 5 lagged explanatory variables.

TED denotes the spread between the 3-month London Interbank O�ered Rate (LIBOR) and the 3-month

Treasury bill rate. PRICE is the stock price on AD − 1 of the soon-to-be index member. MIDCAP is a

dummy variable that takes value 1 if the new index member transitions from the S&P 400 midcap index

to the S&P 500 index and 0 otherwise. DAYS indicates the number of trading days between the ED

and the AD. Finally, SENT is the sentiment measure of Baker and Wurgler (2006). In parentheses, we

report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗ indicate statistical

signi�cance at the 10%, 5%, and 1% level, respectively.

(i) (ii) (iii) (iv) (v) (vi)

α 0.90∗∗∗ 0.90∗∗∗ 1.34∗∗∗ 0.90∗∗∗ 0.90∗∗∗ 1.30∗∗∗

(0.09) (0.09) (0.18) (0.09) (0.09) (0.17)

TED 0.20∗∗ 0.17∗∗

(0.09) (0.08)

PRICE −0.25∗∗∗ −0.17∗∗∗

(0.07) (0.06)

MIDCAP −0.68∗∗∗ −0.63∗∗∗

(0.21) (0.20)

DAYS −0.14 −0.13

(0.09) (0.08)

SENT 0.16 0.12

(0.10) (0.10)

Adj. R2 (%) 0.77 1.23 2.34 0.28 0.40 4.09
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Table 8: Announcement E�ect: Put Options

This table summarizes the response of the delta-hedged put options to index recomposition news. The

AD denotes the �rst trading day after the index inclusion news is public. The ED is the last trading

day before the index inclusion becomes e�ective. We present the results for di�erent event windows with

the length of the window expressed in trading days. We report the average (i) raw (R), (ii) risk-adjusted

(AR), and (iii) placebo- and risk-adjusted (AR∗) excess return. In order to carry out the risk-adjustment,

we use the 3-factor model of Zhan et al. (2022). In parentheses, we report the Newey and West (1987)

standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗ indicate statistical signi�cance at the 10%, 5%, and

1% level, respectively.

AD− 5 to AD− 1 to AD− 1 to AD− 1 to

AD− 1 AD ED ED + 63

R
0.07 0.63∗∗∗ 0.76∗∗∗ −0.00

(0.08) (0.08) (0.12) (0.29)

AR
0.10 0.61∗∗∗ 0.80∗∗∗ 0.46∗

(0.08) (0.08) (0.12) (0.26)

AR∗
0.06 0.60∗∗∗ 0.72∗∗∗ −0.02

(0.08) (0.08) (0.12) (0.24)

53



The Index E�ect: Evidence from the Option Market

Online Appendix

JEL classi�cation: G12, G11, G17

Keywords: Delta-Hedged Options, Demand Pressure, Index E�ect, Placebo



Figure A1: Inclusions Over Time

This �gure presents the number of inclusions for each month in our �nal sample. The horizontal axis

shows the date. The shaded areas indicate business cycle contractions as identi�ed by the National

Bureau of Economic Research (NBER).
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Table A1: Announcement E�ect: Call Options (Dash and Liu, 2008)

This table characterizes the returns on call options around the index recomposition news. We calculate

the daily option returns as in Dash and Liu (2008). The AD denotes the �rst trading day after the index

inclusion news is public. The ED is the last trading day before the index inclusion becomes e�ective. We

present the results for di�erent event windows with the length of the window expressed in trading days.

We report the average (i) raw (R), (ii) risk-adjusted (AR), and (iii) placebo- and risk-adjusted (AR∗)

excess return. In order to carry out the risk-adjustment, we use the 3-factor model of Zhan et al. (2022).

In parentheses, we report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗

indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively.

AD − 5 to AD − 1 to AD − 1 to AD − 1 to

AD − 1 AD ED ED + 63

R
6.82∗∗∗ 39.9∗∗∗ 56.9∗∗∗ 38.9∗∗

(2.48) (2.72) (5.73) (16.3)

AR
7.64∗∗∗ 40.2∗∗∗ 54.8∗∗∗ 36.9∗∗∗

(2.46) (2.71) (4.65) (14.2)

AR∗
3.04 38.9∗∗∗ 47.2∗∗∗ 1.12

(2.37) (2.67) (4.72) (13.9)
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Table A2: Announcement E�ect: The Role of the Option Trading Volume

This table examines the impact of the change in the call option trading volume on the short-term placebo-

and risk-adjusted response of delta-hedged call options. The response is measured over the period that

starts at AD−1 and ends at the AD, where the AD denotes the �rst trading day after the index inclusion

news is public. In order to carry out the risk-adjustment, we use the 3-factor model of Zhan et al. (2022).

We sort �rms into portfolios [name in column] based on the variable [name in row ]. %∆Volume indicates

the percentage change in call option trading volume at the AD. As a reference volume level, we use

the average volume computed using the 5-day period ending at AD − 1. ∆ log(Volume) denotes the

logarithmic growth in call option trading volume. In parentheses, we report the Newey and West (1987)

standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗ indicate statistical signi�cance at the 10%, 5%, and

1% level, respectively.

Low High High-minus-Low

%∆Volume 0.59∗∗∗ (0.13) 1.18∗∗∗ (0.14) 0.59∗∗∗ (0.19)
∆ log(Volume) 0.28∗∗∗ (0.06) 1.50∗∗∗ (0.16) 1.22∗∗∗ (0.17)
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Table A3: Analyzing Reversals

This table summarizes the results of the cross-sectional regression of the delta-hedged call option return

for the period starting at AD + 2 and ending on ED + 63 on a constant and the delta-hedged call

option return observed over the 1-period ending at [name in column]. γ denotes the slope coe�cient.

In parentheses, we report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and

∗∗∗ indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively. The AD and the ED

denote the announcement and e�ective dates, respectively. All the delta-hedged call option returns are

placebo- and risk-adjusted. In order to carry out the risk-adjustment, we use the 3-factor model of Zhan

et al. (2022). Mean and Std denote the average and volatility of the placebo- and risk-adjusted return

observed at time [name in column], respectively. ρAD reports the correlation between the placebo- and

risk-adjusted delta-hedged returns observed at times AD and [name in column].

AD − 5 AD − 4 AD − 3 AD − 2 AD − 1 AD AD + 1

Mean 0.02 −0.04 −0.02 0.01 −0.11 0.90 −0.00
Std 0.87 0.98 0.74 0.65 1.12 2.05 0.59
ρAD −0.03 −0.05 0.02 −0.01 −0.25 1.00 0.07

γ
−0.29 −0.39∗ 0.58 0.30 −0.08 −0.57∗∗∗ 0.34
(0.46) (0.22) (0.65) (0.61) (0.38) (0.18) (0.69)
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Table A4: Robustness: Placebo- and Risk-Adjusted Delta-Hedged Call
Option Returns

This table presents various robustness checks regarding the placebo- and risk-adjusted response of delta-

hedged call options to S&P 500 index recomposition news. The �rst panel presents the results based on

the control group of �rms selected following the approach of Barber and Lyon (1997). The second panel

uses the weighted average of the bid�ask option prices (Eisdorfer et al., 2022) to compute the option

returns. The third panel adjusts the delta estimates to account for the smile e�ect (Alexander et al.,

2012) or potential perturbations, as in (Coval and Shumway, 2001). The fourth panel presents the results

based on di�erent weighting schemes to aggregate the option returns at the �rm level. The �fth panel

reports the results based on a sample that excludes inclusion announcements that occur around earnings

news. For each panel, we repeat the main analysis. The AD denotes the �rst trading day after the index

inclusion news is public. The ED is the last trading day before the index inclusion becomes e�ective.

We present the results for di�erent event windows with the length of the window expressed in trading

days. In order to carry out the risk-adjustment, we use the 3-factor model of Zhan et al. (2022). In

parentheses, we report the Newey and West (1987) standard errors truncated at 4 lags. ∗, ∗∗, and ∗∗∗

indicate statistical signi�cance at the 10%, 5%, and 1% level, respectively.

AD− 5 to AD− 1 to AD− 1 to AD− 1 to
AD− 1 AD ED ED + 63

Alternative Control Group

Barber and Lyon (1997)
−0.11 0.85∗∗∗ 0.90∗∗∗ 0.70
(0.11) (0.09) (0.15) (0.46)

Noise in the Option Price

75% Bid � 25% Ask Return
−0.12 0.86∗∗∗ 0.85∗∗∗ 0.20
(0.08) (0.09) (0.14) (0.29)

25% Bid � 75% Ask Return
−0.11 0.94∗∗∗ 0.83∗∗∗ 0.65
(0.08) (0.10) (0.18) (0.35)

Di�erent Delta Estimates

Smile-Adjusted Delta
−0.03 1.09∗∗∗ 1.10∗∗∗ 0.54
(0.09) (0.11) (0.16) (0.42)

Perturbation: Delta×0.95 −0.08 1.15∗∗∗ 1.20∗∗∗ 0.27
(0.09) (0.10) (0.15) (0.32)

Perturbation: Delta×1.05 −0.13 0.68∗∗∗ 0.68∗∗∗ 0.21
(0.08) (0.09) (0.13) (0.30)

Di�erent Weighting Schemes

Volume-weight
−0.04 1.20∗∗∗ 1.02∗∗∗ 0.29
(0.09) (0.10) (0.15) (0.36)

Equal-weight
−0.11 1.18∗∗∗ 1.24∗∗∗ 0.12
(0.08) (0.11) (0.16) (0.31)

Earnings News

AR∗ −0.11 0.89∗∗∗ 0.92∗∗∗ 0.32
(0.08) (0.10) (0.14) (0.30)
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