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Abstract
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1. Introduction

Polluting firms impose significant negative externalities on the local community because

air emissions are primarily restricted to areas where plants are operated (Bento, Freedman,

& Lang, 2015; Bishop, Ketcham, & Kuminoff, 2022; Chay & Greenstone, 2005; Currie,

Davis, Greenstone, & Walker, 2015). However, polluting firms are also one of the most

active participants in corporate philanthropy in the United States.1 Many of the biggest

polluters such as Chevron and ExxonMobil make substantial charitable donations to nonprofit

organizations that tackle issues in the local community.2 This naturally raises the question of

whether polluting firms engage in corporate philanthropy to manage the potential costs of

negative externalities by accruing reputational capital and improving their public image in

the local community as a form of reputation insurance (Flammer, 2013; Porter & Kramer,

2002).3 In this paper, we link exogenous changes in firms’ local air emissions to their charitable

activities in the local community to study how firms’ donation behavior changes in response

to changes in emissions that could plausibly be driven by insurance motives.

Theory offers differing perspectives about the insurance value of corporate donations.

On the one hand, studies have shown that corporate philanthropy does not enhance value

but is simply a manifestation of agency issues used by CEOs to secure private benefits of

control (Cai, Xu, & Yang, 2021; Masulis & Reza, 2015). Other studies, however, show that

politically-motivated donations can influence government decision-makers by distorting policies

and resource allocations to favor donating firms (Bertrand, Bombardini, Fisman, Hackinen, &

Trebbi, 2021; Bertrand, Bombardini, Fisman, & Trebbi, 2020). More broadly, there is ample

evidence on how insurance-like protection from engaging in corporate social responsibility

(CSR) contributes to shareholder value (Fernando, Sharfman, & Uysal, 2017; Flammer, 2015;

Freund, Nguyen, & Phan, 2021; Krueger, 2015; Luo, Kaul, & Seo, 2018). However, there is

limited evidence on the mechanisms through which firms build positive reputational capital

among local stakeholders. Thus, the key focus of this paper is not on the value implications
1Corporate philanthropy has grown substantially over the past decade. According to Giving USA, corporate

charitable giving grew from $14.55 billion in 2011 to $21.08 billion in 2021, an increase of approximately 45%
over the 10 years.

2Both Chevron and ExxonMobil have long-standing partnerships with nonprofit organizations such as
Conservation International and the Wildlife Conservation Society. These nonprofits work closely with local
governments and communities to resolve environmentally-related issues. For more details, refer to “25 of the
most generous companies in America,” Business Insider, June 23, 2016 and https://news.mongabay.com/
2016/05/big-donors-corporations-shape-conservation-goals/.

3One obvious explanation of why firms engage in corporate philanthropy is due to donations being tax-
deductible. However, the cash flows generated through tax shields are typically much lower than the donated
amount. Hence, tax motivations cannot fully explain why firms support charitable activities beyond the tax
benefits that they receive (Navarro, 1988).
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of corporate donations, but rather on the changes in a firm’s donation activities in local

communities driven by localized changes in emissions.4

We provide empirical evidence which robustly suggests that firms leverage their reputation

in local communities through corporate philanthropy as a form of insurance. Our results

imply that the local community is a particularly important group of stakeholders for polluting

firms when managing the potential costs of negative externalities. To provide evidence of the

insurance-motive, we assemble a comprehensive dataset that links donations made through a

firm’s corporate foundation to the recipient nonprofit organizations that are located in the

same county where the firm operates its polluting plants (“local nonprofits”).5

If the insurance-motive drives corporate philanthropy, then we expect firms that operate

plants with a high level of pollution in a given area to make more donations to local nonprofits

relative to those with less pollution because the insurance value of donations is greater for the

former.6 Empirically, however, examining the causal effect of local pollution on local donation

activities is a challenging exercise because a firm’s level of pollution and donation to nonprofits

are arguably endogenous choices made by the firm. The decision to donate is not a random

choice since preexisting differences in unobservable firm characteristics may lead to firms with

different levels of pollution engaging in philanthropy to different extents. The local nature of

pollution and donations further complicates the matter since a credible identification strategy

would need to use localized exogenous shocks to pollution to study the causal effect on local

donation activities. The ideal experiment would be to randomly assign firms in areas where

they operate plants into a “high polluting group” and a “low polluting group” and compare

their local donations following this “treatment”. Obviously, such an ideal experiment would

be unreasonably difficult to implement in practice.

Our identification strategy uses a quasi-natural experiment that is very close in spirit to this

ideal experiment. We rely on a key regulatory component of the Clean Air Act (CAA), namely

the yearly designation of counties into attainment or nonattainment status with respect to

the National Ambient Air Quality Standards (NAAQS) for ground-level ozone.7 Under these
4The type of air pollutant examined in this paper is also inherently local. Specifically, we only focus on

“ground-level” ozone pollution, which is a localized type of man-made air pollutant produced by the reaction
between various chemicals emitted from facilities. As a result, ground-level ozone pollution is found in close
proximity to the surrounding areas where plants operate.

5Donations made through corporate foundations are arguably the most salient form of corporate philanthropy
because foundations usually bear the same name as their parent company and often serve as the flagship of a
firm’s corporate giving strategy.

6For example, an increase in emissions has been shown to lead to additional penalties (Xu & Kim, 2022),
greater compliance costs (Blundell, Gowrisankaran, & Langer, 2020), and losses in stock price valuations
(Karpoff, Lott, & Wehrly, 2005).

7Henceforth, we refer to ground-level ozone as simply ozone.
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standards, the federal United States Environmental Protection Agency (EPA) sets maximum

allowable concentrations of ozone pollution, known as the NAAQS threshold. To determine

compliance, each year, the EPA calculates a summary statistic for each county based on ozone

monitor readings, known as a design value (DV). Counties with DVs above the threshold are

deemed to be noncompliant (i.e., designated nonattainment), while those with DVs below the

threshold are considered compliant (i.e., designated attainment).

The key implication for firms is that those operating ozone-polluting facilities in nonat-

tainment counties face stringent regulations and mandatory pollution abatement requirements

compared to those in attainment counties (Becker, 2005; Becker & Henderson, 2000, 2001;

Greenstone, 2002). Importantly, nonattainment designations are federally-enforced legally bind-

ing regulations that impose significant emission limits on all firms operating ozone-polluting

facilities in the nonattainment county regardless of the firms’ existing characteristics such as

their record of environmental performance. As a result of the mandatory compliance with

costly emissions reduction in nonattainment counties, prior research has shown that facilities

emit more ozone in attainment counties relative to nonattainment counties (Greenstone, 2003;

Henderson, 1996). This differential emissions behavior due to the differences in regulatory

stringency between nonattainment and attainment counties forms the basis of our identification

strategy.

Our empirical strategy exploits the variation in county-level DVs around the NAAQS

threshold by using a regression discontinuity design (RDD). The intuition behind our approach

is that we wish to compare the donation activities of firms that operate otherwise similar

facilities but differ only in their emissions behavior. Specifically, we compare the amount of

donations to local nonprofits of firms operating polluting plants in counties with DVs slightly

below the threshold so that they are marginally in compliance (“close attainment”) with firms

operating polluting plants in counties with DVs slightly above the threshold so that they

are marginally in violation (“close nonattainment”). Since a county’s designation status is

a random outcome in a narrow window around the threshold, these close attainment and

nonattainment designations provide a source of random variation in a firm’s level of local

pollution that can be used to estimate the causal effect on its donation activities to local

nonprofits.

Our RDD approach uses a sample of 1,079 unique firms, operating polluting plants in 857

unique counties over the period 1999–2018. We first validate the basic identifying assumptions

of the RDD by showing that counties cannot manipulate DVs to be just below the threshold
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and there are no preexisting differences between facilities in the narrow window around

the threshold. Consistent with the existing literature, we find that a county’s attainment

status has a significant impact on local polluting plants’ ozone emissions, with facilities in

close attainment counties emitting up to 42% more ozone than those in close nonattainment

counties. Our main results show that firms operating polluting plants in close attainment

counties subsequently donate significantly more to local nonprofits relative to those operating

in close nonattainment counties. Specifically, the amount of donations increases by 39%, or

equivalently $51,000 on average. We corroborate our main findings by performing a number

of robustness checks such as alternative RDD specifications and placebo tests.

We conduct cross-sectional tests examining whether variation in insurance incentives affects

local donation decisions. We focus on two aspects: a firm’s intensity of ozone emissions in a

given county and (ii) a county’s level of social capital. We find that our results are primarily

driven by firms that operate heavy ozone-polluting plants, rather than by those that operate

only non-ozone emitting plants, consistent with the fact that the insurance value of donations

is greater for the former set of firms. Differences in the level of mutual trust, as measured by

social capital, across communities also moderate the effect of regulation-induced emissions

on local donations. We show that firms donate more to local nonprofits in close attainment

counties with lower social capital because such communities are less likely to forgive them

given an adverse event (Hasan, Hoi, Wu, & Zhang, 2017; Jha & Chen, 2015).

We provide additional evidence of the insurance-motive of philanthropy by using another

distinct source of variation in our data. Polluting firms may donate to nonprofits located

in many counties, but may not necessarily operate plants in all of those counties. Since the

probability of an adverse event happening is greater in counties where firms operate polluting

plants, the expected insurance value of donations is greater in these counties compared to

those where the firm does not operate plants. We find that firms shift donations away from

counties where they have historically made donations to but do not operate plants and

toward attainment counties where they operate plants. Our results are consistent with the

interpretation that, in response to localized regulatory changes, firms reallocate donations to

areas where they pollute the most and hence maximize the expected insurance value of such

donations.

Our next set of analysis focuses on the plausible mechanisms that could propagate the

relation between regulation-induced emissions and donations to local nonprofits. We show

that local media coverage is a potential channel through which firms use to increase their
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reputational capital. In particular, we find that the closure of a local newspaper in a close

attainment county leads to a decrease of roughly 42% in donations to local nonprofits relative

to other close attainment counties without any closures. Another channel that influences

a firm’s donation activities is its reputational risk exposure to media news of CSR-related

incidents. Our results show that firms with high reputational risk exposure donate more

to local nonprofits in close attainment counties, consistent with the notion that these firms

benefit the most from the insurance value of donations. In another similar channel, we find

that firms with a history of publicized regulatory noncompliance also donate more to local

nonprofits in close attainment counties, in line with the view that firms with more regulatory

noncompliance risk derive more insurance value from donations.

In our final set of analysis, we expand our focus to society’s perspective and examine the

implications for social welfare by comparing the social damages associated with the regulation-

induced pollution and the social benefits from the corresponding donations. Through this

exercise, we are able to provide some insight into whether firms are underpaying or overpaying

for the insurance value they receive from their donations and determine whether corporate

philanthropy benefits firms at the cost of social welfare. We find that the marginal increase

in mortality-related damages associated with the pollution from firms operating plants in

close attainment counties exceeds the marginal increase in donations to local nonprofits by

these firms. On average, for every ton of ozone emitted by a firm operating plants in close

attainment counties, the firm donates $1,290.36 to local nonprofits while creating damages to

society worth $3,430.59. Therefore, our results indicate that firms benefit from the insurance

value of corporate philanthropy at the cost of social welfare.

Our research contributes to the understanding of how firms strategically leverage their

reputation in local communities through corporate philanthropy. Existing studies have

examined various firm-level reasons for strategic engagements in CSR. For example, Flammer

and Luo (2017) show that firms mitigate employees’ adverse behavior by investing in CSR to

improve employee governance. Firms also adopt CSR as a strategic response to competitive

threats (Cao, Liang, & Zhan, 2019) and knowledge spillovers (Flammer & Kacperczyk, 2019).

In terms of corporate philanthropy, studies have demonstrated that charitable donations can

be used to divert public attention from environmental misconduct as a form of window-dressing

(Du, 2015) or mitigate negative effects on corporate reputation when involved in legal violations

(Williams & Barrett, 2000). Our study differs in that we highlight the role of local communities

by linking firms’ pollution sources to their local donation recipients. By showing that firms
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make more donations and also reallocate donations to areas where they pollute the most, our

results suggest that firms actively build reputational capital in local communities to maximize

the insurance value of donations.

Our research also contributes to the burgeoning literature on the motivations of firms to

engage in corporate philanthropy. One strand of literature shows that corporate philanthropy

can reflect agency problems because it can be used to enhance CEOs’ personal utility through

the consumption of private benefits of control (Brown, Helland, & Smith, 2006; Masulis &

Reza, 2015; Yermack, 2009). Cai et al. (2021) find evidence in support of the agency motive by

showing that CEO compensation is higher at firms making affiliated donations. Other studies

have documented corporate philanthropy as a political tool to obtain favorable regulatory

treatment (Bertrand et al., 2021, 2020; Wang & Qian, 2011) or to gain competitive advantages

(Choi, Park, & Xu, 2023). Our paper adds to the literature on the determinants of corporate

philanthropy by providing evidence of the insurance-motives for participating in corporate

philanthropy.

Finally, our study documents how environmental regulations affect corporate philanthropic

activities. The environmental economics literature has utilized county-level attainment and

nonattainment designation status as an instrument for emissions to study various economic

outcomes (e.g., Becker & Henderson, 2000; Curtis, 2020; Greenstone, 2002, among others). We

contribute to this literature by documenting that while these environmental regulations have

been very successful at achieving the first order objectives of reducing emissions to protect

human health, they can also have unintended consequences on firms’ corporate philanthropy

through regulation-induced changes in pollution behavior.

2. Background

In this section, we discuss the regulatory framework that forms the basis of our identification

strategy. The CAA requires the EPA to set NAAQS for six pollutants: carbon monoxide,

nitrogen dioxide, ozone, sulfur dioxide, particulate matter, and lead. We focus on ozone

because counties most often fail to meet NAAQS standards by exceeding ozone limits, rather

than by violating the NAAQS for the other pollutants (Curtis, 2020). As a result, ozone offers

a much larger treatment group of counties for our analyses.8

8Focusing on ozone is also important economically because the largest health benefits from the CAA are
derived from ozone regulations (Muller, Mendelsohn, & Nordhaus, 2011). Unlike other pollutants such as
particulate matter whose negative health effects may not become apparent until decades later (Bishop et al.,
2022), relatively short-term exposure to ozone could lead to severe health effects. Another advantage with
focusing only on ozone is that the NAAQS specifies only one primary standard for ozone, while there exists
both a primary and secondary standard for other pollutants such as particulate matter. The existence of only
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Each year, the CAA also requires the EPA to designate each county either as being in

attainment or out of attainment (nonattainment) with the NAAQS threshold. Attainment

determinations rely on daily and hourly readings from ozone monitoring stations across the

United States. To assess compliance, the EPA calculates an annual county-level summary

statistic using monitor readings across the county, known as a DV. Counties with DVs above

the threshold for a given standard are considered to be out of attainment (i.e., nonattainment)

with the standard, while counties with DVs below the threshold are in attainment. As shown

in Internet Appendix Table IA.1,9 during our sample period from 1999 to 2018, the EPA

implemented four different ozone standards: i) the 1-Hour Ozone (1979) standard with a

threshold of 0.12 ppm from 1999 to 2003; ii) the 8-Hour Ozone (1997) standard with a threshold

of 0.08 ppm from 2004 to 2011; iii) the 8-Hour Ozone (2008) standard with a threshold of

0.075 ppm from 2012 to 2017; and iv) the 8-Hour Ozone (2015) standard with a threshold of

0.070 ppm in 2018.10

When a county is designated nonattainment, the EPA requires the state to submit a SIP

(state implementation plan), which indicates how the state will bring nonattainment counties

back into compliance with the NAAQS. While SIPs may vary from state to state, they must

follow EPA’s guidelines and be approved by the EPA. Failure to submit and execute an

acceptable SIP can result in federal sanctions, including withholding federal grants, penalties,

and construction bans on new polluting establishments. Most importantly for our purposes,

the SIP is federally-enforced and legally binding for all firms that operate polluting plants in

the nonattainment county regardless of, for example, whether the firm has a record of good

environmental performance prior to the designation (Greenstone, 2002).

Environmental regulations under the SIP in nonattainment counties are intended to be

stringent and involve regulatory actions to curb emissions. Large pollution sources are required

to satisfy the standard of “lowest achievable emission rate”, which involve the installation

of the cleanest available technology, regardless of economic costs. Moreover, any additional

emissions from one pollution source must be offset by paying another source in the same

county to reduce its emissions (Nelson, Tietenberg, & Donihue, 1993). Shapiro and Walker

(2020) show that expenditures on these emission offsets are one of the largest environmental

one standard for ozone allows us to implement a RDD approach to study the effect of ozone emissions on
donations.

9In this table, the name of each ozone standard is based on the year in which the new NAAQS was proposed.
The effective date is when the EPA actually implemented that standard.

10The thresholds used to determine compliance usually decrease over time because they are based on
exogenous revisions that reflect new scientific research on the ongoing health effects of air pollution at that
point in time.
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expenditures for polluting plants in nonattainment areas. Beyond capital expenditures, SIPs

in nonattainment counties also impose costly regulatory burdens such as requirements to use

certain raw materials and alter operating and maintenance procedures in ways that reduce

emissions (Becker, 2005; Becker & Henderson, 2000).

In attainment counties, plants face significantly less expensive environmental standards and

less emission limits relative to those in nonattainment counties. Polluting plants are subject

to the installation of the “best available control technology”, whereby the EPA considers

the technology’s economic burden on the plant as the foremost priority in determining an

acceptable emissions technology. As a result, large-scale investments in attainment counties

typically involve less expensive pollution abatement equipment and the EPA does not require

emissions offsets.

The differences in the stringency of regulatory compliance between attainment and nonat-

tainment counties generate variation in emissions behavior that is central to our identification

strategy. Prior research shows that ozone pollution reduces significantly in nonattainment

counties because of increased firm compliance with costly emission limitations. For example,

Henderson (1996) and Greenstone (2003) document that ozone emissions decline by roughly 3

to 8 percent in nonattainment counties relative to attainment counties. We exploit differences

in emissions behavior between facilities in attainment and nonattainment counties to study

the impact of firms’ local ozone emissions on their donation activities to local nonprofits.

3. Data and variables

3.1. Firms’ ozone pollution

We use pollution data from the EPA’s Toxics Release Inventory (TRI) database, which contains

information on the disposal and release of over 650 toxic chemicals from more than 50,000

plants in the U.S. since 1987. Industrial facilities that fall within a specific industry (e.g.,

manufacturing, waste management, mining, etc), have ten or more full time employees, and

handle amounts of toxic chemicals above specified thresholds must submit detailed annual

reports on their releases of toxins to the TRI. The TRI provides self-reported toxic emissions

at the plant-level along with identifying information about the facility such as the plant’s

name, county of location, industry, and parent company’s name.11

Since we only focus on ozone, we classify a facility’s emissions of toxic chemicals into
11While the TRI data are self-reported, the EPA regularly conducts quality analyses to identify potential

errors and purposefully misreporting emissions can lead to criminal or civil penalties (Xu & Kim, 2022).
Additionally, most reporting errors are due to changes in reporting requirements in the early years of TRI
data collection, which leaves our study unaffected since our sample period begins from 1999.
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ozone pollutants and non-ozone pollutants.12 In any given year, we calculate a facility’s total

amount of ozone emissions as the amount of chemical emissions that are classified as volatile

organic compounds or nitrogen oxides, both precursors to ozone formation.13 Although the

TRI data provides information on chemical emissions through the ground, air and water, we

only consider emissions through the air because the NAAQS only regulates air emissions.

To obtain parent companies’ financial and stock price information, we manually match the

TRI parent company names to those in Compustat and CRSP. Internet Appendix Table IA.2

lists the three-digit NAICS industries in TRI that are included in our sample. The final TRI

sample consists of 89,481 firm–county–year observations from 1999 to 2018.

3.2. Corporate foundations

Data on charitable donations by foundations linked to corporations come from Foundation-

Search, which provides funding information based on Internal Revenue Service (IRS) 990-PF

forms for more than 120,000 active foundations. The starting point for our sample is the

companies in the S&P 1500. We match firms with their foundations using the foundation

directory from Candid. Since we only focus on polluting firms, we restrict sample of corporate

foundations to those that are owned by parent firms of TRI facilities.

Once we establish a link between a firm and its foundation, the donation record is obtained

from FoundationSearch. For each grant, FoundationSearch reports the amount, the recipient’s

name, city, and state, as well as a giving category created by the database.14 For observations

that are missing information regarding the city and/or state where the grant recipients are

incorporated, we match the recipient name in FoundationSearch to a master list of all nonprofits

from the IRS Exempt Organizations Business Master File to obtain the precise address of

the recipient. We collect a total of 327,132 grants made to nonprofits in the United States

for the sample period from 1999 to 2018. Following Bertrand et al. (2020), we winsorize the

dollar amount of donations at the highest 1 percent of the values to account for extremely

large donations. We aggregate a firm’s foundation donations across all nonprofits in a given

county to form a sample of 101,573 observations at the firm–county–year level.
12We use the mapping from TRI chemicals to CAA criteria pollutants from Greenstone (2003). However,

additional chemicals have been introduced into the TRI since the creation of the mapping. Thus, we contacted
the EPA and also hired a Ph.D. chemist in atmospheric science to classify the remaining chemicals.

13Ozone is not directly emitted by plants, but rather formed through chemical reactions. We refer to emitters
of ozone precursors as ozone emitters/polluters.

14The 10 categories are: Arts & Culture, Community Development, Education, Environment, Health,
International Giving, Religion, Social & Human Services, Sports & Recreation, and Miscellaneous Philanthropy.
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3.3. Ozone design values

We obtain monitor-level ozone concentrations from the Air Quality System (AQS) database

maintained by the EPA. For each ozone monitor, the database includes ozone concentration

readings and the county location of the monitor. We use these ozone concentrations to

calculate DVs, which are statistics that the EPA uses to determine whether a county is in

compliance with the NAAQS each year.15 From 1999 to 2003, we use the 1-Hour Ozone

(1979) standard with a threshold of 0.12 ppm. Under this standard, monitor-level DVs are

calculated as the annual daily maximum hourly average concentration. From 2004 to 2011,

we use the 8-Hour Ozone (1997) standard with a threshold of 0.08 ppm. From 2012 to 2017,

we use the 8-Hour Ozone (2008) standard with a threshold of 0.075 ppm. In 2018, we use

the 8-Hour Ozone (2015) standard with a threshold of 0.070 ppm. For each of the standards

from 2004 onwards, monitor-level DVs are calculated as the three-year rolling average of the

annual fourth highest daily maximum 8-hr ozone concentration. The rule used to compute

the DVs and the relevant thresholds for each ozone standard are summarized in Table IA.1

of the Internet Appendix. We follow the EPA and aggregate monitor-level ozone DVs to the

county-level by taking the maximum DV across all monitors within a county–year. Counties

with DVs that are above the relevant threshold are designated nonattainment, while those

below the threshold remain in attainment. Our sample of county-level DVs consists of 15,914

county–year observations from 1999 to 2018.

3.4. Variables

3.4.1. Plant-level

We use a host of plant-level variables (which we then aggregate at the firm–county level)

obtained from various databases. From the TRI data, Core chemical is a dummy variable

equal to one if a given firm operates plants in a given county that emit core ozone chemicals

(i.e., those that have consistent reporting requirements), and zero otherwise. We use the EPA’s

Pollution Prevention (P2) database to obtain information on a facility’s source reduction

activities that limit the amount of toxic chemicals released (e.g., recycling, recovery, and

treatment). Source reduction is a dummy variable equal to one if a given firm operates plants

in a given county that engage in ozone source reduction activities, and zero otherwise. We also

use the production ratio variable in the P2 database, which measures the change in output
15We only include monitor–year observations that are not affected by “extreme natural events” beyond

human influence, occurrences that are noted in the AQS data.
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associated with the release of a chemical in a given year.16 Production ratio is a given firm’s

average ozone production ratio across all plants in a given county.

We use EPA’s Integrated Compliance Information System for Air (ICIS-Air) database

for information on plant-level ozone high priority violations (HPV), operating permits, and

stack tests. Data on formal administrative and judicial enforcement cases are obtained from

EPA’s Integrated Compliance Information System for Federal Civil Enforcement Case Data

(ICIS FE&C). Permit is a dummy variable equal to one if a given firm operates plants in a

given county that hold operating permits for ozone emissions, and zero otherwise. ln(HPV),

ln(Stack), and ln(Case) are the natural logarithm of one plus the number of HPVs, stack tests,

and enforcement cases, respectively, across all facilities in a given county of a given firm in the

past three years.

Finally, we collect data on a plant’s number of employees, dollar amount of sales, and

solvency risk from the National Establishment Time-Series (NETS). ln(Employees) and

ln(Sales) are the natural logarithm of one plus a given firm’s average number of employees

and dollar amount of sales, respectively, across all plants in a given county. Paydex is a given

firm’s average paydex score across all plants in a given county. The paydex score ranges from

0 to 100 and is a business credit score based on a facility’s trade credit performance. Higher

values indicate lower solvency risk.

3.4.2. Firm-level

We control for a variety of firm financial characteristics including the natural logarithm of

market capitalization (ln(Size)); the natural logarithm of book-to-market ratio (ln(BM));

return on assets (ROA), calculated as net income divided by total assets; debt to assets ratio

(Leverage), calculated as total liabilities divided by total assets; sales growth (Sales growth),

defined as the ratio of sales in the current fiscal year to sales in the last year minus one;

financial constraints (KZ ), defined as the Kaplan-Zingales index; cash ratio (Cash), calculated

as cash divided by total assets; price momentum (Momentum), defined as the cumulative

12-month return of a stock, excluding the immediate past month; and annual stock returns

(Stock returns).
16For example, if a chemical is used in the manufacturing of refrigerators, the production ratio for year t is

given by #Refrigerators producedt

#Refrigerators producedt−1
. If the chemical is used as part of an activity and not directly in the

production of goods, then the production ratio represents a change in the activity. For instance, if a chemical
is used to clean molds, then the production ratio for year t is given by #Molds cleanedt

#Molds cleanedt−1
.
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3.5. Descriptive statistics

After taking the intersection of the TRI, FoundationSearch, and DV data, the final sample

comprises 1,079 unique firms that operate polluting plants in 857 unique counties, resulting

in 54,524 firm–county–year observations over the period 1999–2018. Figure 1 presents the

average DVs (in parts per million) over the sample period in the counties where TRI plants

operate and where DV data is available. As can be seen, there is substantial variation in a

county’s compliance status across the United States.17

Table 1 presents summary statistics on the firm variables. A full list of the variables used

in this paper and their data sources can be found in Table A.1 in Appendix A. Across all

non-zero grants, the average donation at the firm–county–year level is $130,196. However,

there is substantial variation in the donation size given the sizable standard deviation of

approximately $280,000. In terms of emissions, the average firm emits roughly 15 tons of

ozone in a given county–year with a standard deviation of 90 tons. The average facility emits

around 9.8 tons of ozone with a standard deviation of 60 tons. Finally, about 71% of a given

firm’s polluting plants are operating in counties that are in compliance.

4. Methodology

In this section, we describe our empirical framework to estimate the impact of firms’ local ozone

air pollution on their donation activities. A firm’s pollution in a given county is potentially

endogenous to its donations to local nonprofits because unobserved firm characteristics that

are also correlated with pollution likely affect the amount of charitable giving. For example,

firms that are more profitable may have more resources to donate to local nonprofits and may

also be more likely to emit more pollutants as they produce more. Therefore, we use a RDD

approach to estimate the effect of firms’ county-level ozone emissions on donations to local

nonprofits.

Our identification strategy relies on a county’s close attainment designation status based

on its DVs to generate locally exogenous variation in pollution. Counties with a DV below the

threshold are designated as attainment, resulting in firms with polluting facilities located in

these attainment counties to emit significantly more ozone than those located in nonattainment

counties. Ideally, we would want a county’s designation status to be a randomly assigned

variable with regard to firms’ characteristics, especially the firms’ donation activities. The
17There is substantial variation in the length of time that a county remains in nonattainment; some counties

are redesignated to attainment after one or two years, while others (e.g., counties in Southern California)
have been in nonattainment for over a decade. Furthermore, it is very rare for a county to be designated as
nonattainment for a second time once it has been redesignated to attainment.
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RDD framework that exploits a county’s DVs helps us to approximate this ideal setup because

the designation of attainment status is a random outcome in an arbitrarily small interval

around the threshold; for example, whether a county is in compliance with a DV slightly

below the threshold or in violation with a DV slightly above the threshold is arguably random.

These close attainment designations, therefore, provide a source of random variation in a

firm’s county-level ozone emissions that can be used to estimate the impact of its pollution on

local donations.

We perform the RDD by using a nonparametric, local linear estimation. Small neighbor-

hoods on the left- and right-hand sides of the threshold are used to estimate discontinuities in

firms’ donations to local nonprofits. We follow Calonico, Cattaneo, and Titiunik (2014) to

derive the asymptotically optimal bandwidth under a squared-error loss. The choices of the

neighborhood (bandwidth) are data-driven (determined by the data structure) and different

across samples and variables. By choosing the optimal bandwidth to the left and right of the

threshold, we only include observations in the RDD specification if the absolute difference

between the DV for that observation and the threshold is less than the bandwidth. The local

linear regression model can therefore be specified as

Yi,c,t+1 = α + βComplyc,t + φf(Rc,t) + εi,c,t+1 (1)

where, in our main analyses, Yi,c,t+1 is the natural logarithm of one plus the total amount of

donations of firm i to nonprofits located in county c in year t+ 1. Rc,t (= NAAQSt −DVc,t)

is the centered DV (i.e., the running variable in RDD parlance), defined as the difference

between the threshold and the DV of county c in year t. Positive (negative) values indicate

that the county is in compliance with (violation of) the threshold. Our primary specifications

use local linear functions in the running variable with rectangular kernels as represented by

f(Rc,t). Complyc,t is a dummy variable equal to one if county c is in compliance in year t,

and zero otherwise. Since treatment assignment is at the county-level, standard errors are

clustered by county and bias-corrected as discussed in Calonico et al. (2014).

The estimate of β captures the discontinuity at the threshold—the difference in donation

outcomes between the firms operating polluting plants in counties that marginally comply

with the threshold and the firms operating plants in counties that marginally violate it—and,

hence, provides a consistent estimate of the effect of firms’ ozone pollution on their charitable

activities at the county-level. We consider a host of sensitivity analyses, such as using

14



alternative bandwidths that are either narrower or wider than the optimal bandwidth, using

covariate-adjusted bandwidth selection and point estimation, using different kernel functions,

using global polynomial regressions, controlling for local quadratic and cubic polynomials in

the running variable, and residualizing the outcome variable by different sets of fixed effects

before estimating the RDD specification.

4.1. Tests for quasi-randomized assignment

The identifying assumption of the RDD is that, around the threshold, a county’s designation

status is as good as randomly assigned. In this section, we perform two standard tests for the

RDD validity that counties cannot precisely manipulate the running variable so that their DVs

are right below the threshold. If this assumption is satisfied, then the variation in a county’s

attainment designation should be as good as that from a randomized experiment.

4.1.1. Continuity in the distribution of design values

Since being classified as nonattainment imposes costly regulatory actions to curb emissions,

counties have a strong incentive to keep pollution levels below the threshold. Thus, one

potential concern is that counties just above the threshold might try to manipulate their

monitored ozone concentrations in order to be right below the threshold. The first test that

we conduct evaluates whether the distribution of DVs is continuous around the threshold. Any

discontinuity would suggest a nonrandom assignment of attainment versus nonattainment

status around the threshold.

In practice, however, it is unlikely that counties could strategically manipulate their DVs.

All counties are evaluated on the same standards, so nonattainment designations are likely

to be exogenous to all county-specific characteristics other than local air quality conditions.

Additionally, nonattainment designations often depend on weather patterns (Cleveland &

Graedel, 1979). Combined with the fact that ozone emissions are a result of complex chemical

reactions in the atomsphere between pollutants such as volatile organic compounds and

nitrogen oxides, it is extremely difficult for counties to manipulate their ozone concentration

levels precisely. Lastly, ozone emissions that contribute to a county’s DV not only originate

from stationary sources such as the facilities examined in this paper, but also from mobile

pollution sources (such as those from vehicles). Thus, even if there were a coordinated effort

to manipulate ozone emissions by a group of facilities, it would still be unlikely to influence

the DV of the entire county given other non-stationary emission sources.

Figure 2 presents the histogram of county-level DVs from years 1999–2018 in the counties
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where TRI plants operate and where DV data is available. If counties were manipulating their

DVs to strategically avoid nonattainment designations, one would expect to see a bunching of

counties just below the thresholds. However, the figure shows that the distribution of DVs

appears to be smooth and continuous around the thresholds. Take, for example, the 8-Hour

Ozone (1997) standard with a threshold of 0.08 ppm. The histogram shows that DVs are

evenly distributed just below and above this threshold.

However, since the thresholds change throughout time, a more formal approach is provided

in Figure 3, which plots the local density of centered DVs estimated separately on either

side of the threshold, using the plug-in estimator proposed by Cattaneo, Jansson, and Ma

(2020). Observations on the right (left) of the vertical dashed line indicate that the county

is in compliance with (violation of) the threshold. As is shown, there is no evidence for a

discontinuous jump in DVs around the threshold. Using the density break test following

Cattaneo et al. (2020),18 we fail to reject the null hypothesis that counties are unable to

manipulate their pollution levels in order to be right below the threshold specified by the

NAAQS (p-value = 0.450).

4.1.2. Preexisting differences

The second testable implication of the randomness assumption is that the polluting facilities

in counties whose DVs are immediately below or above the threshold should be very similar on

the basis of ex ante characteristics. In other words, if a county’s designation status is as good

as randomized, it should be orthogonal to facility characteristics prior to the designation.

In Table 2, we examine whether there are any preexisting differences between plants

operating in counties that comply and violate thresholds. In columns (1) and (2), we examine

these characteristics in the year preceding the designation (t− 1). In columns (3) and (4), we

examine the change in these characteristics between years t− 2 and t− 1. Columns (1) and (3)

report the differences among all facilities in the sample, whereas columns (2) and (4) report

the differences at the narrow margin (using the optimal bandwidth) around the threshold.

As can be seen in columns (1) and (3), the facility’s characteristics—ozone permits, number

of employees, dollar amount of sales, solvency risk, and number of HPVs and stack tests—of

those operating in counties that are in compliance differ significantly from those in counties

that are in violation. Importantly, however, columns (2) and (4) show that these differences

completely disappear when we restrict the sample to be within a small window around the

threshold. Overall, this evidence suggests that no systematic or significant differences exist
18The density break test builds upon the more standard density manipulation test by McCrary (2008).
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between facilities in close attainment and close nonattainment counties, which lends support

to our identification strategy.

5. Close attainment designation status and donations

5.1. First-stage results

Before presenting our main results, we first validate two basic premises of our RDD framework,

namely a county’s DV determines its designation status and the change in a facility’s polluting

behavior stemming from attainment designations.

Figure 4 reports a county’s probability of nonattainment conditional on the distance of its

DV from the threshold. Here the horizontal axis subtracts the threshold from the DV in year t

so that observations on the right (left) of the threshold indicate that the county is in violation

(compliance). Each dot in the figure represents the average of a dummy variable equal to

one if a given county is designated nonattainment in year t + 1, and zero otherwise, using

integrated mean squared error optimal bins following Calonico et al. (2014). We also control

for a county’s level of employment, emissions to employment ratio, change in employment

levels, and whether the county is located in a MSA (Curtis, 2020). The figure shows that a

county’s probability of being designated nonattainment increases by a staggering 80% if its

DV violates the threshold, which lends support the assumption that a county’s designation

status is as good as randomized in a narrow window around the threshold.

In Table 3, we present the effects of a county’s attainment status on local polluting plants’

ozone emissions. We estimate a similar RDD specification to Equation (1), except the unit

of observation is at the facility–county–year level and the dependent variable is the natural

logarithm of one plus the total amount of ozone air emissions (in pounds) in a given county

of a given facility in year t. Across all columns, we find that facilities operating in counties

with DVs that are marginally in compliance emit significantly more ozone relative to those in

counties that are marginally in violation. Economically, facilities in close attainment counties

emit 21% to 42% more ozone than those in close nonattainment counties.

5.2. Baseline results

Having verified the basic premise of our RDD setting, we now measure the impact of regulation-

induced ozone pollution on donation activities. To display the potential discontinuities in our

outcome variable, we provide a visualization of the data in Figure 5. Specifically, the figure

plots ln(Donation)t+1, defined as the natural logarithm of one plus the total dollar amount of

donations of a given firm to nonprofits in a given county in year t+ 1, against the centered
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DVs. Each dot in the figure represents the average of non-zero values of ln(Donation)t+1 using

integrated mean squared error optimal bins following Calonico et al. (2014). The solid lines on

either side of zero is based on two separate regressions of ln(Donation)t+1 on local quadratic

polynomials in centered DVs using the rectangular kernel and optimal bandwidth.

As can be seen from the figure, the amount of county-level donations appears to be a

continuous and smooth function of the centered DVs everywhere except at the threshold,

where there is a discontinuous jump. This graphical evidence suggests that firms operating

polluting plants in close attainment counties donate more to local nonprofits relative to those

operating plants in close nonattainment counties.

We formally quantify the discontinuity illustrated in Figure 5 by estimating the RDD

specification in Equation (1). We present the results in Table 4. Column (1) shows that firms

operating polluting plants donate roughly 39% more to nonprofits located in close attainment

counties relative to close nonattainment counties. In dollar terms, donations to local nonprofits

increase by around $51,000 on average. The coefficient on Complyc,t remains positive and

statistically significant when we add covariates to the optimal bandwidth selection and point

estimation, as shown in column (2). Similar results are obtained when we use 50% and 150%

of the optimal bandwidth as shown in columns (3) and (4), respectively, and when we use the

triangular kernel in column (5). Overall, the results in this section coupled with the findings

of the first-stage results imply that firms operating plants in close attainment counties not

only pollute more locally relative to those in close nonattainment counties but also donate

more to local nonprofits, possibly as a form of reputation insurance given the potential costs

associated higher emissions.

5.3. Cross-sectional tests

In this section, we study cross-sectional predictions examining how variation in incentives to

insure against higher emissions affects local donation decisions. We focus on two aspects that

likely affect the strength of insurance incentives: (i) the intensity of ozone emissions in a given

county and (ii) a county’s level of social capital.

5.3.1. Intensity of ozone emissions

Some polluting plants may emit more ozone than others because they rely more on ozone

chemicals for their production. Thus, firms that operate heavy ozone-polluting plants in close

attainment counties plausibly obtain more insurance value from donations. To investigate this

hypothesis, we alter Equation (1) by including an interaction term that measures the intensity
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of a firm’s ozone emissions in a given county as follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2ln(Firm ozone)i,c,t−1 + β3Complyc,t

× ln(Firm ozone)i,c,t−1 + φf(Rc,t) + εi,c,t+1

(2)

where the notation is identical to Equation (1). We define ln(Firm ozone)i,c,t−1 to be the

natural logarithm of one plus the total amount of ozone air emissions (in pounds) in county c

of firm i as of year t− 1. This variable is measured in year t− 1 to reflect a firm’s most recent

ozone emissions prior to the designation. The coefficient of interest is β3, which represents the

differential effect of close attainment designations on donations to local nonprofits of firms

operating heavy ozone-polluting plants in a given county, relative to those operating plants

with less ozone emissions. Since firms that operate heavy ozone-polluting plants are more

likely to be affected by a close attainment designation because it allows them to continue to

rely on ozone emissions for their production, we expect such firms to donate more to local

nonprofits given the potential costs associated with additional ozone emissions, leading to a

positive β3.

We present the results in Table 5. Consistent with our predictions, we see that the

coefficients on Comply × ln(Firm ozone) are positive and statistically significant across all

regression specifications, indicating that firms operating heavy ozone-polluting plants in a

close attainment county donate more to local nonprofits than those operating plants with less

ozone emissions. Economically, the coefficient estimate in column (2) implies that in a close

attainment county, a one standard deviation increase in the (log) amount of ozone emissions

leads to a 27% increase in donations to local nonprofits.

The coefficient on Comply represents the impact of close attainment designation status

on donations to local nonprofits for firms operating plants that do not emit any ozone in a

given county. Across all columns, these coefficients are positive but statistically insignificant.

These results are in line with the fact that the polluting behavior of firms operating only

non-ozone plants are effectively unaffected by a county’s attainment status, which does not

significantly alter their donation activities following the designation. In summary, the fact that

close attainment designations have differential effects on firms’ donations to local nonprofits

depending on the intensity of their ozone emissions adds to the evidence in support of the

insurance-motives of philanthropy.
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5.3.2. Social capital

We explore whether differences in the level of mutual trust, as measured by social capital,

across communities moderate the effect of regulation-induced emissions on local donations.

Prior research shows that firms located in communities with higher levels of social capital

are perceived as more trustworthy (Guiso, Sapienza, & Zingales, 2004). For example, banks

demand lower loan spreads when lending to firms located in higher social capital communities

(Hasan et al., 2017). Firms headquartered in U.S. counties with high social capital pay lower

audit fees because auditors trust them more (Jha & Chen, 2015). Thus, firms that operate

ozone-polluting plants in close attainment counties with higher social capital may have lower

incentives to insure against increased emissions because the community is more likely to forgive

and be more lenient towards them when negative events occur.

We measure social capital across U.S. counties using the data from the Northeast Regional

Center for Rural Development (NRCRD) at Pennsylvania State University. Rupasingha, Goetz,

and Freshwater (2006) describe these data in detail. The key variables provide information on

voter turnouts in presidential elections (Pvote), response rates in US census surveys (Respn),

total numbers of ten types of social organizations (Assn), and total numbers of nonprofit

organizations (Nccs). Following Rupasingha et al. (2006) and Hasan et al. (2017), we measure

social capital as the first principal component from a factor analysis based on Pvote, Respn,

Assn, and Nccs. We then define the negative of this social capital measure as Distrust so that

higher values represent lower social capital. We can only directly estimate Distrust in years

1997, 2005, 2009, and 2014. Accordingly, we follow Hasan et al. (2017) to backfill data for the

missing years using estimates of Distrust in the preceding year in which data are available.

For example, we fill in missing data from 1999 to 2004 using Distrust in 1997.

Table 6 presents the results when we interact Comply with Distrust. Across all specifications,

the coefficients on the interaction term are positive and statistically significant. For example,

column (2) implies that in a close attainment county, a one standard deviation increase in

Distrust leads to a 35% increase in donations to local nonprofits. These results are in line

with the insurance-motives of philanthropy because they show that firms operating polluting

plants in close attainment counties with lower social capital increase local donations more

than those operating in counties with higher social capital.
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5.4. Robustness

We perform a number of robustness tests to corroborate our main results. For brevity, we

report a concise summary of these tests, while the corresponding tables can be found on the

Internet Appendix.

5.4.1. Global polynomial regression

In Internet Appendix Table IA.3, we conduct a similar RDD test using a different methodology

to capture the discontinuity. Instead of relying only on the observations within the optimal

bandwidths, we extend the regression discontinuity analysis by estimating a global polynomial

series model using polynomials of order two and three that are different on both sides of the

threshold. Although the economic magnitudes are slightly smaller when compared to those of

Table 4, the coefficient on Comply remains positive and statistically significant, thus further

confirming our main results.

5.4.2. Alternative RDD specifications

We consider a host of alternative RDD specifications. In Internet Appendix Table IA.4,

we use the Epanechnikov kernel and the mean squared error optimal bandwidth. We also

report results across alternative bandwidths, including 50% of optimal bandwidth (narrower

bandwidth) and 150% of optimal bandwidth (wider bandwidth). We additionally control for

local quadratic and cubic polynomials in centered design values using the rectangular kernel

function. The estimates on Comply are robust to these permutations to the regression model.

Since not all firms make donations to local nonprofits, Bellemare and Wichman (2020)

argue that one should use the inverse hyperbolic sine transformed amount of donations

as the dependent variable because this transformation not only resembles the natural log

transformation but also retains zero values. Thus, in Internet Appendix Table IA.5, we use

arcsinh(Donation)t+1 as the dependent variable and replicate the analysis of Table 4. We find

very little effect on the coefficient of interest.

We also residualize the dollar amount of donations by various fixed effects in Internet

Appendix Table IA.6. Specifically, we first regress ln(Donation)t+1 on firm (column (1)), firm

and county (column (2)), firm, county, and year (column (3)), firm–year (column (4)), and

firm–year and firm–county (column (5)) fixed effects. Then, we use the residuals of these

regressions as the dependent variable in Equation (1). Again, our results remain qualitatively

unchanged.

To ensure that our results are not driven by a small set of firms that have unusually high
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charitable donations, we estimate Equation (1) after winsorizing the highest two, three, four,

and five percent of the dollar amount of donations. Internet Appendix Table IA.7 shows

that our results are not driven by extremely large donation amounts in the right tail of the

distribution.

Lastly, we account for multiple designations where a county may be in compliance in one

year but not in the next. Although multiple designations are unlikely to pose a problem to

our empirical analysis since about 70% of all county–years in our sample maintain the same

designation status for at least the subsequent three years, we conduct a robustness check by

estimating Equation (1) after restricting the sample to counties where there are no changes in

designation status in following one to three years. Internet Appendix Table IA.8 shows that

our results remain intact.

5.4.3. Long term donation activity

A potential concern is that firms operating in close attainment counties may appear to donate

more relative to those in close nonattainment counties because charitable activities and

pollution abatement effort could be substitutes. Specifically, firms in close nonattainment

counties may donate less to local nonprofits because they invest more in pollution abatement

technology. Although this concern is partially mitigated by our empirical design since facilities

operating in the optimal bandwidth are very similar to each other in terms of pollution

abatement efforts (see Table 2) and source reduction is explicitly included as a control variable

in our RDD specifications, we conduct further tests to account for any substitution effects.

Prior studies have shown that pollution abatement costs associated with nonattainment

status primarily consist of capital expenditures, which are usually fixed in nature and therefore

do not affect marginal production decisions (Becker, 2005). For those variable costs that are

tied to current production, e.g., change in the raw materials processed, incumbent plants are

generally shielded from these costs because they can escape stringent regulations on pollution

abatement until they undergo large expansions (Becker & Henderson, 2000, 2001). Thus, while

the fixed costs of pollution abatement activities may reduce donations in the immediate short

term, they should not affect donations in the long term.

Rather than studying a firm’s donation activities in the year immediately following the

close attainment designation, we examine whether a firm extends its donation activities to

local nonprofits beyond year t+ 1 by using the two-year and three-year forward amount of

donations as the dependent variable in the baseline RDD specification. The intuition is that

any substitution between pollution abatement efforts and donation activities should mainly
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exist in the short term, while the extent to which donations are used for insurance should

persist in the long term. Internet Appendix Table IA.9 shows that firms operating polluting

plants located in close attainment counties donate significantly more to nonprofits in the

following two and three years relative to those in close nonattainment counties, indicating

that substitution effects are unlikely to be driving our results.

5.4.4. Placebo tests

We conduct three placebo tests on the baseline RDD specification to rule out confounding

effects. First, one may worry that ozone precursors such as volatile organic compounds or

nitrogen oxides may serve as substitutes for other pollutants such as particulate matter (PM).

If this were the case, then firms could potentially reduce emissions of ozone precursors in

close nonattainment counties but increase PM emissions, leading to an omitted variable in our

analysis. However, in practice, it is difficult for firms to substitute between ozone precursors

and PM for production because they are drastically different pollutants. Indeed, the correlation

between ozone emissions and PM emissions at the firm–county–year level in our sample is

only 0.07. To confirm that the insurance-motives we document are driven by ozone emissions

and not PM emissions, we interact Comply with ln(Firm PM)t−1, which equals to the natural

logarithm of one plus the total amount of PM air emissions (in pounds) in a given county of a

given firm in year t− 1. Internet Appendix Table IA.10 shows that none of the coefficients of

this interaction term is significant, while those of Comply remain positive and statistically

significant. This placebo test confirms that PM emissions do not impact on donation decisions.

Next, we use placebo thresholds whereby the 1-Hour Ozone (1979) standard uses the 8-Hour

Ozone (2008) standard’s threshold, the 8-Hour Ozone (1997) standard uses the 1-Hour Ozone

(1979) standard’s threshold, the 8-Hour Ozone (2008) standard uses the 8-Hour Ozone (2015)

standard’s threshold, and the 8-Hour Ozone (2015) standard uses the 8-Hour Ozone (1997)

standard’s threshold. If our results are driven by close attainment designations for counties

with DVs in a narrow window around the threshold, then there should be no such results when

using placebo thresholds to define compliance. As expected, there are no significant effects

of a close attainment designation status on firms’ donations based on the placebo thresholds

(columns (1) and (2) of Internet Appendix Table IA.11).

Finally, we use a placebo sample of counties by limiting the sample to the counties where

the firm does not operate any polluting plants. Since firms have no emissions in these counties,

their donation decisions in these counties should not be impacted by the counties’ close

attainment designation status if such donations are indeed driven by insurance-motives. Using
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this placebo sample, the coefficient on Comply becomes statistically insignificant (columns (3)

and (4) of Internet Appendix Table IA.11), which is in line with our predictions.

6. Reallocation of donations

So far, our analysis has only utilized one source of variation in our data, namely donations to

local nonprofits in the same county where the firm operates polluting plants. In this section,

we provide additional evidence in support of the insurance-motives by using another distinct

source of variation in the data. We focus on the dynamics of donations to local nonprofits

in counties where the firm does not operate any plants (“connected non-operating counties”)

and relate such dynamics to changes in donations in close attainment counties where the firm

operates plants (“close attainment operating counties”). The intuition behind this approach is

straightforward. If we observe a decline in donations by firms to nonprofits located in connected

non-operating counties that is coincident with an increase in donations in attainment counties

where they operate plants then, we argue, the donations in the close attainment counties

would plausibly have been motivated by insurance purposes, since firms are incentivized to

reallocate donations to areas where they pollute the most and hence maximize the insurance

value of such donations.

6.1. Empirical strategy

We highlight our empirical design in Figure 6, which consists of three key steps. The first step

encompasses the analysis presented so far in the previous Section 5, whereby we established

that close attainment designation status leads to an increase in donations to local nonprofits.

In the second step, we expand the set of counties to include those connected counties where

firms have historically made donations to but do not operate plants there. In the third step,

we relate the changes in donations in both sets of counties and show that in order to satisfy

the increase in donations in close attainment operating counties, firms reallocate donations

away from connected non-operating counties and toward close attainment operating counties.

To study the reallocation of donations, we construct a panel data set at the firm–county–

year level from 1999 to 2018. For each firm–year, we include all of the counties in which that

firm donated to nonprofits in the prior calendar year. These counties are assumed to contain

the relevant nonprofits for the firms’ charitable activities. Once a firm–county enters our

data set, we keep it going forward, even if during some years that firm made no donations to

nonprofits in that county. We then flag each county in the year in which that county has a

DV below the threshold and the firm operates plants there (i.e., close attainment operating
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counties), and leave that flag on during the following two years.19 Lastly, we drop these flagged

county–years from our sample because our aim is to study how close attainment designation

status affects donations in connected non-operating counties.

To measure the incremental donations made by each firm in the flagged close attainment

county–years, we construct the following variable at the firm–year level:

∆Comply donationi,t =
∆Donation in close attainment operating countiesi,t/Ni,t∑

c Donationi,c,t

(3)

where i indexes firm, c indexes county, and t indexes year. The variable ∆Donation in close

attainment operating countiesi,t equals to the change in the dollar value of donations between

year t and year t− 1 for firm i, summed across all operating counties that are in compliance

in year t. However, since a given firm donates to nonprofits across many different connected

non-operating counties, we parcel out the additional increase in donations in close attainment

counties equally across the number of connected non-operating counties (Ni,t). Finally, we

normalize by each firm’s total donations summed across all counties (both operating and

non-operating) so that ∆Comply donationi,t is bounded between −1 and 1.

6.2. Estimation and results

Using the constructed data set, we estimate the effect of each firm’s additional donations in

close attainment operating counties on its donations to nonprofits in connected non-operating

counties, as follows:

∆Connected donationi,c,t = β0 +
2∑

k=1
βk∆Comply donationi,t−k + β3Xt + F.E. + εi,c,t (4)

for firm i, county c, and year t. The dependent variable is measured at the firm–county–year

level and is equal to the change in the total dollar value of donations between year t and

year t − 1 in connected non-operating counties, normalized by the total amount of firm

donations in year t across all counties. We control for a variety of firm-level characteristics, as

represented by Xt. In the baseline specification, we use firm, county, and year fixed effects.

In our most stringent specification, we include firm × county fixed effects to control for

time-invariant effects within a firm–county pair.20 We also include county × year fixed effects
19We use two years because of our earlier results in Section 5.4.3 showing that close attainment designation

status is associated with differential effects in long term donations following the designation.
20For example, a firm may prefer to donate to nonprofits located in specific areas where many of its employees

are situated. If those areas happen to coincide with the areas where the firm operates its plants, then this
could bias the estimate of βk.
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to sweep out potentially confounding factors affecting all firms in a given county–year (such

as business cycle effects, trends, etc). The coefficients of interest are the two lags on the

∆Comply donation variable, which captures the extent to which firms reallocate donations

from connected non-operating counties to close attainment operating counties.

We present the estimation results of Equation (4) in Table 7. The specifications in

each column are based on different samples of close attainment counties used to define the

∆Comply donation variable. For example, columns (1) and (2) use the full sample of attainment

counties, whereas columns (3) and (4) restrict the sample of attainment counties to a narrow

window around the threshold using the mean squared error optimal bandwidth. The remaining

columns use 50% and 150% of the optimal bandwidth. Across all specifications, the coefficients

on the two lags of ∆Comply donation are all negative and statistically significant, suggesting

that firms reallocate donations away from connected non-operating counties and toward close

attainment operating counties. These results are consistent with the interpretation that firms

are maximizing the insurance-value of donations by reallocating them to the areas where they

pollute the most. Furthermore, the magnitude of the coefficients decreases monotonically as

we move from the first lag to the second lag, indicating that the majority of the reallocation

occurs in the first year following a close attainment designation, but gradually becomes weaker

over time.

The regression in Equation (4) is based on dollar-changes in normalized donations divided

equally across connected non-operating counties. Thus, the sum of the coefficients on the

lags of ∆Comply donation provides a straightforward economic interpretation on the total

effect per dollar of increased donation in close attainment operating counties on the changes

in donations in connected non-operating counties. Take the coefficient estimates in column (4)

of Table 7 as an example. The sum of the two lags is -0.294 and is statistically significant with

a F -statistic of 8.69. This result shows that the effect of donation reallocation is economically

sizable as it implies that donations fall by roughly 29 cents in connected non-operating counties

per dollar of additional donations stimulated by close attainment designations. We obtain

qualitatively similar results when using the coefficient estimates in other columns.

7. Mechanisms

In this section, we investigate several plausible mechanisms that could propagate the relation

between regulation-induced emissions and donations to local nonprofits. We first examine

the role of local media as a channel through which firms use to improve their reputational

capital. Then, we examine the impact of a firm’s reputational risk exposure to news-related
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CSR incidents and history of regulatory noncompliance on its donation activities.

7.1. Local newspaper closures

The local media is a possible channel that firms use to improve their reputational capital

because it helps disseminate news of their charitable activities, allowing them to accrue

reputational capital by positively shaping the local community’s perceptions of such donations

(Cahan, Chen, Chen, & Nguyen, 2015). Studies have shown that firms with better CSR

performance receive more favorable media coverage, with media coverage of locally-oriented

CSR being the most value-enhancing (Byun & Oh, 2018). In turn, local news reporting is an

important determinant of firms’ reputation (Gurun & Butler, 2012; Miller, 2006), with more

positive media coverage leading to an improvement in firms’ reputational capital among the

local community (Liu & McConnell, 2013). Additionally, recent work by Heese, Pérez-Cavazos,

and Peter (2022) document that the local media is an effective monitor of corporate misconduct,

with local newspaper closures leading to an increase in local facility-level violations because

firms face less scrutiny from the public.

To study the role of local news coverage on propagating the relation between close

attainment designation status and donations to local nonprofits, we follow Heese et al. (2022)

and study the consequences of local newspaper closures on donation outcomes. If reputation

insurance drives firms’ philanthropic efforts, then we expect firms to decrease donations to local

nonprofits in close attainment counties with a local newspaper closure because the insurance

value of such donations decreases given a reduction in local news coverage of their charitable

activities.

We collect data on active local newspapers and their closures and mergers from the UNC

Center for Innovation and Sustainability in Local Media (CISLM). This dataset provides

snapshots of the name, the owner, and the physical location of all local newspapers in the

United States in 2004, 2014, 2016, and 2020. In addition, the dataset contains a list of

newspapers that have closed between 2004 and 2019 and identifies whether each closure is due

to being merged by another newspaper.21 Based on the snapshots, we construct an annual

time series of the active local newspapers data by forward-filling observations between the

report years. We assume that the level of the active local newspapers remains unchanged from

the current data collection year to the next data collection year. We only focus on the local

newspaper closures and not mergers because mergers do not necessarily reduce local-news
21For additional information about the database, please refer to https://www.usnewsdeserts.com. The list

of newspaper closures and mergers from 2004 to 2019 can be found at https://newspaperownership.com/
additional-material/closed-merged-newspapers-map.
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availability (Heese et al., 2022). Then, we aggregate the data at the county-level.

The sample of counties that we examine consists of those that have at least one active

local newspaper. We identify all of the county–years where there is a local newspaper closure

and define Closurec,t−1 to be a dummy variable equal to one if a local newspaper closed in

county c in the past three years until year t− 1, and zero otherwise.22 The sample period is

from 2004 to 2018 because this is the period where we have available data on local newspaper

closures. We estimate an augmented version of Equation (1) by fully interacting Closure with

Comply:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2Closurec,t−1 + β3Complyc,t

× Closurec,t−1 + φf(Rc,t) + εi,c,t+1

(5)

for firm i, county c, and year t. The coefficient of interest is β3, which measures the changes

in donations to local nonprofits in close attainment counties with a local newspaper closure in

the past three years relative to other close attainment counties without any closures.

Table 8 reports the results of estimating Equation (5) using the mean squared error optimal

bandwidth. Across all specifications, the coefficient on the interaction term Comply × Closure

is negative and statistically significant. In terms of economic magnitude, the results indicate

that the closure of a newspaper in a close attainment county leads to a 42% decrease in

donations to local nonprofits (based on column (2)). On the other hand, the coefficient on

Comply remains positive and statistically significant across all columns, with the coefficient

estimate in column (2) implying that close attainment counties without a local newspaper

closure leads to an increase in donations to local nonprofits by roughly 44%. Overall, the results

indicate that polluting firms respond to local newspaper closures by decreasing donations

to local nonprofits, suggesting that local media coverage is an important avenue behind the

insurance-motives of philanthropy.

7.2. Reputational risk exposure

Another channel that could influence a firm’s donations to local nonprofits in close attainment

counties is the firm’s reputational risk exposure to media news of their CSR-related incidents.

Firms that have higher emissions tend to experience a higher frequency of environmental-

related incidents covered by the media news (Hsu, Li, & Tsou, 2022). Prior research shows

that shareholders react negatively to news about CSR incidents (Flammer, 2013; Karpoff et al.,
22We look back three years because Heese et al. (2022) show that the impact of local newspaper closures on

firm behavior lasts up to three years.
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2005; Krueger, 2015). Additionally, Glossner (2021) and Yang (2021) both show that a firm’s

past history of news-based CSR incidents is the best predictor of future incidents. Therefore,

if insurance-motives are driving philanthropy, then we expect firms with high reputational risk

exposure to CSR incidents to increase their donations to local nonprofits, relative to those

with less reputational risk exposure.

We focus on firms’ reputational risk exposure to salient news of their CSR-related incidents

using data from RepRisk, which is a data provider that screens over 80,000 media sources for

CSR incidents.23 This database is suitable for our analysis because it is based on an outcome-

driven approach that focuses on a firm’s adverse CSR events that are actually reported by

the media news. Thus, using a news-based measure of CSR incidents allows for an objective

assessment of a firm’s reputational risk exposure (Houston & Shan, 2022; Li & Wu, 2020).24

We measure a firm’s reputational risk exposure by using RepRisk’s Reputational Risk

Index (RRI). The RRI is a score that ranges from 0 to 100, where a higher value denotes a

higher CSR incident rate. The RRI of a firm increases whenever it experiences a new CSR

incident. How much the index increases depends on the severity and novelty of the incident as

well as on the reach and intensity of the news about the incident. We use two RRI measures,

namely, the “Peak RRI” score, which is the two-year maximum value of the RRI capturing

the long-term CSR incident history of a firm, and the “Current RRI” score, which measures a

firm’s short-term exposure to reputational risks. The sample period begins from 2007, the first

year that RepRisk provides data, until 2018. We estimate Equation (1) by fully interacting a

firm’s RRI score with Comply as follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2RRIi,t−1 + β3Complyc,t

× RRIi,t−1 + φf(Rc,t) + εi,c,t+1

(6)

for firm i, county c, and year t. RRI refers to either Peak RRIi,t−1, defined as a given firm’s

two-year maximum value of the RRI measured in year t− 1, or Current RRIi,t−1, defined as a

given firm’s current value of the RRI measured in year t− 1. The coefficient of interest is β3,

which measures the difference in donations to local nonprofits in close attainment counties for

firms with a high reputational risk exposure relative to other firms with a lower exposure.

We present the results in Table 9 using the mean squared error optimal bandwidth. In the
23RepRisk is not a rating agency as its main business is about the archival of news about negative CSR

events. For more information, see https://www.reprisk.com/news-research/resources/methodology.
24In contrast, many other databases primarily assign ratings based on whether the firm “claims” to enact

certain policies that are more discretionary and subject to green-washing bias (Yang, 2021).
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first three columns, the coefficient on the interaction term Comply × Peak RRI is positive and

statistically significant, indicating that firms with long-term high reputational risk exposure

to CSR incident news donate more to local nonprofits in close attainment counties. The

economic magnitude is sizable. For example, the coefficient estimate in column (1) implies that

a one standard deviation increase in a firm’s Peak RRI leads to an increase of roughly 75% in

donations to local nonprofits. Columns (4) to (6) present qualitatively similar results when

using a firm’s Current RRI. It is also worthwhile to note that although the coefficient estimates

on Comply are positive, they are all statistically insignificant. This result is consistent with

the interpretation that the insurance value of donations is lower for firms with no reputational

risk exposure, implying that such firms have fewer incentives to significantly increase their

donations to local nonprofits in close attainment counties.

7.3. Past regulatory noncompliance

We also examine a firm’s history of publicized regulatory noncompliance based on regulatory

incidents. Specifically, we examine a firm’s facility-level HPVs, stack tests, and enforcement

cases, all of which are made available to the public by the EPA through their Enforcement and

Compliance History Online (ECHO) system. Firms with a history of regulatory noncompliance

are subject to greater regulatory scrutiny, which increases their regulatory compliance costs

(Blundell et al., 2020), especially if such noncompliances are publicly available (Johnson,

2020). Thus, the insurance-motive of philanthropy predicts that firms with a history of

regulatory noncompliance should increase donations to local nonprofits, relative to firms with

less regulatory incidents.

The first type of regulatory noncompliance that we examine is a facility’s HPV. The

EPA can label a facility with particularly serious or repeated violations as a HPV.25 Once

a facility enters HPV status, it triggers a period of intense oversight by the EPA that could

lead to higher fines and additional reporting requirements, which are very costly for the firm

(Blundell et al., 2020). Stack tests are plant-level evaluation tests conducted for the purposes

of determining and demonstrating compliance with CAA regulations.26 Failing stack tests

is costly because it could lead to firms being labeled as a HPV. Enforcement cases consist

of judicial and administrative cases brought forth by the EPA against facilities that violate

various environmental statutes. These enforcement cases are particularly costly for firms
25HPVs cover a broad range of issues including excess emissions, failure to install plant modifications, and

violating an operating parameter, among others.
26These tests involve evaluating a facility based on its emissions, condition of control equipment, and results

of monitoring data.
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because they could lead to legal penalties (Heitz, Wang, & Wang, 2021; Shive & Forster, 2020;

Xu & Kim, 2022).

We estimate Equation (1) by fully interacting Comply with measures of a firm’s history of

regulatory noncompliance as follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2Noncompliancei,c,t−1 + β3Complyc,t

× Noncompliancei,c,t−1 + φf(Rc,t) + εi,c,t+1

(7)

for firm i, county c, and year t. Noncompliancei,c,t−1 refers to either ln(HPV), ln(Stack), or

ln(Case), which are all defined in Section 3.4.1. Note that all three variables are based on data

in the past three years because because ECHO makes available facility-level compliance status

to the public only for the past three years. The coefficient of interest is β3, which measures

the difference in donations to local nonprofits in close attainment counties for firms with a

history of regulatory noncompliance relative to other firms with less noncompliance.

Table 10 presents the results. Across all specifications, we find that the coefficients on

Comply and Comply × Noncompliance are both positive and statistically significant. For

example, in column (2) the coefficient on Comply implies that firms operating facilities without

any regulatory noncompliance in the past three years in close attainment counties donate

34.58% more to local nonprofits. However, given a one standard deviation increase in the

(log) number of HPVs, firms donate an extra 35.28% more to local nonprofits. Similar results

are obtained in the other columns when using the number of stack tests and enforcement

cases. Overall, the findings suggest that firms with a history of regulatory noncompliance

donate more to local nonprofits, consistent with the interpretation that such firms derive more

insurance value from donations given their regulatory noncompliance risks.

8. Social welfare

Thus far, we have focused on the firm’s perspective and shown that firms that pollute more

locally also donate more to local nonprofits as a form of reputation insurance against the

potential costs of increased emissions. In this section, we expand our focus and examine the

social welfare implications of such donations and pollution. Specifically, we ask the question

“is more damage being done through pollution than social good through donations?” To answer

this, we compare the additional damages (“marginal damages”) with the additional donations

(“marginal donations”) associated with a one-ton increase in ozone emissions from TRI plants.

This exercise is economically important because if marginal damages are greater than marginal
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donations, then firms are paying too low of a price for the insurance value they receive for

their charitable activities, implying that corporate philanthropy may benefit firms at the cost

of social welfare. In contrast, if marginal damages are less than marginal donations, then firms

are overpaying for the coverage they receive from corporate philanthropy, with the insurance

benefits when negative events happen being offset by the cost of philanthropy when they do

not.

8.1. Calculating marginal donations and marginal damages of pollution

We calculate marginal donations as the change in the average donations in a given county

by all TRI firms operating in that county divided by the change in average total ozone

emissions by those TRI firms, using the RDD estimates obtained from Tables 3 and 4. To

illustrate, consider the RDD estimate of 0.265 in column (2) of Table 3. The average ozone

air emissions of a given facility in the sample of counties within the optimal bandwidth is

21,674.47 pounds (unreported). Thus, a close attainment designation increases the ozone

emissions of an average facility by roughly 6,576.71 pounds (= 3.29 tons). There are on

average 7 TRI facilities in a given county, implying that county-level ozone emissions increase

by 23.02 tons. Similarly, combining the corresponding RDD estimate of 0.382 in column (2) of

Table 4 and the average donation amount of $63,846.34 (unreported) in the sample of counties

within the optimal bandwidth implies that donations increase by $29,702.09 on average, given

a close attainment designation. Taken together, these estimates result in a marginal donation

of 29, 702.09/23.02 = $1, 290.36 per ton of yearly emissions.

We compute marginal damages using the AP3 model, which is a leading “integrated

assessment” model that has been widely used in influential economics and policy research

(Muller et al., 2011).27 The AP3 model includes four main components. First, it uses ozone

emissions from all sources in every county across the United States. Second, it uses an air

quality model translating emissions from each source county into ambient air quality in all

counties. Third, it uses published elasticities linking air quality to outcomes such as mortality.

Fourth, it monetizes the value of these outcomes using an estimate of the value of a statistical

life (VSL). The marginal damages computed using the AP3 model can be interpreted as the

additional dollar value of damages associated with a one-ton increase in ozone emissions from

TRI facilities in a given county. More details on the calibration and estimation of the AP3

model can be found in Appendix B.

A few caveats are in order when comparing marginal donations and marginal damages
27We thank Nick Muller for generously providing the raw AP3 code.
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in our setting. First, our measure of marginal donations is only an estimate of the true

social benefits of corporate philanthropy, which may be greater or lower than the raw dollar

value of donations. This is because the social benefits of donations depend on the social

impact of the nonprofit that receives the donation. For example, a nonprofit that allocates

$10,000 of donated funds towards the successful development of green technology may create

social benefits that well exceeds the $10,000 of donations it received. Second, estimates of

the marginal damages of ozone emissions may understate true marginal willingness to pay,

since people may value clean air for reasons not captured in the mortality-damage function

approach (e.g., pure amenity value) that AP3 follows. In practice, hedonic models have been

economists’ primary approach to estimating marginal willingness to pay for clean air. However,

comparing hedonic estimates with those from integrated assessment models’ damage functions

does not suggest the latter substantially understates marginal willingness to pay; if anything,

the hedonic estimates are smaller than the damage function estimates (Chay & Greenstone,

2005). Nonetheless, our analysis is still an important exercise in providing a glimpse into the

costs and benefits of regulation-induced pollution from society’s perspective.

8.2. Comparison results

Table 11 compares the mean marginal damages with the mean marginal donations across all

counties where TRI plants operate. The differences across each column is in the sample of

counties used to estimate the marginal donations and marginal damages. Column (1) uses

the sample of counties located in the narrow window around the threshold by computing the

mean squared error optimal bandwidth following Calonico et al. (2014). In columns (2) and

(3), we report results across alternative bandwidths, including 50% of optimal bandwidth

(narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). The sample period

in all specifications is from 2002 to 2017 because these are the years where data on marginal

damages are available. We consider two types of marginal damages, namely within-county

marginal damages refer to the damages restricted to the same county as where the emissions

are produced, whereas all counties marginal damages refer to the damages caused by the

emissions produced in a given county that spread across all counties.

Comparing the estimate of marginal donations in column (1) of Table 11 with the within-

county marginal damages using the baseline AP3 model parameters shows that marginal

damages are, on average, 2.66 times larger than marginal donations in a given county. Eco-

nomically, these estimates imply that on average, a firm donates $1,290.36 to local nonprofits

per ton of additional emissions given a close attainment designation. At the same time, the
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firm creates $3,430.59 per ton in welfare damages within the same county. These results

suggest that firms are underpaying for the insurance value of philanthropy at the cost of social

welfare. The gap between marginal damages and marginal donations increases considerably

when we consider damages across all contiguous counties, as mean marginal damages are now

8.20 times larger than mean marginal donations.

We report several sensitivity analyses based on different models used to compute marginal

damages. The baseline estimates use the EPA’s preferred VSL of $8.6 million (2015 dollars)

(US EPA, 2010). We use one alternative estimate of $4.5 million from the Organization for

Economic Cooperation and Development (OECD, 2012). We also use alternative parameters

for the pollution concentration mortality response function from the 5th and 95th percentile,

respectively, of Krewski et al.’s (2009) study. These results are also presented in Table 11 and

reaffirm the baseline results that marginal damages exceed marginal donations.

9. Conclusion

Despite the fact that many polluting companies actively engage in corporate philanthropy,

relatively little is known about their motivations for participating in philanthropy. Using

a sample of U.S. firms that have active corporate foundations and operate polluting plants

over the period 1999–2018, we examine the role of charitable giving as a form of reputation

insurance.

Our identification strategy relies on a county’s close attainment and nonattainment desig-

nation status based on its DVs as a source of locally exogenous variation in firm pollution. We

find strong evidence for the insurance-motives of corporate philanthropy, with firms operating

polluting plants in close attainment counties emitting more but also subsequently donating

more to local nonprofits relative to those operating in close nonattainment counties. Firms

appear to maximize the insurance value of donations by reallocating donations to the areas

where they pollute the most. Furthermore, we find that a firm’s local media coverage, reputa-

tional risk exposure to news-based CSR incidents, and history of regulatory noncompliance are

potential mechanisms that could propagate the relation between regulation-induced emissions

and donations to local nonprofits. From society’s perspective, firms underpay for the insurance

value of donations, suggesting that corporate philanthropy may benefit firms at the cost of

social welfare.

A potential caveat of our findings is that the causal effect is identified by the subset of

counties whose DV is close to the threshold, a limitation that is inherent to any RDD. However,

we believe that two aspects of the institutional setting ameliorates some of the concerns
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regarding the external validity of our results. First, the number of close attainment and close

nonattainment county–years that are within the optimal bandwidth represents roughly 30%

of the total number of observations, implying that quite a sizable portion of county–years is

used to identify the effect at work. Second, since our sample period includes four revisions

to the threshold that defines compliance, our results are robust around four discrete levels

of pollution rather than at just one level. Nonetheless, extending the external validity of

this study by identifying natural experiments that apply to a broader universe of firms and

donation activities is an exciting and challenging avenue for future research.
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Figure 1
County-level design values.
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This figure presents the average DVs (in parts per million) from years 1999–2018 in the counties where TRI
plants operate and where DV data is available. Counties with higher DVs (indicated by darker shades)
correspond to those with greater concentrations of ozone pollution and are more likely to be designated
nonattainment with respect to the ozone NAAQS.
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Figure 2
Distribution of county-level design values.

This figure presents the histogram of the county-level DVs (in parts per million) from years 1999–2018 in the
counties where TRI plants operate and where DV data is available. The horizontal axis indicates the DV in
0.2% intervals. The vertical axis indicates the percentage of counties in our sample per DV interval.
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Figure 3
Density break test of the number of counties around NAAQS thresholds.

This figure presents the density of observations by the distance to the ozone NAAQS threshold. The unit of
observation underlying the estimation of this density is at the county–year level, considering only the counties
where TRI plants operate and where DV data is available from years 1999–2018. The horizontal axis shows
the centered DVs around zero by subtracting them from the NAAQS threshold. The dashed vertical line at
zero represents the NAAQS threshold for ozone attainment status. Observations on the right (left) of the
line indicate that the county is in compliance with (violation of) the NAAQS threshold. The solid black lines
represent the local density on either side of the NAAQS threshold and the shaded gray area corresponds to the
95% confidence interval bounds, calculated using the plug-in estimator proposed by Cattaneo et al. (2020). We
fail to reject the null hypothesis that there is no break in density around the threshold, with a p-value of 0.450.
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Figure 4
Probability of nonattainment.
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This figure presents the probability of nonattainment conditional on the distance of a county’s DV from
the NAAQS threshold. The unit of observation is at the county–year level, considering only the counties
where TRI plants operate and where DV data is available from years 1999–2018. The vertical axis shows
the probability of nonattainment. The horizontal axis shows the difference between a county’s DV and the
NAAQS threshold. The dashed vertical line at zero represents the NAAQS threshold for ozone nonattainment
status. Observations on the right (left) of the line indicate that the county is in violation of (compliance with)
the NAAQS threshold. Each dot in the figure represents the average of a dummy variable equal to one if a
given county is designated nonattainment in year t+ 1, and zero otherwise, using integrated mean squared
error optimal bins following Calonico et al. (2014). County controls include the natural logarithm of one plus
the employment levels in a given county, a given county’s NOx emissions to employment ratio, the change in a
given county’s employment levels, and a dummy variable equal to one if the county is located in a MSA. The
solid lines on either side of the NAAQS threshold are two separate local quadratic polynomials fitted using the
rectangular kernel and mean squared error optimal bandwidth following Calonico et al. (2014).
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Figure 5
Donation activity around ozone NAAQS thresholds.
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This figure presents the regression discontinuity relating centered DVs to the amount of donations at the
firm–county level from years 1999–2018. The variable on the vertical axis is ln(Donation)t+1, defined as the
natural logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a given
county in year t+ 1. The horizontal axis shows the centered DVs around zero by subtracting DVs from the
NAAQS threshold. The dashed vertical line at zero represents the NAAQS threshold for ozone attainment
status. Observations on the right (left) of the line indicate that the county is in compliance with (violation of)
the NAAQS threshold. Each dot in the figure represents the average of non-zero values of ln(Donation)t+1
using integrated mean squared error optimal bins following Calonico et al. (2014). The solid lines on either
side of the NAAQS threshold is based on two separate regressions of ln(Donation)t+1 on local quadratic
polynomials in centered DVs using the rectangular kernel and mean squared error optimal bandwidth following
Calonico et al. (2014).
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Figure 6
Empirical design for the reallocation of donations.

This figure illustrates the three key steps behind the empirical strategy examining the reallocation of donations.
First, firms that operate polluting facilities in close attainment counties increase their donations to local
nonprofits. Second, firms reallocate donations away from connected counties where they historically have
made donations but do not operate facilities and toward close attainment counties. Third, the reallocation of
donations leads to a decrease in the donations to local nonprofits in connected counties.
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Table 1
Summary statistics.

Variables Mean Median Standard Observations
deviation

Donation ($ ’000s) (>0) 130.196 30.000 279.041 41,316
Firm ozone (ton) 14.990 0.000 90.405 54,524
Facility ozone (ton) 9.738 0.000 59.597 66,131
Comply 0.705 1.000 0.456 54,524
Distrust 0.523 0.493 0.797 54,353
Closure 0.038 0.000 0.191 38,440
ln(Size) 8.335 8.301 2.132 51,080
ln(BM) 0.516 0.522 0.135 51,075
ROA 0.032 0.032 0.023 50,223
Leverage 0.278 0.224 0.204 50,841
Sales growth 0.094 0.058 1.009 51,929
KZ 1.130 1.023 6.122 49,891
Cash 0.080 0.055 0.089 53,077
Momentum 1.138 1.103 0.441 49,848
Stock returns 0.139 0.104 0.459 49,269
Core chemical 0.379 0.000 0.485 54,524
Permit 0.506 1.000 0.500 54,524
Source reduction 0.069 0.000 0.254 54,524
Production ratio 0.910 0.984 0.394 28,683
ln(Employees) 3.802 4.369 2.206 54,524
ln(Sales) 14.006 16.729 6.656 54,524
Paydex 66.390 68.000 9.392 40,764
ln(HPV) 0.065 0.000 0.271 54,524
ln(Stack) 0.271 0.000 0.742 54,524
ln(Case) 0.044 0.000 0.188 54,524
Peak RRI 22.071 25.250 20.057 32,262
Current RRI 13.115 9.917 14.528 32,262

This table reports the summary statistics for the variables used in this study. The sample consists of 1,079
unique firms that operate polluting plants in 857 unique counties, resulting in 54,524 firm–county–year
observations over the period 1999–2018. Variable definitions are presented in Table A.1 in Appendix A.
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Table 2
Preexisting differences in facility characteristics.

Year (t− 1) ∆ from year
(t− 2) to (t− 1)

(1) (2) (3) (4)
Core chemical -0.011 0.051 0.000 0.006

(0.014) (0.035) (0.002) (0.006)
Permit 0.117∗∗ -0.059 0.003 -0.008

(0.049) (0.043) (0.003) (0.006)
Source reduction -0.005 -0.002 0.004 0.001

(0.005) (0.016) (0.002) (0.009)
Production ratio 0.004 0.014 -0.010 -0.006

(0.011) (0.041) (0.006) (0.023)
ln(Employees) -0.086 -0.196 -0.061∗∗∗ -0.032

(0.065) (0.162) (0.019) (0.043)
ln(Sales) -0.141 -0.115 -0.234∗∗∗ -0.092

(0.159) (0.129) (0.085) (0.165)
Paydex 1.076∗∗∗ -0.549 0.212 0.169

(0.220) (0.518) (0.132) (0.209)
ln(HPV) -0.028∗∗∗ -0.006 0.003 0.005

(0.011) (0.011) (0.002) (0.006)
ln(Stack) -0.006 0.028 -0.009∗∗∗ 0.005

(0.019) (0.042) (0.004) (0.012)
ln(Case) -0.001 -0.001 0.000 -0.002

(0.003) (0.005) (0.001) (0.005)

Sample: Full Opt. Full Opt.

This table examines the differences in observable facility characteristics between those that operate in counties
that are in compliance with NAAQS thresholds and those operating in counties that are in violation. In
columns (1) and (2), these characteristics are measured in the year preceding the designation (t− 1). Columns
(3) and (4) consider the change in these characteristics between years t− 2 and t− 1. Columns (1) and (3)
report the differences using the full sample of firms, whereas columns (2) and (4) report the differences using
a narrow window around the NAAQS threshold by computing the mean squared error optimal bandwidth
following Calonico et al. (2014). For all specifications, standard errors are clustered by county, bias-corrected
following Calonico et al. (2014), and reported in the parenthesis. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 3
Effect of close attainment designation status on facility-level ozone emissions.

Dep. variable: (1) (2) (3) (4) (5)ln(Facility ozone)t

Complyc,t 0.351∗∗∗ 0.265∗∗∗ 0.308∗∗∗ 0.188∗∗∗ 0.226∗∗∗

(2.60) (2.66) (2.63) (2.84) (2.70)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.012 0.013 0.007 0.020 0.013
Covariates No Yes Yes Yes Yes
Observations 24,891 26,243 10,849 47,722 25,565

This table reports the impact of a county’s close attainment designation status on polluting plants’ local
ozone emissions. We estimate a local linear regression using the mean squared error optimal bandwidth
following Calonico et al. (2014). The unit of observation is at the facility–county–year level. We also report
results across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of
optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are reported.
Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year
t, and zero otherwise. ln(Facility ozone)t equals to the natural logarithm of one plus the total amount of
ozone air emissions (in pounds) in a given county of a given facility in year t. Facility-level covariates include
Core chemical, Permit, Source reduction, Production ratio, ln(Employees), ln(Sales), and Paydex. For all
specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 4
Donation activity in response to close attainment designation status.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.332∗∗∗ 0.382∗∗∗ 0.359∗∗ 0.390∗∗∗ 0.371∗∗∗

(2.64) (2.90) (2.00) (3.64) (2.69)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status.
We estimate the local linear regression specification given in Equation (1) using the mean squared error optimal
bandwidth following Calonico et al. (2014). We also report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results
using both rectangular and triangular kernels are reported. ln(Donation)t+1 equals to the natural logarithm
of one plus the total dollar amount of donations of a given firm to nonprofits in a given county in year t+ 1.
Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t,
and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum,
Stock returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For
all specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 5
Donation activity in response to close attainment designation status conditional on the amount of local ozone
emissions.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.112 0.167 0.044 0.127 0.097
(1.12) (1.61) (0.27) (1.02) (0.82)

ln(Firm ozone)t−1 0.014 0.009 -0.022 -0.007 -0.017
(0.88) (0.49) (-0.84) (-0.37) (-0.85)

Complyc,t × ln(Firm ozone)t−1 0.055∗∗ 0.056∗∗∗ 0.098∗∗∗ 0.066∗∗∗ 0.078∗∗∗

(2.31) (2.79) (3.04) (2.73) (3.38)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on its local ozone emissions. We estimate the local linear regression specification given in
Equation (2) using the mean squared error optimal bandwidth following Calonico et al. (2014). We also
report results across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and
150% of optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are
reported. ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of
a given firm to nonprofits in a given county in year t+ 1. ln(Firm ozone)t−1 equals to the natural logarithm
of one plus the total amount of ozone air emissions (in pounds) in a given county of a given firm in year t− 1.
Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t,
and zero otherwise.Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum,
Stock returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For
all specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 6
Local social capital.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.111 0.094 0.129 0.080 0.094
(0.92) (0.69) (0.70) (0.74) (0.92)

Distrustt -0.179 -0.284∗∗ -0.263 -0.164∗ -0.300∗∗∗

(-1.52) (-2.28) (-1.46) (-1.66) (-3.18)
Complyc,t × Distrustt 0.296∗∗ 0.381∗∗∗ 0.413∗∗ 0.236∗∗ 0.445∗∗∗

(2.21) (2.68) (1.98) (2.14) (4.08)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on local social capital. We estimate a local linear regression using the mean squared error optimal
bandwidth following Calonico et al. (2014). We also report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results
using both rectangular and triangular kernels are reported. ln(Donation)t+1 equals to the natural logarithm
of one plus the total dollar amount of donations of a given firm to nonprofits in a given county in year t+ 1.
Distrustt is a county-level social capital index based on data from the NRCRD at the Pennsylvania State
University. Higher values represent lower social capital. Complyc,t is a dummy variable equal to one if county c
is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates include ln(Size), ln(BM),
ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical, Permit, Source reduction,
Production ratio, ln(Employees), and ln(Sales). For all specifications, standard errors are clustered by county
and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.

50



Table 7
Reallocation of donations from connected non-operating counties to attainment operating counties.

Dep. variable: (1) (2) (3) (4) (5) (6) (7) (8)∆Connected donationi,c,t

∆Comply donationi,t−1 -0.111∗∗∗ -0.134∗∗∗ -0.220∗∗∗ -0.201∗∗ -0.648∗∗ -0.676∗∗ -0.159∗∗∗ -0.148∗∗
(-3.34) (-3.39) (-2.65) (-2.29) (-2.40) (-2.37) (-2.97) (-2.50)

∆Comply donationi,t−2 -0.021∗∗ -0.025∗∗ -0.073∗∗∗ -0.093∗∗∗ -0.046∗∗∗ -0.049∗∗∗ -0.091∗∗∗ -0.113∗∗∗
(-2.30) (-2.13) (-3.15) (-3.27) (-3.20) (-2.96) (-3.51) (-3.54)

Sample Full Full Opt. Opt. 50% Opt. 50% Opt. 150% Opt. 150% Opt.
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Coefficient sum -0.132 -0.159 -0.293 -0.294 -0.694 -0.724 -0.250 -0.261
F (sum of lags) 11.17 11.24 10.22 8.69 6.87 6.85 12.64 10.43
p-Value 0.001 0.001 0.001 0.003 0.009 0.009 0.001 0.001
Firm F.E. Yes No Yes No Yes No Yes No
County F.E. Yes No Yes No Yes No Yes No
Year F.E. Yes No Yes No Yes No Yes No
Firm × County F.E. No Yes No Yes No Yes No Yes
County × Year F.E. No Yes No Yes No Yes No Yes
Observations 102,139 91,772 89,782 79,077 69,067 58,869 98,937 88,313

This table presents the reallocation of donations away from connected counties where firms historically have made
donations but do not operate facilities and toward close attainment counties. We estimate the regression specification
given in Equation (4). The dependent variable, ∆Connected donationi,c,t, is measured at the firm–county–year level
and is equal to the change in the total dollar value of donations between year t and year t− 1 in connected counties
where the firm does not operate any plants, normalized by the total amount of donations of the given firm in year t
across all counties. The independent variables, ∆Comply donationi,t, are measured at the firm–year level and is
equal to the change in the total dollar value of donations between year t and year t− 1, summed across all counties
where the firm operates plants and have DVs that are in compliance with the NAAQS threshold, normalized by the
total amount of donations of the given firm in year t across all counties; we divide this by the number of connected
non-operating counties associated with the firm in year t. Columns (1) and (2) use the full sample of attainment
counties where the firm operates plants, while columns (3) and (4) restrict the sample of attainment counties to a
narrow window around the NAAQS threshold using the mean squared error optimal bandwidth following Calonico
et al. (2014). We also report results across alternative bandwidths, including 50% of optimal bandwidth (narrower
bandwidth) in columns (5) and (6), and 150% of optimal bandwidth (wider bandwidth) in columns (7) and (8).
Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core
chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard
errors are robust to heteroskedasticity and clustered by county; t-statistics are reported in the parenthesis. *, **, and
*** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table 8
Local newspaper closures.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.217∗∗∗ 0.363∗∗∗ 0.352∗∗∗ 0.257∗∗∗ 0.222∗∗

(2.60) (3.57) (3.17) (3.31) (2.33)
Closuret−1 -0.076 -0.050 0.076 0.169 0.055

(-0.66) (-0.34) (0.34) (1.57) (0.27)
Complyc,t × Closuret−1 -0.318∗∗ -0.541∗∗∗ -0.600∗∗∗ -0.463∗∗∗ -0.383∗∗

(-2.50) (-2.78) (-2.70) (-2.75) (-2.45)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.008 0.010 0.005 0.015 0.012
Covariates No Yes Yes Yes Yes
Observations 5,937 7,339 2,381 12,853 8,679

This table presents a firm’s donation activities in response to a county’s close attainment designation status
given local newspaper closures. We estimate the local linear regression specification given in Equation (5)
using the mean squared error optimal bandwidth following Calonico et al. (2014). We also report results
across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of
optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are reported.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t + 1. Closuret−1 is a dummy variable equal to one if a local
newspaper closed in a given county in the past three years until year t− 1, and zero otherwise. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all
specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 9
Reputational risk.

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.043 0.049 0.126 0.113 0.087 0.151
(0.26) (0.20) (1.32) (0.67) (0.33) (1.63)

Peak RRIt−1 0.002 0.008 0.005
(0.32) (1.04) (0.93)

Complyc,t × Peak RRIt−1 0.028∗∗∗ 0.024∗∗ 0.019∗∗∗

(3.72) (2.12) (2.89)
Current RRIt−1 0.001 0.005 0.004

(0.12) (0.41) (0.43)
Complyc,t × Current RRIt−1 0.039∗∗∗ 0.035∗∗ 0.030∗∗∗

(3.06) (1.96) (2.76)

Kernel Rec. Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. 50% Opt. 150% Opt. Opt. 50% Opt. 150% Opt.
Bandwidth estimate 0.011 0.006 0.017 0.011 0.006 0.017
Covariates Yes Yes Yes Yes Yes Yes
Observations 7,671 2,733 16,700 7,671 2,733 16,700

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on the firm’s reputational risk. We estimate the local linear regression specification given in Equation (6)
using the mean squared error optimal bandwidth following Calonico et al. (2014). We also report results across
alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth
(wider bandwidth). Results using both rectangular and triangular kernels are reported. ln(Donation)t+1 equals
to the natural logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a given
county in year t + 1. Peak RRIt−1 is a given firm’s two-year maximum value of the RRI measured in year t − 1.
Current RRIt−1 is a given firm’s current value of the RRI measured in year t− 1. The RRI is obtained from RepRisk
and is a news-based measure of CSR-related incidents that captures a firm’s long-term exposure to reputational
risks. The RRI ranges from zero (lowest) to 100 (highest), with a higher value indicating higher reputational risk
exposure. Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in
year t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum,
Stock returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all
specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics
are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table 10
Past incidents.

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.258∗∗ 0.297∗∗ 0.252∗∗ 0.318∗∗ 0.251∗∗ 0.307∗∗

(2.06) (2.19) (2.06) (2.02) (1.97) (2.28)
ln(HPV)t−1 0.122 0.227

(0.37) (0.64)
Complyc,t × ln(HPV)t−1 1.120∗∗ 1.115∗∗

(2.23) (2.05)
ln(Stack)t−1 -0.008 -0.049

(-0.03) (-0.18)
Complyc,t × ln(Stack)t−1 0.738∗∗ 0.619∗∗

(2.02) (2.02)
ln(Case)t−1 -0.149 0.032

(-0.26) (0.06)
Complyc,t × ln(Case)t−1 1.641∗∗ 1.629∗∗

(2.11) (2.09)

Kernel Rec. Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.010 0.011 0.010 0.011 0.010 0.011
Covariates No Yes No Yes No Yes
Observations 13,505 13,826 13,505 13,826 13,505 13,826

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on past incidents such as HPVs, stack tests, and enforcement cases. We estimate the local linear
regression specification given in Equation (7) using rectangular kernels and the mean squared error optimal
bandwidth following Calonico et al. (2014). ln(Donation)t+1 equals to the natural logarithm of one plus the
total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1. ln(HPV)t−1
equals to the natural logarithm of one plus the number of high priority violations across all facilities in a given
county of a given firm in the past three years until year t− 1. ln(Stack)t−1 equals to the natural logarithm
of one plus the number of stack tests across all facilities in a given county of a given firm in the past three
years until year t − 1. ln(Case)t−1 equals to the natural logarithm of one plus the number of enforcement
cases across all facilities in a given county of a given firm in the past three years until year t− 1. Covariates
include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical,
Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table 11
Mean marginal donations and marginal damages of ozone pollution.

(1) (2) (3)
Marginal donations ($ / tpy) 1,290.36 1,129.38 2,152.48
Baseline AP3 model

Within-county marginal damages ($ / tpy) 3,430.59 4,020.88 2,765.17
All counties marginal damages ($ / tpy) 10,578.94 11,664.28 9,198.50

VSL OECD model
Within-county marginal damages ($ / tpy) 1,777.47 2,083.32 1,432.70
All counties marginal damages ($ / tpy) 5,481.22 6,043.56 4,765.97

Krewski 5th pctile
Within-county marginal damages ($ / tpy) 2,285.27 2,678.94 1,840.41
All counties marginal damages ($ / tpy) 7,067.84 7,793.28 6,149.77

Krewski 95th pctile
Within-county marginal damages ($ / tpy) 4,447.64 5,197.93 3,595.33
All counties marginal damages ($ / tpy) 13,685.19 15,043.79 11,943.77

Sample Opt. 50% Opt. 150% Opt.
Number of counties 437 292 591

This table compares the mean marginal donations of pollution with the marginal damages of pollution. We
only consider counties where TRI plants operate, and data exists for both DVs and marginal damages. The
sample period is from 2002 to 2017. Marginal donations are computed as the change in the average donations
in a given county by all TRI firms operating in that county divided by the change in average total ozone
emissions by those TRI firms using the RDD estimates from Tables 3 and 4. We use four different models
to compute marginal damages: i) baseline parameters using the AP3 model; ii) alternative VSL estimates
following OECD (2012); and iii) alternative parameters for the pollution concentration mortality response
function from the 5th and 95th percentile, respectively, of Krewski et al.’s (2009) study. Data on marginal
damages are available for years 2002, 2005, 2008, 2011, 2014, 2017, and linearly interpolated between years.
Within-county marginal damages refer to the damages restricted to the same county as where the emissions
are produced. All counties marginal damages refer to the damages caused by the emissions produced in a
given county that spread across all counties. Column (1) uses the sample of counties located in the narrow
window around the threshold by computing the mean squared error optimal bandwidth following Calonico et
al. (2014). In columns (2) and (3), we report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Both marginal damages
and marginal donations are in $ per ton of yearly emissions. All currency are in 2015 dollars, deflated using
the GDP deflator.
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Appendix A: Variable definitions

Table A.1
Variable definitions.

Variable Definitions Data source

ln(Donation) The natural logarithm of one plus the total dollar amount of dona-
tions of a given firm to nonprofits in a given county.

FoundationSearch

∆Connected donation The change in the total dollar value of donations between year t and
year t − 1 in connected counties where the firm does not operate any
plants, normalized by the total amount of donations of the given firm
in year t across all counties.

FoundationSearch; TRI

∆Comply donation The change in the total dollar value of donations between year t and
year t−1, summed across all counties where the firm operates plants
and have DVs that are in compliance with the NAAQS threshold,
normalized by the total amount of donations of the given firm in
year t across all counties; we divide this by the number of connected
non-operating counties associated with the firm in year t.

FoundationSearch; TRI

ln(Firm ozone) The natural logarithm of one plus the total amount of ozone air
emissions (in pounds) in a given county of a given firm.

TRI

ln(Facility ozone) The natural logarithm of one plus the total amount of ozone air
emissions (in pounds) in a given county of a given facility.

TRI

Comply A dummy variable equal to one if a given county is in compliance
with the NAAQS threshold in a given year, and zero otherwise.

AQS

Distrust A county-level social capital index based on data from the NRCRD
at the Pennsylvania State University. Higher values represent lower
social capital.

NRCRD

Closure A dummy variable equal to one if a local newspaper closed in a given
county in the past three years until year t − 1, and zero otherwise.

UNC CISLM

ln(Size) The natural logarithm of market equity. Compustat
ln(BM) The natural logarithm of one plus the book-to-market ratio. Compustat
ROA Net income divided by total assets. Compustat
Leverage Total liabilities divided by total assets. Compustat
Sales growth Ratio of sales in the current fiscal year to sales in the last year minus

one.
Compustat

KZ Kaplan-Zingales index. Compustat
Cash Cash divided by total assets. Compustat
Momentum Cumulative 12-month return of a stock, excluding the immediate

past month.
CRSP

Stock returns Firm-level annual stock returns. CRSP
Core chemical A dummy variable equal to one if a given firm operates plants in a

given county that emit core ozone chemicals as defined by TRI, and
zero otherwise.

TRI

Permit A dummy variable equal to one if a given firm operates plants in a
given county that hold operating permits for ozone emissions, and
zero otherwise.

ICIS-Air

Source reduction A dummy variable equal to one if a given firm operates plants in a
given county that engage in ozone source reduction activities, and
zero otherwise.

P2

Production ratio A given firm’s average ozone production ratio across all plants in a
given county.

P2

ln(Employees) The natural logarithm of one plus a given firm’s average number of
employees across all plants in a given county.

NETS

ln(Sales) The natural logarithm of one plus a given firm’s average dollar
amount of sales across all plants in a given county.

NETS

Paydex A given firm’s average paydex score across all plants in a given county.
The paydex score ranges from 0 to 100 and is a business credit score
based on a facility’s trade credit performance. Higher values indicate
lower solvency risk.

NETS

ln(HPV) The natural logarithm of one plus the number of high priority viola-
tions across all facilities in a given county of a given firm in the past
three years until year t − 1.

ICIS-Air

ln(Stack) The natural logarithm of one plus the number of stack tests across
all facilities in a given county of a given firm in the past three years
until year t − 1.

ICIS-Air

ln(Case) The natural logarithm of one plus the number of enforcement cases
across all facilities in a given county of a given firm in the past three
years until year t − 1.

ICIS FE&C

Peak RRI A given firm’s two-year maximum value of the RRI that captures a
firm’s long-term exposure to reputational risks.

RepRisk

Current RRI A given firm’s current value of the RRI that captures a firm’s short-
term exposure to reputational risks.

RepRisk
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Appendix B: AP3 model
B.1. AP3 model overview

We calculate county-level marginal damages of ozone emissions from the AP3 model (Holland,

Mansur, Muller, & Yates, 2020). AP3 is an integrated assessment model developed to estimate

monetary damages from emissions in the continental United States. Since previous research

has found that mortality accounts for approximately 95% of the total monetized health

damages (Jaramillo & Muller, 2016), the AP3 model does not include morbidity or other

environmental damages. The model uses air quality modeling to translate emissions into

ambient concentrations, and then to compute population exposure, health effects, and finally

the valuation of those effects; each of these steps is described in detail below.

The AP3 air quality model uses annual emissions of all criteria pollutants from all sources

within a county, measured from the National Emissions Inventory (NEI). AP3 then inputs these

emission rates into the Climatological Regional Dispersion Model, an air pollution transport

model, to calculate ambient concentrations of each pollutant in each county. The AP3 model

distinguishes among emissions released at four different effective stack height categories:

ground-level emissions, point sources (stationary sources) under 250 meters, point sources

between 250 meters and 500 meters, and point sources over 500 meters. AP3 then applies

concentration-response functions for each outcome it considers. AP3 calculates mortality in

each of 19 different age groups used in the U.S. census (0 years old, 1-4 years old, 5-9 years old,

..., 80-84 years old, 85+ years old). AP3 uses separate adult and infant concentration-response

functions. AP3 then monetizes the change in mortality using an estimate of the value of a

statistical life (VSL).
B.2. Data sources

Data on emissions is taken from the EPA’s NEI, which is a comprehensive accounting of

emissions from all sectors. Data is available every three years from 2002 to 2017. The stack

height of emissions plays an important role in the AP3 model because the altitude at which a

pollutant is emitted influences the pollutant’s ambient level and spatial distribution. However,

since we only focus on TRI facilities and the mean height of emissions of volatile organic

compounds (VOCs) from these facilities is only 14.2 meters with a standard deviation of 14.6

meters (US EPA, 1999), we apply AP3 assuming stack heights are lower than 250 meters.

Population data for each of the 19 different age groups come from the U.S. Census American

Community Survey. We use mortality data from the CDC National Vital Statistics System

Multiple Cause of Death dataset. The data includes all-cause mortality rates by county for
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each of the 19 age groups.
B.3. Model calibration and application

To calculate the marginal damages of ozone emissions using AP3, we start from the raw

data files and programs that constitute AP3, which Nick Muller generously shared. The

original AP3 uses all VOC emissions in a given county as inputs. However, since we are only

interested in the marginal damages of ozone emissions from TRI facilities, we sum together

the total VOC emissions from all TRI facilities in a given county and use this value instead.

We consider two types of damages: i) within-county damages, which are damages limited to

the same county as the source county of VOC emissions; and ii) all county damages, which

are damages summed across all counties attributable to the VOC emissions in the source

county. To calculate marginal damages, we increase VOC emissions by one ton in a given

source county and calculate the change in monetized damages. Since emissions data is only

available every three years, we linearly interpolate the marginal damages between years.

The baseline AP3 model use the EPA’s preferred VSL of $8.6 million (2015 dollars) (US

EPA, 2010). This estimate primarily reflects hedonic models of the labor market which

assess how a worker’s wage increases as the worker’s occupational fatality risk increases. An

alternative specification is a VSL of $4.5 million, which reflects a similar study covering all

countries in the Organization for Economic Cooperation and Development (OECD, 2012).

The OECD includes many countries with lower GDP per capita than the U.S., such as Mexico

and Turkey, so it is perhaps unsurprising that a VSL estimate for the OECD is lower than a

VSL estimate for the U.S.

For the adult and infant concentration-response functions, the baseline AP3 model uses

the estimate of 0.0058 from Krewski et al. (2009) and 0.0068 from Woodruff, Parker, and

Schoendorf (2006), respectively. For sensitivity analyses, we report estimates based on the 5th

percentile of Krewski et al. (2009) and Woodruff et al. (2006), which are 0.0039 and -0.0073,

respectively. We also report estimates based on the 95th percentile of Krewski et al. (2009)

and Woodruff et al. (2006), which are 0.0077 and 0.0215, respectively.
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Table IA.1
Ozone NAAQS.

Standard Effective date Averaging
time

Threshold
(ppm)

Form

1-Hour Ozone (1979) January 6, 1992 1 hour 0.12 Attainment is defined when the
expected number of days per
calendar year, with maximum
hourly average concentration
greater than 0.12 ppm, is equal
to or less than 1

8-Hour Ozone (1997) June 15, 2004 8 hours 0.08 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

8-Hour Ozone (2008) July 20, 2012 8 hours 0.075 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

8-Hour Ozone (2015) August 3, 2018 8 hours 0.070 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

This table provides basic descriptions of the ozone NAAQS used in our study. Standard refers to the
name of the ozone NAAQS. Effective date is the date on which the standard is effectively implemented
as stated in the Federal Register. Averaging time is the sampling frequency of the ozone concentration
used to calculate DVs. Threshold refers to the DV value which if exceeded, then the county is considered
to be in nonattainment. This value is measured in parts per million (ppm). Form is the rule used to
compute the DVs for the relevant ozone standard. Our sample period is from 1999–2018. From 1999 to
2003, we use the 1-Hour Ozone (1979) standard. From 2004 to 2011, we use the 8-Hour Ozone (1997)
standard. From 2012 to 2017, we use the 8-Hour Ozone (2008) standard. In 2018, we use the 8-Hour
Ozone (2015) standard. This table is adapted from https://www.epa.gov/ground-level-ozone-pollution/
timeline-ozone-national-ambient-air-quality-standards-naaqs.
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Table IA.2
TRI industry composition.

NAICS Description Proportion (%)

325 Chemical Manufacturing 12.970
332 Fabricated Metal Product Manufacturing 12.644
336 Transportation Equipment Manufacturing 8.222
311 Food Manufacturing 7.942
333 Machinery Manufacturing 7.252
331 Primary Metal Manufacturing 6.733
334 Computer and Electronic Product Manufacturing 5.665
221 Utilities 4.958
327 Nonmetallic Mineral Product Manufacturing 4.709
326 Plastics and Rubber Products Manufacturing 4.430
424 Merchant Wholesalers, Nondurable Goods 3.531
321 Wood Product Manufacturing 3.144
322 Paper Manufacturing 3.128
335 Electrical Equipment, Appliance, and Component Manufacturing 3.044
324 Petroleum and Coal Products Manufacturing 2.740
562 Waste Management and Remediation Services 2.020
339 Miscellaneous Manufacturing 1.739
337 Furniture and Related Product Manufacturing 1.407
212 Mining (except Oil and Gas) 0.819
323 Printing and Related Support Activities 0.814
313 Textile Mills 0.614
312 Beverage and Tobacco Product Manufacturing 0.585
314 Textile Product Mills 0.299
316 Leather and Allied Product Manufacturing 0.110
811 Repair and Maintenance 0.090
454 Nonstore Retailers 0.079
315 Apparel Manufacturing 0.052
541 Professional, Scientific, and Technical Services 0.052
213 Support Activities for Mining 0.029
488 Support Activities for Transportation 0.027
113 Forestry and Logging 0.025
112 Animal Production and Aquaculture 0.024
493 Warehousing and Storage 0.020
486 Pipeline Transportation 0.013
532 Rental and Leasing Services 0.013
551 Management of Companies and Enterprises 0.009
481 Air Transportation 0.008
237 Heavy and Civil Engineering Construction 0.005
423 Merchant Wholesalers, Durable Goods 0.005
425 Wholesale Electronic Markets and Agents and Brokers 0.005
444 Building Material and Garden Equipment and Supplies Dealers 0.004
445 Food and Beverage Stores 0.004
561 Administrative and Support Services 0.004
531 Real Estate 0.003
211 Oil and Gas Extraction 0.002
442 Furniture and Home Furnishings Stores 0.002
484 Truck Transportation 0.002
511 Publishing Industries (except Internet) 0.002
812 Personal and Laundry Services 0.002
115 Support Activities for Agriculture and Forestry 0.002

This table reports the three-digit NAICS industries in TRI that are included in our sample. Proportion refers
to the fraction that is represented in our sample.
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Table IA.3
Global polynomial regression.

Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t 0.200∗∗∗ 0.299∗∗∗ 0.198∗∗ 0.298∗∗∗

(2.59) (3.46) (2.13) (2.79)

Polynomial order 2 2 3 3
Controls No Yes No Yes
Observations 54,524 45,264 54,524 45,264

This table presents the RDD estimates using global polynomial regression. We use flexible polynomials of
order two and three that are different for observations on the left- and right-hand side of the NAAQS threshold.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t+ 1. Complyc,t is a dummy variable equal to one if county c is
in compliance with the NAAQS threshold in year t, and zero otherwise. Control variables include ln(Size),
ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical, Permit, Source
reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard errors are clustered
by county; t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and
1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.

62



Table IA.4
Alternative RDD specifications.

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.349∗∗∗ 0.451∗∗∗ 0.501∗∗∗ 0.440∗∗∗ 0.409∗∗∗ 0.394∗∗∗

(2.79) (3.26) (2.61) (3.79) (2.71) (2.76)

Kernel Epan. Epan. Epan. Epan. Rec. Rec.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt. Opt.
Bandwidth estimate 0.012 0.012 0.006 0.018 0.016 0.016
Polynomial order 1 1 1 1 2 3
Covariates No Yes Yes Yes Yes Yes
Observations 16,585 14,721 6,773 26,466 24,613 22,261

This table presents alternative RDD specifications to estimate a firm’s donation activities in response to a
county’s close attainment designation status. In columns (1) to (4), we estimate the local linear regression
specification given in Equation (1) using the Epanechnikov kernel function and the mean squared error optimal
bandwidth following Calonico et al. (2014). We also report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). In
columns (5) and (6), we control for local quadratic and cubic polynomials, respectively, in centered design
values using the rectangular kernel function. ln(Donation)t+1 equals to the natural logarithm of one plus the
total dollar amount of donations of a given firm to nonprofits in a given county in year t+ 1. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all
specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.5
Inverse hyperbolic sine transformed donations.

Dep. variable: (1) (2) (3) (4) (5)arcsinh(Donation)t+1

Complyc,t 0.350∗∗∗ 0.402∗∗∗ 0.378∗∗ 0.409∗∗∗ 0.392∗∗∗

(2.62) (2.88) (1.98) (3.60) (2.68)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status
using the inverse hyperbolic sine transformed donations as the dependent variable. We estimate the local
linear regression specification given in Equation (1) using the mean squared error optimal bandwidth following
Calonico et al. (2014). We also report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both
rectangular and triangular kernels are reported. arcsinh(Donation)t+1 equals to the inverse hyperbolic sine
(arcsinh) transformed total dollar amount of donations of a given firm to nonprofits in a given county in year
t+ 1. Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold
in year t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash,
Momentum, Stock returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees), and
ln(Sales). For all specifications, standard errors are clustered by county and bias-corrected following Calonico
et al. (2014); t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%,
and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.6
Residualized donation activity.

Dep. variable: (1) (2) (3) (4) (5)Residualized ln(Donation)t+1

Complyc,t 0.363∗∗∗ 0.184∗∗ 0.147∗∗ 0.292∗∗∗ 0.122∗∗

(2.95) (2.34) (2.11) (2.59) (2.04)

Residualize by firm Yes Yes Yes No No
Residualize by county No Yes Yes No No
Residualize by year No No Yes No No
Residualize by firm–year No No No Yes Yes
Residualize by firm–county No No No No Yes
Kernel Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.010 0.011 0.011 0.011 0.013
Covariates Yes Yes Yes Yes Yes
Observations 10,512 12,967 14,378 11,503 16,567

This table presents a firm’s donation activities in response to a county’s close attainment designation status using
residualized donation outcomes by various fixed effects. We estimate the local linear regression specification
given in Equation (1) using rectangular kernels and the mean squared error optimal bandwidth following
Calonico et al. (2014). We residualize ln(Donation)t+1 by regressing it on various fixed effects and then using
the residuals as the dependent variable. ln(Donation)t+1 equals to the natural logarithm of one plus the total
dollar amount of donations of a given firm to nonprofits in a given county in year t+ 1. Complyc,t is a dummy
variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero otherwise.
Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core
chemical, Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications,
standard errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are
reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.7
Winsorization.

Winsorize: Top 2% Top 3% Top 4% Top 5%
Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t 0.374∗∗∗ 0.268∗∗ 0.239∗∗ 0.208∗∗

(2.72) (2.20) (2.08) (2.20)

Kernel Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt.
Bandwidth estimate 0.011 0.011 0.011 0.011
Covariates Yes Yes Yes Yes
Observations 13,596 13,556 12,144 11,993

This table presents a firm’s donation activities in response to a county’s close attainment designation status
after winsorizing the dollar amount of donations. We estimate the local linear regression specification given in
Equation (1) using the mean squared error optimal bandwidth and rectangular kernels following Calonico et al.
(2014). Columns (1) to (4) present the results after winsorizing the highest two to five percent of the values,
respectively. ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations
of a given firm to nonprofits in a given county in year t+ 1. Complyc,t is a dummy variable equal to one if
county c is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates include ln(Size),
ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical, Permit, Source
reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard errors are clustered
by county and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **,
and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in
Table A.1 in Appendix A.
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Table IA.8
Multiple designations.

No designation change: One year Two years Three years
Dep. variable: (1) (2) (3)ln(Donation)t+1

Complyc,t 0.466∗∗∗ 0.563∗∗∗ 0.562∗∗∗

(2.74) (2.92) (2.91)

Kernel Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt.
Bandwidth estimate 0.010 0.010 0.010
Covariates Yes Yes Yes
Observations 4,018 4,273 4,268

This table presents a firm’s donation activities in response to a county’s close attainment designation status
ensuring there are no subsequent changes in designation status. We estimate the local linear regression
specification given in Equation (1) using the mean squared error optimal bandwidth and rectangular kernels
following Calonico et al. (2014). Columns (1) to (3) present the results after restricting the sample to counties
where there are no changes in designation status in following one to three years, respectively. ln(Donation)t+1
equals to the natural logarithm of one plus the total dollar amount of donations of a given firm to nonprofits
in a given county in year t+ 1. Complyc,t is a dummy variable equal to one if county c is in compliance with
the NAAQS threshold in year t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage,
Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical, Permit, Source reduction, Production ratio,
ln(Employees), and ln(Sales). For all specifications, standard errors are clustered by county and bias-corrected
following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and *** indicate significance
at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.9
Long term donation activity.

Panel A: Two-year forward donations
Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+2

Complyc,t 0.343∗∗∗ 0.381∗∗∗ 0.222∗∗ 0.321∗∗∗ 0.314∗∗∗

(3.27) (3.41) (2.36) (5.57) (2.61)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.013 0.015 0.008 0.023 0.015
Covariates No Yes Yes Yes Yes
Observations 20,419 21,047 8,339 36,421 21,047
Panel B: Three-year forward donations
Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+3

Complyc,t 0.240∗∗∗ 0.314∗∗∗ 0.272∗∗ 0.306∗∗∗ 0.312∗∗∗

(3.55) (3.88) (2.51) (4.87) (4.14)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.010 0.005 0.015 0.012
Covariates No Yes Yes Yes Yes
Observations 12,915 10,984 4,663 21,573 14,982

This table presents a firm’s long term donation activities in response to a county’s close attainment designation
status. Panel A (panel B) uses the two-year (three-year) forward donations. We estimate the local linear
regression specification given in Equation (1) using the mean squared error optimal bandwidth following
Calonico et al. (2014). We also report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both
rectangular and triangular kernels are reported. ln(Donation)t+2 (ln(Donation)t+3) equals to the natural
logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a given county in
year t+ 2 (t+ 3). Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS
threshold in year t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ,
Cash, Momentum, Stock returns, Core chemical, Permit, Source reduction, Production ratio, ln(Employees),
and ln(Sales). For all specifications, standard errors are clustered by county and bias-corrected following
Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.10
Placebo PM emissions

Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t 0.383∗∗ 0.262∗∗ 0.391∗∗ 0.221∗∗∗

(2.08) (2.10) (2.26) (3.22)
ln(Firm PM)t−1 0.094 0.082 0.109 0.080∗∗∗

(1.28) (1.46) (1.51) (3.58)
Complyc,t × ln(Firm PM)t−1 0.068 0.541 0.027 -0.001

(0.96) (1.16) (0.39) (-0.04)

Kernel Rec. Rec. Rec. Tri.
Bandwidth type Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.011 0.006 0.017 0.012
Covariates Yes Yes Yes Yes
Observations 13,826 5,963 26,246 15,753

This table presents placebo tests for a firm’s donation activities in response to a county’s close attainment
designation status conditional on local PM emissions. We estimate a local linear regression using the mean
squared error optimal bandwidth following Calonico et al. (2014). We also report results across alternative
bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth
(wider bandwidth). Results using both rectangular and triangular kernels are reported. ln(Donation)t+1 equals
to the natural logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a
given county in year t+ 1. ln(Firm PM)t−1 equals to the natural logarithm of one plus the total amount of
PM air emissions (in pounds) in a given county of a given firm in year t− 1. Complyc,t is a dummy variable
equal to one if county c is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates
include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical,
Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table IA.11
Placebo RDD specifications.

Placebo thresholds Non-operating counties
Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t -0.042 -0.139 -0.005 -0.020
(-0.15) (-0.52) (-0.01) (-0.06)

Kernel Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt.
Bandwidth estimate 0.018 0.021 0.017 0.018
Covariates No Yes No Yes
Observations 18,292 18,045 35,820 36,434

This table presents placebo tests for a firm’s donation activities in response to a county’s close attainment
designation status. In columns (1) and (2), we use placebo NAAQS thresholds whereby the 1-Hour Ozone
(1979) standard uses the 8-Hour Ozone (2008) standard’s threshold, the 8-Hour Ozone (1997) standard uses
the 1-Hour Ozone (1979) standard’s threshold, the 8-Hour Ozone (2008) standard uses the 8-Hour Ozone
(2015) standard’s threshold, and the 8-Hour Ozone (2015) standard uses the 8-Hour Ozone (1997) standard’s
threshold. In columns (3) and (4), we limit the sample to the counties where the firm does not operate
any polluting plants. ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount
of donations of a given firm to nonprofits in a given county in year t + 1. Complyc,t is a dummy variable
equal to one if county c is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates
include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, Core chemical,
Permit, Source reduction, Production ratio, ln(Employees), and ln(Sales). For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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