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Abstract

We posit that the pricing mechanism of interest rate risk is contingent upon the

prevailing inflation levels; in times of high (low) inflation, a positive (negative)

shock to interest rates is indicative of a negative economic state. In line with this

proposition, we introduce a conditional interest rate factor, defined as the shock

to interest rates multiplied by the standardized inflation level. The proposed sin-

gle factor effectively indicates the states of both raising interest rates to combat

inflation and lowering interest rates to counteract a recession. We find supporting

evidence that interest rate risk is not unconditionally priced, but rather contin-

gent upon inflation. Specifically, the sensitivity of stock returns to interest rate

innovation cannot account for the cross-section of stock returns, but when in-

teracted with standardized inflation, it produces significant cross-sectional return

differences, even after controlling for standard risk factors. Moreover, when exam-

ining standard equity portfolios as test assets, our conditional interest rate factor

outperforms its unconditional counterpart in terms of pricing performance, as mea-

sured by R2 and absolute pricing error, and is comparable to the Fama-French

three-factor model. Finally, we provide further validation for our proposed factor

by demonstrating its ability to predict future consumption growth and achieving

a Sharpe ratio comparable to the tangency portfolio.
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1 Introduction

“The most important single factor driving the economy is the level of interest rates”

Alan Greenspan, The Age of Turbulence: Adventures in a New World, 2008

Is the interest rate a priced risk factor? From the view of the inter-temporal asset pricing

model (ICAPM) framework, the interest rate is supposedly an asset pricing factor in

that it influences a wide range of other economic variables from borrowing costs to

the present values of future payoffs. In other words, an interest rate is an essential

macroeconomic variable closely related to changes in the investment opportunity set.

However, there has been surprisingly little research that uses the (innovation on) interest

rates as a risk factor in the asset pricing literature. One recent exception is Maio and

Santa-Clara (2017), who show that the innovation on a short-term interest rate helps

explaining seven capital asset pricing model (CAPM) anomalies. Can this result be

generalized? We expand the test assets from the seven specific anomaly portfolios to

the entire stock universe, and find that the interest rate beta loses its explanatory power

for the cross section of stock returns.

Why is not the interest rate risk robustly priced? According to Cochrane (2009),

a pricing factor is a variable that indicates a bad economic state in which investors

are especially concerned about their portfolios’ performance. Maio and Santa-Clara

(2017) implicitly assume that an unanticipated increase in the interest rate indicates a

bad state. This assumption could hold for some portfolios or in specific periods, but it

may not be always true. In this research, we posit that the mechanism through which

the interest rate risk is priced depends on prevailing inflation. Under this argument,

a positive shock to interest rates can be both good and bad news depending on the

situation. This could be why the interest rate risk fails to be unconditionally priced, so
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that it has not been widely controlled for in the asset pricing literature.

Specifically, we argue that under the high inflation regime, a positive innovation in

the interest rate reflects a bad state. This notion is intuitive and consistent with the

observations in 2022; under the prolonged high inflation, the Federal Reserve continu-

ously and rapidly raises the interest rate, which is clearly bad news for the overall stock

market. In contrast, during 2010’s when the inflation rate had stayed low, interest rate

cuts tend to indicate a gloomy future economic situation. The increase in the interest

rate had been regarded as the normalization and the stock market indeed performed

well during the period of the interest rate normalization.

This argument is in line with the reporting tone of various business new media. For

example, on November 1, 2022, when the prevailing inflation level was high, CNBC

reported the news under the heading: Dow closes 500 points lower, Nasdaq sheds 3% as

Fed Chair Powell signals intent to continue hiking rates.1 Three weeks later, Barron’s

also reported an article with the same implication, but in the opposite direction, under

the headline: Stocks end strong. Hope of a more dovish Fed fueled the pop.2 These

news articles commonly suggest that a positive (negative) innovation in interest rates

indicates a bad (good) state. However, from the late 2000’s until the end of 2010’s, news

tone had been in a stark contrast. On December 17, 2008, at the height of the global

financial crisis, New York Times reported, “The Fed, in a statement accompanying

its rate decision, acknowledged that the recession was more severe than officials had

thought at their last meeting in October” with the title Fed Cuts Key Rate to a Record

Low.3 When the Fed raised the rate for the second time in a decade in 2016, CNBC

viewed it positively with the comment, “U.S. economy soon could shed its long period

1https://www.cnbc.com/2022/11/01/stock-market-futures-open-to-close-news.html
2https://www.barrons.com/livecoverage/stock-market-today-112222/card/

stock-futures-fall-on-concerns-of-more-china-lockdowns-d79BdFdVWqAHo7C42bkM
3https://www.nytimes.com/2008/12/17/business/economy/17fed.html
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of stagnation”.4 The latter two articles imply that a negative (positive) innovation in

interest rate indicates a bad (good) state. Since the interest rate, the inflation rate and

the stock returns are convoluted in this way, an analysis that considers the unconditional

relationship between interest rates and stock returns could fail to robustly explain the

reality.

Guided by this argument, this research proposes a conditional interest rate factor,

defined as the shock to the interest rate multiplied by the standardized level of infla-

tion. Note that this proposed factor would increase both when raising interest rates

to curb high inflation and when cutting interest rates to fight against a recession and

consequently low inflation, and vice versa. In other words, this single factor can ef-

fectively indicate a bad state regardless of the direction of interest rates, whereas the

shock to the interest rate cannot. We find strong empirical support for this argument.

Specifically, the portfolios sorted by the return sensitivity to the innovation in inter-

est rates (unconditional interest rate factor) do not exhibit the cross-sectional return

difference; the long-short excess return is insignificant and has a sign opposite to the

model prediction. However, when the portfolios are formed by the sensitivity to the

conditional interest rate factor, the long-short excess return is highly significant even

after controlling for standard risk factors. For example, the risk-adjusted long-short

excess return is as high as 0.637% per month, amounting to 7.644% per annum, when

the Fama-French five factors and the Carhart momentum factor are controlled for. We

also examine the asset pricing performance of the conditional interest rate factor in the

classical Fama-MacBeth framework using several anomaly portfolios as test assets, and

find that our conditional interest rate factor outperforms its unconditional counterpart

in terms of pricing performance, as measured by R2 and absolute pricing error, and is

4https://www.cnbc.com/2016/12/14/fed-raises-rates-for-the-second-time-in-a-decade.

html
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comparable to the Fama-French three-factor model. When the 25 portfolios sorted by

size and book-to-market ratio are tested with the restriction that the zero-beta expected

rate equals the risk-free rate, for example, the adjusted R2 of the single-factor model

with the conditional (unconditional) interest rate factor is 43.53% (-2.63%), which is

even higher than 42.92% of the Fama-French three factor model. The average of abso-

lute pricing error from our conditional factor model is 1.38%, which is comparable to

1.12% of the Fama-French three factor model. We find that across test assets, the esti-

mated risk premium of the conditional interest rate risk is significant and robust, and

has the theory-predicted sign. In contrast, the model with the unconditional interest

rate factor has substantially lower R2s and larger total pricing errors, and the estimated

risk premium is not always significant. The results are robust to the restriction on the

zero-beta rate and the sub-period analysis.

To confirm that our suggested factor is a valid stochastic discount factor, we further

conduct the two analyses as follows. First, in Merton (1973)’s ICAPM framework, a

state variable relates to changes in the investment opportunity set and the innovations

in the state variable should be a priced factor in the cross-section (Maio and Santa-

Clara, 2012). It implies that a state variable can work as a valid factor in the ICAPM

framework only if it predicts future consumption growth. To test the consumption pre-

dictability, we run the regressions in which the dependent variable is the per capita real

consumption growth rate, and the independent variables include the shocks to inter-

est rates, standardized inflation, and their interaction. We measure the consumption

growth over various horizons from one to twelve months. We show that neither interest

rate nor inflation rate can individually predict the future consumption growth, but they

collectively have significant predictability. Specifically, we find that neither an interest

rate nor an inflation rate is individually significant, but their interaction term has a
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significantly negative coefficient, implying that a positive innovation in the interest rate

predicts a decrease (increase) in the future consumption growth when the inflation rate

is high (low). This finding justifies the use of the interaction between interest rate and

inflation, rather than the interest rate itself, as an ICAPM pricing factor.

Second, we examine the Sharpe ratio of the conditional interest rate factor-mimicking

portfolio. Note that in an incomplete market, there are infinitely many SDFs but the

one in the payoff space is unique and has the smallest variance (Cochrane, 2009). Also

note that Hansen and Jagannathan (1991)’s volatility bound implies that the SDF in the

payoff space has the largest Sharpe ratio. Combined, if our suggested conditional interest

rate factor is a valid SDF, its mimicking portfolio should have as high Sharpe ratio as

the tangency portfolio. We construct the mimicking portfolio by a linear combination

of the Fama-French six portfolios sorted by size and book-to-market ratio, and find

that its annualized Sharpe ratio is 0.878. We compare it with the Sharpe ratio of the

tangency portfolio in the efficient frontier generated with the six size and book-to-market

portfolios and the four benchmark equity factors (RmRf, SMB, HML and UMD). We

find that the Sharpe ratio of the conditional interest rate factor-mimicking portfolio is

comparable to that of the tangency portfolio (1.242) and is much higher than those of

standard equity factors.

Little prior research has analyzed the direct effects of the interest rate risk on stock

markets, while there is ample empirical evidence of the relationship between monetary

policy and stock prices. In aggregate contexts, Jensen et al. (1996) show that busi-

ness conditions explain future stock returns only in expansive monetary policy periods,

and Thorbecke (1997) finds that ex-post stock returns particularly increase with ex-

pansionary monetary policy. Bernanke and Kuttner (2005) show that a hypothetical

expansionary monetary policy is associated with the increase in broad stock indexes,
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through the channel of expected stock returns. More related to our works, Lioui and

Maio (2014) and Maio and Santa-Clara (2017) use an interest rate risk factor to help

explain the cross section of stock returns. Chava and Hsu (2020) find that unanticipated

interest rate changes affect the cross-section of stock returns with financially constrained

firms. In this study, we analyze whether the interest rate risk affects the cross-section

of stock returns conditioning on inflation rate.

Our analysis behind conditional interest rate risk upon inflation rate is motivated

by the literature that studies how inflation risk could impact asset prices. Chen et al.

(1986), Ferson and Harvey (1991), and Ang et al. (2012) examine the impact of inflation

risk on stock returns. Boons et al. (2020) analyzes a time-varying risk premium is priced

in the cross-section of stock returns. In particular, Lioui and Maio (2014) argue that

high interest rate risk on asset prices is associated with inflation expectations. However,

past work has not studied whether the inflation risk is conditionally associated with the

effect of interest rate risks on asset prices. This study contributes to this literature by

providing direct evidence that the interest rate risk is priced in the cross-section of stock

returns conditioning on the prevailing inflation rates.

Our study also joins a growing literature on stock and bond correlations. The stock

and bond returns had been positively correlated until the late 1990s, but the correlation

turned negative since then. Interestingly, this correlation tends to switch its sign in

the early 2020s and this kind of cycles is ascribed to the inflation rate. Most macro-

finance studies examine aggregate asset pricing implications of the comovement between

stocks and bonds. For example, Baele et al. (2010) show that while macro factors,

such as interest rates, inflation, output gap, and cash flow growth, contribute little

to explaining stock and bond correlations, they are important to determine the risk

premia of the comovement. Campbell et al. (2017) explain the sign-switching stock-
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bond correlation by arguing that the nominal bonds can work as either bets for inflation

or hedges against deflation. Campbell et al. (2020) use a consumption-based habit model

to explain the risk premia on stock and bond return comovement with the correlation

between inflation and output gap. These papers commonly point out inflation as a

crucial factor in determining the direction of the impact of bond market shocks on the

overall stock market. However, to the best of our knowledge, there is no study that

draws implications for the cross section of stock returns. We hope that this research can

fill the gap.

The remainder of this paper is organized as follows. Section 2 describes how our

sample data are constructed. Section 3 presents the empirical methodology and the

results. Section 4 discusses the validity of our proposed factor. Finally, we conclude in

Section 5.

2 Data

As discussed in the introduction, we consider the innovation to the interest rate mul-

tiplied by the standardized level of inflation as a proxy for shocks to the stochastic

discount factor (SDF). We denote this newly proposed pricing kernel as IntInf , indi-

cating that it is the interaction of an interest rate and inf lation, and argue that it can

effectively represent the conditional interest rate risk. We use the three-month Treasury

bill secondary market rate (iTB3) as the primary measure of an interest rate. We also

examine the Federal funds effective rate (iFFR) for a robustness check, as in Maio and

Santa-Clara (2017). The innovations to the interest rates (Int) are obtained from the

ARMA(1, 1) residuals, following the literature (Vassalou, 2000; Campbell and Viceira,

2002; Boons et al., 2020).

For a measure of inflation, we use the monthly percentage change in the seasonally
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adjusted consumer price index (CPI) for all urban consumers. To measure the perceived

level of prevailing inflation, we first compute the annualized inflation geometrically av-

eraged over the past 36 months (π). Then, we standardize it by subtracting the mean

and dividing it by the standard deviation. Since the perceived level of inflation depends

on the historic experiences, the mean and standard deviation at month t are computed

by using an expanding window that includes the observations since 1913 up to month

t. This method allows time-varying means and standard deviations, so that the stan-

dardized inflation (Inf) can effectively indicate the extent to which a point in time is

considered as a high or low inflation period. For example, the upper panel in Figure 1

depicts that the inflation rates in April 1986 and November 2021 were similar at 3.23%

and 3.30%, respectively, but in the former case, the inflation rate gradually fell to 3.23%

after the high inflation era in early 1980s, while in the latter case, it was a time when

the low inflation period was over and prices were rising in earnest. Therefore, the infla-

tion perceived by economic agents must be different. The lower panel confirms that the

standardized inflation is indeed negative for April 1986, but positive for November 2021.

Data for interest rate and inflation are downloaded from the Federal Reserve Economic

Data (FRED) of the Federal Reserve Bank of St. Louis.

To examine the cross section of stock returns, we obtain the data from the Center

for Research in Security Prices (CRSP). We use the stocks incorporated in the U.S. and

listed on the NYSE, AMEX, or NASDAQ. We drop observations unless the CRSP share

code is 10 or 11, and the trading status is active. The market return is defined as the

value-weighted return of the above individual stocks. We compute the excess return by

subtracting the one-month Treasury bill rate. To control for widely used stock market

risk, we use the Fama-French five factors and the Carhart momentum factor, downloaded

from Kenneth French’s data library.
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To confirm its validity as a priced factor in the ICAPM framework, we test whether

the suggested factor (IntInf) has a predictive power for the future consumption growth.

For this test, we use the growth rate of the per capita real consumption (∆C), which is

measured as follows. First, we obtain the aggregate real consumption by dividing the

personal consumption expenditures (PCE) of nondurable goods and services by their

associated PCE price indices respectively and summing them up. Then, we compute

the per capita consumption by dividing the aggregate real consumption by the num-

ber of populations. Finally, the per capita real consumption growth is obtained as its

monthly percentage change. These variables are obtained from the Bureau of Economic

Analysis. We measure the consumption growth over various horizons from one to twelve

months. Our sample starts from January 1959 because the monthly consumption data

are available since then.5 We use the data until December 2022.

Table 1 presents the descriptive statistics of our sample data. Panel A shows that

from 1959 to 2022, the average short-term interest rate is 4.34% and the three-year

moving average of inflation rate is 3.65%, expressed as an annual percentage. The

monthly excess return of the market factor is 0.549%, equivalent to 6.588% per annum.

Other risk factors also have substantial annualized excess returns from 2.424% (SMB)

to 8.076% (UMD). Panel B presents the pairwise correlation among variables.

Note that equity factors are highly correlated one another. For example, the corre-

lation between HML and CMA factors is as high as 0.683. Even among Fama-French

three factors, RmRf and SMB have a correlation coefficient of 0.28. Interestingly, our

conditional interest rate factor (IntInf) is barely correlated with these equity factors,

where the largest absolute correlation is only 0.107 with the HML factor. It implies

that the return predictability of IntInf , if any, is not an artifact of the correlation with

5When computing the standardized inflation, we use a longer sample of the monthly CPI data from
1913 for more accurate estimation.
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existing asset pricing factors.

3 Empirical analysis

3.1 Estimation of exposure to risk

We use a linear factor model to test the validity of our suggested factor, the conditional

interest rate risk (IntInf), in the cross-section of asset returns. In other words, we

assume that an SDF is affine in the factor:

SDFt = 1 + b · IntInft, (1)

where b > 0. Note that unlike other conventional factors, the sign in front of b is

positive because the increase in IntInf indicates a bad state. Since an SDF can price

any assets, 0 = E[SDFt · Re
it] holds, where Re

i is the excess return of asset i. Plugging

in Equation (1),

0 = E[(1 + b · IntInft)Re
it]

= E[Re
it] + bE[IntInft ·Re

it].

Rearranging the terms, we obtain

E[Re
it] = −bCov[IntInft, R

e
it] (2)

= λIntInfβIntInf
i , (3)

where βIntInf
i =

Cov[IntInft,Re
it]

V ar[IntInft]
is the exposure of stock i’s excess return to the conditional

interest rate risk, and λIntInf = −bV ar[IntInft] is its associated risk premium. Note
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that the equation above implies that the risk premium associated with the conditional

interest rate risk is negative. Intuitively, the stocks that perform well when IntInf is

large (as in the year of 2022) can work as a hedge, so that the required return for those

stocks is supposedly low.

We estimate the risk exposure by running the following time series regressions:

Rit = ai + β′
iFt + ϵi, i = 1, · · · , N, t = 1, · · · , T,

where F is a vector of risk factors in consideration. As a main analysis, we examine a

single factor model: F = IntInf . To compare the performance of the conditional factor

with an unconditional factor, we also examine the case of F = Int, the innovation to

interest rate. For robustness checks, we also consider multi-factor cases in which F

includes a market factor.

Following Boons et al. (2020), we estimate β on a monthly basis by using an expand-

ing window for each stock. Specifically, we use all observations available up to month t

but assign exponentially decaying weights, so that we use as much information as pos-

sible and put larger weights on more recent observations.6 We require that stocks have

return data for at least five years (60 monthly observations). To address the estimation

error and mitigate highly noisy estimates, we transform the estimated exposure by a

Vasicek (1973) adjustment, which follows the literature (Cosemans et al., 2016; Levi and

Welch, 2017; Boons et al., 2020).7 Our empirical findings are robust to this adjustment

process.

6We minimize
∑t

τ=1 K(τ)(Re
it − ai − β′

iFt)
2, where K(τ) = exp(−|t−τ |h)∑t−1

τ=1 exp(−|t−τ |h) and h = log(2)/60.

This specification makes the half-life of K(τ) converge to 60 months.
7The transformed exposure is a weighted average of the originally estimated exposure and their

cross-sectional average in the month t. The weight is computed based on the standard error from time
series regressions and the cross-sectional variation of estimates. For more details, see Vasicek (1973).

11



3.2 Portfolio analysis

Since the data starts from 1959 and at least five years of observations are required for

beta estimation, the portfolio analysis begins from January 1964. Specifically, in the

beginning of each month, we form decile portfolios based on the risk exposure estimated

in the end of the previous month. The breakpoints are the 20th, 40th, 60th, and 80th

percentiles of the adjusted risk exposure of the NYSE stocks. For robustness checks, we

try various ways to form the portfolios: single-sorting by risk exposure, two-way-sorting

based on size and exposure, etc. and confirm the robustness of the findings. Then, we

compute the long-short portfolio return and check its statistical significance.

Table 2 presents the returns of portfolios sorted by the conditional interest rate beta.

Portfolio 1 is composed of stocks with the smallest (most negative) ex ante exposure to

the conditional interest rate risk. The table confirms that the post-formation sensitivity

is the smallest for Portfolio 1 and exhibits an almost monotonically increasing pattern.

The table also shows that the excess returns are generally decreasing from the 1st decile

to the 10th decile, and the excess return of the portfolio that long the 1st decile and

short the 10th decile is positive at the 1% significance level. The monthly excess return

is 0.428%, which corresponds to 5.136% in an annual term. In Table 3, we examine

whether the significantly positive excess return of the long-short portfolio is a simple

reflection of high risk. For this purpose, we regress the long-short excess return on the

standard risk factors such as Fama-French (FF) five factors and the Carhart momentum

factor. We find that even after controlling for these risk factors, the excess return

remains significant. When all five FF factors and the momentum factor are controlled

for, the risk-adjusted excess return is even greater (0.637% per month), implying that

the exposure to the conditional interest rate risk indeed explains the cross-section of

stock returns.
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Since the innovation in the interest rate may indicate good or bad economic states de-

pending on the prevailing inflation rate, we expect that if we consider the unconditional

interest rate risk which does not incorporate the inflation information, its exposure can-

not generate a significant return difference cross-sectionally. To test this hypothesis,

we repeat a similar portfolio analysis, in which the portfolios are formed based on βInt,

the exposure to the innovation in the interest rate. Tables 4 and 5 show that although

the post-formation exposures to the considered factor are significantly different between

Portfolios 1 and 10, the long-short portfolio return is not significantly different from zero

regardless of the risk adjustment, confirming that the interest rate risk is priced only

conditionally but not unconditionally.

3.3 Two-pass cross-sectional regressions

In the previous subsection, we find evidence that the exposure to the conditional interest

rate risk can generate a substantial return difference in the cross section of stocks. In

this subsection, we conduct formal two-pass regressions using the classical Fama-French

25 portfolios as the test assets.

Table 6 presents the results of the Fama-MacBeth regressions of E[Re] = λ0+β′
FλF ,

where F is a vector of factors. The 25 equity portfolios sorted by size and book-to-

market (BM) ratio are used as test assets. We consider six groups of factors: (1) market

factor (RmRf), (2) Fama-French three factors (RmRf , SMB, HML), (3) RmRf and

unconditional interest rate factor (Int), (4) RmRf and conditional interest rate factor

(IntInf), (5) Int, and (6) IntInf . Each column describes the risk premium (λ) of

the corresponding factor, measures of goodness-of-fit (R2 and Adj-R2), and the mean

absolute pricing error (MAPE ). The value in parenthesis is the t-statistic based on the

Shanken-corrected standard error. In Panel A, we impose a restriction that the zero-
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beta excess rate (λ0) equals zero, while there is no such restriction in Panel B. Intercept

in Panel B is the annualized zero-beta excess rate, and Total is the sum of Intercept and

MAPE, representing the size of total pricing error. The sample period from January

1964 to December 2022.

Column (1) shows that the CAPM fails to explain the size- and BM-sorted portfolios,

re-confirming the existence of anomalies. When the model is estimated without the

restriction of λ0 = 0 (Panel B)8, the adjusted R2 is 0.68%. In addition, the zero-beta

excess rate is significant, while the price of the market risk is insignificant, meaning that

the difference in market betas cannot explain the difference in excess returns. Column

(4) shows that when the conditional interest rate factor (IntInf) is added, the pricing

performance is enhanced substantially. The adjusted R2 increases to 51.22% and the

zero-beta excess rate becomes insignificant. The price of the conditional interest rate

risk has the sign predicted by theory and is highly significant. The total pricing error is

only 2.12% per annum. This pricing performance is remarkable in that it is comparable

or even superior to that of the Fama-French three factor model (FF3) in Column (2).

Although FF3’s adjusted R2 is slightly higher (59.98%) than the two-factor model with

RmRf and IntInf , its factors except for HML are insignificant. Instead, FF3 has

an economically and statistically significant zero-beta excess rate (14.02% per annum),

leading to the high total pricing error (15.89%). Column (6) presents the results when

IntInf is used as a single pricing factor. We find the decent pricing performance of

this single factor in that the adjusted R2 is still high (52.37%), the zero-beta excess

rate is insignificant, and IntInf remains significant with the predicted sign. Finally, we

compare the performance of the conditional interest rate factor with its unconditional

counterpart (Int). We find from Column (3) that the inclusion of Int to CAPM improves

8Throughout the section, the main explanations are based on the case of no restriction on zero-beta
excess rate (Panel B), but the main results do not qualitatively change in Panel A.
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the goodness-of-fit and the risk premium of Int is significant. But the R2 improvement

and the significance of the risk premium of Int are not as much as those of IntInf .

When Int is used as a single factor (Column (5)), the risk premium still has the theory-

predicted sign but loses the significance. To sum, our conditional interest rate factor

well explains the cross-section of the classical test assets regardless of whether it is

together with the market factor or works as a single factor, and clearly outperforms its

unconditional counterpart. Its performance is comparable with that of the Fama-French

three factor model.

We further explore whether any other anomalies that have been documented in

the literature can be explained by the conditional interest rate risk. To the extent

that the discount rate is linked to the interest rate, we conjecture that the anomalies

related to the discount rate, such as valuation and investment, could be accounted for by

the conditional interest rate risk. Specifically, we consider the equity portfolios sorted

by long-run reversal and investment. The data are obtained from Kenneth French’s

data library. Tables 7 and 8 shows that the remarkable pricing performance of the

conditional interest rate factor is not limited to particular anomaly portfolios but also

applied to others in general. Specifically, we confirm that any model with the conditional

interest rate factor has a considerably high adjusted R2, the associated risk premium

is significant, and the zero-beta excess rate is small and insignificant. Importantly,

the conditional interest rate factor always exhibits a better pricing performance than

its unconditional counterpart in terms of the R2, the size of pricing error, and the

significance of the risk premium.
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3.4 Event Study

The results so far show that the stock returns are cross-sectionally priced with interest

rate risk contingent upon inflation. In this section, we conduct an event study to an-

alyze the reaction of the cross-sectional stock prices based on interest rate risk across

inflation to changes in the Target Federal Funds Rate. Bernanke and Kuttner (2005)

show that the stock returns negatively response to the unanticipated Target Federal

Funds Rate increases on the FOMC announcement day and Chava and Hsu (2020) find

that the negative response to the unanticipated interest rate changes is pronounced for

financially constrained firms. Our event study tests whether the stock price reaction to

the unanticipated Target Federal Funds Rate changes is heterogeneous across the firm’s

sensitivity of interest rate risk conditioning on inflation rate.

Following Kuttner (2001), Bernanke and Kuttner (2005), and Chava and Hsu (2020),

we use the price of Fed funds futures contracts to compute the surprise components of

monetary policy actions. The surprise components are measured by the changes in

prices of the current-month futures contract right before and after the FOMC event

days.9 Specifically, the surprise components to monetary policy based on Fed futures

are

FFRshock =
D

D − d
(f 0

m,d − f 0
m,d−1),

where f 0
m,d is the month m futures contract price, D is the number of days in the month

m, and d is the FOMC announcement day of the month.

To understand the differential impact of unanticipated interest rate changes in the

cross-section of stock returns, we calculate post-announcement cumulative firm-level

9The surprise measure is available from June 1989 to June 2019 at Kenneth N. Kuttner’s website:
https://econ.williams.edu/faculty-pages/research/ and there are 266 FOMC event days in the sample.
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returns around FOMC announcement. First, we run pooled regression of firm level

cumulative returns by βInt- and βIntInf -sorted portfolios around the 266 FOMC an-

nouncement days. Table 9 presents the coefficient estimates of the pooled regression.

We estimate the following regression model for the cumulative returns,

R(a, b)i,t = α + δFFRshockt + εi,t

where, R(a, b)i,t is calculated with each firm i and each event date t over seven different

event windows (a,b) and shown in Columns (1) to (7). Specifically, in Column (1), (0,0)

denotes the return on the day of the FOMC announcement, and in Columns (2) to (7),

(+1,+N) denotes the cumulative return in the posit announcement window up to N

days. All regressions include firm and year fixed effects. Panel A reports the results

with βInt-sorted quintile portfolios, and Panel B reports the results with βIntInf -sorted

quintile portfolios. In line with Bernanke and Kuttner (2005), the coefficient loadings

on the FFR shock are negative and significant. The negative effect of the FFR shock on

stock returns is supposedly most pronounced in Portfolio 1 (with the most negative βInt

and βIntInf ). However, when the portfolios are formed based on βInt, the cumulative

return in Portfolio 1 is larger, rather than smaller, than the one in Portfolio 5, which

is not consistent with the expected return response. On the other hand, when sorted

by βIntInf , Portfolio 1 has smaller cumulative returns than Portfolio 5, implying that β

estimated by the interaction of interest rate innovation and standardized inflation can

well explain the cross-section of return responses.

To confirm that the asymmetric impact of the FFR shock on the stock returns is con-

sistent with IntInf -sorted portfolios but not with Int-sorted ones, we run the firm-level

pooled regression with the FFR shock and the dummy of the negative βInt (βIntInf ). We

conjecture that a shock to monetary policy has heterogenous impacts on stock returns
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across firms. In particular, the negative return response to the unanticipated interest

rate increase would be particularly pronounced for firms with the negative sensitivity to

the interest rate risk. To analyze the differential effect, we regress the firm-level returns

on the FFR shock, the negative beta dummy, and the interaction of the two:

R(a, b)i,t = α + δFFRshockt + γI(βInt < 0)i,t + θFFRshockt × I(βInt < 0)i,t + εi,t,

R(a, b)i,t = α + δFFRshockt + γI(βIntInf < 0)i,t + θFFRshockt × I(βIntInf < 0)i,t + εi,t

for panels A and B in Table 10, respectively. All regressions include firm and year

fixed effects. The coefficient on the interaction terms reflect the asymmetric of the FFR

shock between positive interest rate beta and negative interest rate beta. Table 10 shows

that a positive FFR shock yields negative return response for stocks with βIntInf < 0,

which is consistent with the conjecture. In contrast, a positive FFR shock leads to a

positive return response for stocks with βInt < 0, implying that the sensitivity to the

unconditional interest rate risk cannot explain the heterogenous return responses to

the unanticipated monetary shock. These findings mainly support our cross-sectional

pricing results.

4 Mechanism

In this section, we provide supporting evidence that our suggested factor is a valid

stochastic discount factor. First, note that in Merton (1973)’s ICAPM framework, a

state variable relates to changes in the investment opportunity set and the innovations

in the state variable should be a priced factor in the cross-section (Maio and Santa-Clara,

2012). It implies that a state variable can work as a valid factor, rather than a “fishing

license (Fama, 1991)”, in the ICAPM framework only if it predicts future consumption
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growth. To test the consumption predictability, we run the following regressions in

which the dependent variable is the per capita real consumption growth rate, and the

independent variables include the shocks to interest rates, standardized inflation and

their interaction.

∆ct→t+k = a+ b′Xt + ut→t+k, k = 1, 3, 6, 12,

where ∆Ct+1,t+K is the real per capital consumption growth over K-month horizon.

We measure the consumption growth over various horizons from one to twelve months

(K = 1, 3, 6, 12). We consider Int, Inf and their interaction as the predictor X. The

sample period from January 1959 to December 2022. To confirm the validity of the

conditional interest rate factor and its superiority to the unconditional counterpart, it

is important to show that the conditional factor has a predictive power for the future

consumption growth, while the unconditional one does not.

Table 11 presents the results of the predictive regressions. The values in parentheses

are the t-statistics using Newey-West standard errors with K lags. The results are

supportive: neither interest rate nor inflation rate can individually predict the future

consumption growth, but they collectively have significant predictability. Specifically,

we find that the unconditional interest rate factor (Panel A) or the standardized inflation

(Panel B) is not individually significant in predicting future consumption growth, but the

conditional interest rate factor (Panel C) has a significantly negative coefficient except

for the case K = 1, implying that a positive innovation in the interest rate predicts a

decrease (increase) in the medium- or long-run consumption growth when the inflation

rate is high (low). When the three predictors are simultaneously controlled for (Panel

D), the interaction term (IntInf) remains significant over the medium or long horizon.

This finding justifies the use of the interaction between interest rate and inflation, rather
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than the interest rate itself, as an ICAPM pricing factor.

As an additional validation, we examine the Sharpe ratio of the conditional interest

rate factor-mimicking portfolio. Note that in an incomplete market, there are infinitely

many SDFs but the one in the payoff space is unique and has the smallest variance

(Cochrane, 2009). Also note that Hansen and Jagannathan (1991)’s volatility bound

implies that the SDF in the payoff space has the largest Sharpe ratio. Combined, if our

suggested conditional interest rate factor is a valid SDF, its mimicking portfolio should

have the Sharpe ratio comparable to the tangency portfolio.

We construct the conditional interest rate factor-mimicking portfolio (IMP) by a

linear combination of the Fama-French six portfolios sorted by size and book-to-market

ratio (SH, SM, SL,BH,BM,BL). Specifically, we regress IntInf on a constant and

the excess returns of these six portfolios: Basis = [Re
SH , R

e
SM , Re

SL, R
e
BH , R

e
BM , Re

BL]
′,

using the monthly data from January 1959 to December 2022.

IntInft = c0 + c′1Basist + ϵt.

After normalizing the coefficient such that they sum to one, c̃1i = c1i∑
c1i
, the mim-

icking portfolio is defined as IMPt = c̃′1Basist. Since IMP is a linear combination

of six excess returns, it is also an excess return. Table 12 presents the averages and

the standard deviations of IMP as well as the standard benchmark equity factors

(RmRf, SMB,HML,UMD), and the resulting Sharpe ratios. The annualized Sharpe

ratio is computed by multiplying
√
12. To examine whether IMP attains the maximum

Sharpe ratio, we generate the efficient frontier with the six size and book-to-market

portfolios and the four benchmark equity factors and find out the tangency portfolio.

We find that the annualized Sharpe ratio of IMP is 0.878. Although it is smaller than

the ex post maximum Sharpe ratio achieved from our sample (1.242), it is much higher

20



than those of standard equity factors.

To sum up, we validate our suggested factor by showing that it predicts the future

consumption growth and its mimicking portfolio has the Sharpe ratio comparable to the

tangency portfolio.

5 Conclusion

This study examines whether the interest rate risk is priced in the cross-section of stock

returns conditioning on the prevailing inflation rates. When the Federal Reserve raises

interest rates with high inflation state, investors seem to require higher premium to

compensate for the interest rate risk. As a result, expected stock returns increase with

interest rate risk, controlling for prevailing inflation level. This implication justifies

current global market conditions with high inflation and high interest rate regime and

makes robust relation of interest rate risk accompanied with inflation rate and stock

prices. Thus, our study highlights the role of interest rate risk in understanding the

current global bear markets and calls for more attention to be given to inflation rate

when assessing interest rate risk. Further, the practical inference from our study is that

investors’ interest rate risk is conditionally related to the inflation rate in asset prices,

which is crucial for their investment decisions.
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Table 1: Descriptive statistics

Panel A. Summary statistics
Mean St.Dev. Skewness Kurtosis Min Q25 Median Q75 Max Obs

iTB3 (%) 4.343 3.170 0.766 3.874 0.01 1.88 4.415 5.98 16.3 768
Int 0.000 0.382 -1.283 21.339 -3.265 -0.087 -0.016 0.108 2.263 768
π (%) 3.652 2.472 1.524 4.831 0.626 2.042 2.836 4.526 11.869 768
Inf 0.096 0.538 1.401 4.284 -0.655 -0.257 -0.106 0.318 1.783 768
IntInf 0.012 0.500 -2.256 46.733 -5.212 -0.015 0.005 0.024 3.927 768
RmRf 0.549 4.456 -0.496 4.712 -23.24 -1.97 0.98 3.365 16.1 768
SMB 0.202 2.953 0.353 6.257 -15.35 -1.51 0.08 1.92 18.34 768
HML 0.316 2.909 0.111 5.444 -13.97 -1.345 0.265 1.75 12.75 768
RMW 0.282 2.223 -0.280 14.245 -18.73 -0.79 0.24 1.31 13.09 714
CMA 0.301 2.056 0.321 4.382 -6.94 -1 0.105 1.52 9.05 714
UMD 0.673 4.089 -1.304 13.220 -34.3 -0.875 0.79 2.91 18.2 768

Panel B. Correlation matrix
iTB3 (%) Int π (%) Inf IntInf RmRf SMB HML RMW CMA

iTB3 (%) 1
Int 0.121 1
π (%) 0.754 0.049 1
Inf 0.751 0.058 0.987 1
IntInf 0.058 0.867 0.026 0.026 1
RmRf -0.086 -0.084 -0.045 -0.053 -0.104 1
SMB -0.027 0.006 0.047 0.053 -0.022 0.280 1
HML 0.066 -0.078 0.063 0.067 -0.107 -0.209 -0.026 1
RMW -0.013 0.093 -0.021 -0.029 0.088 -0.180 -0.348 0.091 1
CMA 0.057 -0.082 0.061 0.061 -0.070 -0.366 -0.097 0.683 -0.019 1
UMD 0.081 0.060 0.055 0.059 0.067 -0.165 -0.061 -0.204 0.080 -0.021

Note: Table 1 presents the descriptive statistics of the interest rate, inflation and equity risk factors.
The sample period from January 1959 to December 2022.
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Table 2: βIntInf -sorted deciel portfolios

Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 Pt1-Pt10

Excess return 0.765*** 0.641*** 0.628*** 0.598*** 0.608*** 0.625*** 0.445** 0.516*** 0.475** 0.337* 0.428**
(3.20) (3.13) (3.11) (3.14) (3.29) (3.43) (2.43) (2.76) (2.49) (1.72) (2.47)

Post-formation beta -1.193*** -1.034*** -1.067*** -1.051*** -0.699* -0.830** -0.744* -1.045** -0.877* -0.549 -0.644*
(-3.25) (-3.06) (-3.25) (-2.86) (-1.74) (-2.39) (-1.93) (-2.46) (-1.85) (-0.95) (-1.72)

Market capitalization 2816.3*** 3411.3*** 1710.4*** 1561.1*** 1985.8*** 2192.5*** 2112.3*** 2004.9*** 2206.8*** 2174.2*** 642.1**
(11.02) (13.55) (15.54) (20.88) (19.13) (18.98) (16.80) (13.11) (10.46) (9.74) (2.23)

Obs. 708 708 708 708 708 708 708 708 708 708 708

Note: Table 2 presents the portfolio analysis results. The portfolio 1 (Pt1) represents the stocks with the smallest (most negative) βIntInf ,
while the portfolio 10 (Pt10) represents the stocks with the largest βIntInf . Pt1-Pt10 is the portfolio that goes long on Pt1 and goes short
on Pt10. The numbers are the time-series averages of the portfolio excess return, post-portfolio formation exposure to the conditional
interest rate risk (IntInf), and the average market capitalization in $ thousands. The numbers in the parenthesis are the t statistics based
on the Newey-West standard error. The lag length is chosen to be one. *, **, and *** represent statistical significance at the 10%, 5%, and
1% level, respectively. The sample period from January 1964 to December 2022.
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Table 3: Risk-adjusted excess returns of βIntInf -sorted long-short portfolio

Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10

Risk-adjusted α 0.428** 0.316* 0.286* 0.386** 0.578*** 0.637***
(2.47) (1.84) (1.69) (2.11) (3.22) (3.35)

RMRF 0.207*** 0.147** 0.124** 0.0807 0.0678
(3.48) (2.38) (2.06) (1.29) (1.08)

SMB 0.298*** 0.297*** 0.157* 0.160*
(2.70) (2.58) (1.80) (1.82)

HML -0.0246 -0.0656 0.195* 0.153
(-0.24) (-0.64) (1.92) (1.50)

UMD -0.116 -0.0815
(-1.42) (-1.14)

RMW -0.564*** -0.550***
(-4.41) (-4.26)

CMA -0.436*** -0.407***
(-2.78) (-2.69)

Obs. 708 708 708 708 708 708

Note: Table 3 presents the risk-adjusted excess return of the long-short portfolio. RmRf, SMB, HML,
RMW and CMA are Fama-French five factors and UMD is the Carhart momentum factor. The values
in parenthesis are the t statistics based on the Newey-West standard error. The lag length is chosen
to be one. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively.
The sample period from January 1964 to December 2022.
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Table 5: Risk-adjusted excess returns of βInt-sorted long-short portfolio

Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10 Pt1-Pt10

Risk-adjusted α -0.215 -0.00141 -0.125 -0.168 -0.272 -0.295
(-1.19) (-0.01) (-0.79) (-0.94) (-1.58) (-1.57)

RMRF -0.391*** -0.289*** -0.278*** -0.253*** -0.248***
(-7.82) (-5.44) (-5.33) (-4.42) (-4.34)

SMB -0.247*** -0.247*** -0.181** -0.182**
(-2.93) (-2.87) (-2.35) (-2.33)

HML 0.404*** 0.421*** 0.281*** 0.298***
(4.85) (4.87) (2.65) (2.76)

UMD 0.0502 0.0320
(0.66) (0.43)

RMW 0.264*** 0.259**
(2.66) (2.55)

CMA 0.249* 0.237
(1.69) (1.64)

Obs. 708 708 708 708 708 708

Note: Table 5 presents the risk-adjusted excess return of the long-short portfolio. RmRf, SMB, HML,
RMW and CMA are Fama-French five factors and UMD is the Carhart momentum factor. The values
in parenthesis are the t statistics based on the Newey-West standard error. The lag length is chosen
to be one. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively.
The sample period from January 1964 to December 2022.
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Table 6: Pricing the 25 equity portfolios sorted by size and book-to-market

(1) (2) (3) (4) (5) (6)
CAPM FF3 CAPM+Int CAPM+IntInf Int IntInf

Panel A. Restriction on zero-beta excess rate (λ0 = 0)

RmRf 0.665 0.518 0.662 0.619
(3.469) (2.974) (3.275) (3.073)

Int -0.400 -0.642
(-2.070) (-1.866)

IntInf -0.506 -0.652
(-2.369) (-2.122)

SMB 0.242
(1.975)

HML 0.370
(3.139)

R2 -43.59% 49.77% 36.57% 55.28% 1.47% 45.79%
Adj-R2 -49.58% 42.92% 31.06% 51.39% -2.63% 43.53%
MAPE 2.03% 1.12% 1.42% 1.22% 1.91% 1.38%

Panel B. No restriction on zero-beta excess rate

λ0 1.077 1.169 0.081 0.021 0.374 0.216
(1.935) (3.084) (0.131) (0.031) (0.835) (0.486)

RmRf -0.310 -0.600 0.589 0.600
(-0.543) (-1.446) (0.872) (0.834)

Int -0.382 -0.332
(-2.179) (-1.525)

IntInf -0.501 -0.471
(-2.327) (-1.992)

SMB 0.199
(1.627)

HML 0.341
(2.906)

R2 4.82% 64.98% 36.69% 55.29% 35.00% 54.36%
Adj-R2 0.68% 59.98% 30.94% 51.22% 32.18% 52.37%
MAPE 1.87% 1.87% 1.87% 1.87% 1.87% 1.87%
Intercept 12.93% 14.02% 0.97% 0.25% 4.49% 2.59%
Total 14.79% 15.89% 2.84% 2.12% 6.36% 4.46%

Note: Table 6 presents the risk premiums (λ) from 25 equity portfolios sorted by size and book-to-
market ratio. λ’s are obtained from the Fama-MacBeth regression of E[Re] = λ0 + β′

FλF , where each
column indicates the considered factors (F ). In Panel A, we impose a restriction that the zero-beta
excess rate (λ0) equals zero, while there is no such restriction in Panel B. The values in parentheses are
Shanken t-statistics. MAPE is the mean absolute pricing error. Intercept in Panel B is the annualized
zero-beta excess rate, and Total is the sum of Intercept and MAPE. The sample period from January
1964 to December 2022. 29



Table 7: Pricing the 25 equity portfolios sorted by size and long-run reversal

(1) (2) (3) (4) (5) (6)
CAPM FF3 CAPM+Int CAPM+IntInf Int IntInf

Panel A. Restriction on zero-beta excess rate (λ0 = 0)

RmRf 0.726 0.556 0.699 0.658
(3.763) (3.157) (3.522) (3.355)

Int -0.301 -0.658
(-2.196) (-1.890)

IntInf -0.478 -0.685
(-2.615) (-2.146)

SMB 0.171
(1.235)

HML 0.524
(2.473)

R2 0.25% 71.59% 34.83% 60.19% -19.80% 47.97%
Adj-R2 -3.91% 67.71% 29.16% 56.73% -24.79% 45.80%
MAPE 1.56% 0.78% 1.24% 0.90% 1.65% 1.10%

Panel B. No restriction on zero-beta excess rate

λ0 0.393 0.412 -0.077 -0.093 0.463 0.213
(1.042) (0.914) (-0.148) (-0.166) (1.316) (0.588)

RmRf 0.367 0.161 0.768 0.741
(0.837) (0.351) (1.327) (1.221)

Int -0.316 -0.281
(-1.864) (-1.779)

IntInf -0.497 -0.506
(-2.091) (-2.069)

SMB 0.185
(1.318)

HML 0.466
(1.910)

R2 8.32% 75.59% 35.04% 60.56% 21.97% 55.17%
Adj-R2 4.33% 72.10% 29.14% 56.98% 18.58% 53.22%
MAPE 1.57% 0.71% 1.22% 0.91% 1.41% 0.93%
Intercept 4.72% 4.94% -0.93% -1.12% 5.55% 2.56%
Total 6.29% 5.65% 2.15% 2.03% 6.97% 3.49%

Note: Table 7 presents the risk premiums (λ) from 25 equity portfolios sorted by size and long-run
reversal. λ’s are obtained from the Fama-MacBeth regression of E[Re] = λ0+β′

FλF , where each column
indicates the considered factors (F ). In Panel A, we impose a restriction that the zero-beta excess rate
(λ0) equals zero, while there is no such restriction in Panel B. The values in parentheses are Shanken
t-statistics. MAPE is the mean absolute pricing error. Intercept in Panel B is the annualized zero-beta
excess rate, and Total is the sum of Intercept and MAPE. The sample period from January 1964 to
December 2022. 30



Table 8: Pricing the 25 equity portfolios sorted by size and investment

(1) (2) (3) (4) (5) (6)
CAPM FF3 CAPM+Int CAPM+IntInf Int IntInf

Panel A. Restriction on zero-beta excess rate (λ0 = 0)

RmRf 0.674 0.565 0.684 0.648
(3.553) (3.285) (3.496) (3.218)

Int -0.341 -0.674
(-2.297) (-1.807)

IntInf -0.588 -0.704
(-2.912) (-2.035)

SMB 0.174
(1.445)

HML 0.699
(4.350)

R2 -47.90% 65.58% 3.20% 35.45% -53.74% 31.88%
Adj-R2 -54.06% 60.89% -5.22% 29.84% -60.15% 29.04%
MAPE 2.14% 0.99% 1.72% 1.39% 2.06% 1.43%

Panel B. No restriction on zero-beta excess rate

λ0 1.015 0.671 0.612 0.333 0.525 0.221
(2.493) (1.568) (1.499) (0.600) (1.372) (0.550)

RmRf -0.244 -0.077 0.126 0.351
(-0.533) (-0.168) (0.266) (0.572)

Int -0.201 -0.214
(-1.679) (-1.385)

IntInf -0.490 -0.503
(-2.337) (-2.403)

SMB 0.164
(1.370)

HML 0.544
(2.881)

R2 3.58% 70.24% 13.53% 38.79% 13.29% 38.30%
Adj-R2 -0.61% 65.99% 5.67% 33.22% 9.52% 35.61%
MAPE 1.78% 0.83% 1.73% 1.39% 1.73% 1.37%
Intercept 12.18% 8.06% 7.35% 4.00% 6.30% 2.65%
Total 13.96% 8.89% 9.08% 5.38% 8.03% 4.02%

Note: Table 8 presents the risk premiums (λ) from 25 equity portfolios sorted by size and investment.
λ’s are obtained from the Fama-MacBeth regression of E[Re] = λ0+β′

FλF , where each column indicates
the considered factors (F ). In Panel A, we impose a restriction that the zero-beta excess rate (λ0) equals
zero, while there is no such restriction in Panel B. The values in parentheses are Shanken t-statistics.
MAPE is the mean absolute pricing error. Intercept in Panel B is the annualized zero-beta excess rate,
and Total is the sum of Intercept and MAPE. The sample period from January 1964 to December
2022. 31



Table 9: Return response of βInt- and βIntInf -sorted portfolios to shock of Fed
Funds rates around FOMC event days

(1) (2) (3) (4) (5) (6) (7)
Portfolio (0,0) (+1,+1) (+1,+2) (+1,+3) (+1,+4) (+1,+10) (+1,+20)

Panel A: βInt-sorted portfolios

1 (Low) -0.003 -0.018** -0.016 -0.003 -0.013 -0.062** -0.118***
(-0.24) (-2.01) (-1.49) (-0.21) (-0.72) (-2.29) (-3.11)

2 -0.005 -0.016* -0.011 -0.002 -0.008 -0.039* -0.087***
(-0.45) (-1.78) (-1.02) (-0.18) (-0.53) (-1.89) (-3.05)

3 -0.004 -0.016** -0.013 -0.007 -0.015 -0.046** -0.092***
(-0.43) (-2.25) (-1.30) (-0.60) (-1.00) (-2.15) (-2.92)

4 -0.005 -0.018** -0.017 -0.009 -0.015 -0.060** -0.112***
(-0.43) (-2.25) (-1.49) (-0.75) (-0.94) (-2.38) (-3.06)

5 (High) -0.007 -0.024*** -0.026** -0.015 -0.024 -0.103*** -0.159***
(-0.36) (-3.04) (-2.19) (-1.03) (-1.27) (-2.70) (-2.89)

Panel B: βIntInf -sorted portfolios

1 (Low) -0.009 -0.022*** -0.023* -0.012 -0.021 -0.095*** -0.151***
(-0.50) (-2.62) (-1.96) (-0.81) (-1.10) (-2.62) (-2.97)

2 -0.006 -0.020** -0.013 -0.003 -0.011 -0.055** -0.100***
(-0.49) (-2.20) (-1.30) (-0.32) (-0.76) (-2.37) (-3.15)

3 -0.001 -0.017** -0.015 -0.008 -0.013 -0.042* -0.093***
(-0.07) (-2.09) (-1.39) (-0.72) (-0.90) (-1.91) (-2.96)

4 -0.003 -0.019** -0.016 -0.007 -0.014 -0.056** -0.103***
(-0.33) (-2.39) (-1.47) (-0.57) (-0.89) (-2.23) (-2.88)

5 (High) -0.002 -0.017* -0.0175 -0.006 -0.014 -0.063** -0.119***
(-0.13) (-1.92) (-1.54) (-0.42) (-0.80) (-2.23) (-2.91)

Note: Table 9 presents the coefficient estimates of the pooled regression of firm level returns by βInt-
and βIntInf -sorted portfolios around the 266 FOMC event days. Panel A reports the results with βInt-
sorted portfolios, and Panel B reports the results with βIntInf -sorted portfolios. The firm level returns
are calculated over seven different event windows and shown in model (1) to (7) by each portfolio. We
estimate the following regression model: R(a, b)i,t = α+δFFRshockt+εi,t. R(a, b)i,t is calculated with
each firm i and each event date t over seven different event windows (a,b). The explanatory variable,
FFRShockt, denotes the shock components of Fed Funds rates from Kenneth N. Kuttner’s website.
All regressions include firm and year fixed effects. The sample period from June 1989 to June 2019.
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Table 10: Firm level return response to shock of Fed Funds rates around
FOMC event days

(1) (2) (3) (4) (5) (6) (7)
(0,0) (+1,+1) (+1,+2) (+1,+3) (+1,+4) (+1,+10) (+1,+20)

Panel A: Dummy Variables of negative βInt

FFRshock -0.005 -0.023*** -0.023** -0.016 -0.024* -0.078*** -0.123***
(-0.40) (-3.50) (-2.48) (-1.32) (-1.66) (-3.04) (-3.25)

I(βInt < 0) -0.035 -0.059 -0.036 0.018 0.036 0.054 0.161
(-0.62) (-1.09) (-0.56) (0.24) (0.42) (0.36) (0.64)

FFR × I(βInt < 0) 0.003 0.014 0.022* 0.029** 0.033** 0.051** 0.028
(0.27) (1.36) (1.92) (2.29) (2.24) (2.59) (1.15)

Observations 1,243,401 1,242,985 1,243,036 1,243,049 1,243,057 1,243,082 1,243,098
Adjusted R2 0.014 0.014 0.016 0.021 0.021 0.030 0.050

Panel B: Dummy Variables of negative βIntInf

FFRshock -0.002 -0.018** -0.016 -0.007 -0.013 -0.048* -0.098***
(-0.18) (-2.09) (-1.48) (-0.60) (-0.90) (-1.96) (-2.82)

I(βIntInf < 0) 0.016 0.012 0.036 0.141* 0.141* -0.061 -0.032
(0.34) (0.31) (0.74) (1.66) (1.66) (-0.45) (-0.12)

FFR × I(βIntInf < 0) -0.008 -0.003 -0.004 -0.002 -0.005 -0.0475** -0.054*
(-0.91) (-0.70) (-0.61) (-0.23) (-0.49) (-2.08) (-1.85)

Observations 1,243,401 1,242,985 1,243,036 1,243,049 1,243,057 1,243,082 1,243,098
Adjusted R2 0.014 0.014 0.016 0.021 0.021 0.030 0.050

Note: Table 10 presents the coefficient estimates of the pooled regression of firm level returns around
the 266 FOMC event days. The firm level returns are calculated over seven different event windows and
shown in model (1) to (7). We estimate the following regression models: R(a, b)i,t = α+δFFRshockt+
γI(βInt < 0)i,t + θFFRshockt × I(βInt < 0)i,t + εi,t and R(a, b)i,t = α+ δFFRshockt + γI(βIntInf <
0)i,t + θFFRshockt × I(βIntInf < 0)i,t + εi,t, for panels A and B respectively. R(a, b)i,t is calculated
with each firm i and each event date t over seven different event windows (a,b). FFRShockt, denotes
the shock components of Fed Funds rates from Kenneth N. Kuttner’s website and I(βInt < 0)i,t and
I(βIntInf < 0)i,t are the dummy variables denoting the negative values of βInt and βIntInf . All
regressions include firm and year fixed effects. The sample period from June 1989 to June 2019.
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Table 11: Prediction of consumption growth

Horizon K 1 3 6 12

Panel A. X = Int

Int 0.196 0.008 0.049 -0.061
(1.20) (0.10) (0.42) (-0.40)

Const. 0.156*** 0.468*** 0.935*** 1.867***
(6.20) (8.28) (9.63) (9.71)

R2 1.19% 0.00% 0.02% 0.01%
Adj-R2 1.06% -0.13% -0.11% -0.12%

Panel B. X = Inf

Inf -0.005 -0.005 0.007 0.089
(-0.12) (-0.06) (0.04) (0.26)

Const. 0.157*** 0.468*** 0.934*** 1.859***
(5.56) (7.57) (9.03) (9.30)

R2 0.00% 0.00% 0.00% 0.06%
Adj-R2 -0.13% -0.13% -0.13% -0.07%

Panel C. X = IntInf

IntInf -0.008 -0.09* -0.137*** -0.201***
(-0.18) (-1.94) (-2.92) (-2.70)

Const. 0.156*** 0.469*** 0.937*** 1.870***
(6.23) (8.30) (9.66) (9.74)

R2 0.00% 0.14% 0.24% 0.28%
Adj-R2 -0.13% 0.01% 0.11% 0.14%

Panel D. X = {Int, Inf, IntInf}

Int 0.765 0.387 0.760*** 0.608
(1.16) (1.53) (2.62) (1.60)

Inf -0.024 -0.013 -0.008 0.079
(-0.68) (-0.14) (-0.05) (0.24)

IntInf -0.506 -0.337* -0.632*** -0.599**
(-1.10) (-1.86) (-3.10) (-2.26)

Const. 0.164*** 0.473*** 0.945*** 1.869***
(6.92) (7.74) (9.41) (9.49)

R2 4.86% 0.60% 1.42% 0.73%
Adj-R2 4.48% 0.21% 1.38% 0.34%

Obs. 767 765 762 756

Note: Table 11 presents the results of the following predictive regressions: ∆Ct+1,t+K = cK0 + cK1 Xt +
et+1,t+K . ∆Ct+1,t+K is the real per capital consumption growth overK-month horizon (K = 1, 3, 6, 12).
We consider Int, Inf and their interaction as the predictor X. The values in parentheses are the t-
statistics using Newey-West standard errors with K lags. The sample period from January 1959 to
December 2022.
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Table 12: Sharpe ratio of IMP and benchmark equity factors

Expected return (%) Standard deviation (%) Sharpe ratio Annualized Sharpe ratio

RmRf 0.549 4.456 0.123 0.427
SMB 0.167 2.973 0.056 0.194
HML 0.316 2.909 0.109 0.376
UMD 0.673 4.089 0.164 0.570
IMP 1.369 5.400 0.254 0.878
Tangency 0.422 1.178 0.358 1.242

Note: Table 12 presents the monthly and annualized Sharpe ratios of IMP and four benchmark equity
factors. Expected returns, standard deviations and Sharpe ratios are measured from monthly excess
returns, while the annualized Sharpe ratio is computed by multiplying

√
12. The sample period from

January 1959 to December 2022.
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Figure 1: Interest rate and inflation

Note: The upper panel depicts the level of inflation (three-year annualized CPI inflation, %) and interest
rates (annualized three-month treasury bill rates, %). The lower panel depicts the standardized inflation
and the innovation in the interest rate. The innovation is obtained from the ARMA(1,1) residual. The
data cover the period from July 1963 to December 2022.
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Figure 2: Actual versus predicted excess returns: 25 portfolios sorted by size and book-
to-market

Note: Each panel in this figure plots the actual average excess returns of 25 equity portfolios sorted
by size and book-to-market ratio against their average excess returns predicted by the corresponding
model. The data cover the period from January 1964 to December 2022.
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Figure 3: Actual versus predicted excess returns: 25 portfolios sorted by size and long-
run reversal

Note: Each panel in this figure plots the actual average excess returns of 25 equity portfolios sorted by
size and long-run reversal against their average excess returns predicted by the corresponding model.
The data cover the period from January 1964 to December 2022.
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Figure 4: Actual versus predicted excess returns: 25 portfolios sorted by size and in-
vestment

Note: Each panel in this figure plots the actual average excess returns of 25 equity portfolios sorted by
size and investment against their average excess returns predicted by the corresponding model. The
data cover the period from January 1964 to December 2022.

39



Figure 5: Expectations and standard deviations of IMP and benchmark equity factors

Note: This figure depicts the expectations and standard deviations of interest rate risk mimicking
portfolio (IMP) and four benchmark equity factors (RmRf, SMB, HML, UMD). IMP is constructed by
a linear combination of the Fama-French six portfolios sorted by size and book-to-market ratio (SL,
SM, SH, BL, BM, BH). For comparison, this figure also depicts the efficient frontier and the tangency
portfolio. The efficient frontier is generated with the six size and book-to-market portfolios and the
four benchmark equity factors but we drop SH and BH to prevent the perfect correlation. The data
cover the period from January 1959 to December 2022.
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