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Abstract

We apply the regression-based affine term structure model developed by Adrian et al. (2013)
to estimate the term structure of commodity futures. This model has the advantage of a
simple and fast algorithm, can accommodate a variety of observable and unspanned factors,
and can be applied to daily and even real-time observations. The estimated results show that
the model appropriately captures the time-series variation across different maturities and
exhibits satisfactory performance in capturing cross-sectional variation for specific months.
Furthermore, we investigate the relationship between existing commodity risk factor returns
and the risk premiums inferred by the model. Our analysis reveals that different risk factor
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1. Introduction

Commodity futures are one of the oldest derivatives and are economically significant

because their underlying assets are based on raw materials for production. Over the past

two decades, the size of commodity futures markets has rapidly increased. The growth of

commodity futures markets can be attributed to the influx of financial institutions, known as

the financialization of commodities, which has increased trading volume and open interest in

commodity futures markets, resulting in significant changes in price volatility. 1 The expan-

sion of institutional investors draws much attention to the importance of risk management

and derivatives pricing due to the expansion of commodities included in portfolios and the

growth of related derivatives and exchange-traded products(ETPs). 2 This paper proposes

a simple and efficient method for estimating the term structure of commodity futures, which

is essential for risk management and derivatives valuation.

As demand and interest in commodities continue to grow, the necessity for estimating

the term structure for risk management and related derivatives valuation also increases.

Neuberger (1999) and Veld-Merkoulova and De Roon (2003) highlight that investors with

long-term exposure to commodities may encounter rollover risk when using short-term fu-

tures contracts. They propose methodologies using longer-term futures contracts to mitigate

such risks by estimating the prices of medium to long-term futures through the estimation

of commodity term structures, thereby providing more precise and cost-effective methods.

Furthermore, financial institutions issuing various derivatives often hedge by diversifying

across multiple maturities rather than relying solely on single-maturity (usually nearby con-

tracts), which can reduce hedging costs and may impact even longer contracts (Henderson

1See e.g. Tang and Xiong (2012); Cheng et al. (2015); Henderson et al. (2015); Sockin and Xiong (2015);
Basak and Pavlova (2016); Brogaard et al. (2018); Baker (2021); Goldstein and Yang (2022); Ready and
Ready (2022); Da et al. (2023); Kang et al. (2023). As reported by Kang et al. (2023), the financialization
has begun around 2004. They report that while the proportion of commercial traders has remained relatively
stable, the proportion of non-commercial speculators has increased from 18.89% before financialization to
37.71% afterward.

2Henderson et al. (2015) analyze commodity-linked notes(CLNs) and suggest that the hedging demand
from financial institutions can affect long-term commodity futures prices.
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et al., 2015). Several studies report that many firms, particularly in the energy industry, use

derivatives such as swaps, options, or collars to hedge against the risks associated with their

commodities (Acharya et al., 2013; Mixon et al., 2018). Therefore, accurate term structure

estimation is essential for analyzing medium to long-term contracts that can be utilized to

reduce hedging costs and provide information necessary for evaluating derivatives like swaps

or calendar options. Notably, as the trading volume declines and liquidity diminishes with

longer contract maturities in most commodity futures contracts, the price discovery of longer

contracts may be problematic. Therefore, estimating the term structure of commodity fu-

tures aims to accurately construct prices for unobserved intervals using available futures

prices and estimate prices beyond the observed periods.

The domain of term structure models is perhaps most extensively developed in the con-

text of interest rates 3. Additionally, term structure models have been developed in other

asset classes such as equity and foreign exchange 4 Modeling commodity futures term struc-

ture has also received substantial attention. 5 Analogous to the assumptions of stochastic

movements of multiple state variables (e.g., short rate) for interest rates, various factors

such as the spot price, convenience yield, interest rate, and long-term price are considered

either individually or in combination to derive commodity futures term structure. Among

these, the earliest models assume the stochastic process of spot prices to model the term

structure of commodities. The most well-known model of this type, proposed by Brennan

and Schwartz (1985), assumes geometric Brownian motion for spot prices to develop an

affine term structure model. Furthermore, other studies have derived models by assuming

mean-reverting processes of spot price (Schwartz, 1997; Routledge et al., 2000). In addition

to assuming stochastic movements of spot prices, some models have incorporated stochastic

convenience yield and/or interest rates, resulting in two- or three-factor models. For ex-

3See Piazzesi (2010) for a review.
4See Lettau and Wachter (2011); Binsbergen et al. (2012); Van Binsbergen et al. (2013); Van Binsbergen

and Koijen (2017); Bansal et al. (2021); Ulrich et al. (2022) for the equity and see Backus et al. (2001);
Lustig et al. (2011, 2019) for the foreign exchange.

5Lautier (2005) surveys term structure models of commodity futures.
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ample, Gibson and Schwartz (1990) propose a two-factor model considering stochastic spot

prices and convenience yield. Additionally, three-factor models incorporating stochastic in-

terest rates alongside spot prices and convenience yield have also been developed(Schwartz,

1997; Liu and Tang, 2010).

Numerous well-known academic studies exist on exponentially affine term structure mod-

els of commodity futures.6 These conventional methodologies rely on unobservable state

variables (such as spot price or convenience yields), thus resorting to parameter estima-

tion through state space modeling with Kalman filter for term structure estimation. These

methodologies may typically be time-consuming for estimation and may suffer from reduced

efficiency due to assumptions regarding unobservable state variables. Dempster and Tang

(2011) argue that estimation via state space form includes measurement errors, which are

serially correlated and can influence parameter estimation. In contrast, Adrian et al. (2013)

(hereafter ACM) propose a simple and fast ordinary least squares methodology for estimat-

ing the term structure of interest rates, claiming computational efficiency and the ability to

allow small pricing errors. Moreover, their model can incorporate more factors, including

observable and unspanned factors, and can be applied at daily frequency. Consequently,

we apply the ACM model to the commodity futures to estimate the individual commodity

futures term structure.

Adrian et al. (2013) propose a methodology to estimate the term structure of interest

rates. They assume that a pricing kernel is exponentially affine, prices of risk are affine

to state variables, and shocks to state variables and log yield observation errors are con-

ditionally normally distributed. They use a regression under these assumptions to provide

a simple approach for estimating the term structure of interest rates. They argue that

the regression-based term structure model can reduce computing time and consider various

factors. Building upon their methodology, we attempt to estimate the term structure of

6For further information, please refer to Schwartz (1997); Schwartz and Smith (2000); Geman and Nguyen
(2005); Casassus and Collin-Dufresne (2005); Dempster et al. (2008); Liu and Tang (2010); Dempster and
Tang (2011).
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commodity futures using a setup analogous to that employed by ACM. To achieve this, we

define excess returns for commodity futures and extract principal component analysis (PCA)

factors using selected four to five maturities of each futures contract within observable ma-

turities to estimate the term structure model of an individual commodity.

It is well established that three PCA factors are widely used for estimating the term

structure of interest rates. These three PCA factors for interest rates represent the term

structures’s level, slope, and curvature (Litterman, 1991). Similarly, we can use PCA factors

applied to commodity futures. For instance, some studies suggest that the slope of the

futures curve is related to the level of inventories (Kaldor, 1939; Working, 1949; Fama and

French, 1987). Additionally, the basis, which is the difference between the spot price and

the contemporaneous futures price, represents the slope of the futures term structure and

contains information about expected futures excess returns (Fama and French, 1987; Gorton

and Rouwenhorst, 2006; De Roon et al., 1998; Gorton et al., 2012). A recent study by Boons

and Prado (2019) reports that the basis-momentum shows promising results in predicting

commodity spot and term premiums, and suggests that the basis-momentum is related to

the slope and curvature of the futures term structure. We confirm through PCA analysis

of commodity futures data that the first three PCA factors explain over 98% of the overall

price or return movements. Consequently, utilizing the three factors extracted from PCA to

estimate the term structure of commodity futures can be appropriate.

We confirm that the regression-based term structure model is successfully applied to com-

modity futures. The fitted prices estimated from the model are well-defined, demonstrating

a good reflection of the term structure characteristics of individual commodities. For vali-

dation, we divide the data into in-sample and out-of-sample. The test results indicate that

the pricing errors are small and economically acceptable. The time-series regressions ex-

plain 99.8% of the variation for the in-sample data and 94.3% for the out-of-sample data

at each maturity. Furthermore, we analyze the relationship between observed prices for all

maturities on each date and the corresponding fitted prices. Although the pricing errors
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from the cross-sectional regression are slightly higher than those from the time-series re-

gression, 86.5% of the cross-sectional variation for in-sample and 68.5% for out-of-sample

are explained. However, given the sensitivity of regression to outliers and the potential for

noise in observed prices of longer-dated contracts, the difference between the two prices is

economically insignificant. In particular, the root mean squared errors (RMSEs) for pricing

errors vary across commodities, ranging from $0.008 to $0.144 on a log price basis. Exclud-

ing the natural gas futures contract which has the largest pricing error, the largest error

in cross-sectional variation is $0.088. Therefore, we posit that the regression-based term

structure model based on the first three PCA factors effectively and errorlessly estimates the

term structure of commodity futures.

Another advantage of the regression-based term structure model is that the model can

provide estimates of commodity risk premiums. We examine the relationship between various

risk factors, as suggested in existing literature, and the estimated risk premiums from the

model. Specifically, we explore the relationships using nine risk factors—momentum, basis,

basis-momentum, skewness, inflation beta, volatility, hedging pressure, order imbalance,

and value as well as the S&P GSCI index return. The total risk premium is found to

be associated with the S&P GSCI return, basis, and hedging pressure factors, the spot

premium is related to momentum and volatility factors, and the term premium is associated

with the S&P GSCI return, basis, and hedging pressure factors. Additionally, we conduct

subsample analysis by dividing the entire sample into pre- and post-financialization periods.

The analysis reveals that the risk factors related to each risk premium differ before and

after the financialization. For instance, before the financialization, the spot premium is

associated with momentum, basis-momentum, inflation beta, and volatility. However, after

the financialization, only the volatility factor is significant. Furthermore, while volatility and

inflation beta are significant for the term premium before, factors such as the S&P GSCI

return and value become significant afterward. These findings suggest that commodity risk

premiums consist of spot and term premiums, each reflecting different types of priced risks.
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Moreover, the results indicate that as financialization progresses, the risk factors traditionally

priced may differ from those significantly reflected in risk premiums afterward.

Our study contributes to the existing literature on the term structure of commodity fu-

tures and commodity risk premiums. First, we demonstrate the successful application of

a regression-based term structure model to commodities. Unlike stocks or interest rates,

observing spot prices of commodities is challenging because spot prices are formed in over-

the-counter(OTC) markets. Moreover, although the inflow of institutional investors into

commodity futures markets makes price information for longer maturities more observable,

futures prices of longer maturities are still limited. Despite these constraints, the regression-

based term structure model enables estimation with minimal errors and less computing power

even for futures contracts with maturities longer than those typically used for estimation.

Next, the model’s advantage lies in estimating term premiums for multiple unobservable

maturities, allowing for analysis thereof. From the analysis, we show that existing risk fac-

tors affect term premiums and spot premiums differently. Therefore, our study presents a

significant contribution by demonstrating the simple and fast estimation of commodity term

structures for individual commodities. Furthermore, this approach allows for the considera-

tion of various risk factors and the use of granular levels of daily or intraday observations.

The rest of the paper is organized as follows. Section 2 explains the regression-based affine

term structure model. Section 3 describes the commodity futures data, conducts principal

component analysis, and computes risk factors and long-short portfolio returns. Section 4

presents the empirical results. Section 5 concludes.

2. Regression-based term structure model

In this section, we outline the regression-based term structure model suggested by Adrian

et al. (2013) in terms of commodities futures. Assume that the a K × 1 state variable Xt
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follows the vector autoregressive process:

Xt+1 = µ+ ΦXt + vt+1 (1)

where the error term vt+1 conditionally follows a normal distribution:

vt+1|{Xs}ts=0 ∼ N(0,Σ) (2)

Let St denote the spot price of the commodity futures contract and F
(n)
t be the futures

price for delivery at time t + n at time t. The cost-of-carry model implies that the futures

prices equal

F
(n)
t = Ste

y
(n)
t ×n (3)

where y
(n)
t is the per-period net cost of carry or basis for maturity n. Let f

(n)
t as the log

futures price and st as the log spot price. Given the pricing kernel Mt, we have

F
(n)
t = Et

[
MtF

(n−1)
t+1

]
(4)

and the pricing kernel Mt+1 is assumed to be exponentially affine:

Mt+1 = exp

(
−1

2
λ′
tλt − λ′

tΣ
−1/2vt+1

)
(5)

where λt is the market price of risks and has the affine form:

λt = Σ−1/2(λ0 + λ1Xt) (6)

Following Gorton et al. (2012); Yang (2013); Sakkas and Tessaromatis (2020), denote rx(n−1)
t+1

the log excess holding returns on a fully collateralized futures positions:

rx
(n−1)
t+1 = f

(n−1)
t+1 − f

(n)
t (7)
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Plugging equations (5) and (7) into equation (4), we have

1 = Et

[
exp

(
rx

(n−1)
t+1 − 1

2
λ′
tλt − λ′

tΣ
−1/2vt+1

)]
(8)

Assume that {rx(n−1)
t+1 , vt+1} are jointly normally distributed. Adrian et al. (2013) find that

Et[rx
(n−1)
t+1 ] = β

(n−1)′

t [λ0 + λ1Xt]−
1

2
V art[rx

(n−1)
t+1 ] (9)

where β
(n−1)′

t = Cov[rx
(n−1)
t+1 , v′t+1]Σ

−1. Szymanowska et al. (2014) show that the expected

one-period excess futures return can be expressed as the sum of the spot premium and the

term premium. The spot risk premium πs,t as the expected spot return in excess of the

one-period basis

Et[rs,t+1] = Et[st+1 − st] = y
(1)
t + πs,t (10)

Furthermore, a term premium π
(n)
y,t is the expected deviation from the expectation hypothesis

of the term structure of the basis satisfying

ny
(n)
t = y

(1)
t + (n− 1)Et[y

(n−1)
t+1 ]− π

(n)
y,t (11)

Using the cost-of-carry relation in (3), rx(n−1)
t+1 can be expressed as the sum of spot premium

and the term premium

Et[rx
(n−1)
t+1 ] = πs,t + π

(n)
y,t (12)

The unexpected return can be written as a component related to vt+1 and another that is

conditionally orthogonal. Then, the unexpected return can be written as

rx
(n−1)
t+1 − Et[rx

(n−1)
t+1 ] = β

(n−1)′

t vt+1 + e
(n−1)
t+1 (13)

where e
(n−1)
t+1 is conditional independently and identically distributed with variance σ2. Com-

bining equations (9) and (13) and assuming constant β, the return generation process can
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be written as a vector form:

rx = β(λ0ı
′
T + λ1X−)−

1

2
(B∗vec(Σ) + σ2ıN)ı

′
T + β′V + E (14)

where rx denotes an N×T of excess returns, β = [β(1)β(2) · · · β(N)] is a K×N factor loadings,

X− = [X0X1 · · ·XT−1] is a K×T lagged pricing factors, B∗ = [vec(β(1)β(1)′) · · · vec(β(N)β(N)′)]′

is an N ×K2 matrix, V is a K × T innovations, E is an N × T residuals, and ıN and ıT are

a N × 1 and T × 1 vector of ones.

Based on equation (14), Adrian et al. (2013) propose the three-step regression-based

estimator for the parameters. First, estimate the equation (1) to get the innovation vector V̂

and the variance-covariacne matrix Σ̂ = V̂ V̂ ′/T . Second, estimate the following regressions

to get the variance of pricing errors σ̂2 = tr(ÊÊ ′)/NT and to construct B̂∗:

rx = aı′T + β′V̂ + cX− + E (15)

Finally, based on parameters â, β̂, c, σ̂2, and Σ̂, the coefficients of the market price of risks

can cross-sectionally be estimated by

λ̂0 = (β̂β̂′)−1β̂

(
â+

1

2

(
B̂∗vec(Σ̂) + σ̂2ıN

))
(16)

λ̂1 = (β̂β̂′)−1β̂ĉ (17)

Based on the estimated parameters, the log prices of commodity futures are exponentially

affine in the state variables Xt:

lnF
(n)
t = An +B′

nXt + u
(n)
t (18)

Plugging equation (18) into equation (7), we find that

rx
(n−1)
t+1 = An−1 +B′

n−1Xt+1 + u
(n−1)
t+1 − An −B′

nXt − u
(n)
t (19)
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Using equation (1) and (9) and equating equation (19) as equation (13), we have the

following linear restrictions

An = An−1 +B′
n−1(µ− λ0) +

1

2
(B′

n−1ΣBn−1 + σ2) (20)

B′
n = B′

n−1(Φ− λ1) (21)

where A1 and B1 can be estimated from equation (18).

3. Data and variables

3.1. Commodity futures data

We collect data on liquid exchange-traded futures contracts from the Datastream. The

sample period extends from January 1973 to December 2023. Our sample consists of 27

futures contracts across five major sectors (energy, grains & oilseeds, livestock, softs, and

metals) listed on major North American exchanges including the Chicago Mercantile Ex-

change(CME), the Chicago Board of Trade(CBOT), the New York Mercantile Exchange

(NYMEX), the Commodity Exchange(COMEX), the Intercontinental Exchange-US(ICE-

US). The Datastream provides daily time series data for each futures contract, ranging from

near-term to long-term maturities. We calculate monthly returns based on the final obser-

vation of each month for each futures contract. While both closing and settlement prices are

commonly employed in the literature, settlement prices yield a greater number of observa-

tions, thereby providing more comprehensive price information. Therefore, we use settlement

prices for our analysis. It is worth noting that the correlation between the closing and the

settlement prices exceeds 95% in our sample. In unreported results, we also employ the

closing prices for our analysis and the results remain unchanged. Table 1 provides detailed

information about the sample.

PLEASE INSERT TABLE 1 AROUND HERE.
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Among the selected 27 contracts, we use only 17 futures contracts to estimate the term

structure because some futures contracts do not have enough observations. Furthermore, we

employ three factors extracted from the PCA as state variables. Given our intention to use

three PCA factors for estimating the term structure, we restrict our analysis to 17 futures

contracts with at least six or more maturities from nearby contracts. Thus, the selected

17 futures contracts encompass a minimum of six or more maturities and have continuous

monthly returns with at least 200 observations. The selected futures contracts include crude

oil(CL), gasoline(RB), heating oil(HO), natural gas(NG) in the energy category, corn(C),

soybeans(S), soybean meal(SM), soybean oil(BO) in the grains & oilseeds category, feeder

cattle(FC), live cattle(LC), lean hogs(LH) in the livestock category, cocoa(CC), coffee(KC),

cotton(CT) in the softs category, gold(GC), silver(SI), copper(HG) in the metal category.

These meticulously selected futures contracts are actively traded by many investors globally

and exhibit high liquidity.

Table 2 presents a description of futures contracts used for term structure estimation.

All observations of selected futures contracts have continuous monthly prices until December

2023. For instance, the “Obs.Mat.” of the crude oil futures contract(CL) indicates the

availability of continuous price information for up to the ninth maturity over a total of

482 months. Additionally, the “Used mat.” for crude oil indicates that we use the third,

fifth, seventh, eighth, and ninth maturities to estimate the term structure. The “Max mat.”

represents the maximum maturity observed for each futures contract during the sample

period, ensuring a minimum of 100 or more observations for each maturity. For instance, in

the case of feeder cattle(FC), we use maturities up to the sixth maturity for the term structure

estimation. But, the seventh or eighth maturity has at least 100 observations available for

each maturity although there are some missing values during the sample period. Therefore,

we estimate the term structure using maturities up to the “Used Mat.” and evaluate the

performance of the estimated term structure models using observations up to “Max mat.”.
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PLEASE INSERT TABLE 2 AROUND HERE.

Next, we compute factor returns based on the initial sample of 27 futures contracts to

examine the relationship between the risk premiums estimated from the term structure model

and various factors known to explain commodity risk premiums in the existing literature,

These factors include 1) momentum, 2) basis, 3) basis-momentum, 4) skewness, 5) inflation

beta, 6) volatility, 7) hedging pressure, 8) open interest, and 9) value. The definitions and

calculation methods for each risk factor are provided in the appendix. We use the factor

returns from December 1986 onwards because the Commitments of Traders (COT) Reports

announced by the Commodity Futures Trading Commission(CFTC) have been available since

1986 and computing hedging pressure requires data from the previous 12 months. Therefore,

we use the final factor returns from December 1986 to December 2023.

3.2. Commodity factor portfolios

Following Sakkas and Tessaromatis (2020), we construct nine long-short commodity factor

returns. To create commodity factor portfolios, we sort commodities based on each charac-

teristic as of the previous month and then construct three portfolios using the next month’s

commodity returns. We continue rebalancing portfolios based on these characteristics at the

end of each month to construct factor portfolios. Based on the three portfolios formed for

each characteristic, we construct long-short portfolios for each characteristic defined as the

difference in returns between the high and low portfolios.

Table 3 presents descriptive statistics for the constructed factor portfolios. All returns

are annualized. The last two columns show the difference in returns between the high and

low portfolios and the corresponding t-statistics. The S&P GSCI low returns in the first

column represent the monthly returns calculated from the S&P GSCI index. Among the

various factor returns, the long-short portfolio returns of the basis, value, basis-momentum,

and momentum factors are statistically significant. While there exist some differences in
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returns between high and low portfolios for other factors, they are not statistically signifi-

cant. The signs of the long-short portfolio returns are consistent with most of the existing

literature, except for the case of the value factor, which has the opposite sign. However,

this result is consistent with the finding reported by Asness et al. (2013) that momentum

and value factor returns are negatively correlated. Furthermore, these results are in line

with various factor tests conducted by Sakkas and Tessaromatis (2020). They find that the

returns of multi-factor commodity portfolios combining momentum, basis, basis-momentum,

hedging pressure, and value commodity factors perform the best through several statistical

tests. Thus, the results are consistent with previous literature suggesting that factors such

as momentum, basis, and basis-momentum along with equal-weighted average returns can

explain commodity risk premia (Yang, 2013; Szymanowska et al., 2014; Bakshi et al., 2019;

Sakkas and Tessaromatis, 2020; Boons and Prado, 2019).

PLEASE INSERT TABLE 3 AROUND HERE.

3.3. Principal component analysis

To estimate the term structure model of commodity futures, we employ three PCA factors

as state variables. The use of three PCA factors to estimate the term structure model is

common in interest rate model (Piazzesi, 2010). Specifically, the three PCA factors are often

labeled as level, slope, and curvature and have been highly effective in estimating the term

structure (Litterman, 1991). Analogously, we speculate that three PCA factors are effective

in capturing the shape of the commodity futures term structure. Table 4 displays the three

PCA factors based on log prices and changes in log prices. The patterns are similar across

both methodologies. First, the first factor explains a significant portion of the variance. In

the case of PCA based on log prices, the first factor explains between 92.54% and 99.81% of

the variance for each futures contract. While the second and third factors exhibit slightly

lower explanatory power compared to the first factor, the three PCA factors explain nearly

99% of the variance. A similar pattern can be observed with PCA based on the changes in
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log prices. Although there is a slight decrease in explanatory power compared to PCA based

on log prices, the three factors based on the changes in log prices explain at least 80% of the

variance, with the majority demonstrating explanatory power exceeding 95%.

PLEASE INSERT TABLE 4 AROUND HERE.

Figure 1 illustrates the patterns of factor loadings resulting from PCA analysis. The

top panel of Figure 1 depicts the factor loadings based on log prices, and the bottom panel

represents the factor loadings calculated from changes in log prices. Similar to PCA in

interest rates where the first factor represents the level, the second factor represents the

slope, and the third factor represents the curvature, an identical pattern emerges in PCA

analysis for commodities. First, the first factor reveals a straight-lined pattern indicating an

equal-weighted average across all maturities, suggesting an overall representation of the level

of commodity prices or returns. The pattern of the second factor reflects differing weights

between long and short maturities, effectively capturing the difference between long-term and

short-term levels by assigning negative weights to short-term prices or returns and positive

weights to long-term levels. Lastly, for the third factor, positive weights are assigned to

short and long maturities while negative weights are assigned to middle-matured contracts,

indicating the concavity of the overall term structure. In conclusion, the three PCA factors

effectively represent the level, slope, and curvature of commodity futures prices or returns,

thereby providing a representative description of the entire term structure.

PLEASE INSERT FIGURE 1 AROUND HERE.

Next, we investigate the relationship between the first three PCA components and various

commodity pricing factors studied in the existing literature through regression analysis. We

regress each PCA component as the dependent variable on the long-short portfolio returns

calculated in the previous section as the independent variables across all commodities. We
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multiply the second PCA factor value by a negative one to represent the slope which is the

difference between long and short-term levels. Moreover, we include commodity and year-

fixed effects through all regression analyses because individual commodities can have unique

characteristics and may be influenced differently over time. All standard errors are clustered

by commodity and year.

PLEASE INSERT TABLE 5 AROUND HERE.

Table 5 presents the results of regressions between each PCA component and commodity

risk factors. Columns 1-3 display the results for each PCA component based on log prices

and Columns 4-6 show the results for the changes in log prices. First, the signs of the coeffi-

cients show similar results for both log prices and the changes in log prices. Specifically, the

first PCA component exhibits a positive relationship with the S&P GSCI returns. Consid-

ering that the first component represents the average level across all maturities, the positive

relationship with the S&P GSCI which has the composition of major commodities is quite

reasonable. However, in the regression of the second component, the coefficients for the S&P

GSCI show statistically significant differences but different signs. This result suggests that

the market returns may be related differently to the level and changes in level. Excepting

this case, statistically significant coefficients exhibit consistent patterns. The momentum is

negatively related to slope, indicating that the effect of momentum is associated with reduc-

ing the price difference between short and long-term contracts. Moreover, given that a large

basis in our construction results in decreased returns, the negative relationship between the

second PCA component and basis aligns with the notion that basis generally represents slope

(Yang, 2013). Boons and Prado (2019) argue that basis-momentum reflects the slope and

curvature of commodity futures term structure, which is supported by the significantly pos-

itive relationship between basis-momentum and the second PCA. Furthermore, the negative

relationship between inflation beta and the first and second PCA components contradicts

the previous results that commodities sensitive to inflation show positive returns, suggesting
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the presence of multicollinearity among the factors.

4. Empirical results

4.1. Term structure estimation results

In this section, we analyze the results of term structure estimation. We estimate the

term structure using the first three PCA components based on log prices and investigate

the pricing errors between the fitted prices from the estimated term structure model and

the observed prices. Table 6 presents the time series properties of the pricing errors. In

addition to statistics for maturities of 3, 6, 12, 18, and 36 months, the table reports the

mean, standard deviation, maximum, and minimum statistics for all maturities in the last

four columns.

PLEASE INSERT TABLE 6 AROUND HERE.

Panel A displays the observations for each maturity, Panel B presents the mean of the

pricing errors, Panel C shows the standard deviation of the pricing errors, Panel D reports

the autocorrelation of order one for the pricing errors, and Panel E indicates the root mean

squared error(RMSE) for the pricing errors. Panel A provides the average observed values

for the selected maturities. For instance, crude oil (CL), gasoline (RB), heating oil (HO),

natural gas (NG), and copper (HG) have more than 100 observations up to a maturity of

36 months. This result implies that energy or agricultural futures generally have sufficient

observations for longer-term contracts, while softs or livestock futures contracts are rarely

traded for longer maturities.

Panel B displays the average of the pricing errors which is the difference between the

observed log prices and the fitted log prices for a given maturity. Although the mean of

pricing errors tends to increase slightly for longer maturities, it remains at relatively low

levels overall. The commodity with the largest pricing error is lean hogs(LH), showing a
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maximum error of $0.187 for the 12th maturity, but averaging $0.062. Most other com-

modities exhibit low levels of pricing errors. When seeing the standard deviation in Panel

C, these results suggest that pricing errors generally do not deviate significantly from their

average. Panel D illustrates the serial correlation of pricing errors. The result shows that

the average autocorrelation is approximately 0.69. The autocorrelation appears to increase

as the maturity is longer. This result may reflect a higher dependence on previous prices for

longer maturities due to low liquidity.

Finally, Panel E presents the average root mean squared error (RMSE) for the pricing

errors. While Panel B displays the average values of pricing errors, the average may under-

estimate the pricing errors as they can take both positive and negative values. Therefore,

the RMSE serves as a better indicator of how much the fitted values of the term structure

deviate from the actual observations. On average, the RMSE is $0.041, indicating an error

of less than $1.041 (e0.041 = 1.041) in terms of prices. Thus, the overall pricing errors are

quite small in the estimated regression-based term structure of commodity futures.

PLEASE INSERT FIGURE 2 AROUND HERE.

Figure 2 displays the time series of fitted and observed prices. Due to limited space, we

represent exemplary commodities with the smallest and largest RMSE from each commodity

category. The left panel of Figure 2 represents commodities with the smallest RMSE in each

category, while the right panel shows those with the largest RMSE. Specifically, we select

crude oil(CL, RMSE=0.025) and natural gas(NG, RMSE=0.144) in energy, soybean oil(BO,

RMSE=0.017) and corn(C, RMSE=0.064) in grains & oilseeds, live cattle(LC, RMSE=0.023)

and lean hogs(LH, RMSE=0.088) in livestock, cocoa(CC, RMSE=0.008) and cotton(CT,

RMSE = 0.034) in softs, and copper(HG, RMSE=0.016) and gold(GC, RMSE=0.024) for

metals. Because we use different maturities for each commodity futures to estimate the

term structure, each plot represents the time series of the m + 1th futures contract after

maturity m which is the maximum maturity used for the term structure estimation of the
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corresponding futures. For instance, for crude oil (CL), we display the prices of the tenth

maturity futures as the term structure is estimated using observations up to the first nine

months. The left panel plots reveal negligible differences between observed and fitted prices,

consistent with the lowest RMSE reported in Table 6. The right panel shows slightly more

errors compared to those on the left. Nevertheless, the overall movement of fitted prices

closely tracks the observed price trends over time. Moreover, for commodity corn(C), we

can observe the well-fitted prices even for periods with no observed data. Thus, based on

the above analysis, we confirm that the term structure model proposed in this paper can

effectively estimate the prices of individual commodity futures with small errors.

Next, we perform the goodness-of-fit tests on the estimated values. We conduct regression

analyses on each commodity futures contract from two dimensions. The objective is to

examine the extent to which the fitted prices explain the observed prices and to compare the

R-squares. First, we compute the R-squares from the time-series regression of observed prices

on fitted prices for each maturity, assessing how well the time-series variation is captured.

Second, we compute the R-squares from the cross-sectional regression of observed prices on

the fitted prices for maturities given date, evaluating how well the futures curve for a given

date is represented. Moreover, to assess the validity of the model, we separate the regression

analysis into two parts: one used for the estimation (In-sample: up to “Obs. mat.”) and the

other not used for the estimation (Out-of-sample: from “Obs. mat.”+1 to “Max. mat.”).

PLEASE INSERT TABLE 7 AROUND HERE.

Table 7 presents summary statistics of the R-squares obtained from the regression anal-

yses. Panel A provides a summary of the R-squares obtained from time-series regression,

which examines the extent to which the fitted prices explain the observed prices at specific

maturity. We perform the time-series regressions for each commodity at various maturities

and summarize the results for both in-sample and out-of-sample data. The statistics in the

left columns of the panel indicate that in most cases, the in-sample R-squares explain the
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time-series variation almost perfectly, with an average R-squares of 99.8% across all com-

modities. The average maximum and minimum R-squares are 99.9% and 99.6%, respectively.

Additionally, the standard deviation is extremely low, averaging at 0.001, indicating minimal

variability. In the right panel, we present a summary of R-squares for maturities beyond the

term structure estimation. Despite a slight decrease compared to the in-sample R-squares,

the average R-squares remain high at 94.3%. The finding that the average minimum R-

squares is 88.9% suggests that even in the out-of-sample period, the fitted prices successfully

capture the time-series variation of observed prices.

PLEASE INSERT FIGURE 3 AROUND HERE.

Figure 3 illustrates the regression parameters and R-squares obtained from the time-

series regressions, comparing the results from the in-sample (left panel) and out-of-sample

(right panel). For each maturity, the top row depicts the average R-squares, the second

row shows the average coefficient (β) for the fitted prices, and the last row illustrates the

average intercept (α). First, in the graph representing the R-squares at the top, the solid

line indicates the average R-squares and the dashed line represents the value of one. The

average R-squares for the in-sample closely approach one, and for the out-of-sample data,

they gradually decrease with maturity but still maintain substantial explanatory power.

Therefore, the fitted prices from the term-structure model can effectively capture the time-

series variation of the observed prices. Second, the second and third rows represent the

average α and β of the regressions, respectively, by maturity. If the fitted prices accurately

explain the observed prices, the αs should be close to zero, and the βs should be close

to one. The βs are consistently close to one, and αs remain nearly at zero for in-sample.

Although the results deviate slightly from expectations for out-of-sample, the deviations

are not significant. For instance, the βs in the second row show variation around one by

maturity, but they remain within the range of 0.96 to 1.02. Furthermore, the αs in the third

row mostly move within a range of 0.25, with the majority being near zero.
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Next, we examine the cross-sectional variation. The primary objective of this paper is to

estimate the term structure model. In this sense, estimating prices for longer maturities or

maturities with missing observations in some maturities for a given date may be more critical

than investigating the time-series variation. Panel B of Table 7 presents the cross-sectional

regression results. The left columns present the cross-sectional regression results using the

maturities employed in the term-structure estimation. The right columns represent the

results using observed prices and fitted prices for given maturities from the month following

those used for estimation up to the maximum observable maturity. Therefore, the in-sample

regression uses observations based on a minimum of six to a maximum of 12 maturities for

a specific date depending on the futures contract. The results on the right side are based on

a minimum of five to a maximum of 24 maturities. Then, the reported R-squares obtained

for each date are averaged. Hence, the results may be subject to small-sample bias due to

the potential for inaccuracy in conducting regressions with limited observations.

First, the average R-squares for all commodities in the in-sample stand at 86.5%. This

result indicates that the cross-sectional results still have a high level of explanatory power

although lower than the 99.8% reported in the time series results. On the other hand, the

out-of-sample R-squares decrease to an average of 68.5% but this varies across commodities.

Nevertheless, the average R-squares for other futures except some futures contracts(RB, NG,

C, S) show values above 77%. These results show that the cross-sectional regression results

are somewhat lower than the time-series regression results. However, the magnitude of the

errors in terms of prices is relatively small. Therefore, we conclude that the regression-based

term structure model accurately estimates the time-series variation for each given maturity

with minimal error. Nevertheless, minor estimation errors may exist in capturing the price

variation of different maturities. This result implies that our term structure estimation can

capture the overall time variations of individual futures but may have some errors in the

extent of price movements of longer maturities.
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PLEASE INSERT FIGURE 4 AROUND HERE.

Figure 4 illustrates the time-series variation of estimated parameters and R-squares from

the cross-sectional regression. The left panels depict the time-series plots of R-squares, β, and

α for the in-sample, while the right panels display those for the out-of-sample. The in-sample

results (left panel) demonstrate that R-squares mostly remain above 80%, βs are close to one,

and αs are nearly approaching zero. Thus, the maturities used for term structure estimation

exhibit highly accurate estimation results. Conversely, the out-of-sample R-squares show

considerable variation, yet consistently demonstrate explanatory power within the stable

range of 60–70%. Moreover, both αs and βs fluctuate around the desired values in the

out-of-sample. Although the out-of-sample results are volatile, one can overcome this issue

by including more observations from longer maturities when estimating the term structure.

Moreover, the cross-sectional regression exhibits slightly lower explanatory power than time-

series regression, but the statistics still maintain a high level of explanatory power and stable

coefficient values. Therefore, we can conclude that the regression-based term structure model

adequately reflects the actual term structure.

PLEASE INSERT FIGURE 5 AROUND HERE.

Next, Figure 5 illustrates the relationship between observed and fitted prices for the term

structures of individual commodity futures. The selected commodities are the same as those

chosen earlier. The selected months are those with the median R-squares for each futures

contract in 2023. Most figures exhibit that the fitted prices appear to closely match the

shape of the actual term structure except for some futures. Notably, the fitted prices are

well estimated for futures with a monotonic term structure shape. However, for Copper(HG)

and Gold(GC) in the final row, the fitted prices exhibit a pattern of increase followed by a

decrease, whereas the observed prices exhibit an upward trend. Nevertheless, this difference
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appears to be negligible when considering actual price differences. One possible reason for

such errors is that we use the entire observations to estimate coefficients of factor regressions,

which may not appropriately reflect the recent movements of the futures prices. In other

words, the slope of the term structure may be reversed or the weights on the curvature may

be changed during the sample period. One possible solution to address these issues could be

using data that reflects recent trends rather than the entire period or including more price

observations for longer contracts. Nevertheless, the estimated term structure can capture

individual futures characteristics such as seasonality or preferences for specific maturities

appearing in certain futures. For example, the fitted prices of natural gas (NS) correctly

reflect the seasonality of energy prices although there may be some errors. Moreover, the

fitted prices can also capture certain patterns that occur in live cattle(LC) or lean hogs (LH)

futures which exhibit higher prices in middle maturities. The model demonstrates excellent

performance for the in-sample but has some errors for longer maturities which are not used

for the estimation. Nevertheless, the model’s ability to produce the smallest errors for the

in-sample is a significant advantage. Therefore, we conclude that the regression-based term

structure model used in this paper can effectively capture the term structure shape reflecting

the overall characteristics of commodity futures.

We have examined the relationship between the fitted and the observed prices in both

the time and cross-sectional dimensions. Our findings suggest that the regression-based term

structure model appropriately captures the time-series variation across different maturities

and demonstrates reasonably good performance in capturing cross-sectional variation for

specific months. Basak and Pavlova (2016) posit in their theoretical models that the partic-

ipation of numerous institutional investors in the commodity futures market may cause an

increase in price volatility and trading volume since the early 2000s. Moreover, Henderson

et al. (2015) demonstrate that new types of derivatives like CLNs may induce uninformed

and predetermined flows into and out of futures contracts. These studies imply that the

observed futures prices may deviate temporarily from their fundamental value and the gap

23



between the fitted and actual prices may widen after the financialization. To investigate the

effect of the financialization, we first average the RMSEs for all maturities of each futures

contract on specific dates and then calculate the average RMSE for all futures contracts for

each date.

PLEASE INSERT FIGURE 6 AROUND HERE.

Figure 6 illustrates the time series of the average RMSEs for the 17 commodity futures

contracts. This figure illustrates that the RMSE varies over time. While the in-sample RM-

SEs are quite stable over time, the out-of-sample RMSEs increase after the 2000s, indicating

the potential impact of financialization. Hence, one of the possible factors contributing to

the observed cross-sectional errors in the out-of-sample might be the increased volatility in

actual prices due to the participation of financial institutions in the commodity futures mar-

kets. In other words, the increased involvement of financial institutions since the 2000s may

lead to greater volatility in actual prices, resulting in errors between model-predicted and

observed prices. This finding suggests that using only observations reflecting recent trends

over the past 10 or 20 years or including more observations from longer maturities can result

in accurate term structure estimates. Adrian et al. (2013) argue that the regression-based

term structure model can allow daily or even intraday observations. This argument suggests

that one can estimate the model with more frequent observations even with the relatively

short sample period.

4.2. Risk premium and factor risks

In this section, we explore how various risk factor returns can explain the estimated

risk premium from the model. Equation (9) shows that the total risk premium can be

expressed as B̂′
n−1(λ̂0 + λ̂1Xt) − 1

2
(B̂′

n−1Σ̂B̂
′
n−1 + σ̂2). As shown in Szymanowska et al.

(2014), the expected excess futures return can be represented as the sum of spot premium

and term premium. Therefore, we can calculate the total risk premium for each commodity
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by maturity using parameters estimated from the term structure model. Moreover, assuming

that the total premium of the first nearby contract represents the spot premium without the

term premium, we can interpret the difference between the total premium of subsequent

maturities and the spot premium as the term premium. Our regressions include commodity

and year-fixed effects to control for the commodity-specific characteristics and the changes

in premiums over time. All standard errors are doubly clustered for commodity and year.

PLEASE INSERT TABLE 8 AROUND HERE.

Table 8 presents the regression results of total risk premium on factor returns. The first

column presents the results for the entire period from December 1985 to December 2023.

Columns 2 and 3 present the results before and after the financialization, respectively. In

Column 1, the coefficient of the S&P GSCI returns is positively and statistically significant.

This finding is consistent with previous literature suggesting that the equal-weighted average

of commodity futures returns can explain individual commodity returns (Bodie and Rosan-

sky, 1980; Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). Next, the coefficient

for basis is negative and significant. This result is consistent with prior findings suggesting

that the smaller basis leads to larger expected commodity returns (Gorton et al., 2012; Yang,

2013; Szymanowska et al., 2014; Bakshi et al., 2019; Boons and Prado, 2019). The coefficient

for hedging pressure is also negative and significant. This result indicates that an increase

in demand for hedging may result in a decline in the expected returns.

Next, Column 2 presents the results of subsample analysis for the post-financialization

period, starting from 2004. During this period, we continue to observe a positive relationship

between the return of the S&P GSCI and total risk premiums. This finding is unsurprising

given that commodity futures in our sample are predominantly included in the S&P GSCI

index and tend to attract greater attention from institutional investors. In addition, the

coefficient for the value factor is positive and significant, suggesting a preference for value

premiums by investors after the financialization. On the other hand, Column 3 shows the
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analysis for the period before the financialization, revealing somewhat different patterns

compared to the post-financialization results. Specifically, during the pre-financialization

period, we observe positive results between inflation beta and risk premiums and negative

results between volatility and premiums. These findings suggest that factor returns related

to commodity risk premiums may differ before and after the financialization.

PLEASE INSERT TABLE 9 AROUND HERE.

Table 9 presents the regression results between spot premium and factor risk returns.

Column 1 indicates that momentum and volatility exhibit the highest relevance to spot pre-

mium during the entire sample period and are statistically positive and significant. Column

2 reveals that volatility is associated with spot premium after the financialization. On the

other hand, Column 3 shows that momentum, basis-momentum, inflation beta, and volatil-

ity are related to spot premium before the financialization. These results suggest that the

relationship between factor risk returns and spot premium may differ before and after fi-

nancialization. Regardless of the period, volatility emerges as the risk factor most closely

related to spot premium. However, the relationship with S&P GSCI return, which primarily

represents the market return, appears insignificant.

PLEASE INSERT TABLE 10 AROUND HERE.

Next, we conduct regression analyses between term premium and factor returns. Table

10 reports the results. The estimated term premiums range from the second nearby contract

to the 36th contract. The total term premiums are divided into four periods and analyzed

using the average for each period. Column 1 represents the segment with maturities of up

to six months, Column 2 covers maturities from 7 to 12 months, Column 3 encompasses

maturities from 13 to 24 months, and Column 4 includes maturities from 25 to 36 months as

the dependent variable. Column 1 indicates that only the value factor return is statistically
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significant. This finding suggests that factor returns may not significantly account for the

term premiums of short-term futures contracts. However, the term premiums of longer matu-

rities are positively and statistically associated with the S&P GSCI returns. As the maturity

increases, the value of the t-statistics becomes larger, indicating that the term premiums of

long-term futures contracts are strongly related to the market returns. An intriguing finding

is that the basis factor return becomes increasingly negative and significant with longer ma-

turities. This finding aligns with the definition of the basis as the price difference between

long and short-term futures. Moreover, the hedging pressure appears negative and statisti-

cally significant, implying that the compensation received from hedging pressure decreases

for longer-term futures contracts as hedging pressure increases. A notable distinction arises

between factor risk returns associated with spot premium and those associated with term

premium. While the spot premium is related to factors such as momentum or volatility

representing short-term movements and price risk, the term premiums are associated with

broader market movements and the characteristics of futures contracts such as basis. These

findings suggest that existing risk factors are differently related to the spot and the term

premiums.

PLEASE INSERT TABLE 11 AROUND HERE.

Table 11 presents the results of dividing the results in Table 10 into periods before and

after financialization. Columns 1-4 demonstrate the analyses for the period after financial-

ization, while Columns 5-8 present those before financialization. In Columns 1-4, the most

significant observation is the positive and significant relationship between S&P GSCI re-

turns and term premiums after financialization. This result implies that the term premium

becomes more closely associated with overall market returns due to the participation of in-

stitutional investors after the financialization. Moreover, the coefficients for the value factor

are statistically positive and significant, implying that the institutional investors’ investment

behavior responds to market-wide movements and value investments after financialization.

27



On the other hand, factors such as inflation and volatility are significantly related to the

term premiums before financialization. These results suggest that the term premiums on the

longer maturities may decline as volatility increases. Moreover, longer commodity futures

that are sensitive to inflation exhibit higher expected returns before the financialization,

as evidenced by the significant and positive coefficient on the inflation beta. Therefore,

the risk factors associated with commodity futures term premiums differ before and after

financialization.

Thus far, we have examined the relationship between total, spot, and term premiums

with the risk factors defined in the existing literature. The empirical results show that the

risk premium can be differently related to various risk factors depending on the period of

financialization and the type of premium. However, these results may not imply that other

factors are unimportant. As seen in the previous cross-sectional regression, the estimated

term structure model might contain some pricing errors. Nevertheless, a significant impli-

cation of this analysis is that each futures risk premium is related differently depending on

the type of the premium and the financialization period rather than uniformly sharing the

same risk factor. Moreover, these results suggest that all futures across different maturities

should share the same spot premium but the expected return on longer maturities having

additional term premiums can be determined by other risk factors that may be less related

to the spot premium.

5. Conclusion

In this paper, we apply a regression-based term structure model to estimate the term

structure of commodity futures. The main advantage of this model lies in its computa-

tional efficiency and flexibility to incorporate various risk factors, as well as its applicability

across various data frequencies (Adrian et al., 2013). The estimated results closely match

observed prices with minimal pricing errors. Furthermore, the model enables the estimation

of risk premiums, allowing us to analyze their relationships with existing factor risks through
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regression analysis.

We employ the first three PCA components as state variables to estimate the model.

Comparing the fitted with observed prices, we find small pricing errors between the two

prices at each maturity. Furthermore, when comparing the fitted and observed prices for all

maturities on specific dates, we observe that the pricing errors increase slightly with small

amounts compared to time series analysis. Overall, the estimated term structure accurately

captures the actual shape of the term structure for each date. Moreover, the estimated term

structure can appropriately capture the distinctive characteristics of individual commodity

futures. However, the presence of small pricing errors suggests the necessity of incorporating

commodity-specific factors in addition to the three PCA factors. One of the advantages

of the regression-based term structure model is that we can consider more factors beyond

PCA factors. In other words, we can potentially enhance the performance of term structure

estimation by accounting for additional characteristics of individual commodities, such as

seasonality.

Finally, we investigate whether the estimated risk premium from the model can be ex-

plained by existing factor risk returns through regression analysis. The results show that

momentum and volatility factor returns are associated with spot premium, while S&P GSCI

return, basis factor, and hedging pressure are associated with term premium. Furthermore,

factors such as S&P GSCI or value exhibit a closer relationship with term premiums after

the financialization period, whereas inflation beta or volatility demonstrate an association

with term premiums before financialization. These findings suggest that different risk factors

can explain the spot and term premiums in different ways. Moreover, these results imply

that different risk factors may also explain each premium in varying ways before and after

financialization.

In conclusion, the regression-based term structure model presented in this paper ef-

fectively captures the movements of commodity futures prices and the shape of the term

structure. The commodity futures markets are segmented into different categories and most
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trading is concentrated on the nearby contracts although the recent financialization results

in increasing trading volume. Nevertheless, we have demonstrated that the regression-based

term structure model can successfully estimate the actual term structure even with relatively

few observations. Employing the advantage of the regression-based term structure model,

researchers can achieve even lower errors in estimating the accurate term structure model by

adding commodity-specific risk factors or using daily or intraday-level data to capture the

recent trends of individual commodity futures.
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Table 1 Commodity futures data

This table displays 27 commodity futures, the categories they belong (Category), the exchange where they are
listed(Exchange), the exchange ticker(Ticker), the code in the Commitment of Traders reports available from
the Commodity Futures Trading Commission(CFTC code), the year-month of the first and last observations
in our sample(Start, End), the indicator of whether they are used for the term structure estimation(TS
Used). The commodity futures contracts are listed and traded on the Chicago Board of Trade(CBT), the
Chicago Mercantile Exchange(CME), the New York Commodity Exchange(COMEX), the Intercontinental
Exchange U.S.(ICE-US), and the New Tork Mercantile Exchange(NYMEX).

Category Commodity futures Exchange Ticker CFTC code Start End TS Used

Energy

Crude Oil NYMEX CL 067651 1983:03 2023:12 Yes
Gasoline NYMEX RB 111659 2005:10 2023:12 Yes
Heating Oil NYMEX HO 022651 1980:01 2023:12 Yes
Natural Gas NYMEX NG 023651 1990:04 2023:12 Yes

Grains & Oilseeds

Oats CBT O 004601, 004603 1973:01 2023:12
Rough Rice CBT RR 039601, 039781 1981:04 2023:12
Corn CBT C 002601, 002602 1973:01 2023:12 Yes
Soybeans CBT S 005601, 005602 1976:01 2023:12 Yes
Soybean Meal CBT SM 026603 1976:01 2023:12 Yes
Soybean Oil CBT BO 007601 1996:03 2023:12 Yes
Wheat CBT W 001601, 001602 1996:03 2023:12
Red Wheat CBT KW 001611, 001612 1980:01 2023:12

Livestock
Feeder Cattle CME FC 061641 1978:07 2023:12 Yes
Lean Hogs CME LH 054641, 054642 1976:01 2023:12 Yes
Live Cattle CME LC 057642 1980:01 2023:12 Yes

Softs

Lumber CME LB 058641, 058643 1978:07 2023:02
Milk CME DK 052642 2000:07 2023:12
Cocoa ICE-US CC 073732 1973:01 2023:12 Yes
Coffee ICE-US KC 083731 1979:11 2023:12 Yes
Cotton ICE-US CT 033661 1980:01 2023:12 Yes
Sugar ICE-US SB 080732 1973:01 2023:12
Orange Juice ICE-US OJ 040701 1973:01 2023:12

Metal

Gold COMEX GC 088691 1978:03 2023:12 Yes
Silver COMEX SI 084691 1973:01 2023:12 Yes
Copper COMEX HG 085691, 085692 1988:07 2023:12 Yes
Palladium NYMEX PA 075651 1980:01 2023:12
Platinum NYMEX PL 076651 1973:01 2023:12
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Table 2 Commodity futures sample for term structure estimation

This table lists 17 commodity futures used for the term structure estimation, and tabulates the categories
they belong (Category), the exchange where they are listed(Exchange), the starting year-month for the
term structure estimation period (Start), total observed months (#Month), maximum observable maturity
without missing values during the sample period (Obs.Mat.), maturities used for the term structure estima-
tion(Used Mat.), maximum maturities with at least 100 observations during the sample period(Max.Mat.).
All observations end in December 2023.

Category Commodity futures Ticker Start #Month Obs. Mat. Used Mat. Max Mat.

Energy

Crude Oil CL 1983:11 482 9 3,5,7,8,9 36
Gasoline RB 2005:10 219 12 3,5,7,9,12 36
Heating Oil HO 1985:10 459 10 3,5,6,8,10 36
Natural Gas NG 1990:04 405 11 3,5,7,9,11 36

Grains & Oilseed

Corn C 1978:04 549 6 3,4,5,6 15
Soybeans S 1978:10 543 7 3,4,5,7 20
Soybean Meal SM 1976:01 576 7 3,4,5,7 23
Soybean Oil BO 1996:03 334 9 3,5,7,8,9 24

Livestock
Feeder Cattle FC 1992:06 379 6 3,4,5,6 8
Lean Hogs LH 1976:01 576 7 3,4,5,7 12
Live Cattle LC 1983:01 492 6 3,4,5,6 9

Softs
Cocoa CC 1980:05 524 6 3,4,5,6 10
Coffee KC 1979:11 530 6 3,4,5,6 15
Cotton CT 1980:01 528 6 3,4,5,6 15

Metal
Gold GC 1979:10 531 12 3,5,7,9,12 21
Silver SI 1978:06 547 12 3,5,7,9,12 19
Copper HG 1988:09 424 11 3,5,7,9,11 36

36



Table 3 Commodity factor portfolios

This table presents the descriptive statistics for the period 1986.12 to 2023.12 of the S&P GSCI and the
commodity factor portfolios of the low, medium, high, and long-short portfolios(DIff.) computed based on
27 commodity futures contracts. The last column is the t-statistics for the differences in returns between
high- and low-portfolios. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Factor N Low Medium High Diff. t-stat

S&P GSCI 446 0.054
Momentum 446 −0.008 0.010 0.065 0.074∗∗ 2.181
Basis 446 0.223 −0.002 −0.145 −0.369∗∗∗ −11.906
Basis-Mom 446 −0.045 0.012 0.099 0.144∗∗∗ 4.796
Skewness 446 0.028 0.027 0.014 −0.014 −0.516
Inflation Beta 446 0.022 0.018 0.029 0.007 0.213
Volatility 446 0.028 0.027 0.014 −0.014 −0.516
Hedging Pressure 446 0.017 0.029 0.018 0.000 0.014
Open Interest 446 0.018 0.046 0.002 −0.016 −0.651
Value 446 0.149 −0.007 −0.076 −0.225∗∗∗ −6.737
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Table 4 Variance explained from principal component analysis

This table reports the proportion of variance explained by the first three components extracted from principal
component analysis (PCA). PCAk indicates the proportion explained by the k-th component, and PCA1-3
represents the cumulative proportion explained by the first three components. The first four columns present
statistics for PCA components extracted from log prices and the next four columns report those from changes
in log prices.

Commodity
PCA from log price PCA from changes in log price

PCA1 PCA2 PCA3 PCA1-3 PCA1 PCA2 PCA3 PCA1-3

CL 99.81% 0.18% 0.00% 100.00% 97.89% 1.93% 0.15% 99.97%
RB 96.43% 1.69% 1.39% 99.52% 86.52% 4.37% 3.14% 94.03%
HO 99.67% 0.25% 0.06% 99.98% 93.75% 4.01% 1.53% 99.30%
NG 97.05% 1.74% 0.70% 99.50% 73.30% 8.34% 6.59% 88.24%
C 98.97% 0.77% 0.17% 99.90% 91.21% 3.59% 2.85% 97.65%
S 99.30% 0.54% 0.12% 99.96% 94.16% 3.29% 1.40% 98.85%

SM 99.10% 0.76% 0.10% 99.96% 92.76% 4.80% 1.22% 98.79%
BO 99.71% 0.27% 0.02% 99.99% 98.07% 1.42% 0.28% 99.77%
FC 99.66% 0.29% 0.04% 99.98% 90.63% 5.33% 1.90% 97.86%
LH 92.54% 4.68% 1.86% 99.08% 50.66% 18.55% 12.64% 81.84%
LC 98.86% 0.73% 0.27% 99.85% 67.54% 12.00% 9.12% 88.66%
CC 99.74% 0.24% 0.02% 99.99% 98.19% 1.39% 0.29% 99.87%
KC 99.15% 0.81% 0.03% 99.99% 97.84% 1.68% 0.26% 99.78%
CT 96.39% 2.74% 0.47% 99.60% 85.51% 6.80% 3.37% 95.67%
GC 99.93% 0.07% 0.00% 100.00% 99.49% 0.39% 0.07% 99.95%
SI 99.90% 0.10% 0.00% 100.00% 99.21% 0.58% 0.12% 99.91%
HG 99.89% 0.10% 0.01% 100.00% 98.80% 0.97% 0.14% 99.91%
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Table 5 Regression analysis of principal components and factor risks

This table presents the regression results of each PCA component on factor risks. The dependent variables in
the first three columns are each PCA component extracted from log prices and those in the next three columns
are from changes in log prices. All independent variables are defined in the Appendix. All regressions include
year and commodity fixed effects. t-statistics based on standard errors double-clustered at the commodity
and year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

log price changes in log price
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3

S&P GSCI 0.237∗∗∗ −0.014∗∗ −0.003 1.624∗∗∗ 0.048∗ 0.016
(3.33) (−2.77) (−0.98) (5.87) (1.81) (1.42)

Momentum 0.040 −0.010∗∗ 0.002 −0.024 −0.040∗ −0.003
(1.16) (−2.43) (1.18) (−0.32) (−2.12) (−0.49)

Basis −0.005 −0.005 0.003 −0.113 −0.037∗∗∗ 0.021
(−0.14) (−0.65) (1.18) (−0.85) (−2.93) (1.12)

Basis-Mom 0.012 0.016∗∗∗ 0.003 −0.096 0.046∗∗∗ −0.010
(0.22) (3.34) (0.85) (−0.80) (2.99) (−0.78)

Skewness −0.048 0.003 −0.006 0.100 0.005 0.009
(−0.98) (0.60) (−1.05) (1.60) (0.33) (0.74)

Inflation Beta −0.076∗ −0.009∗ 0.001 −0.474∗∗∗ −0.043∗∗ 0.007
(−1.77) (−2.09) (0.48) (−3.11) (−2.22) (0.41)

Volatility −0.008 −0.003 −0.001 0.238∗∗ 0.018 0.020∗∗

(−0.40) (−1.08) (−0.23) (2.37) (0.88) (2.19)

Hedging Pressure −0.022 −0.007 0.008 −0.269∗ −0.031 0.015
(−0.72) (−1.28) (1.33) (−1.84) (−1.08) (0.96)

Order Imbalance 0.001 0.011∗ −0.001 −0.025 0.006 −0.010
(0.04) (2.02) (−0.15) (−0.29) (0.26) (−0.77)

Value 0.032 −0.002 −0.000 −0.080 0.002 −0.014
(0.83) (−0.79) (−0.01) (−0.75) (0.09) (−1.38)

Constant 0.133∗∗∗ −0.004∗∗∗ 0.001 −0.108∗∗∗ −0.017∗∗ 0.006
(41.80) (−5.99) (0.95) (−4.53) (−2.57) (1.35)

Commodity Fixed Yes Yes Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes Yes Yes
Observations 7, 113 7, 113 7, 113 7, 108 7, 108 7, 108
Adjusted R2 0.697 0.090 −0.000 0.171 0.003 −0.005
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Table 6 Summary of term structure model estimation

This table summarizes the time series statistics of the pricing errors. The first five columns report the
sample statistics for the selected maturities in 3, 6, 12, 18, and 36 months. The last four columns report the
summary statistics for maturities from 1 month to 36 months. Panel A reports the number of observations,
Panel B reports the average of pricing errors, Panel C reports the standard deviation of pricing errors, Panel
D reports the autocorrelation coefficient of order one, and Panel E reports the root mean squared errors.
The blank cells imply that there are no observations for the maturity in the month.

Commodity m= 3 m= 6 m= 12 m= 18 m= 36 Mean Std.Ev. Max Min

Panel A. Number of Observations

CL 482 482 442 410 215 397 73 482 215
RB 219 219 219 203 203 208 8 219 203
HO 459 459 448 344 170 309 131 459 170
NG 405 405 398 381 304 364 35 405 304
C 549 549 237 382 168 549 100
S 543 543 269 149 359 174 543 115
SM 576 576 289 192 357 180 576 111
BO 334 334 291 202 260 81 334 100
FC 379 379 369 26 379 304
LH 576 576 103 461 180 576 103
LC 492 492 427 115 492 209
CC 524 524 457 113 524 186
KC 530 530 194 357 169 530 113
CT 528 528 194 380 162 528 111
GC 531 531 531 393 458 112 531 159
SI 547 547 547 363 489 85 547 353
HG 424 424 419 373 160 319 118 424 160

Panel B. Average of log pricing errors

CL −0.000 0.000 0.000 0.002 0.038 0.004 0.007 0.038 −0.000
RB −0.007 −0.006 −0.008 −0.007 0.013 −0.002 0.007 0.013 −0.011
HO −0.004 −0.004 −0.004 0.003 0.048 0.017 0.021 0.048 −0.004
NG 0.004 −0.004 0.002 −0.037 −0.109 −0.048 0.045 0.004 −0.109
C 0.005 −0.005 −0.070 −0.041 0.047 0.007 −0.141
S −0.001 0.002 −0.031 −0.032 −0.017 0.016 0.002 −0.038
SM −0.003 −0.000 −0.015 0.035 0.012 0.026 0.067 −0.015
BO −0.001 −0.002 −0.004 −0.007 −0.003 0.003 0.000 −0.009
FC −0.005 −0.001 0.001 0.006 0.011 −0.006
LH 0.021 0.008 0.187 0.062 0.070 0.187 −0.001
LC −0.005 −0.004 −0.003 0.002 0.000 −0.005
CC −0.003 −0.003 −0.003 0.001 0.000 −0.005
KC −0.001 −0.001 0.000 −0.000 0.002 0.004 −0.004
CT −0.003 −0.005 0.001 −0.002 0.006 0.011 −0.009
GC −0.000 0.003 0.003 0.067 0.022 0.031 0.084 −0.000
SI −0.014 −0.013 −0.018 0.006 −0.010 0.008 0.009 −0.019
HG −0.000 −0.000 0.000 −0.000 0.034 0.009 0.013 0.034 −0.002

Panel C. Standard Deviation of log pricing errors

CL 0.002 0.002 0.007 0.018 0.050 0.024 0.022 0.069 0.001
RB 0.019 0.016 0.027 0.069 0.099 0.060 0.033 0.104 0.015
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Table 6 Summary of term structure model estimation - Continued

Commodity m= 3 m= 6 m= 12 m= 18 m= 36 Mean Std.Ev. Max Min

HO 0.013 0.009 0.038 0.071 0.104 0.057 0.034 0.104 0.006
NG 0.035 0.034 0.073 0.216 0.213 0.132 0.070 0.221 0.023
C 0.017 0.018 0.068 0.045 0.026 0.082 0.009
S 0.009 0.008 0.064 0.047 0.034 0.022 0.066 0.005
SM 0.010 0.008 0.066 0.049 0.038 0.022 0.072 0.006
BO 0.004 0.004 0.021 0.033 0.016 0.011 0.033 0.003
FC 0.006 0.005 0.009 0.006 0.019 0.003
LH 0.032 0.028 0.083 0.055 0.030 0.101 0.025
LC 0.014 0.015 0.023 0.012 0.042 0.008
CC 0.004 0.003 0.007 0.004 0.015 0.001
KC 0.004 0.004 0.024 0.014 0.009 0.030 0.003
CT 0.015 0.013 0.054 0.034 0.021 0.070 0.009
GC 0.001 0.002 0.002 0.029 0.010 0.012 0.036 0.001
SI 0.009 0.008 0.012 0.030 0.013 0.008 0.035 0.000
HG 0.003 0.002 0.004 0.013 0.031 0.011 0.009 0.031 0.001

Panel D. Autocorrelation coefficient of order one

CL 0.663 0.638 0.659 0.798 0.907 0.778 0.119 0.927 0.494
RB 0.163 0.050 0.556 0.844 0.919 0.638 0.349 0.928 −0.110
HO 0.707 0.655 0.848 0.916 0.941 0.856 0.119 0.942 0.537
NG 0.507 0.506 0.696 0.849 0.874 0.763 0.162 0.902 0.402
C 0.762 0.697 0.816 0.752 0.099 0.880 0.531
S 0.594 0.616 0.859 0.859 0.748 0.122 0.899 0.521
SM 0.660 0.547 0.835 0.772 0.723 0.137 0.869 0.356
BO 0.655 0.574 0.571 0.898 0.650 0.142 0.898 0.292
FC 0.322 0.525 0.493 0.208 0.721 0.185
LH 0.417 0.287 0.750 0.574 0.205 0.850 0.268
LC 0.530 0.578 0.627 0.140 0.810 0.397
CC 0.662 0.770 0.581 0.126 0.770 0.372
KC 0.527 0.550 0.754 0.632 0.148 0.838 0.357
CT 0.354 0.714 0.908 0.725 0.198 0.947 0.354
GC −0.187 0.886 0.896 0.902 0.658 0.418 0.950 −0.381
SI 0.862 0.905 0.955 0.915 0.869 0.117 0.955 0.465
HG 0.580 0.044 0.556 0.848 0.950 0.738 0.207 0.950 0.044

Panel E. Root Mean Squared Errors (RMSE)

CL 0.002 0.002 0.007 0.018 0.062 0.025 0.023 0.069 0.001
RB 0.020 0.017 0.028 0.069 0.100 0.060 0.032 0.104 0.016
HO 0.014 0.010 0.038 0.071 0.114 0.061 0.037 0.114 0.007
NG 0.035 0.034 0.073 0.219 0.239 0.144 0.078 0.239 0.024
C 0.018 0.019 0.098 0.064 0.050 0.162 0.009
S 0.009 0.008 0.071 0.056 0.039 0.026 0.074 0.005
SM 0.010 0.008 0.067 0.060 0.044 0.027 0.083 0.006
BO 0.005 0.004 0.022 0.033 0.017 0.011 0.033 0.003
FC 0.007 0.005 0.010 0.006 0.022 0.003
LH 0.038 0.029 0.204 0.088 0.071 0.204 0.025
LC 0.014 0.015 0.023 0.012 0.042 0.008
CC 0.005 0.005 0.008 0.004 0.015 0.001
KC 0.004 0.004 0.024 0.014 0.009 0.030 0.003
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Table 6 Summary of term structure model estimation - Continued

Commodity m= 3 m= 6 m= 12 m= 18 m= 36 Mean Std.Ev. Max Min

CT 0.015 0.014 0.054 0.034 0.020 0.070 0.009
GC 0.001 0.004 0.004 0.073 0.024 0.033 0.091 0.001
SI 0.017 0.015 0.021 0.030 0.019 0.007 0.036 0.000
HG 0.003 0.002 0.004 0.013 0.046 0.016 0.014 0.046 0.001
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Table 7 Summary of R-squares from the regression analysis

This table presents the results of regression analyses between observed prices and fitted prices. Panel A
shows the results of time-series regression conducted for each maturity across different commodities. Panel
B displays the results of cross-sectional regression performed for all maturities observable on each date across
various commodities. The “In-sample” refers to the sample period used for term-structure estimation (up to
“Obs.Mat.”). The “out-of-sample” denotes the sample period from the next maturity following the one used
for the term structure estimation, up to any maturities with at least 100 observations (from “Obs.Mat.”+1
to “Max.Mat.”).

Commodity
In-sample Out of sample

N Mean Std.Ev. Max Min N Mean Std.Ev. Max Min
Panel A. Time-series regression

CL 9 1.000 0.000 1.000 1.000 27 0.995 0.008 1.000 0.960
RB 12 0.995 0.003 0.997 0.987 24 0.905 0.046 0.974 0.830
HO 10 1.000 0.000 1.000 1.000 26 0.953 0.032 0.999 0.908
NG 11 0.994 0.002 0.998 0.991 25 0.843 0.061 0.978 0.754
C 6 0.997 0.002 0.999 0.994 9 0.940 0.053 0.989 0.827
S 7 0.999 0.000 1.000 0.999 13 0.948 0.031 0.995 0.887
SM 7 0.999 0.000 1.000 0.999 16 0.902 0.092 0.995 0.750
BO 9 1.000 0.000 1.000 1.000 15 0.994 0.002 1.000 0.991
FC 6 0.999 0.001 1.000 0.998 2 0.998 0.001 0.999 0.997
LH 7 0.988 0.003 0.992 0.983 5 0.731 0.143 0.928 0.619
LC 6 0.997 0.002 0.999 0.994 3 0.977 0.012 0.991 0.967
CC 6 1.000 0.000 1.000 0.999 4 0.999 0.001 1.000 0.998
KC 6 1.000 0.000 1.000 0.999 9 0.989 0.009 0.999 0.976
CT 6 0.995 0.003 0.999 0.989 9 0.859 0.109 0.981 0.700
GC 12 1.000 0.000 1.000 1.000 9 0.997 0.006 1.000 0.981
SI 12 1.000 0.000 1.000 1.000 7 0.999 0.001 1.000 0.997
HG 11 1.000 0.000 1.000 1.000 25 0.995 0.007 1.000 0.976

Total 8.4 0.998 0.001 0.999 0.996 13.4 0.943 0.036 0.990 0.889

Panel B. Cross-sectional regression

CL 482 0.984 0.067 1.000 0.088 452 0.774 0.289 1.000 0.000
RB 219 0.841 0.128 0.990 0.237 203 0.367 0.214 0.826 0.001
HO 459 0.883 0.161 1.000 0.031 443 0.609 0.332 1.000 0.000
NG 405 0.749 0.184 0.973 0.051 384 0.194 0.220 0.996 0.000
C 549 0.765 0.312 1.000 0.000 374 0.520 0.311 1.000 0.000
S 543 0.884 0.141 1.000 0.012 479 0.550 0.363 1.000 0.000
SM 576 0.890 0.173 0.999 0.001 484 0.678 0.329 1.000 0.000
BO 334 0.931 0.141 0.999 0.078 296 0.615 0.292 1.000 0.000
FC 379 0.793 0.207 0.997 0.001 285 1.000 0.000 1.000 1.000
LH 576 0.749 0.231 0.994 0.000 438 0.744 0.358 1.000 0.000
LC 492 0.687 0.252 0.970 0.000 245 0.652 0.356 1.000 0.000
CC 524 0.918 0.151 1.000 0.000 387 0.891 0.235 1.000 0.000
KC 530 0.969 0.077 1.000 0.366 297 0.930 0.166 1.000 0.001
CT 528 0.792 0.253 0.999 0.000 433 0.705 0.320 1.000 0.000
GC 531 0.997 0.008 1.000 0.839 418 0.632 0.327 1.000 0.001
SI 547 0.916 0.127 0.986 0.215 395 0.950 0.130 1.000 0.009
HG 424 0.959 0.106 1.000 0.006 409 0.842 0.229 1.000 0.000

Total 476.4 0.865 0.160 0.994 0.113 377.8 0.685 0.263 0.990 0.060
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Table 8 Regression analysis for the commodity futures risk premium

This table presents the results of the regression analysis of the total risk premium computed from the
estimated term structure model on factor risks. The dependent variable is the average of the estimated total
risk premium for each maturity. Column 1 presents the results for the entire period, Column 2 represents
the results for the period after financialization (post-2004), and Column 3 displays the results for the period
before financialization (pre-2004). All independent variables are defined in the Appendix. All regressions
include year and commodity fixed effects. t-statistics based on standard errors double-clustered at the
commodity and year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1%
level, respectively.

Whole Post 2004 Pre 2004

S&P GSCI 0.019∗∗ 0.022∗∗∗ 0.004
(2.79) (4.48) (0.16)

Momentum −0.006 0.012 −0.012
(−0.81) (1.09) (−0.78)

Basis −0.017∗ −0.020 −0.014
(−1.75) (−0.97) (−0.83)

Basis-Mom 0.001 −0.009 0.009
(0.07) (−0.42) (0.40)

Skewness −0.001 −0.002 0.003
(−0.09) (−0.09) (0.19)

Inflation Beta 0.001 −0.002 0.022∗∗

(0.25) (−0.23) (2.45)

Volatility −0.011 0.000 −0.036∗∗∗

(−1.19) (0.02) (−3.05)

Hedging Pressure −0.025∗ −0.023 −0.024
(−1.86) (−1.32) (−0.63)

Order Imbalance −0.001 0.015 −0.025
(−0.09) (0.78) (−1.16)

Value 0.008 0.021∗∗∗ −0.007
(1.28) (3.00) (−0.62)

Constant 0.164∗∗∗ 0.243∗∗∗ 0.058∗∗∗

(91.46) (42.71) (48.37)

Commodity Fixed Yes Yes Yes
Year Fixed Yes Yes Yes
Observations 7113 3867 3054
Adjusted R2 0.107 0.120 0.143
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Table 9 Regression analysis for the spot premium

This table presents the results of the regression analysis of the spot risk premium computed from the
estimated term structure model on factor risks. The spot risk premium represents the risk premium of the
first nearby futures contract. Column 1 presents the results for the entire period, Column 2 represents the
results for the period after financialization (post-2004), and Column 3 displays the results for the period
before financialization (pre-2004). All independent variables are defined in the Appendix. All regressions
include year and commodity fixed effects. t-statistics based on standard errors double-clustered at the
commodity and year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1%
level, respectively.

Whole Post 2004 Pre 2004

S&P GSCI 0.000 0.000 0.000
(0.87) (0.89) (0.78)

Momentum 0.001∗∗ 0.000 0.001∗

(2.57) (1.21) (1.89)

Basis 0.000 0.000 −0.000
(0.03) (0.19) (−0.41)

Basis-Mom −0.001 −0.000 −0.001∗

(−1.46) (−0.17) (−1.89)

Skewness −0.000 0.001 −0.001
(−0.03) (1.20) (−1.44)

Inflation Beta 0.000 0.000 0.000∗

(0.95) (0.33) (1.96)

Volatility 0.000∗∗ 0.000∗ 0.001∗∗∗

(2.21) (1.78) (4.86)

Hedging Pressure 0.000 0.001 −0.000
(0.51) (1.09) (−0.41)

Order Imbalance 0.000 0.001 0.000
(0.85) (1.35) (0.62)

Value 0.000 0.000 0.000
(0.93) (1.29) (0.69)

Constant −0.002∗∗∗ −0.006∗∗∗ 0.003∗∗∗

(−61.99) (−74.55) (48.00)

Commodity Fixed Yes Yes Yes
Year Fixed Yes Yes Yes
Observations 7113 3867 3054
Adjusted R2 0.242 0.344 0.140
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Table 10 Regression analysis for the term premium

This table presents the results of the regression analysis of the term premiums computed from the estimated
term structure model on factor risks. For each maturity, the term premium is calculated by subtracting the
spot risk premium from the total risk premium. The dependent variable in Column 1 represents the average
term premium from the second to the sixth maturity, in Column 2 from the seventh to the 12th maturity,
in Column 3 from the 13th to the 24th maturity, and in Column 4 from the 25th to the 36th maturity. All
independent variables are defined in the Appendix. All regressions include year and commodity fixed effects.
t-statistics based on standard errors double-clustered at the commodity and year level are in parentheses. *,
**, and *** denote significance at the 10%, 5%, and 1% level, respectively.

TP(2-6) TP(7-12) TP(13-24) TP(25-26)

S&P GSCI 0.004 0.003∗∗ 0.008∗∗ 0.008∗∗∗

(1.74) (2.19) (2.90) (3.03)

Momentum 0.000 −0.001 −0.002 −0.002
(0.45) (−0.73) (−0.90) (−0.73)

Basis −0.002 −0.003 −0.006∗ −0.007∗

(−1.06) (−1.29) (−1.85) (−2.03)

Basis-Mom −0.004 −0.000 0.001 0.001
(−1.13) (−0.04) (0.11) (0.18)

Skewness 0.000 −0.001 −0.000 −0.001
(0.02) (−0.19) (−0.02) (−0.13)

Inflation Beta 0.001 0.000 0.000 0.001
(0.71) (0.24) (0.24) (0.31)

Volatility −0.001 −0.002 −0.004 −0.004
(−0.60) (−1.24) (−1.13) (−1.22)

Hedging Pressure −0.004 −0.005∗ −0.009∗ −0.009∗

(−1.50) (−1.94) (−1.84) (−1.80)

Order Imbalance −0.002 −0.000 −0.000 −0.001
(−0.51) (−0.09) (−0.01) (−0.12)

Value 0.003∗ 0.002 0.003 0.003
(1.85) (1.22) (1.26) (1.27)

Constant 0.021∗∗∗ 0.030∗∗∗ 0.062∗∗∗ 0.067∗∗∗

(37.38) (77.71) (85.07) (107.82)

Commodity Fixed Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes
Observations 7113 7113 7113 7113
Adjusted R2 0.107 0.133 0.097 0.149
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Table 11 Subsample regression analysis for the term premium

This table presents the results of the regression analysis of the term premiums computed from the estimated
term structure model on factor risks for the entire period, post-financialization, and pre-financialization
periods. For each maturity, the term premium is calculated by subtracting the spot risk premium from the
total risk premium. The dependent variables in Columns 1 and 5 represent the average term premium from
the second to the sixth maturity, in Columns 2 and 6 from the seventh to the 12th maturity, in Columns 3 and
7 from the 13th to the 24th maturity, and in Columns 4 and 8 from the 25th to the 36th maturity. Columns
1-4 represent the results for the post-financialization period and Columns 5-8 display those for the pre-
financialization period. All independent variables are defined in the Appendix. All regressions include year
and commodity fixed effects. t-statistics based on standard errors double-clustered at the commodity and
year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Post 2004 Pre 2004

TP(2-6) TP(7-12) TP(13-24) TP(25-26) TP(2-6) TP(7-12) TP(13-24) TP(25-26)

S&P GSCI 0.004∗∗ 0.003∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.001 0.001 0.001 0.001
(2.15) (2.51) (5.46) (4.94) (0.31) (0.23) (0.12) (0.14)

Momentum 0.003 0.002 0.004 0.005 0.001 −0.002 −0.005 −0.005
(1.40) (0.96) (1.09) (1.14) (0.19) (−0.82) (−0.78) (−0.72)

Basis −0.003 −0.004 −0.008 −0.007 −0.003 −0.003 −0.005 −0.006
(−0.65) (−0.91) (−1.04) (−0.93) (−0.76) (−0.66) (−0.79) (−0.96)

Basis-Mom −0.004 −0.002 −0.003 −0.003 −0.003 0.001 0.004 0.005
(−1.37) (−0.41) (−0.42) (−0.36) (−0.50) (0.13) (0.48) (0.56)

Skewness 0.002 −0.001 0.000 −0.002 −0.001 0.001 0.001 0.002
(0.48) (−0.18) (0.06) (−0.22) (−0.39) (0.25) (0.11) (0.26)

Inflation Beta −0.000 −0.001 −0.001 −0.000 0.005∗∗ 0.005∗ 0.008∗∗ 0.008∗∗

(−0.02) (−0.37) (−0.24) (−0.10) (2.21) (2.12) (2.48) (2.64)

Volatility 0.001 0.000 0.000 −0.000 −0.005 −0.007∗∗∗ −0.013∗∗∗ −0.014∗∗∗

(0.43) (0.11) (0.06) (−0.10) (−1.62) (−3.11) (−2.99) (−2.97)

Hedging Pressure −0.003 −0.005 −0.008 −0.008 −0.008 −0.006 −0.009 −0.008
(−0.64) (−1.52) (−1.25) (−1.21) (−1.00) (−0.76) (−0.59) (−0.56)

Order Imbalance 0.002 0.003 0.006 0.006 −0.005 −0.005 −0.009 −0.010
(0.63) (0.74) (0.84) (0.78) (−1.11) (−1.10) (−1.07) (−1.24)

Value 0.004∗∗ 0.004∗∗ 0.008∗∗∗ 0.008∗∗ 0.001 −0.001 −0.003 −0.003
(2.24) (2.87) (3.00) (2.85) (0.38) (−0.32) (−0.74) (−0.75)

Constant 0.022∗∗∗ 0.043∗∗∗ 0.091∗∗∗ 0.101∗∗∗ 0.017∗∗∗ 0.012∗∗∗ 0.022∗∗∗ 0.021∗∗∗

(16.82) (36.96) (41.61) (49.25) (27.33) (29.24) (61.89) (50.43)

Commodity Fixed Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3867 3867 3867 3867 3054 3054 3054 3054
Adjusted R2 0.090 0.161 0.110 0.131 0.160 0.121 0.119 0.276
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Figure 1 Factor loadings from the principal component analysis. These figures show the factor loadings
of PCA for each commodity futures. The upper three panels illustrate the factor loadings of PCA for log
prices, while the bottom three panels represent the factor loadings of PCA for changes in log prices. The
first column shows the factor loadings for the first factor, the second column for the second factor, and the
third column for the third factor.
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Figure 2 Time series of fitted and observed prices. These figures illustrate the time series of the observed and
the fitted prices estimated by the term structure model for selected commodity futures. For each commodity
category, the left column illustrates graphs for the commodities with the lowest RMSE, while the right column
shows those with the highest RMSE. The solid lines represent the observed log prices, and the dashed lines
correspond to the fitted log prices.
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Figure 3 Cross-sectional averages of time series regression parameters. These figures present the average
coefficients and R-squares resulting from the time series regression of observed prices on fitted prices. The
time-series regression is performed for each commodity futures and maturity. The left panel illustrates the
in-sample results, while the right panel depicts the out-of-sample outcomes. The first row displays the
averages of R-squares(R2), the second row indicates the averages of the coefficients (β) for the fitted prices,
and the third row presents the averages of the intercepts (α) of the regressions. Solid lines represent the
averages of each variable. The dashed line in the first row represents a value of one, in the second row
represents one, and in the third row represents zero. The “In-sample” refers to the sample period used for
term-structure estimation (up to “Obs.Mat.”). The “out-of-sample” denotes the sample period from the next
maturity following the one used for the term structure estimation, up to any maturities with at least 100
observations (from “Obs.Mat.”+1 to “Max.Mat.”).
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Figure 4 Time series averages of cross-sectional regression parameters. These figures present the average
coefficients and R-squares resulting from the cross-sectional regression of observed prices on fitted prices.
The cross-sectional regression is performed for each commodity futures and date. The left panel illustrates
the in-sample results, while the right panel depicts the out-of-sample outcomes. The first row displays the
averages of R-squares(R2), the second row indicates the averages of the coefficients (β) for the fitted prices,
and the third row presents the averages of the intercepts (α) of the regressions. Solid lines represent the
averages of each variable. The dashed line in the first row represents a value of one, in the second row
represents one, and in the third row represents zero. The “In-sample” refers to the sample period used for
term-structure estimation (up to “Obs.Mat.”). The “out-of-sample” denotes the sample period from the next
maturity following the one used for the term structure estimation, up to any maturities with at least 100
observations (from “Obs.Mat.”+1 to “Max.Mat.”).
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Figure 5 Term structure of fitted and observed prices. These figures depict the fitted and observed term
structures for a specific month in 2023. The selected month for each commodity futures corresponds to the
month with the median value of R-squares from cross-sectional regressions of each month during 2023. For
each commodity category, the left column illustrates graphs for the commodities with the lowest RMSE,
while the right column shows those with the highest RMSE. The solid lines represent the observed log prices,
and the dashed lines correspond to the fitted log prices.
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Figure 6 Average root mean squared errors over time. This figure illustrates a time series plot of the average
root mean square errors (RMSE) of pricing errors. The RMSE for each futures contract is calculated by
using all available maturities with at least 100 observations for each date. The solid lines represent the
in-sample RMSE, and the dashed lines correspond to the out-of-sample RMSE.
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Appendix A. Commodity risk factors

Let F
(n)
t be the futures price for delivery at time t + n at time t. The monthly excess

returns at month t+ 1 are defined as R
(n−1)
t+1 = F

(n−1)
t+1 /F

(n)
t − 1. The definitions of variables

follow Sakkas and Tessaromatis (2020).

• Momentum: the cumulative excess returns of nearby futures contracts from the prior
12 months such that

∏t
s=t−11(1 +R

(1)
s )− 1.

• Basis: the price difference between the first- and the second-nearby futures such that
F

(2)
t /F

(1)
t − 1.

• Basis-Mom: the difference between momentum in a first- and second-nearby futures
such that

∏t
s=t−11

(
1 +R

(1)
s

)
−
∏t

s=t−11

(
1 +R

(2)
s

)
(Boons and Prado, 2019).

• Skewness: Pearson’s moment coefficient of skewness at t using the daily first-nearby

futures returns of the previous 12-months such that
1
D

∑D
d=1(R

(1)
d −µt)3

σ3
t

where D is the
number of daily observations, µt is the mean of returns, and σt is the standard deviation
of returns (Fernandez-Perez et al., 2018).

• Inflation Beta: the coefficient of the following regression of first-nearby futures on
unexpected inflation changes (∆CPI) in monthly inflation using the previous 60-month
observations (Szymanowska et al., 2014)

R(1)
s = α + βCPI

t ∆CPIs + es s = t− 59, · · · , t

• Volatility: the coefficient of variation, i.e., the variance divided by absolute mean first-
nearby futures returns during the prior 36 months such that σ2

t /|µt| (Dhume, 2011;
Szymanowska et al., 2014).

• Hedging Pressure: the difference between the number of short and number of long open
interests divided by the sum of open interests by commercial traders during the last
12 months (Kang et al., 2020) such that

11∑
i=0

Shortt−i − Longt−i

Shortt−i + Longt−i

• Order Imbalance: the monthly change in total open interest such that OIt − OIt−1

(Hong and Yogo, 2012; Szymanowska et al., 2014).

• Value: average futures price of the first nearby futures contracts from 4.5 to 5.5 years
ago divided by the futures price of the first nearby futures contract at time t (Asness
et al., 2013) such that F̄ (1)

t−54,t−66/F
(1)
t − 1 where F̄

(1)
t−54,t−66 is the average of the the first

nearby futures from 4.5 to 5.5 years.
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