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Abstract

This paper establishes an economic microfoundation for the ad hoc Auto-
mated Market Makers (AMMs) mechanism design on decentralized exchanges
(DEXs) in cryptocurrencies. First, we show that the current AMM mechani-
cally pools the heterogeneity between liquidity providers (LPs), leading to an
allocative inefficiency when accommodating the trading needs of DEX traders.
Using a social planner problem, we subsequently characterize the optimal
AMM that ensures efficient allocation for any group of heterogeneous LPs.
This optimal AMM is structured as a geometric mean of LPs’ utility prefer-
ences, with weights corresponding to their fractional ownership in the DEX.
Finally, we implement this optimal AMM as an equilibrium in a Nash bargain-
ing game among LPs and consider an extension where LPs are incentivized to
truthfully report their preferences, thereby addressing concerns about private
preference information in the implementation result.
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1 Introduction
In traditional financial markets, plenty of trading protocols, ranging from auctions and

limit order books to over-the-counter markets, have been successfully created and studied
by both practitioners and academics. The diversity among these trading mechanisms is
striking. However, a ubiquitous element unites these trading mechanisms: the presence
of trusted centralised financial intermediaries who control and manage critical aspects of
traders’ accounts, including funds and identity information.

In sharp contrast, the emergence of blockchain technology creates the possibility for
two parties to exchange crypto assets in a trustless and non-custodial fashion. By having
numerous computer nodes act as information validators, the public blockchain network en-
ables anonymous users to store, process, and transfer crypto assets in a decentralized man-
ner. This approach, however, faces practical challenges due to the well-known blockchain
scalability limitation. For instance, all unmatched limit orders must be stored, processed,
and broadcast to the entire blockchain network, making it impractical for sizable trading
activities on a public blockchain. Therefore, to facilitate trades on the blockchain, in-
dustrial practitioners created the Automated Market Maker (AMM) algorithmic system
and built the first crypto-decentralised exchanges (DEXs) upon it in mid-2020 to provide
market-making services. Nowadays, billions of dollars worth of trading activities take
place on DEXs every day.

AMM has changed the landscape of financial markets for its genuinely novel market-
making structure. On the liquidity supply side, it creates a liquidity pool by combining
cryptos staked by liquidity providers (LPs). On the liquidity demand side, DEX-users
or namely liquidity demanders (LDs) can instantly access the liquidity pool and trade
against it or, to put it differently, LDs can swap out one type of crypto from the pool by
swapping in other cryptos. AMM situated between LPs and LDs determines the exchange
rate. Noticeably, any crypto holders in the network can become LPs by depositing their
cryptos into the liquidity pool for trading fee income on a pro-rata basis.

Differing from precedent trading mechanisms in traditional financial markets, where
prices or asset exchange rates are formed through the competition between market-makers
via such as limit order books in equity markets or bilateral/multilateral bargaining in
OTC markets, AMM in a DEX determines exchange rates by ensuring that the reserves
of cryptos A and B in the pool remain invariant from pre-trade to post-trade2. Specifically,
suppose the reserves of cryptos A and B in the liquidity pool x and y respectively, then
the amount of crypto B, which we denote by ∆y, the LD has to swap into the pool for
swapping out any given ∆x amounts of crypto A is determined by solving the following
bonding curve condition:

uAMM(x, y) = uAMM(x−∆x, y +∆y),

2To ease notation, we consider the liquidity pool consist of pair of tokens. Generalizing our discussion
into more than three types of tokens in a liquidity pool is straightforward.
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where uAMM : R2 → R is often called a bonding curve function in the literature 3.
On the one hand, AMM, relying on this novel boding curve design, transforms DEX

into a liquidity crowd-sourced platform, provides unsophisticated crypto holders opportu-
nities to earn a market-making income, and offers LDs immediate access to the liquidity
pool. On the other hand, as highlighted in the literature on DEXs, implementing a
simplistic bonding curve design in the trading mechanism of DEXs exposes LPs to var-
ious risks such as arbitrage risk (Capponi and Jia 2021 [16]), front-running risk (Park
2021 [42]), adverse selection cost(Lehar and Parlour 2021 [36]; Aoyagi and Ito 2021 [6]),
etc. In response, we see various practices in improving the design of the bonding curve.
Leading design examples include Uniswap V2 with uAMM(x, y) = xy, Uniswap V3 with
uAMM(x, y) = (x+α)(y+β), Balancer with uAMM(x, y) = xwy1−w, and StableSwap with
uAMM(x, y) = x+ y, among others.

However, thus far, no existing study has definitively answered what the "optimal"
functional form of the bonding curve function uAMM should be. More importantly, as
an ad hoc design created by industrial practitioners, no existing study has ever provided
a microfoundation for this simplistic but ad hoc bonding curve function. The absence
of this economic interpretation raises many fundamental questions. For example, we
observe that the bonding curve only depends on the aggregate crypto reserves in the pool,
implying that, economically, the crypto deposited by each (potentially heterogeneous) LP
is pooled. Or equivalently, the bonding curve overlooks the fundamental heterogeneities
among LPs. This mechanical pooling practice, adopted by all current AMM trading
algorithms, is equivalent to an allocation rule known as proportionally fair allocation
(or pro-rata allocation). As we will show later in this paper, while LPs grouped in the
DEX are heterogeneous in their preferences, this allocation rule leads to a trade allocative
inefficiency in matching LPs and LDs in the AMM trading mechanism. With that said, we
have some fundamental questions to be answered: Why do we need an AMM built upon
a bonding curve that pools LPs’ heterogeneity in DEXs? Does an optimal AMM enable
efficient trade allocation to exist on a DEX, and if so, what will be the corresponding
bonding curve u⋆

AMM in this optimal AMM? Under what circumstances can we have this
optimal AMM implementable as an equilibrium within a DEX? Addressing these questions
above yields the main results of this paper.

We begin by showing that while LPs exhibit heterogeneity, a trade allocative effi-
ciency exists resulting from the proportional allocation rule in the bonding curve design.
Firstly, let us assume that each LP i is characterized by a utility preference function

3Note that, in practice, to incentivize LPs to stake cryptos A and B into the pool, LDs must pay not
only the number of cryptos to the pool but also some additional units of crypto B as a trading fee. Thus,
the actual AMM operation, incorporating the trading fee, is represented as:

uAMM (x, y) = uAMM (x−∆x, y + γ∆y), γ ∈ (0, 1]

where γ ∈ (0, 1] and thus, 1− γ ∈ [0, 1) represents the level of the trading fee paid by LD for exchanging
∆x units of cryptos A against the pool.
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ui(x, y), where (x, y) represents a bundle comprising x units of crypto A and y units of
crypto B. For each feasible trade (∆x,∆y), AMM will divide it into some smaller trades,
{(βi∆x, βi∆y)}i with

∑
i βi = 1, and allocate each LP i a trade (βi∆x, βi∆y), where βi

is LP i’s respective proportional ownership in the liquidity pool due to the propositional
allocation principle adopted by the AMM algorithm. It now becomes evident that the
current bonding curve algorithm, in conjunction with the propositional allocation rule,
takes into account LPs’ asymmetric liquidity ownership {βi}i but overlooks the hetero-
geneities in LPs’ utility preferences {ui}i. This simplistic algorithm, however, generates
a suboptimal trading mechanism in the sense that a trade allocative inefficiency arises
when LPs have heterogeneous preferences over how to absorb the trade request made by
LD4. Essentially, current AMM algorithms worked in DEXs trade off the fundamental
heterogeneities among LPs for absolute proportional allocation fairness.

The above suboptimality gives rise to a natural, important question: What is the
optimal trade allocation in the DEX whose liquidity pool is grouped by heterogeneous
LPs or to put it equivalently the optimal trading mechanism? To answer this, in this
paper, we consider a social planner problem: Let us assume there exists a benevolent
social planner with knowledge of LPs’ preferences and their liquidity ownership in the
DEX and the objective of this planner is to design such an allocation that minimises
the trading cost of LDs subject to LPs’ participation constraints. We find that in sharp
contrast to the proportionally fair allocation mentioned above, the social planner not
only just splits feasible trade (∆x,∆y) made by LDs into smaller trades but also strictly
follows LPs’ participation constraints. The latter indeed contains information about LPs’
heterogeneities in their liquidity ownership and their utility preferences. By solving this
social planner problem, we successfully characterise the optimal trading mechanism for a
DEX whose liquidity is contributed by a group of heterogeneous LPs.

Having obtained the optimal trading allocation for any given group of LPs, we then
aim to take one step further and explore the conditions under which one can equate
this socially optimal trading mechanism for a group of heterogeneous LPs to a trading
mechanism for a single LP representative. We consider such an equivalence since if there
exists a way to aggregate a group of heterogeneous LPs as a single LP representative, one
can then naturally interpret the resulting preference function of this LP representative
(if exists) as the bonding curve function we look for. This, therefore, rationalises the
ad-hoc bonding curve design adopted by a DEX platform whose owners are a group of
heterogeneous LPs. Indeed, as the second main result in this paper, we show later that
under a mild condition, the resulting preference function of the LP representative exists
and it reads as

u⋆
AMM := Πn

i=1u
βi

i ,

4However, it is noteworthy that in the trivial case in which LPs are homogeneous in their preference,
say ui(x, y) ≡ u(x, y), the AMM trading mechanism which utilises u as its bonding curve function design
is still efficient even under the propositional fair allocation rule.
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where {ui}ni=1 are utility preferences of LPs.
The resulting u⋆

AMM structures as a weighted product of the utility preference of
LPs and the weight assigned to each LP i’s preference ui equals her respective liquidity
ownership in the liquidity pool βi

5. To grasp some economic intuition on this result,
one can consider two simple DEX environments. First, if LPs are homogeneous in their
preference, say ui(x, y) ≡ u(x, y) (but ownership can be heterogeneous), then trivially but
heuristically, the optimal bonding curve to be implemented in the DEX should be this
homogeneous preference u(x, y), independently of LPs’ heterogeneous liquidity ownership,
which is therefore confirmed by our u⋆

AMM as
∑

i βi = 1. Another simple but nontrivial
example is to consider a liquidity pool grouped by a whale LP and a small LP. Intuitively,
due to the imbalanced liquidity contribution to the pool, one should conjecture that the
optimal bonding curve accommodates the preference of the whale LP mainly, rather than
the small LP. Once again, our u⋆

AMM with a weighted product structure confirms such a
conjecture, as u⋆

AMM always assigns a dominant weight on the preference of LP who has
dominant liquidity ownership in the pool, say the whale LP in this example.

Given this optimal bonding curve design u⋆
AMM , the next question we address in this

paper is how to implement it as an equilibrium in a game among LPs. By assuming
that LPs can bargain and negotiate how to absorb and allocate the trade request made
by outside DEX-users, i.e., liquidity demanders, we show that a non-cooperative Nash
bargaining game among LPs implements the socially optimal allocation or to put it dif-
ferently the optimal bonding curve functional u⋆

AMM . We choose this Nash bargaining
game as our implementation modelling framework for two primary reasons. Firstly, in
practice, the decision-making process in the community of a DEX closely resembles a
"propose then vote" governance procedure, which is the exact game structure adopted by
most Nash bargaining games.

Secondly, the concept of a weighted product of players’ (LP’s) preferences is not new
but known as the Nash social welfare function in economic literature, originating from the
remarkable work of Nash (1950)[40]. In this work, Nash characterized the equilibrium of a
two-person bargaining game by considering the product of two agents’ utility preferences.
Subsequent literature on social choice problems built upon Nash’s work has extended it
into more general cases such as the N-person bargaining game. Heuristically, Nash social
welfare function selects the social outcome by balancing society members’ preferences
and their "importance" to the society, say, equivalently, their bargaining powers. In
our DEX community case, this importance/bargaining power of each LP is naturally
represented by her liquidity ownership of the pool. This key observation provides insight
into why the optimal bonding curve function u⋆

AMM we derived has the weighted-product
structure. As a result, we prove that the optimal bonding curve design in a DEX grouped

5Strictly speaking, we cannot multiply {ui}ni=1 in the way as if they are real numbers. The rigorous
definition of this weighted product is to comprehend the LP representative as an aggregate consumer,
more details specified later in the paper.
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by heterogeneous LPs can be implemented as an equilibrium in a bargaining game among
LPs, where the bargaining power assigned to each LP equals her fractional ownership
of the pool. Technically, the bargaining power reflects the probability of each LP being
selected as the proposer in each round of the game. The higher the chance of being
selected as proposer, the higher the expected utility payoff this LP can gain from the
game, which, in turn, corresponds to the weight on her preference function.

In the first extension of this paper, we study the competition between multiple sym-
metric DEX trading platforms and prove the existence of a unique symmetric equilibrium
under this oligopolistic competition model. In this equilibrium, DEX platforms are com-
pelled to provide an efficient pricing schedule as they compete in a Bertrand-style manner
of supplying liquidity for DEX traders. This finding may shed light on the DEX market
fragmentation observed in cryptocurrencies, where LPs stake their liquidity across multi-
ple liquidity pools and LDs trade against multiple liquidity pools. In the second extension
of this paper, we address the concern regarding the public information assumption on the
preference functions of LPs in the implementation result. Specifically, Nash bargaining
game described in our implementation result relies on that preferences of LPs are public
information. Unlike the ownership information that is observable in the DEX as they are
just the number of cryptos staked by each LP to the total number in the liquidity pool,
the information about the preference profile of LPs is impossible to learn for mechanism
designers. Due to that, we show that adding a preference-reporting stage where each LP
has to report her preference prior to entering the Nash bargaining game can resolve this
concern. In this preference-reporting game, each LP’s respective payoff is determined by
the preference reported by herself as well as the preferences reported by other LPs. Having
the objective of this preference-reporting as by maximising the Nash social welfare among
LPs, we show that truthfully reporting preference is a dominant strategy for every LP
in this game, which, therefore, resolves the concern about how to obtain LPs’ preference
profile information in our aforementioned implementation result.

The rest of this paper proceeds as follows. Section 2 reviews the literature, along
with the contribution of this paper. Section 3 presents the basics of our DEX economic
environment and the allocative inefficiency in the DEX trading platform due to the imple-
mentation of the current AMM mechanism design. In section 4, by studying a benchmark
social planner problem, we first characterise the optimal trading mechanism at a DEX
in the presence of a group of heterogeneous LPs. We subsequently show the existence
of an optimal bonding curve design that replicates the aforementioned socially optimal
trading mechanism. Section 5 proves that the optimal bonding curve design we derived
in section 4 is implementable as a bargaining game equilibrium between LPs. Section 6
considers the competition between DEXs, explaining the liquidity fragmentation in the
DEX economy. Section 7 deals with the public information concern on the preference of
LPs in our implementation result. Section 8 concludes. Proofs omitted in the main part
of the paper are provided in the Appendix.
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2 Related Literature
This paper contributes to the rapidly expanding literature on blockchain and decen-

tralized finance. Reviews by Chen, Cong, and Xiao (2021)[19], Harvey, Ramachandran,
and Santoro (2021)[30] and John, Leonid and Saleh (2022)[33] provide comprehensive
insights into the broader landscape. From the market quality perspective of DEXs, vari-
ous studies contribute complementary findings. For instance, Park (2021)[42] focuses on
front-running risks to liquidity providers, while Barbon and Ranoaldo (2021)[9] argue that
DEXs exhibit lower liquidity and price inefficiency compared to centralized exchanges. Fo-
ley, O’Neil, and Putnins (2023)[24] question the empirical superiority of AMM bonding
curve functions as a market design, finding improved trading efficiency for specific asset
characteristics. Lehar and Parlour (2021)[36] and Aoyagi (2020)[5] consider the case where
LPs as passive investors are exposed to informed traders due to asymmetric information.
Capponi and Jia (2021)[16] show that the pre-coded bonding curve at a DEX allows arbi-
trageurs to extract profit from LPs even in a public information environment. Our work
here highlights that even if in a public information environment without any arbitrageurs,
the ex-ante pre-coded bonding curve smart contract itself can still cause inefficiency as it
pools LPs’ heterogeneity and misallocates asset between LPs.

Noticeably, Capponi and Jia (2021)[16] find that the curvature of the bonding curve
function is a key characteristic to be designed at a DEX for achieving maximum social
welfare. Carre and Gabriel (2022)[17] and Rivera, Saleh and Vandeweyer (2023)[43] study
the optimally programmable interest rate rule in decentralised lending platform. In con-
trast to existing literature, our work takes a unique step by directly investigating the
trading mechanism design problem from a social planner perspective, while all prior stud-
ies predominantly accept the algorithmic trading mechanism as given (say, bonding curve
in DEX and utilization setting in DeFi lending protocol). Our work here provides an eco-
nomic microfoundation for these ad hoc trading mechanisms. We explore the conditions
under which a bonding-curve-based function can serve as an optimal trading mechanism
at a DEX, addressing a significant gap in the current literature focused on DEX design.

We also find several studies that try to understand the "optimal" design of a bonding
curve function at DEXs from financial engineering and computer science perspectives.
Leading examples include Angeris, Evans and Chitra (2021)[4], Bichuch and Zachary
(2022)[12], Schlegel et al. (2022)[45], Goyal et al. (2023)[25] and Angeris et al. (2023)[3].
The main focus of these papers is to find a mathematical axiomatic framework that can
encompass and generalize the geometric properties in bonding curve functions. Taking
Angeris, Evans and Chitra (2021)[4] as an example, they find that having a concave,
nonnegative, nondecreasing, and homothetic payoff function to LPs is "equivalent" to
setting a concave, nonnegative, nondecreasing, and homothetic bonding curve function at
DEXs6. Due to the popularity of these properties in algorithm trading programs, we may

6Mathematically speaking, the "equivalence" here means that LP’s payoff function and the bonding
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not be too surprised that most of the well-known bonding curves have such nice properties
as they are mainly created by blockchain practitioners as well. Our work here, however,
studies the bonding curve optimality problem from a game theory perspective.

Due to the emergence of DEXs, the current financial market in cryptocurrencies has
experienced market liquidity fragmentation, and relevant literature on this crypto plat-
form competition is scarce but gradually expanding. Lehar and Parlour (2021)[36] develop
a competition framework between a DEX (Uniswap which utilizes AMM) and a CEX (Bi-
nance which utilizes limit order books) and compare LPs’ return on either of them. Aoyagi
and Ito (2021)[6] study the platform choice decision made by informed traders, assuming
a DEX and a CEX coexist in the economy. Hasbrouck, Rivera and Saleh (2022)[31] study
the effect of increasing trading fees at a DEX on its equilibrium trading volume, provided
the existence of a given competing CEX. Han, Huang, and Zhong (2022)[27] empirically
study interactions between a DEX and a CEX and show that DEX can help reveal the
consensus on the value of the cryptocurrency. Our model complements the above stud-
ies by developing a theoretical framework to analyse the platform competition problem
incorporating oligopolistic DEXs, rather than a single DEX platform like other studies.
This inter-DEX competition is crucial for determining the market quality in crypto and
market participants’ incentives. We show that confronted with oligopolistic DEXs, LPs
will strategically multi-home their assets at different DEXs in our model. This will reduce
each DEX’s market depth but enable liquidity demanders to better diversify their trading
needs. By expecting that, both LPs and liquidity demanders will multi-home at all DEXs,
which creates the market segmentation endogenously. Such market fragmentation equi-
librium could be welfare-improved in our model. This result is related to the branch of
the broader literature on market fragmentation. Leading papers studying the implication
of market fragmentation in traditional financial markets include Malamud and Rostek
(2017)[38], Chen and Duffie (2020)[18], Babus and Parlatore (2022)[8], among a few.

The implementation result in this paper contributes to the literature on how blockchain
technology-backed protocols achieve decentralised consensus. Noticeable contributions in
this direction in Bitcoin’s protocol include such as Abadi and Brunnermeier (2018)[1],
Biais et al. (2019)[10], Leshno and Strack (2020)[37] and Cong, He and Li (2021)[21].
However, DEXs are built on open-source smart contracts systems such as Ethereum and
Tezos, in the sense that the consensus of any platform design is facilitated through a
decentralised manner, say, communication and collaboration between community mem-
bers such as LPs at a DEX7. Existing literature has little to say about how the decision
is made by blockchain society members in a decentralised manner. Exceptions include
Aoyagi and Ito (2022)[7], Sockin and Xiong (2023)[46] and Han et al. (2023). Aoyagi
and Ito (2022)[7] focus on the equilibrium trading fee as the key characteristic to be im-

curve function are Fenchel conjugates of each other.
7The details of how smart contracts system implements such “decentralised" platform feature can

be found in, for examples, Warren and Bandeali (2017)[48], Zhang et al. (2018)[49] and Adams et al.
(2021)[2]
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plemented between members in a decentralised platform. Sockin and Xiong (2023)[46]
examine whether decentralising ownership can be an innovation to resolve the conflict
between platforms and users. Han et al. (2023)[28] point out the interest conflict between
the large ("whale") and small token holders in a decentralised autonomous organisation
(DAO). Our implementation result contributes to this literature by suggesting an explicit
negotiation and communication process, which not only resembles the typical "propose
and vote" processes in most DAOs but also incorporates decentralised ownership. Further-
more, we provide this decentralised negotiation process with a rigorous game theoretical
foundation (i.e., the asymmetric noncooperative Nash bargaining game).

3 Basics
In this paper, we analyse a trading mechanism design problem at a cryptocurrency

decentralised exchange (DEX). For simplicity, the crypto tokens traded at this DEX are
tokens A and B. Moreover, without loss of generality, we let token A have an intrinsic
value of p ∈ R+ against token B, a common knowledge known by all agents in the market8.

Market structure The market structure of a DEX trading platform typically con-
sists of three main components: the liquidity pool, liquidity providers (LPs), and DEX
traders. The liquidity pool, positioned between DEX traders and LPs, contains tokens
staked by LPs who are on the liquidity supply side of the DEX. They are incentivized to
deposit tokens into the liquidity pool primarily for the trading fees charged on the trad-
ing activities carried out by DEX traders. Consequently, DEX traders are situated on
the liquidity demand side of the DEX platform and we refer to DEX traders as liquidity
demanders (LDs) for expository convenience. The novelty of this DEX market structure
lies in the presence of the liquidity pool, which allows any token holders in the network to
trade instantly, eliminating the prevalent search friction in traditional financial markets
where matching trading partners is required.

Market participants. As for the specific types of DEX market participants (LPs
and LDs), formally, we have:

1. LPs indexed by i ∈ I are investors who can participate in any DEXs and become
the fractional owner of the liquidity pool by staking some crypto there;

2. The LD is a trader who wants to fulfil her trading needs at the DEX.

The trading motivations of DEX traders are exogenously given here. We assume
there is a signal θ privately received by each LD and such a signal directly determines a

8It is noteworthy that the DEX in practice, e.g. Uniswap 3, can contain more than one liquidity pool
for the trading related to each pair of cryptos A and B. This design enables each pool associated with
a specific level of trading fee. The main focus of this paper, however, is the trading mechanism design.
Therefore, for simplicity, we only consider the DEX platform whose structure is restricted to one pool.
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token-A purchasing need q(θ). For simplicity, let us assume that q̇(θ)>0. Possible ways
to endogenize this signal can be either from the margin call of LD’s customers or some
hedging requirements. Then one can naturally interpret θ as the inventory holding of the
LD9.θ is privately observed by the LD but has a commonly known distribution over [θ, θ]
with a CDF F . We parameterise the type of LD based on her signal θ.

Preference functions. Next, let us specify the heterogeneity between LPs at the
DEX platform. As one of the most fundamental (and the cleanest) ways, we directly
assume that LPs are heterogeneous in their preference function u, a mapping defined as
follows:

u : R2
+ −→ R+.

By interpreting (x, y) as a tokens bundle consisting of x units of crypto A and y units
of crypto B, we then naturally have the value u(x, y) as the level of utility an agent can
derive from consuming this bundle of tokens. This modelling device, based on agents’
preferences, is also adopted by Sockin and Xiong (2023), where the authors assume that
digital platform users, with a Cobb-Douglas utility preference over two complementary
tokens, can derive utility from consuming token bundles. Such an economic intuition
applies to our setting as well, leading to heterogeneous LPs and LDs finding it maybe
profitable to interact with each other via a liquidity pool, whether by staking or swapping
tokens.

In sharp contrast to Sockin and Xiong (2023), we do not impose a specific Cobb-
Douglas utility preference in this paper. Instead, we assume that the utility preferences
of LPs are given by {ui}i∈I , where {ui}i∈I are allowed to be potentially heterogeneous.
Regarding the utility preferences of LDs, as mentioned earlier, each LD has a signal-
related trading need q(θ). To capture the impact of this signal θ on her trading at the
DEX, we assume that a θ-type LD can derive a utility benefit from purchasing q(θ) shares
of crypto A given by u(q; θ).

Trading mechanism design variable. Having introduced the preferences of LPs
and LDs, we now turn to the specification of the current DEX trading mechanism designs
in practice. Unlike market makers in traditional financial markets where they compete in
posting pricing schedules, in the current DEX practices, LPs participating in any DEX
platform have to accept a pre-determined DEX pricing—the Automated Market Maker
mechanism (AMM). Denoting by R = (x, y) the liquidity pool whose respective reserves
on crypto A and B are x and y, we can then represent a typical AMM trading mechanism
by a real-valued mapping whose domain is the token reserves in the liquidity pool:

uAMM : R ⊆ R2
+ → R+.

9For more details about the role of this signal, readers can go to section 6 of this paper where we
explicitly model signal θ as the inventory holding of LDs.
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In this AMM mechanism or uAMM , it proceeds any token-A purchasing trade ∆x made
by the LD if the amount of token B paid by the LD, which we denote as ∆y, satisfies the
following rule:

uAMM(x−∆x, y +∆y) = uAMM(x, y). (1)

Given that, in this paper, we also refer to the AMM as a bonding curve, another
popular term used in the literature on DEXs. Moreover, it is not hard to see that any
AMM mechanism design uAMM as specified above is equivalent to some pricing schedule
T as defined below:

T : R+ → R+,

where T (·) states that a trader can swap out q := ∆x shares of crypto A from the liquidity
pool in the DEX if at least T (q) := ∆y shares of crypto B are swapped into this pool.

Note that our pricing schedule T (·) representation is general. For instance, the limit
order books trading mechanism in centralised equity exchanges can be written as

T (q) =

∫ q

0

t(z)dz,

where t(z) is the marginal money cost of purchasing the zth unit of an asset. Another
example is an Over-the-Counter (OTC) market where dealers compete to provide liquidity
to traders. It is evident that a dealer with a preference function u(x, y) will be willing to
trade q shares of asset A with a trader only if the money (asset B) transfer T (q) paid by
the trader satisfies that u(x− q, y+∆(q)) ≥ u(x, y). Consequently, we see that the quote
∆(q) provided by the dealer effectively functions as a pricing schedule T (q) := ∆(q).

Mechanism design problem in the DEX The DEX mechanism design problem
in each DEX platform is twofold.

First, confronted with the liquidity provision competition from other platforms, in-
cluding both other DEXs and centralized exchanges (CEXs), LPs in each DEX platform
have to determine a pricing schedule design that offers competitive pricing for upcoming
DEX traders. During this process, LPs also face heterogeneous participation constraints
due to their preference heterogeneity. Taking these two factors into account naturally de-
fines the mechanism design problem faced by LPs in a DEX: they have to design a pricing
schedule at an ex-ante stage to maximise LD’s trading payoff. Such a mechanism design
problem in the context of DEX indeed follows the spirit of the optimal trading mecha-
nism problem defined in Biais et al. (2000)[11] and Holmström and Myerson (1983) [32]:
a social planner has to choose an optimal trading mechanism to maximize traders’ utility
at an ex-ante stage, subject to marker maker’s participation constraints. We, therefore,
can define a similar social planner problem for LPs as their papers, interpreting LPs in
the DEX as passive market makers. Consequently, we characterise the optimal pricing
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schedule, resulting from the solution of our planner problem, which archives the allocative
efficiency in matching LDs and LPs on the DEX.

Second, the DEX platform—one of the most successful decentralized autonomous or-
ganizations (DAOs)—operates without a central leadership and is collectively managed
by its members (LPs), who hold economic rights proportional to their staked liquidity
in the liquidity pool. This decentralized decision-making process in the DEX governance
scheme makes the implementation of the optimal trading mechanism solution derived from
the aforementioned social planner problem non-trivial, especially when accounting for the
potential preference heterogeneity among LPs. To this end, we introduce a bargaining
framework into the DEX governance scheme, allowing LPs with heterogeneous preferences
and asymmetric liquidity pool ownership to propose and vote on the trading mechanism
to be implemented on the platform. Having the bargaining power of each LP precisely
equal to her liquidity ownership in the liquidity pool, we show that our optimal trad-
ing mechanism defined by the social planner problem is implementable as an equilibrium
between LPs.

We conclude this section by noting that the current AMM mechanism on most DEXs,
as an ad hoc industrial practice, relies on the bonding curve design (1). However, this
design may not ultimately lead to T ⋆, the socially optimal mechanism achieving a trading
allocative efficiency. The main rationale behind this conjecture is due to the observation
that, in order to maintain algorithmic simplicity in the bonding curve design, the AMM
allocates each trade between LDs and LPs in a proportional allocation principle. However,
this principle only focuses on the asymmetry between LPs in their liquidity ownership in
the liquidity pool but mechanically pools their heterogeneity in preference, thereby yield-
ing a trade allocative inefficiency. This key observation raises an important, unanswered
question: what is the cost of pooling LPs for the sake of a simplistic AMM/bonding
curve algorithm? Therefore, before presenting the optimal pricing schedule T ⋆ and its
implementation result, we have to answer this question first and begin the analysis in the
next subsection by investigating the exact role of this proportional allocation principle in
executing trades at DEXs.

3.1 The Proportional Allocation Principle in DEX Platforms

As mentioned earlier, a DEX follows the typical DAO feature, ensuring that each
LP can exercise some governance control over the liquidity pool entirely determined by
her liquidity ownership to the pool. Specifically, suppose each LP i ∈ {1, ..., n} stakes a
bundle of tokens A and B (xi, yi) into the liquidity pool. According to the ’one token,
one right’ principle (i.e., the proportional allocation principle) in DAOs, the respective
fractional ownership LP i has over this liquidity pool is then calculated as follows:
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βi :=
pxi + yi∑n

j=1(pxj + yj)
,

where p > 0 is the commonly known value of crypto A against crypto B10.
Trivially, the ownership vector {βi}i satisfies

∑n
i=1 βi = 1. Beyond this, it plays an

essential role in the DEX ecosystem with automated market making. For instance, given
the ownership vector {βi}i,

1. each LP i receives a βi fraction of the trading fees paid by LDs;

2. LP i has to absorb the fraction βiq and to receive a payment of βiT (q) in return
when the feasible trade made by the LD at the DEX is (q, T (q));

3. denoting R = (x, y) as the state of the token reserve in the liquidity pool, the
maximum amounts of tokens A and B can be withdrawn by the LP i from the pool
have to be βix and βiy, respectively.

Bonding curve design (1) results in the DEX pricing as well as the trading fees paid by
LDs as a function of the market depth of the liquidity pool, namely the total number of
tokens in the liquidity pool. Given this and the typical DAO feature of the DEX platform,
it works well to adopt the proportional allocation principle in distributing the trading fees
paid by DEX traders among LPs, say the owners of the platform. Each LP i holding a
fraction βi of economic rights in the liquidity pool should receive an exact βi fraction of
the fees paid by DEX traders.

However, extending this proportional allocation principle in matching LDs and LPs
at the DEX (i.e., point 2 above) and in withdrawing liquidity from the pools (i.e., point 3
above) may generate inefficiency, particularly concerning when LPs exhibit heterogeneity
in their preferences. In the subsequent discussion, let us delve deeper into these potential
inefficiencies and their implications in the DEX platform.

3.2 Trading Allocative Inefficiency in AMM Mechanism

In stark contrast to market makers in traditional financial markets, who engage in
strategic competition to provide liquidity, LPs on DEX platforms take on a passive role.
LPs must adhere to the predetermined AMM algorithm when staking tokens into the pool.
The AMM algorithm, designed for algorithmic simplicity, relies on two main components:
a bonding curve and a proportional allocation rule. The former component designs that
DEX pricing becomes a function with respect to the aggregated number of tokens in

10Having the intrinsic value notion p is convenient but may not be the best language here. For intuition,
we can follow the literature on DEXs and CEXs and interpret p as the price of crypto A against crypto B
in the CEX, whose pricing is typically assumed to be more efficient. Loosely speaking, p is the marginal
’no-arbitrage’ price of token A against token B.
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the liquidity pool, independent of the specific liquidity contribution made by each LP
individual, while the latter component mechanically allocates the trading between LPs
according to their liquidity ownership in the pool. Despite incorporating the asymmetric
liquidity contribution factor, the trading allocation process due to the AMM nullifies all
other dimensional heterogeneities among LPs. In turn, as we will show soon, it gives
rise to trading allocative inefficiency on the DEX in matching LDs and LPs. Heuristi-
cally speaking, by mechanically pooling LPs’ preferences, AMM at DEX platforms indeed
trades off its allocative efficiency for algorithmic simplicity.

To illustrate the trading allocation inefficiency produced by AMM algorithm in the
DEX, let us suppose that the LD submit a trade (q, T (q)) meeting the bonding curve
design:

uAMM(x− q, y + T (q)) = uAMM(x, y). (2)

Consequently, the AMM algorithm then automatically proceeds with this trading
against the liquidity pool. During this process and with the proportional allocation rule
in place, AMM forces the wallet of LP i in the liquidity pool to absorb a fraction βiq in
exchange for a payment of βiT (q). Here, as before, we let {βi} the liquidity ownership of
LPs in this liquidity pool.

Now, let us denote by πi(xi, yi) the reservation utility of LP i, which she would obtain
if did not participate in the DEX but instead consumed the bundle of tokens (xi, yi)
directly. With the proportional allocation design in place in AMM, we immediately derive
the participation constraint of LPs in the DEX given by:

ui(xi − βiq, yi + βiT (q)) ≥ πi(xi, yi). (3)

Upon inspection of (3), we notice that this system of participation constraints above
explicitly depends on the profile of LPs’ preferences {ui}i. Moreover, such a key observa-
tion implies that the following statement (i.e., a necessary condition) has to be satisfied
if the AMM allows the allocative efficiency at the DEX platform:

uAMM(x− q, y + T (q)) = uAMM(x, y) =⇒ ui(xi − βiq, yi + βiT (q)) ≥ πi(xi, yi) ∀i.

Trivially, the degenerate case where ui ≡ uAMM immediately confirms the validity of
the above statement. In this case, LPs have identical preferences, and the implemented
bonding curve design in the AMM precisely aligns with that preference. As for the general
cases where LPs exhibit heterogeneity in preference, we can prove later in lemma 1 that
the above statement never holds at the DEX. Before that, we require a mild assumption
on the preference of LPs for model tractability.

Assumption 1 (homothetic preference). For each LP i ∈ I, her utility preference
function ui is homothetic. That is, ui(λ(x, y)) = λui(x, y) for any λ ≥ 0.
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This homothetic preference is not restrictive, especially when considering the family
of preference with constant elasticity of substitution (CES). We call a preference a CES
preference with an elasticity of substitution σ ∈ R++\1 if it follows:

u(x) =

(∑
i

(aixi)
σ−1
σ

) σ
σ−1

∀x ∈ Rn
+ and a = {ai}i ∈ Rn

++. (4)

Utility preferences in CES family are homothetic and they are extensively studied in the
literature. Leading examples include Leontief, Cobb-Douglas, and linear preferences11.

Moreover, it is noteworthy that most bonding curve designs in practice are homothetic.
For instance, u(x, y) = x+y design in mStable is linear; Uniswap V2 with u(x, y) = x

1
2y

1
2

and Balancer with u(x, y) = xwy1−w both follow a Cobb-Douglas preference; StableSwap
and Saber with u(x, y) = C(x + y) + x

1
2y

1
2 can be viewed as a combination of linear

preference and Cobb-Douglas preference. All these bonding curve designs are homothetic
functions.

Of particular importance, one should note that even though the bonding curve design
in Uniswap V3, such as u(x, y;x0, y0) = (x+x0)(y+y0), does not directly follow the homo-
thetic property, it can be decomposed into a bonding curve in the form used in Uniswap
V2, namely u∗(x, y) = xy, plus an independent price range constraint. It is not difficult to
verify that this decomposition is unique. Conversely, a Uniswap V2 AMM, whose bonding
curve is homothetic, plus some independent price range constraints, also uniquely repli-
cate a specific AMM design in Uniswap V3. Due to this one-to-one correspondence, we
can then view LPs in Uniswap V3 together with their participation constraints as if they
were in Uniswap V2 and they faced participation constraints in the form of (2) plus some
independent price range constraint. Having said that, we see the main insights derived
in this paper based on homothetic bonding curve designs, including that in Uniswap V2
platform, naturally extended to Uniswap V3 platform.

Lemma 1 (trade allocative inefficiency in AMMs). Given the proportional
allocation rule designed in the AMM, there does not exist a bonding curve uAMM satisfying

uAMM(x− q, y + T (q)) = uAMM(x, y) =⇒ ui(xi − βiq, yi + βiT (q)) ≥ πi(xi, yi) ∀i, (5)

if there exist at least two heterogeneous LPs in the DEX.

The detailed proof for this lemma is provided in the Appendix. There, we demonstrate
that given the absolute fairness consideration in the AMM design (i.e., the proportional
allocation principle), any bonding curve that ensures trading allocative efficiency would

11They are the limiting cases of the CES preferences as σ goes to 0, 1 and +∞, respectively. As an
illustration, let us consider the limiting case as σ goes to 1. Suppose u(x1, x2) = (a1x

γ
1 + a2x

γ
2)

1
γ . Taking

log for both sides yields that log u(x1, x2) =
1
γ log (a1x

γ
1 + a2x

γ
2). Therefore, by applying the l’Hôpital’s

rule and taking γ → 0 (i.e. σ → 1), we can see u(x1, x2) = xa1
1 xa2

2 , a Cobb-Douglas utility function.
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generally violate the participation constraints of some LPs. The exception to this is when
LPs are homogeneous in their preferences.

Based on our Lemma 1, we document one fundamental trade-off in the current design
of AMMs: prioritizing its algorithmic simplicity over the economic interests of LPs. Due
to that, instead of separating LPs based on their preferences, AMM at the current DEX
trading platforms only focuses on the liquidity ownership difference between LPs and
mechanically pooling all other heterogeneities among them. As a result, this pooling
effect yields the trading allocative inefficiency in DEX trading platform while matching
LPs and LDs.

Although the heterogeneity among LPs modelled in this paper primarily centres on
utility preferences, other dimensions of heterogeneity may also contribute to the trade
allocative inefficiency in DEXs. During the writing of this paper, the largest DEX plat-
forms—Uniswap V3 and V4—have introduced more preference-associated options for LPs
to choose from while staking liquidity into the pool. These platform changes including
personalized price ranges and trading fees all fall under the category of LPs’ preferences
which indeed share a similar spirit as the utility preference modelling device in our paper.
Hence, even though these platform changes account for the heterogeneity among LPs in
an indirect, exogenous way, we may expect that they would ultimately help the AMM
move closer to achieving allocative efficiency. In sharp contrast to these changes in prac-
tice, notably, our paper models the heterogeneity among LPs in their utility preference
straightforwardly.

3.3 Liquidity Withdrawal Inefficiency in AMM Mechanism

Having characterized the AMM allocative inefficiency in matching LPs and LDs, we
now turn to another source of inefficiency in the current AMM design — liquidity with-
drawal inefficiency. Similar to the trade allocation inefficiency case, we will demonstrate
below, using a simple yet non-trivial example, that this new source of inefficiency arises
from the fundamental trade-off inherent in current AMM mechanism practices: prioritiz-
ing algorithmic simplicity over the economic interests of LPs.

Example 1. Consider a liquidity pool within a DEX exclusively owned by two LPs,
each characterized by a single-minded preference for tokens A and B. Specifically, the
preferences of LP1 and LP2 are represented by the following two utility functions, respec-
tively:

u1(x, y) = x, u2(x, y) = y.

Assume both LPs stake an identical amount of liquidity into the pool:

(x1, y1) = (2a, 2b) and (x2, y2) = (2a, 2b).

We now have the liquidity pool established by these two LPs and its initial state can
be denoted as R0 = (4a, 4b). The bonding curve designed in the AMM trading mechanism
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on this liquidity pool follows that of Uniswap V2, a bonding curve defined by the product
formula:

uAMM(x, y) = xy.

Let us assume that the state of the liquidity pool changes to R1 = (2a, 8b) after
some trading activities at the DEX12. Suppose now that both LP1 and LP2 decide to
withdraw their liquidities from the pool and discontinue the DEX platform. According to
the proportional allocation principle in the design of AMM, both LPs are entitled to half
liquidity ownership in the pool R1 given that they contributed equally in establishing the
initial liquidity pool R0. With this said, we can see that both LPs receive:

1

2
R1 = (a, 4b) ,

which evenly split the liquidity pool. Such an allocation, however, does not align with
the preferences of LP1 and LP2, who would prefer to receive only one type of tokens in
the pool rather than a mix of them.

By taking the preferences of LPs into account, a quick inspection of the liquidity
pool R1 immediately provides a strictly Pareto-dominated allocation compared to the
aforementioned proportional allocation. That is: LP1 takes all of token A, while LP2
takes all of token B. Such an alternative allocation then results in the following utility
payoffs for the LPs upon their withdrawal:

ũ1(2a, 0) = 2a > u1(a, 4b) = a; ũ2(0, 8b) = 8b > u2(a, 4b) = 4b,

where the terms on the right-hand side of these inequalities represent the respective util-
ity payoffs received by LPs under the proportional allocation solution. Of course, even
though the proportional allocation is unfavourable for both LPs, they could hold onto
their preferred type of token and trade the other type on trading platforms for preferred
ones. However, one should note that this process would incur additional trading costs
and other sources of risk not modelled here.

12Given the bonding curve design uAMM (x, y) = xy, the marginal price of token A against token B
under state R0 is b

a . This marginal price changes to 4b
a in state R1. Therefore, this state change in the

token reserves of the liquidity pool can be interpreted as a fundamental price innovation shock for token
A, moving from b

a to 4b
a . In the presence of high-frequency traders (HFTs) who closely monitor pricing

in the DEX market, any DEX mispricing due to such a shock presents an arbitrage opportunity. These
HFTs will engage in arbitrage trading to exploit the price discrepancy, which will immediately adjust the
marginal price of token A against token B on the DEX trading platform from its pre-shock level to the
post-shock level.

The liquidity staked by LPs in the liquidity pool, therefore, faces adverse selection due to the presence
of these arbitrage traders. Specifically, arbitrage trading exploits the price differences at the expense
of the liquidity providers. As shown later in our example, the proportional allocation rule designed in
the AMM further exacerbates this adverse selection cost. This happens because the rule forces LPs to
withdraw their liquidity in a fixed proportion, disregarding the new market conditions and the specific
preferences of the LPs.
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The welfare loss incurred by LP1 and LP2 when they withdraw tokens from the liq-
uidity pool as we showed in this paper complements the understanding of "impermanent
loss" in the literature. The term "impermanent loss" refers to the situation where the
utility payoff gained by LPs from staking tokens in the liquidity pool is lower than what
they would have earned by simply holding or directly consuming the tokens. The conven-
tional understanding of "impermanent loss" posits that the value loss on the staked tokens
resulting from arbitrage is temporary and diminishes when the token price at the DEX
returns to its initial value. However, Capponi and Jia (2021)[16] argue that this widely
accepted conception of "impermanent loss" does not fully capture LPs’ opportunity costs
of depositing cryptos in the pool. Our paper thereby shares a similar economic intuition
as their paper. In sharp to other studies in the literature on DEXs, including Capponi and
Jia (2021)[16], where the proportional fair allocation rule is taken as given, our approach
starts from the fundamental participation constraint of LPs, which therefore determines
the efficient allocation at the DEX in the cleanest way.

Thus far, we have identified two sources of allocative inefficiency in current AMM de-
signs: trade allocative inefficiency and liquidity withdrawal inefficiency, as demonstrated
by our results in Example 1 and Lemma 1. These inefficiencies primarily arise from
the intentional ad-hoc design in AMMs, which prioritises algorithmic simplicity over the
underlying heterogeneity between LPs. This fundamental trade-off leads to an incompati-
bility between the economic interests of heterogeneous LPs and the proportional allocation
rule in AMMs, which has to mechanically pool LPs. Given the decentralized nature of
DEX governance, where all LPs are both owners and managers of the platform, we may
want to insist that no LP should have the incentive to compromise their welfare for the
sake of an algorithmic simplistic trading mechanism design at the DEX. With that said,
let us set aside the AMM design in the current DEX practice and focus on the character-
ization of an optimal trading mechanism at a DEX in the following section, particularly
for the DEX established by a group of LPs with heterogeneous preferences.

4 Optimal Trading Mechanism at a DEX
In this section, using a social planner problem, we first specify the exact trading

allocative efficiency in the context of the DEX trading platform. Based on that, we derive
the optimal trading mechanism at the DEX. Note that when we refer to an optimal trading
mechanism at the DEX, we mean a mechanism that matches LPs and LDs efficiently (more
details to follow). Lastly, by interpreting the bonding curve as the preference function of
an LP representative, we characterize the optimal bonding curve design which replicates
our optimal trading mechanism in the social planner problem.
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4.1 Ex Ante Efficiency: A Social Planner Problem

To establish a DEX trading platform, LPs must design a hard-coded trading mech-
anism and stake their liquidity ahead of the arrival of LDs. We, therefore, consider the
optimal trading mechanism definition in the spirit of Holmström and Myerson (1983): a
benevolent social planner chooses an optimal trading mechanism that maximizes traders’
utility at an ex-ante stage. To the best of our scholarship, such a social planner problem
is the most straightforward way to define allocative efficiency for trading mechanisms.
The objective of this planner is to maximize the LD’s trading payoff, as this LD would
otherwise choose other platforms where they could achieve a higher trading payoff.

Specifically, we can denote by

u(q(θ); θ)− τ(θ)

the net utility payoff a θ-type LD obtains from fulfilling her privately known trading
need q(θ) against a trading mechanism {q(·), τ(·)}, where q(θ) and τ(θ) are the respective
quantities of crypto A and the transfer of crypto B made by this θ-type LD trader at the
DEX.

Contingent on the future realization of θ, at an ex-ante stage, the optimal trading
mechanism chosen by the social planner has to be the solution for the optimization prob-
lem below:

Planner’s problem: Max
{q(·),τ(·)}

∫ θ

θ

[
u(q, θ)− τ(θ)

]
dF (θ) (6)

subject to
∫ θ

θ

ui

(
xi − qi(θ), yi + τi(θ)

)
dF (θ) ≥ πi ∀i ∈ 1, ..., I (7)

and
∑
i

qi(θ) = q(θ);
∑
i

τi(θ) = τ(θ). (8)

Above, the first part of the constraints is the ex-ante participation constraints of LPs as
in the last section, whereas the second part is the market clearing condition ensuring that
the social planner (or the trading mechanism) does not retain any token after the trading
between LPs and DEX traders.

Note that in practice, the DEX trader also has to pay a small amount of additional
token B, denoted by γτi(θ), as the trading fee for each LP i. This fee serves as the key
incentive for crypto holders in the network to stake liquidity into the AMM pool. The
fee is initially added to the liquidity pool but is subsequently transferred to the wallets of
the LPs. Following the literature, such as Lehar and Parlour (2021)[36], we assume that
this trading fee is paid directly to LPs, thereby simplifying our notational exposition.

Solving this planner’s problem is straightforward. We can show later in Proposition 1
that participation constraints of LPs are binding at the optimum since it is a necessary
condition for the existence of an efficient trading allocation. Formally, we characterize
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and state below the optimal trading mechanism, denoted by τ(q), for a DEX platform in
the following proposition.

Proposition 1 (optimal trading mechanism). For a group of LPs whose pref-
erences are given by {ui}i, the optimal trading mechanism τ(q) that maximises the LD’s
trading payoff is characterised by

τ(q) ≡ min
{qi}i

{∑
i

τi(qi) :
∑
i

qi = q

}
, (9)

where {τi(·)}i satisfy that

ui

(
xi − q, yi + τi(q)

)
= πi ∀i.

Upon inspection of (9), it becomes evident that the efficiency of a trading mechanism
at the DEX centres around its allocative efficiency that accommodates the trading needs of
DEX traders between LPs. The metric for assessing the allocation efficiency of a trading
mechanism is the total trading cost paid by DEX traders subject to the participation
constraints of LPs. Specifically, on the liquidity-demanding side, the LD is primarily
concerned with the aggregated transfer she needs to pay for swapping out q units of token
A from the pool, denoted as τ(q) :=

∑
i τi(qi). On the liquidity-supplying side, however,

each LP absorbs only one fraction of the trade, exchanging qi shares of token A with the
LD for τi(qi) shares of token B as the return.

Focusing on minimizing the trading cost of LD requires the planner to design an al-
location {qi}i over all feasible allocations such that

∑
qi = q and that the participation

constraints of LPs are binding. Given this set of feasible allocations, the optimal bun-
dle of transfers {τi(qi)} achieving a minimal

∑
i τi(qi) defines the efficient allocation for

this trading q. Repeating this process for all admissible q ∈ [0, x) defines the optimal
mechanism, thereby solving our social planner problem for a DEX trading platform. It is
noteworthy that one key factor in designing the above optimal mechanism lies in ensuring
LPs’ binding participation constraints. This is indeed in sharp contrast to the popular
AMM algorithm design, which absorbs and allocates trades between LPs only according
to their liquidity contributions. It now becomes evident that AMM violates the optimal-
ity factor associated with LPs’ binding participation constraints, thereby leading to the
AMM mechanism being suboptimal in its trading allocative efficiency, as indicated by the
main result in our Lemma 1.

Let us now conclude this section with some remarks on our optimal trading mecha-
nism (9). First of all, although we have identified the optimal trading mechanism, its
relationship to the popular bonding curve design in DEX trading platforms is still unclear
at this stage. DEX practitioners opt for implementing a bonding curve design to govern
the trades on the liquidity pool for its simple functional form uAMM . In sharp contrast,
our social planner problem points out that to compete with other DEXs by maximizing
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the trading payoff of LDs, DEXs have to determine an optimal pricing schedule τ(q) as
in (9). This τ(·), however, may not necessarily be consistent with any pricing schedule
∆y(∆x) implied in any bonding curve design uAMM(x − ∆x, y + ∆y) = uAMM(x, y). A
natural, important question then emerges: What is the underlying relationship between
the optimal pricing schedule τ(q) derived from a social planner problem and the ad hoc
bonding curve design in our DEX practices? This question unfolds in two parts. First,
given a group of LPs with preferences {ui}i and liquidity contributions (xi, yi)i, we seek to
determine the exact functional form of τ(·) in the sense of our social planner problem (9).
Secondly, we want to see the possibility of finding a bonding curve design uAMM(·, ·) such
that, if it is utilized at the DEX, it indeed generates a pricing schedule that is exactly the
τ(·) given above.

4.2 Optimal Bonding Curve Function

The market structure of the liquidity pool transforms DEXs into a liquidity crowd-
sourced system. LPs contribute their funds to the liquidity pool, enabling outside trades
(i.e., LDs) to exchange assets without relying on a centralized order book. Based on this
market structure, the group of LPs in a DEX has to determine a pricing schedule or trading
mechanism, accepted by the entire LPs community and accounting for the presence of
heterogeneity between LPs, at an ex-ante stage. This setup reminds us of a classical
question in aggregate consumer studies in economics literature: How do individual budgets
and preferences determine the aggregate consumption decision?

In the context of DEXs, to some extent, we can interpret the bonding curve func-
tion in the AMM trading mechanism as the utility preference function of a hypothetical
LP representative (i.e., a single aggregate consumer in the literature on aggregating con-
sumers). LPs (individual consumers) trust this representative (aggregate consumers) and
stake their cryptos into the liquidity pool ( aggregate budgets) so that she can represent
them in trading with outside LDs (making consumption decisions). From the perspec-
tive of this representative, she needs to learn LPs’ utility preferences, represent them in
trades with LDs, and eventually return the post-trade liquidity pool to LPs. Therefore,
we should expect that the utility preference of this LP representative must account for the
heterogeneity between LPs’ preferences and ownership of the pool. Indeed we can show
shortly that a "well-defined" LP representative has her preference function structured
as a weighted product of LPs’ utility preferences, with weights reflecting LPs’ fractional
ownership of the liquidity pool.

To start, suppose that the liquidity contributed by each LP i to the liquidity pool is
valued bi > 0 (in USD) and the price of crypto A against crypto B is p > 0. If LP i
chooses to consume her budget directly, her most preferred bundle of cryptos, which we
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denote as Di(p, bi), is given by

Di(p, bi) :=
(
xi(p, bi), yi(p, bi)

)
= argmax

(x,y)∈R2
+:px+y≤bi

ui(x, y), (10)

where p = (p, 1) denotes the price vector of cryptos A and B.
For each trade request (q, T (q)) made by outside LD, LP i, as a fractional owner of

the liquidity pool, at the ex-ante stage, will only be willing to accept the trade allocation
{qi, Ti(qi)}i (which is specified in the trading mechanism) if

ui

(
xi(p, bi)− qi, yi(p, bi) + Ti(qi)

)
≥ ui

(
xi(p, bi), yi(p, bi)

)
:= πi(p, bi),

where πi(p, bi) represents the reservation utility LP i could obtain if she does not par-
ticipate in the DEX but consumes her budget directly. Recall that the above condition
is just the participation constraint of LP i in our social planner problem. Based on the
above condition, one can see that the trades allowed by LP i, which we denote by the set
of admissible trades of LP i, is given as follows,

Ŝi(p, bi) =
{
(qi, Ti(qi)) : ui(xi − qi, yi + Ti(qi)) ≥ πi(p, bi)

}
, (11)

where equality is achieved when there is sufficient competition between LPs within a DEX
or across DEXs for liquidity provision service.

By using the form of admissible trade set (11) and considering the DEX as a liquidity
crowd-sourced platform, we now turn our attention to characterizing the set of admissible
trades supported by a liquidity pool (or a group of heterogeneous LPs). In principle, the
trading mechanism must allow for any trade request (q, T (q)) made by an LD, provided
there exists a trade allocation qi, Ti(qi)i such that

∑
i(qi, Ti(qi)) = (q, T (q)) and (qi, Ti(qi))

satisfies the participation constraint of LP i. Stated differently, each (qi, Ti(qi)) should
belong to Ŝi(p, bi), the admissible trades set supported by LP i. Building upon this obser-
vation, a natural and straightforward definition of the set of admissible trades supported
by a group of LPs is given by:

Ŝ(p,b) := Ŝ1(p, b1) + Ŝ2(p, b2) + ...+ Ŝn(p, bn), (12)

where b :=
∑

i bi, Ŝi(p, bi) represents the set of admissible trade supported by LP i, and
the summation between two sets defined here represents the Minkowski sum over sets.

In mathematics, the Minkowski sum of two sets, A1 and A2, is defined as follows:

A1 + A2 = {(x1 + x2, y1 + y2) : (x1, y1) ∈ A1 and (x2, y2) ∈ A2}.

Applying this definition to our set of admissible trades definition, an element (q, T (q))
belonging to Ŝ(p,b) implies that there exists at least one trade allocation {qi, Ti(qi)}i
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such that (qi, Ti(qi)) ∈ Ŝi(p, bi). In practical terms, the trading mechanism in the DEX
will break down a trade request (q, T (q)) made by the LD into n smaller trading requests
(qi, Ti(qi)) ∈ Ŝi(p, bi) according to LPs’ preferences. Each LP i absorbs a trade (qi, Ti(qi))
so that she can engage in a trade with the LD, exchanging qi units of crypto A for
receiving Ti(qi) units of crypto B, and this trade (qi, Ti(qi)) has to satisfy her participation
constraint, say belonging to Ŝ(p, bi).

However, we want to emphasise that we cannot simply aggregate (in the Minkowski
sum sense) individual sets of admissible trades for the aggregate set of admissible trades
supported by the DEX. As one will see in the following illustrative example, the Minkowski
sum set Ŝ(p,b) would contain elements that are never reachable in real trading activities
in a DEX.

Example 2. Suppose that we have two LPs that group the DEX and their sets of
admissible trades are given by

Ŝ1(p, b1) = {(0, 0), (1, 2)} and Ŝ2(p, b2) = {(0, 0).(1, 3), (2, 7)},

respectively. We can compute the Minkowski sum over these two sets of admissible trades
as follows.

Ŝ1(p, b1) + Ŝ2(p, b2) = {(0, 0), (1, 2), (1, 3), (2, 5), (2, 7), (3, 9)}.

On the positive side, Ŝ(p,b) = Ŝ1(p, b1) + Ŝ2(p, b2) ⊋ Ŝ1(p, b1)∪ Ŝ2(p, b2). That is, from
the perspective of LDs, compared to trading with this group of LPs independently, the
Minkowski sum enlarges the set of admissible trades in this DEX. Furthermore, one should
note that the size of Minkowski’s sum would grow dramatically while any of {Si(p, b1)}i
becomes large. However, on the negative side, defining the set of admissible trades on a
group of LPs under the Minkowski sum operation will generate unreachable or redundant
points such as point (2, 7) in our example. Point (2, 7) is unreachable as we already have
(2, 5) contained in Ŝ(p,b). Recall that a point (q, T (q)) in the set of admissible trades
Ŝ(p,b) represents that LD can swap out q shares of asset A for the liquidity pool by
transferring a T (q) shares of asset B. Therefore, the admissible trade (2, 7) is strictly
dominated by the trade (2, 5) and only the latter would be chosen by LD.

These unreachable points reflect the fact that confronted with the competition be-
tween LPs or among oligopolistic DEXs for liquidity provision services, LDs who want to
minimise their trading cost will never make a feasible trade request that would be dom-
inated by other elements in Ŝ(p,b). In other words, the competitive landscape between
LPs (or among DEXs) would lead to each DEX posting the efficient frontier in Ŝ(p,b)).
Mathematically, it implies that the realised set of admissible trades posted by each DEX
would correspond to the boundary of Ŝ(p,b), i.e., ∂Ŝ(p,b). Consequently, it is may not
hard to anticipate that ∂Ŝ(p,b) would read as a geometric "mean" over {∂Ŝ(p, bi)}i.
The key question here is to have a well-defined mean over two sets. Graphically, suppose
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for example that we have only two LPs within the DEX and assume that LP 1 and LP
2 own β1 and β2 = 1 − β1 fractions of the pool, respectively. Then the optimal bonding
curve chosen by these two LPs cooperatively would be given by Faggregate(x, y) = k, the
red dashed curve depicted below:
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Figure 1: Here, we select u1(x, y) = x
2
5y

3
5 , u1(x, y) = x

3
5y

2
5 and β1 = β2 =

1
2

to illustrate
their geometric mean.

Taken all the above discussions together, it implies that to compete with other DEXs,
the set of admissible trades allowed by each DEX, which we denote by SAMM(p, b), has
to be:

SAMM(p,b) =
{
(q, T (q)) : uAMM(x− q, y + T (q)) ≥ uAMM(x, y)

}
, (13)

where b :=
∑

i bi and uAMM (if exists) is the bonding curve function or from the LP’s
perspective, the utility preference of the representative.

Using (13), one may notice that designing an optimal trading mechanism in the DEX
T (·) would be equivalent to specifying the set of admissible trades ŜAMM(p,b) or deter-
mining the utility preference of the LP representative uAMM . In essence, representation
(13) develops a method that reduces the challenging problem of designing an optimal
trading mechanism on a liquidity pool to simply computing the aggregate preference over
a group of heterogeneous LPs. Moreover, one will see that this representation of aggre-
gate preferences can refine the Minkowski sum by eliminating those unreachable points
we discussed above. Formally, we have the following sufficient condition for the existence
of an aggregate preference uAMM over any group of homothetic preferences {ui}ni=1.

Assumption 2. Denoted by {ui}i and {bi}i the respective LPs’ utility preference
profile and liquidity contribution profile in the DEX, a well-defined LP representative has
the utility preference uAMM such that her most preferred bundle of cryptos equals the
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aggregation of LPs’ individually most preferred bundles of cryptos. Specifically,(
x(p, b), y(p, b)

)
=

(∑
i

xi(p, bi),
∑
i

yi(p, bi)
)
, (14)

where for each i ∈ {1, ..., I},
(
xi(p, bi), yi(p, bi)

)
defined in (10) represents the most

preferred bundles of crypto of LP i, and(
x(p, b), y(p, b)

)
:= argmax

(x,y)∈R2
+:px+y≤b

uAMM(x, y)

represents the most preferred bundles of assets of LP representative.

Several remarks are provided below in order. Firstly, it’s important to recognize that
one can interpret the bonding curve function in the DEX as the utility preference of a single
"aggregate" representative, who can represent individual LPs to consume or exchange
cryptos with LDs, only if the trust issue between this representative and individual LPs
can be resolved perfectly. Indeed, facilitating trades in a trustless manner is the exact
key advantage of DEXs due to its backbone blockchain technology. In sharp contrast to
the traditional financial markets where individual agents require an institutional reason
to trust a principal/platform, the trading mechanism utilised by DEXs is a hard-coded
algorithm on the blockchain. Once coded, it becomes public, deterministic, decentralized,
and beyond the unilateral control of any single LP, resulting in trustless trading feasible
on DEXs.

Also, it’s essential to note that the condition (14) above is required to behold for
arbitrary p and {bi}i. However, inspecting (14) offers very limited insights into the
specific functional form of an optimal uAMM . To grasp more intuitions, let us consider an
interesting example and derive the corresponding uAMM below.

Example 3 Suppose that LPs are all single-minded agents and the utility preference
function of each LP is either

ui(x1, x2) = x1 or x2.

Moreover, for simplicity, we assume LPs have an identical budget, b > 0. Thus, for any
given price vector p = (p, 1), the reservation utilities of a type-1 LP and a type-2 LP will
be

û1 =
b

p
and û2 = b,

respectively.
Instead of managing their budgets independently, suppose all LPs pool their funds into

a single liquidity pool, managed by an LP representative. What will be the consumption
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plan made by this LP representative then? To answer, suppose that there are n1 LPs of
type-1 and n2 LPs of type-2. We know that independent of market prices, a type-1 LP
always allocates the entire budget to purchasing crypto A. Consequently, it is reasonable
to infer that the LP representative would allocate the combined budgets of all type-1 LPs,
denoted as

∑n1

k=1 bii = n1b, towards acquiring crypto A, mirroring the investment strategy
of type-1 LPs regardless of the price vector p. A similar rationale applies to the investment
behaviours of type-2 LPs. Integrating the interests of both types of LPs into the decision-
making framework of the LP representative, we conjecture that LP representative exhibits
a Cobb-Douglas preference, say uAMM(x1, x2) = xλ

1x
1−λ
2 , where λ =

∑n1
k=1 bii∑

i bi
= n1

n1+n2
. This

proportion λ reflects the budgetary emphasis placed on crypto A by type-1 LPs relative
to the total budget. The validity of this conjecture can be easily verified by solving an
optimization problem given below:

Max
(x1,x2)

uAMM(x1, x2) = x
n1

n1+n2
1 x

n1
n1+n2
2

subject to px1 + x2 ≤
∑
i=1

b = (n1 + n2)b.

Therefore, to well represent a population of n1 type-1 LPs and n − n1 type-2 LPs to
exchange assets with external liquidity demanders, the representative LP should behave as

an agent with Cobb-Douglas preference function given by uAMM(x1, x2) = x
n1

n1+n2
1 x

n2
n1+n2
2 .

For general cases beyond single-minded LPs, we have the following characterization.

Proposition 2 (optimal uAMM). For a group of LPs who have homothetic pref-
erence profile {ui}i and budget profile {bi}i, the aggregate preference uAMM satisfying
condition (14) exists, and it reads as

uAMM(x, y) = Max
{xi,yi}i

{
Πi

(
ui(xi, yi)

βi

)βi ∣∣∣ ∑
i

(xi, yi) = (x, y)

}
, (15)

where βi =
bi∑
i bi

is the fractional ownership of each LP i for the liquidity pool.13 Moreover,
based on this optimal aggregate preference uAMM , we can characterise the optimal pricing
schedule T (·) and the optimal set of admissible trades in the following sense:

SAMM (p, b) =
{
(q, T (q)) : uAMM(x− q, y+ T (q)) = uAMM(x, y)

}
. (16)

The proof of this lemma is omitted here as it is an application of the results established
by Eisenberg (1961)[22] for any population of consumers with homothetic preferences, or
Eisenberg and Gale (1959)[23] in the context of probabilistic forecast aggregation.

13For notation simplicity, in Lemma 1, we take (xi, yi) := (xi(p, bi), xi(p, bi)),b =
∑

i bi and (x,y) :=
(x(p,b),y(p,b))
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Inspecting the form of the aggregate preference uAMM in (15), one can observe a
resemblance to the maximal weighted Nash social welfare. For those familiar with the
remarkable work of Nash (1950)[40], in this work Nash introduces a social welfare function
that equals the product of each player’s utilities to characterize the equilibrium outcome
in axiomatic bargaining games. Generalizing Nash’s work leads to the concept of weighted
Nash social welfare, where the weight assigned to each consumer’s utility is her relative
budget. The Nash welfare concept provides a key insight into the optimality of our bond-
ing curve function uAMM : Rather than following the ad hoc proportional fair allocation
where only LPs’ liquidity ownership is considered, our asset allocation rule implied in the
functional form of uAMM is superior as it allocates assets to LPs based on both their re-
spective ownership to the liquidity pool and their heterogeneous preferences over cryptos
A and B.

To assess the efficiency of our optimal uAMM , including its trade allocative efficiency
and liquidity withdrawal efficiency, let us assume that the state of liquidity pool updates
from (x, y) to (x−q, y+τ(q)) after some trading activities at this DEX. We know that LP
representative with preference uAMM would design her set of admissible trade as follows

SAMM =
{
(q, τ(q)) : uAMM(x− q, y + τ(q)) ≥ uAMM(x, y) := k

}
,

=
{
((q, τ(q)) : Max

{xi,yi}i
Πi

(
ui(xi, yi)

βi

)βi

≥ k subject to∑
i

(qi, τi(qi)) = (q, τ(q)) and
∑
i

(xi, yi) = (x− q, y + τ(q))
}
. (17)

The existence of uAMM in (15) implies the existence of an optimal allocation (x⋆
i , y

⋆
i )i

that maximises the weighted product of LPs’ utilities in (17), thereby achieving liquidity
withdrawal efficiency. By using (x⋆

i , y
⋆
i )i, we can derive the trade allocation among LPs, de-

noted as q⋆i := xi−x⋆
i and τ ⋆i (qi) := y⋆i −yi. Now, let us turn attention to checking whether

the trade allocation {q⋆i , τ ⋆i }i satisfy LPs’ participation constraints. Recall that uAMM in
Lemma 1 is a weighted Nash social welfare function, and therefore Pareto efficient, as
established by Eisenberg and Gale (1959)[23] or Kaneko and Nakamura (1979)[34]. This
implies that

uAMM(x− q, y + τ(q)) ≥ uAMM(x, y) =⇒ ui(xi − q⋆i , yi + τ ⋆i (qi) = ui(x
⋆
i , y

⋆
i ) ≥ ui(xi, yi)

for every i, thereby stratifying the participation constraints and achieving trade allocative
efficiency14.

To conclude this section, we have characterized the optimal bonding curve function
uAMM in a DEX built by heterogeneous LPs. This optimal uAMM is structured as a

14Indeed, LPs’ participation constraints are automatically satisfied under the allocation rule implied
in uAMM , since the set of admissible trades given by SAMM in (16) is a subset of the original Minkowski
sum ŜAMM (p,b), and we note that all trades contained therein already are participation constrained
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weighted product of LPs’ preferences, with weights reflecting their fractional ownership of
the liquidity pool. Its functional form aligns well with the economic intuition found in the
aggregate consumer literature, which motivates us to interpret uAMM as the preference
of an LP representative within the DEX. However, it is essential to note that a clear
micro foundation for this optimal uAMM is currently lacking. Specifically, it remains
unclear why LPs grouped in a DEX would unanimously agree to accept a bonding curve
function structured as a weighted product of their preferences. Addressing this gap raises
an interesting and important question: How can we implement the optimal bonding curve
uAMM as an equilibrium among LPs? Addressing this question will be our central focus
in the next section.

5 Implementing Optimal Trading Mechanism
Up to this point, we have characterized the optimal trading mechanism in a DEX

with heterogeneous LPs and explored its various representations. These representations
include the optimal pricing schedule in the social planner problem (τ(q)), the optimal
bonding curve function (uAMM), and the set of admissible trades for LP representative
(SAMM). However, a crucial question remains: Can any of these equivalent representa-
tions be implemented as an outcome in the practical decision-making process of DEXs?
Alternatively, from a game theoretical perspective, is it feasible to implement our optimal
trading mechanism as an equilibrium among LPs in DEXs? Answering this implemen-
tation question requires a comprehensive understanding of the typical decision-making
process in DEXs. As one of the most prominent decentralized autonomous organization
(DAO) applications, DEXs feature decentralized governance. This means that the DEX
is collectively owned and managed by LPs through decision-making and economic rights
derived from their liquidity contribution to the DEX. For instance, Uniswap, the largest
DEX, empowers LPs to vote on proposals via the Ethereum blockchain to decide on any
new platform design, referring to Han et al. (2023)[28] for a deeper DAO governance
introduction.

Beyond the decision-making process in real DEXs practices, we also rely on a twofold
economic intuition for determining our specific implementing framework: On the one
hand, upon examining the set of admissible trades SAMM , we observe that optimally
allocating a given trade request (q, τ(q)) among LPs in a DEX is equivalent to optimally
allocating the post-trade liquidity pool among them. This equivalence arises due to the
transformation of pool states from (x, y) to (x − q, y + τ(q)) following a trade. So, we
conceptualize the problem of dividing the post-trade pool allocation among LPs as a
bargaining game. On the other hand, as mentioned in the last section, the optimal
post-trade allocation solution outlined in Lemma 1 involves maximizing the weighted
product utilities of LPs. This weighted product of utilities resembles a typical Nash social
welfare, often rationalized by a bargaining game in the literature. Therefore, these two
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observations collectively inspire us to consider a Nash bargaining game over heterogeneous
LPs for the implementation of our optimal bonding curve function uAMM .

5.1 N-person Nash Bargaining Solution

To start, let us specify the definition of an N-person Nash bargaining problem and its
solution concept. Suppose the post-trade liquidity pool is R = (x − q,y + T (q)) and n
LPs bargain over the division of this post-trade liquidity pool. Then the set of possible
agreements is

X =
{
(xi, yi)i ∈ R2×n

+ |
∑
i

(xi, yi) = R = (x − q,y + T (q))
}

where xi and yi are the respective amounts of cryptos A and B in the liquidity pool staked
by LP i. Alternatively, we can have the feasible set of utilities as

V =
{
(zi)i ∈ Rn

+ | ∃(xi, yi)i ∈ X, ∀i, zi ≤ ui(xi, yi)
}
. (18)

For simplicity, we assume that the disagreement point in our Nash bargaining problem is
denoted as d = (di)i = 015. For each Nash bargaining problem (V, {ui}i), we define its
solution as follows.

Definition 1 (Nash Bargaining Solution). Let (V, {ui}i, β) as the n-person Nash
bargaining problem with the weight β = (βi)i satisfying

∑
i βi = 1 and βi > 0. A payoff

vector z⋆(β) =
{
z⋆i (β)

}
i
=
{
ui(x

⋆
i , y

⋆
i )
}
i
∈ V is called the Nash bargaining solution of

(V, {ui}i, θ) if z⋆ solves the following optimization problem

max
z=(zi)i∈V

Πi

(
zi
βi

)βi

Or equivalently, we replace zi by ui(xi, yi) and then normalize the objective function by

multiplying Πi

(
1
βi

)βi

. That is,

max
(xi,yi)i∈X

Πi (ui(xi, yi))
βi (19)

15For Nash bargaining problem, disagreement point d ∈ V is essential to ensure the existence of the
solution, especially for the interior disagreement point d in V for the existence of non-trivial solution, see
e.g. Kaneko and Nakamura (1979)[34]. So the more natural and intuitive way to define the disagreement
point in this paper is taking d = (di)i =

(
Di(p, bi)

)
i

where Di(p, bi) represents the maximum utility
LP i can obtain if the bargaining is unsuccessful and LP i consumes her budget bi directly. However,
this generalization only complicates our notation and has no impact on our results, since d = 0 and
d =

(
Di(p, bi)

)
i

are both interior points in V and play the same role in guaranteeing the existence of a
non-trivial solution.
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It is important to note that setting βi =
1
n

for all i = 1, ..., n results in the symmetric
Nash bargaining problem. This problem was first proposed by Nash (1950, 1953)[40, 39]
for a two-person case and later extended by Hart and Mas-Colell (1996)[29] for an n-person
case. In contrast, the asymmetric Nash bargaining problem was considered by Binmore,
Rubinstein, and Wolinsky (1986)[14] for the two-person case, where game asymmetry
arises from different beliefs about the risk of negotiation breakdown. More recently, sev-
eral studies, including Okada (2010)[41], Britz et al.(2010)[15], and Kawamori (2014)[35],
have explored solution concepts in n-person asymmetric Nash bargaining problems and
rationalized their solutions by presenting some non-cooperative game foundations. In this
paper, we connect our implementation work to this literature by modelling the decision-
making process in a decentralised governed DEX as an n-person asymmetric Nash bar-
gaining problem, where the asymmetry in bargaining power between LPs originates from
their asymmetrical liquidity contributions to the liquidity pool.

5.2 Bargaining Procedure in the Community of LPs

With Definition 1 at our disposal, a clear similarity emerges between the optimal
post-trade allocation outlined in Lemma 1 and the Nash bargaining solution concept.
Consequently, it becomes equivalent to establishing a noncooperative bargaining game
between LPs, aiming to yield a Nash bargaining solution that precisely mirrors the opti-
mal post-trade allocation solution. The next step is to identify an appropriate and specific
Nash bargaining game framework: This framework should effectively capture the compe-
tition among LPs in the decision-making process of a DEX, characterized by decentralized
governance. Moreover, it must account for the asymmetric bargaining powers between
LPs, resulting from their asymmetrical liquidity contributions to the pool.

To start, let ρ ∈ (0, 1) be a fixed parameter. There are potential infinite rounds in
this bargaining procedure. For each round, we have two phases: the propose phase and
the respond phase.

Propose Phase. One of the LPs will be chosen as the proposer at the beginning of
each round t = 1, 2, 3, .... The probability LP i becomes the proposer in each round is βi.
This selected LP proposes a feasible allocation vector {(xi, yi)}i in X or equivalently, a
feasible utility payoff vector z = (zi)i in V .

Respond Phase. All other LPs either accept or reject the proposal sequentially.16

• If all other LPs accept it, then this bargaining game ends and LPs obtain the
respective allocated liquidities listed in this proposal {(xi, yi)}i.

• Otherwise, the bargaining procedure moves to the next round. In this case, with
16The order of how other LPs respond to this proposal does not matter in our paper as only the

allocation accepted by all LPs unanimously can be implemented.
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probability ρ, the negotiation continues among LPs and the game repeats. That is,
it goes back to the "propose phase". With probability 1 − ρ, the game ends and
all LPs get the liquidity allocation di specified in the predetermined disagreement
point.

In the proposal phase, we directly assume that the probability of each LP i being
selected as the proposer is βi. In simpler terms, the higher the budget/liquidity contribu-
tion LP i has in the liquidity pool, the greater the chance of being chosen as the proposer
in each round. The intuition behind this is straightforward. In our sequential bargaining
game, there exists a risk of negotiation breakdown denoted by probability 1− ρ, possibly
due to the intervention of some external factor. This breakdown threat is "equivalent"
to LPs’ attitude toward the time needed to reach a consensus, as detailed in Binmore,
Osborne, and Rubinstein (1992)[13]17. The larger the position LP i has in the liquidity
pool, the riskier the game becomes for her to the next round. To compensate her for this
extra risk, it is reasonable to offer LP i a relatively higher first-move opportunity in a
decentralized platform.

In our Nash bargaining model, LPs have perfect information about the historical ac-
tions made by all LPs. One should note that this public information assumption is very
strong. However, this concern is mitigated in the context of a public blockchain-based
platform, such as DEXs. This is because, DEXs, running on Ethereum and leverag-
ing blockchain technology, guarantee transparency in trade activities, and governance
schemes, and even expose the underlying code to the public.

5.3 Stationary Subgame Perfect Equilibrium

Denoted by G(ρ, β), the above bargaining model incorporates the negotiation break-
down probability 1− ρ and the probability distribution β = {βi}i, determining which LP
is the proposer in each round. For each LP i, a strategy is represented as a sequence of
actions, as follows:

σi = {σt
i}∞t=1,

where σt
i is a mapping that prescribes the t−th round strategy of LP i, say,

σt
i =

{
a proposal zti = (zti)i ∈ V , if LP i is the proposer;
a response function assigns "accept" or "reject" to others’ proposals, otherwise.

Following the literature on noncooperative multi-person sequential bargaining games,
we only study the stationary subgame perfect equilibrium (SSPE) denoted as σ⋆ =

17For simplicity, we skip the discussion regarding how to micro-found the Nash bargaining solution
from assuming asymmetric discount rates to LPs’ future payoff. But there does exist a way to do so. In
short, identical results hold if alternatively, we assume LP i, who contributes βi fractional liquidity to
the liquidity pool, discounts her future payoff with the rate ri =

1
βi

.
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(σ⋆
1, .., σ

⋆
n) in the game G(ρ, β). Focusing on SSPE is intentional, as it greatly simpli-

fies the set of strategies for each LP. Additionally, restricting our attention to SSPE can
help us avoid the equilibria multiplicity problem in a dynamic game. We define SSPE
in the conventional manner, whereby the strategy of each LP in the t-th round depends
solely on the history within that round t. We sum up the outcomes of our implementation
results in the following proposition.

Proposition 3 (Implementation of Nash Bargaining Solution). For each ρ ∈
[0, 1), the noncooperative bargaining game G(ρ, β) exists an SSPE σ⋆(ρ, β). Denote by
z⋆(ρ, β) the respective expected utility payoff vector of LPs in this SSPE. Then, as ρ → 1,
say, the probability of negotiation breakdown 1 − ρ → 0, z⋆(ρ, β) converges to z⋆(β), the
asymmetric Nash bargaining solution of (V, {ui}i, β).

The rigorous proof is provided in the Appendix, where we establish the existence of
SSPE and construct the SSPE strategy for each LP. Leveraging the fixed point theorem
facilitates a straightforward proof. Regarding the equilibrium strategy, we adhere to
the standard methodology found in the literature on sequential bargaining games for
the two-person case, extending it to the N-person scenario. Specifically, the equilibrium
strategy of LP i is given by that: If selected to be the proposer, she will propose the
allocation to maximize her residual while offering other LPs their respective continuation
utility payoffs; however, if she is selected as the responder, she will always "accept" the
proposal made by other LPs if the offered allocation ensures her a utility no less than
her expected continuation utility, and "reject" otherwise. As ρ → 1 (i.e., the negotiation
breakdown probability caused by external intervention approaches zero), LPs in an SSPE
will converge to offer the same allocation vector in their strategies. It can be verified that
this allocation vector indeed serves as the solution to the Nash bargaining problem.

As emphasized earlier, the optimal uAMM is characterized as a weighted product of
LPs’ utility preferences, with each LP’s weight aligning with her liquidity contribution
to the pool. Through the lens of our implementation result in this proposition, the
emergence of asymmetric bargaining powers among LPs within a DEX platform becomes
evident, which is entirely driven by their asymmetrical liquidity ownership in the pool.
This asymmetrical liquidity ownership determines their respective probability of being
chosen as the proposer in every bargaining round.

We wish to emphasize that, to the best of our knowledge, no existing study has
provided a specific framework akin to ours for comprehending the decision-making process
in DAOs, including how a group of LPs determines the trading mechanism design in DEX.
Our bargaining framework seems to be the first effort in the literature to rationalize the
decentralized governance scheme in DAOs from a game theoretical perspective, bridging
the traditional economic literature on N-person bargaining games with the decentralised
decision-making process in DAOs — a novel organizational structure that runs as “smart
contracts” on the blockchain. We hope our approach can serve as a valuable tool for future
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studies seeking to understand the crucial trade-off between decentralized governance and
welfare efficiency in DAOs.

To conclude, we establish an economic microfoundation for the novel decision-making
process in DEXs, a typical DAO in the practice. Our sequential bargaining framework
effectively captures the decentralised governance feature of DAOs in which any new plat-
form designs require the submission of some proposals made by LPs, and the validation of
these proposals is contingent on obtaining sufficient votes from other LPs through timely
voting. Leveraging this bargaining implementation framework, we find that the alloca-
tive efficiency achieved in our optimal bonding curve uAMM can be implemented as an
equilibrium among LPs, where their bargaining power is determined by their respective
liquidity ownership in the pool, adhering the "one token, one right" DAO principle.

6 Extension One: Oligopolistic DEXs
In our discussion thus far, we have focused on the competition among LPs within one

specific DEX, constituting what we term intra-DEX competition. This perspective holds
assuming that LD opts to trade on this particular DEX. However, what if there exists
liquidity provision competition from other DEXs, and how does this competition shape
the behaviour of market participants?

The competition between DEXs, termed inter-DEX competition, has its economic
importance and interests. In reality, we observe the existence of oligopolistic DEXs. They
compete for liquidity provision business, resulting in a segmentation of trading activities
across various trading exchanges. Exploring this inter-DEX competition may shed light on
the strategic behaviours of LDs, the rationale behind LPs participating in multiple DEXs,
and the effects on market segmentation. Therefore, this section models the inter-DEX
competition by assuming the presence of multiple DEXs in the economy.

6.1 Model

To study the strategic behaviours of LD, as before, we represent the utility benefit a
θ-type LD can derive from purchasing q shares of crypto A by u(q; θ). Having learned the
private information θ and pricing schedules {Ti(q)}i=1,2,..,I posted by DEXs, this θ-type
LD chooses an optimal trade vector {qi}i=1,2,...,I by solving

Max
{qi}i=1,...,I

u(q, θ)−
I∑

i=1

Ti(qi)

where q =
∑I

i=1 qi. Clearly, the optimal trade vector will be a function of θ and the posted
pricing schedules {Ti(·)}i=1,2,...,I . This optimization problem could be mathematically
extremely complex. For tractability, we make the following assumption.
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Assumption 3. We assume that u(q, θ) follows a mean-variance structure, say,

u(q, θ) = −λ

2
(θ − q)2 − (−λ

2
θ2) (20)

= λθq − λ

2
q2,

where the first term on the right-hand side represents LD’s utility from trading against
DEXs and the second term measures the reservation utility of LD.

The above preference form can be found in many papers on market microstructure
such as Sannikov and Skrzypacz (2016), Chen and Duffie (2021)[18] and Rostek and Yoon
(2021)[44], among many others. One possible heuristic explanation for this preference
form is that LD enters the market with a positive level of inventory in the risky crypto
asset A, say a privately known θ. λ measures her risk capacity. Any retaining post-trade
inventory in risky crypto A incurs a quadratic holding cost to LD. Therefore, a privately
observed θ reflects LD’s trading needs18.

The game and its timeline. The inter-DEX competition game has its extensive
form outlined as follows:

0. At t = 0, we assume that there exist J ≥ 2 DEXs in the market. For simplicity, we
let DEXs be symmetrical in the sense that they have an identical liquidity pool.

1. In the first period (t = 1), LPs arrive and simultaneously decide on which liquidity
pools to participate in. They have the flexibility to choose one, multiple, all, or
none of any liquidity pools to stake liquidity.

2. In the second period (t = 2), LPs within each DEX j ∈ J engage in a decentralized
decision-making process, the Nash bargaining framework introduced in the previous
section, to determine which pricing schedule Tj(·) to implement.

3. In the third period (t = 3), nature selects a θ−type LD. This LD subsequently
trades against DEXs by choosing an optimal bundle of trades {qj}j∈J to maximize
her net utility payoff.

4. Finally, LPs withdraw their cryptos from DEXs for consumption.

We will study the Nash pure strategy equilibrium in this game, provided that the
design-making process made by each DEX at t = 2 follows an N-persons Nash bargaining
game. At equilibrium, LPs make crypto staking decisions at t = 1 that are the best
response to the strategies of the other LPs given the strategic behaviours of LD at t = 3.

18An alternative classic explanation for this mean-variance structured preference is that LD has CARA
utility and the risky asset value follows Gaussian distribution, see this setup, for example, in Biais,
Martmort, and Rochet (2000)[11].
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6.2 The Equilibrium Analysis

Let us start our analysis via backwards induction. For a given set of pricing schedules
{Tj(·)}j posted by J DEX platforms, from the point of view of a θ−type LD, she needs
to decide how to allocate her trade among these DEXs by maximising her utility payoff.
More specifically, LD’s problem is to choose a vector of trades {qj}Jj=1 by solving the
following optimization problem.

LD’s problem: Max
{qj}Jj=1

u(q(θ), θ)−
∑
j

Tj(qj(θ)) = λθq − λ

2
q2 −

∑
j

Tj(qj(θ))

subject to q1(θ) + q2(θ) + ...+ qJ(θ) = q(θ), (21)

where q(θ) represents the size of LD’s trade, associated with a privately observed signal
θ that arises from margin calls or hedging motivation. As pricing schedules posted by
DEXs are convex19, optimization problem (21) exhibits a unique optimal allocation for
each q(θ). Moreover, given that θ is privately observed, from the mechanism designer’s
perspective, each DEX has to design a pricing schedule such that LD is willing to reveal
her true θ. Therefore, the incentive compatibility condition (IC) for LD requires that

[IC condition:] θ ∈ Argmax
θ̂

(
λθq(θ̂)− λ

2
q(θ̂)2 −

∑
j

Tj(qj(θ̂))

)
. (22)

To ease notation, we represent the corresponding information rent by π(θ):

π(θ) = Max
{qj}j ,

∑
j qj(θ)=q(θ)

(
λθq − λ

2
q2 −

∑
j

Tj(qj(θ))

)
.

Beyond the incentive compatibility condition, under oligopolistic screening competition
between DEXs, DEX k also needs to ensure the participation constraint (PC) of LD holds
for trading in DEX k:

[PC condition:] π(θ) ≥ π−k(θ), (23)

where π−k(θ) represents the payoff LD obtained if she does not trade in k−th DEX but
other DEXs instead. That is,

π−k(θ) := Max
{qj}j ̸=k:

∑
j ̸=k qj(θ)=q(θ)

(
u(q−k(θ), θ)−

∑
j ̸=k

Tj(qj(θ))

)
.

19To see the convexity of T (q), we first note that for any bonding curve uAMM (x − q, y + T (q)) = k,
T (q) is increasing in q as uAMM (x, y) is increasing in x and y. Second, taking the second derivative of
uAMM (x− q, y + T (q)) = k in q immediately yields T

′′ ≥ 0.
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Let us now turn our attention to the optimization problem faced by the group of LPs
within DEX k, or equivalently representative k. Given the pricing schedules posted by
other DEX competitors, which as usual denoted by T−k := {T1, ..., Tk−1, Tk+1, ...TJ}, the
problem of DEX k is to design her best response strategy Tk(·;T−k) to maximise the
following expected payoff:

DEX k’s Problem: Max
Tk(·)

Bk(T1, ...., TJ) (24)

:=

∫ θ

θ

{[
uk
AMM

(
x̄− qk(θ),ȳ + Tk(qk(θ))

)
− uk

AMM(x̄, ȳ)
]
+ γTk(qk(θ))

}
dF (θ),

where the first integral component is the post-trade utility of DEX k and the second term
is the respective received trading fee for a given fee rate γ ∈ (0, 1).

In general, the above problem yields a fixed-point argument condition with the variable
involving pricing schedule functions, making it extremely complex. To make this problem
solvable, we need one last assumption.

Assumption 4. There exists a group of opportunistic traders in the market who
monitor the DEXs closely and exploit the trading of LDs.

Specifically, opportunistic traders can be viewed as high-frequency value arbitrageurs.
These traders closely monitor DEXs, seizing any arbitrage opportunities arising from price
movements around the fair value of cryptos. In the presence of opportunistic traders,
each size-q trade made by an LD is subsequently followed by a reverse trade of size −q
initiated by these opportunistic traders. This sequence happens because an LD’s trade
in one direction creates arbitrage opportunities for opportunistic traders to profit from
trading in the opposite direction. As a result, the objective function for representative k
changes to

DEX k’s Problem: Max
Tk(·)

Bk(Tk, T−k) =

∫ θ

θ

2γTk

(
qk(θ) : T−k

)
dF (θ), (25)

where the term involving the utility increment in (24) disappears and there exists a
multiplicative factor of 2 in front of the trading fee income, reflecting the fact that any
trade made by an LD will be reversed by opportunistic traders in DEXs.

Inspecting the optimization problem faced by each DEX, we can denote by the best
response of DEX k to the strategies of her competing DEXs by Fk(T−k). Then finding a
Nash equilibrium in this oligopolistic inter-DEX competition game will correspond to the
fixed points in the mapping {F1, ..., FJ}. In fact, the computation can be greatly simplified
by considering the following fact: Given the symmetric structure of the initial liquidity
pools at t = 0, the set of strategies for each LP t = 1 will be either randomly choose
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a single pool to participate in or evenly distribute their cryptos across all initial pools.
Both strategies have an equivalent effect in terms of the resulting aggregate liquidity
and ownership structure within every DEX in equilibrium. Therefore, without loss of
generality, we can consider the latter case for simplicity. Based on this, one can postulate
(and verify later) the existence of a unique symmetric equilibrium: LPs within each DEX
j ∈ J collectively adopt a symmetric pricing schedule design Tj := T ⋆. This result is
formally stated in the following proposition.

Proposition 4 (Existence and Uniqueness). Under assumption 4, there exists
a unique equilibrium in this oligopolistic inter-DEX competition game. This equilibrium
is symmetric in the sense that all DEXs design an identical pricing schedule. That is,
T ⋆
1 = ... = T ⋆

J ≡ T ⋆.

The proof of this proposition closely follows the roadmap to that of Biais, Mart-
mort, and Rochet (2000) [11]. They analyze an oligopolistic screening game among n
risk-neutral market-makers offering convex price schedules simultaneously and noncoop-
eratively. They establish the existence of a unique symmetric equilibrium, demonstrating
that the equilibrium pricing schedule does not restore ex-ante efficiency due to the ad-
verse selection in a common value environment where market-makers are neither informed
about traders’ hedging needs nor the fair value of the trading asset. Our result here shares
qualitative similarities but exhibits a key distinction since the adverse selection in our
paper arises from the privately observed trading needs of the LD, a private value envi-
ronment) only. Therefore, the equilibrium pricing schedule can yield an ex-ante efficient,
say uAMM(x − q,y + T ⋆(q)) = uAMM(x,y).

Additionally, instead of assuming risk-neutral market makers straightforwardly as in
Biais, Martmort, and Rochet (2000) [11], the utility preference uAMM in this paper is
more general, a weighted product of LPs’ preferences. Although the objective function of
LPs within each DEX turns out to be risk-neutral, see in (25), the fundamental goes to
the presence of opportunistic traders in the market and the DAO structure of the DEX
platform. Moreover, our equilibrium pricing schedule sells tokens at their marginal cost,
no longer a constant as in Biais, Martmort, and Rochet (2000) [11].

In conclusion, this section models an inter-DEX competition among symmetric DEXs,
characterized by an oligopolistic competition reminiscent of Bertrand competition, where
each DEX, in equilibrium, sells assets at its marginal cost. The key insight driving this
outcome is that when her competitors are offering a break-even pricing schedule T ⋆(·), the
optimal pricing schedule can be offered by DEX k is the break-even pricing schedule T ⋆(·).
DEX k cannot increase her price without risking a loss of her market share. Interestingly,
the marginal cost charged by each DEX for each unit of crypto A in this model departs
from the constant pricing in traditional Bertrand competition. Instead, it takes the form
of a weighted average of the marginal prices charged by individual LPs. This weighted
pricing reflects the exact impact of diverse preferences as well as the asymmetric liquidity
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ownership of LPs on how to settle down an ex-ante mechanical pricing algorithm in the
DEX.

7 Extension Two: Reporting Preferences Truthfully
Let us now address one of the major concerns regarding our implementation result.

Recall that our implementation in section 5 relies on achieving equilibrium through a
Nash bargaining game where the utility preferences profile of LPs has to be assumed
as publicly available for mechanism designers. Specifically, one can see that the optimal
bonding curve design, say the weighted product of LPs’ preferences, in our Proposition 2 is
entirely determined by two sets of information: the preferences profile of LPs {ui}i and the
exact amounts of cryptos A and B deposited by each LP {(xi, yi)}k. The latter information
about the number of cryptos deposited by LPs is public in the DEX platform, whereas the
former LP’s preference information is privately observed. Moreover, the domain of LPs’
preference function could be very general in mathematics, making inferring and eliciting
this preference information almost impossible for mechanism designers.

Given that, we believe an alternative but also more practical approach to acquiring
this preference information is to ask LPs to report their preferences directly. Then, a
natural, important question arises: How do the mechanism designers incentivize LPs to
report their utility preferences truthfully? This will be the central focus of this section.

To address this question, we extend our implementation result by introducing a partial
allocation mechanism, serving as the pre-bargaining stage in the aforementioned Nash
bargaining game. In practice, this preference information collection process implies that
LPs are required to simultaneously report their preferences over bundles of cryptos or
equivalently their utility preference functions when staking cryptos into the DEX. We
demonstrate and prove later in this section that truthfully reporting preference would be
a dominant strategy for every LP in our pre-bargaining stage.

Incentivising agents to truthfully report their preferences brings to mind the classical
Vickrey–Clarke–Groves (VCG) mechanism, introduced by Vickrey (1961) [47], Clarke
(1971) [20], and Groves (1973) [26]. The key features of the VCG mechanism include the
fact that truthfully reporting valuations for possible outcomes is the dominant strategy
for all agents, and it achieves the socially optimal utilitarian solution by maximizing the
sum of agents’ utilities. However, in contrast to the classical VCG mechanism, which aims
to achieve utilitarian welfare (the sum of agents’ utilities), our objective here is to attain
Nash social welfare (a weighted sum of agents’ utilities). To highlight this distinction,
let’s first provide a summary of what a typical VCG mechanism would look like in the
context of our DEX allocation problem.

VCG mechanism for utilitarian social welfare. Let X = {(xi, yi)i|
∑

i(xi, yi) =
(x0, y0)} denote the set of feasible allocation outcomes over the post-trade liquidity pool
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(x0, y0). As usual, let (βi)i, where
∑

i βi = 1, represent the liquidity ownership of LPs
within the pool. Then the valuation of each LP over any possible pool allocation outcome
can be captured by a preference function:

ui : X → R+, where ui(x) = ui(xi, yi) and x = (xi, yi)i ∈ X.

In a typical VCG mechanism setup, it is assumed that agents have quasilinear utility.
For example, if the outcome allocation is x ∈ X and LP i can receive a corresponding
payment pi(x) (either positive or negative) under this outcome, then her eventual utility
payoff will be:

ûi(x) = ui(x) + pi(x).

Goal of this VCG mechanism. The goal of the VCG mechanism is to select the
outcome x⋆ such that the utilitarian social welfare of LPs is maximised. That is,

x⋆ := x⋆
(
{ui}i

)
∈ argmax

x∈X

∑
i

βiui(x).

A typical VCG mechanism. Following the VCG mechanism literature, we con-
struct a standardized VCG mechanism in the following way:

1. The mechanism asks all LPs within the liquidity pool to report their utility prefer-
ences over each possible bundle of assets, say, ui(x) for i = 1, ..., I and x ∈ X.

2. According to the utility preferences reported by LPs, the mechanism computes the
x⋆
(
{ui}i

)
∈ argmax

x∈X

∑
i βiui(x).

3. The mechanism pays LP i a weighted payment pi that equals the sum of weighted
utilities of all other LP j. That is,

pi =
1

βi

∑
j ̸=i

βjuj(x
⋆). (26)

Examining step 3 in the above mechanism, one may notice that the interest of each LP
i aligns exactly with the interest of this mechanism designer, i.e., the maximum of the
weighted sum of utilities of all LPs. Since each LP i in this mechanism eventually receives
the utility:

ûi := ui(x
⋆) + pi = ui(x

⋆) +
1

βi

∑
j ̸=i

βjuj(x
⋆),
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where ui(x
⋆) is the utility she obtains from the allocation defined in x⋆ and pi is the total

value/utilities she obtains from step 3 in the mechanism. Multiplying the above member
i’s utility by βi yields that

βiûi = βiui(x
⋆) + βipi = βiui(x

⋆) +
∑
j ̸=i

βjuj(x
⋆) =

n∑
k=1

βiui(x
⋆),

where the right-hand side is exactly the goal of this mechanism. Hence, LPs in this
mechanism are incentivized to play the strategy that helps the society/mechanism designer
achieve its utilitarian goal. Accordingly, LPs are incentivized to truthfully report their
preferences.

As mentioned earlier, the social welfare function in the DEX should be the Nash
social welfare, a weighted product of LPs’ utility, instead of the weighted sum case in the
VCG mechanism. Therefore, we have to modify the above standardised VCG mechanism
solution to accommodate this change. Surprisingly and intuitively, one will see that what
we only need to do is just follow the same steps but change every sum operational in
the VCG mechanism to a product operational correspondingly. Let us name this new
mechanism a partial allocation mechanism and illustrate its structure specifically below.

Goal of our partial allocation mechanism. First of all, let us denote X the
set of possible allocation outcomes and ui(x) the valuation/utility of member i for each
allocation outcome x ∈ X in the same manner as above. However, the goal of our partial
allocation mechanism here changes to select the outcome x⋆ that maximises the Nash
social welfare of the society, say, the weighted product of utilities of LPs

x⋆
(
{ui}i

)
∈ argmax

x∈X
Πiui(x)

βi .

The partial allocation mechanism for Nash social welfare. The second dif-
ference of our partial allocation mechanism to the typical VCG mechanism is that if the
final allocation output is x⋆ = (x⋆

i , y
⋆
i )i, this mechanism only gives LP i a fraction fi(x

⋆)
of her bundle (x⋆

i , y
⋆
i ). Specifically, given the final allocation x⋆, LP i’s eventual utility in

this mechanism will be

ûi(x
⋆) = fi(x

⋆)ui(x
⋆
i , y

⋆
i ).

Next, we need to specify how to construct a suitable fi(·), and why our partial allo-
cation mechanism motivates LPs to truthfully report their utility preferences, achieving
the Nash social welfare goal.

The partial allocation mechanism. Analogously, we construct the mechanism and
show its solution in three steps.
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1’. The mechanism asks LPs grouped in the liquidity pool to report their utility pref-
erences over each possible bundle of assets, say, ui(x) for i = 1, ..., I and x ∈ X.

2’. According to the utility preferences reported from LPs, the mechanism computes
the x⋆

(
{ui}i

)
∈ argmax

x∈X
Πiui(x)

βi .

3’. The mechanism allocates each LP i a weighted fractional (x⋆
i , y

⋆
i ), where the weight

fi is given by

fi =
(
Πj ̸=iuj(x

⋆)βj

) 1
βi . (27)

Armed with this partial allocation mechanism, we have the following proposition.

Proposition 5 (Truthfully Reporting). In the partial allocation mechanism spec-
ified above,

(I.) Each LP i ∈ I is incentivized to truthfully report her preference ui as reporting true
preference in step 1’ is a dominant strategy.

(II.) This mechanism implements its goal, say, weighted Nash social welfare among LPs
with the weight vector (βi)i.

Proof. Let us begin with the proof for part (II) where we can apply a similar argument
as the above VCG mechanism case and show that steps 1’-3’ here indeed implement Nash
social welfare with the weights {βi}i.

The trick is in step 3’. Suppose that the final allocation implied in the Nash social
welfare function is x⋆, then the total utility payoff of LP i in this partial allocation
mechanism is

ûi(x
⋆) = fi(x

⋆)ui(x
⋆) =

(
Πj ̸=iuj(x

⋆)βj

) 1
βi ui(x

⋆).

Taking a power of βi on both sides yields that(
ûi(x

⋆)
)βi

=
[(

Πj ̸=iuj(x
⋆)βj

) 1
βi ui(x

⋆)
]βi

= Πiui(x
⋆)βi , (28)

where the very left-hand side is the goal of our partial allocation mechanism, say, the
weighted Nash social welfare of the DEX society. Hence, each LP has her interests aligned
with those of the Nash social welfare planner. So the weighted Nash social welfare of the
society will be achieved If LPs are incentivized to truthfully report their preferences.

To verify that reporting preference truthfully is a dominant strategy, let us assume
that other LPs j ∈ I, j ̸= i report their preferences in step 1’ as ūj (note that these
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preferences reported by LPs j ̸= i may differ from their true ones). Then the LP i has
the option of either reporting her true preference or reporting a false one. Accordingly, in
step 2’, denoted by the final allocation output by partial allocation mechanism x⋆

T if LP
i truthfully reports her preference, or x⋆

F otherwise. Correspondingly, step 3’ returns the
fraction fT (x

⋆
T ) if LP i truthfully reports, or fraction fF (x

⋆
F ) otherwise.

To prove truthfully reporting her preference as a dominant strategy, what we need to
show is that

fT (x
⋆
T )ui(x

⋆
T ) ≥ fF (x

⋆
T )ui(x

⋆
F ) or equivalently,

(
fT (x

⋆
T )ui(x

⋆
T )
)βi

≥
(
fF (x

⋆
F )ui(x

⋆
F )
)βi

.

Using the definition of fT and fF , our problem therefore reads as

ui(x
⋆
T )

βiΠj ̸=iūj(x
⋆
T )

βj ≥ ui(x
⋆
F )

βiΠj ̸=iūj(x
⋆
F )

βj . (29)

Verifying this inequality is immediately due to that x⋆
T is defined as the maximiser to the

weighted product of the corresponding reported preferences of LPs in step 2’. That is,

x⋆
T ∈ argmax

x∈X
ui(x)

βiΠn
j ̸=iūj(x)

βj ,

where remark that any LP j ̸= i is allowed to report any preference ûj that may differ
from her true one uj. As a result, reporting her true preference is a dominant strategy
for every LP. Proof completes.
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8 Conclusion
Taking an oligopolistic competition framework between DEXs and adopting a decen-

tralised governance scheme within each DEX, this paper has established an economic
microfoundation for the prevalent ad hoc bonding-curve-based AMM trading mechanism.
The consideration of heterogeneity among LPs, specifically through utility preference and
liquidity contribution dimensions, has shown the potential sub-optimality associated with
the simplistic bonding curve algorithms at DEXs, at the cost of trade allocation efficiency.

Through the study of a social planner problem, this paper has revealed the necessity
of an optimal trading mechanism at a DEX that accounts for the asymmetry in LPs’
liquidity contribution and their diverse utility preferences. Assuming homothetic prefer-
ences among LPs, we have proved that an optimal bonding curve design can be realized,
structured as a weighted product of LPs’ utility preference functions, with weights re-
flecting their fractional ownership in the DEX. Furthermore, we have developed a specific
decentralised governance process a là N-person Nash bargaining game for implementing
this optimal bonding curve design at a DEX.

Several important extensions remain to be pursued for future research. For instance,
on the liquidity-demand side, what implications arise if prospective liquidity demanders
are informed of the fundamental value of risky cryptos? How might the optimal pric-
ing schedule be affected in the presence of more than one liquidity demander for each
transaction (or block in reality)? On the liquidity-supply side, how might our implemen-
tation findings be altered in the presence of a pivotal or dictatorial LP within the DEX
community? Lastly, how does competition unfold when we have asymmetric oligopolistic
DEXs?
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9 Appendix

9.1 Proof for Lemma 1

Proof. To start, suppose the bonding curve function utilised by the AMM is uAMM(·, ·).
Then the optimality of uAMM(·, ·) in its trade allocative efficiency yields one following
necessary condition as stated below:

uAMM(x− q, y + τ(q)) = uAMM(x, y) =⇒ ui(xi − βiq, yi + βiτ(q)) ≥ πi ∀i, (30)

where (x, y) = (
∑

i xi,
∑

i yi) and πi is the reservation utility of LP i if she did not stake
her tokens in the liquidity pool.

Let us prove this lemma by constructing a contradiction. Suppose that (30) holds for
a general profile of preference {ui}i and that all LPs stake an identical crypto bundle into
the liquidity pool. This implies (xi, yi) = (xj, yj) for any i, j ∈ {1, ..., n}. In other words,
(xi, yi) =

1
n
(x, y) and LPs have identical liquidity ownership at the DEX, say βi = βj =

1
n
.

Provided that the pricing schedule implied in the bonding curve design uAMM is τ(·), we
then write the participation constraints of LPs in this DEX platform in the following way:

ui(xi, yi) = ui

(
xi − βiq, yi + βiτ(q)

)
=

1

n
ui

(
x− q, y + τ(q)

)
≥ πi, (31)

where we apply the homotheticity of ui and βi = 1
n

while deriving the last equality.
Multiplying the left hand sides of (31) by a factor n and then rearranging its order yields
that

ui

(
x− q, y + τ(q)

)
= nui(xi, yi) = ui

(
nxi, nyi

)
= ui(x, y) ∀i, (32)

where all equalities above hold because of the homotheticity of ui and that (xi, yi) =
1
n
(x, y).

Recall that bonding curve design requires that

uAMM(x− q, y + τ(q)) = uAMM(x, y). (33)

Taking all the results above together immediately leads to a contradiction. Notably,
conditions (32) and (33) hold for any x, y, q, T (q). However, the former condition (32)
depends on ui, whereas the latter condition (33) is independent of ui. The only way to
ensure their equivalence is if the degenerate case holds where ui ≡ uAMM . This contradicts
our assumption that there exists at least one pair of LPs who are heterogeneous in their
preferences. Proof completes.

44



9.2 Proof of Proposition 1

Proof. Substituting the market clearing condition back into the objective function of social
planner, we immediately notice that the optimal mechanism candidate {q(·), τ(·)} or the
allocation {qi(·), τi(·)}i has to minimise the cost of trading for any given trading quantity
q(θ). That is,

Min
{τi(·)}

∫ θ

θ

∑
i

τi(θ)dF (θ)

subject to participation constraint of LPs. Solving this optimisation problem is essentially
equivalent to finding the efficient allocation {τi(·)} in which LT achieves the minimum
trading cost (or maximum net trading payoff). Inspecting the participation constraint
of LPs, we can claim that the optimal allocation corresponds to the case in which all
participant constraints are binding. To illustrate, suppose for example that there exists
at least one i ∈ {1, ..., I} such that∫ θ

θ

ui(xi − qi(θ), yi + τi(θ))dF (θ) > πi,

Then the social planner could reduce transfer τi(θ) by a small amount and turn this
inequality to be equality. This would obtain a smaller trading cost for LD and produce
a more efficient allocation. Therefore, any allocation other than the one that binds all
participation constraints would be strictly dominated.

Therefore, at the optimum, we have

ui(xi − qi(θ), yi + γτi(θ)) = πi, ∀θ ∈ [θ, θ] and i ∈ {1, ..., I},

where we get rid of the integration over θ as participation constraints of LPs are always
binding for any given distribution function F . Using this fact we can have that the transfer
τi(qi(θ)) each LP i receives in the efficient allocation as follows,

τi

(
qi(θ);xi, yi, ui

)
or simply τi(qi).

Above, we use the condition that q̇(θ) > 0 to ensure the simplification over τi is well-
defined. Having characterised the form of the pricing schedule for each LP i above, we
can now compute the optimal pricing schedule τ(q) which maximises the net trading
payoff of LDs:

τ(q) ≡ min
{qi}i

{∑
i

τi(qi) :
∑
i

qi = q

}
.

Extending the above analysis to the other side of the market where q < 0 is analogous.
For conciseness, we only focus on one side of the market for which LD purchases crypto
A, say q > 0.
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9.3 Proof for Proposition 3

Proof. Existence Let us start the proof from the equilibrium existence. Suppose the ex-
pected allocation vector contained in the SSPE strategy of game G(ρ, β) is z = (z1, z2, ..., zn).
Then z ∈ V due to that z is a convex combination of z1, z2, .., zn and the set of feasible
utilities V is convex.

On the one hand, if member i is chosen to be the proposer at round 1, she can propose
an allocation vector xi = (x1

i , x
2
i , ..., x

n
i ) ∈ V that will be accepted by others. If this is the

case, she needs to propose the allocation vector by considering the optimization problem.

Max
xi=(x1

i ,x
2
i ,...,x

n
i )∈V

xi
i subject to xj

i ≥ ρzj + (1− ρ)0 = ρzj ∀j ̸= i.20

It is easy to see that the set of constraints is bounded, closed, convex, and not empty.
Therefore, we can denote f ⋆

i (ρz−i) as the maximum value of xi
i by solving the above

optimization problem, where z−i is defined as usual, say, z = (zi, z−i). On the other
hand, rather than proposing the allocation vector that is accepted by others, remark that
proposer i can propose an unacceptable proposal. In this case, her expected payoff will
be ρzi. Combining these two cases together yields the expected payoff of member i in the
SSPE as βi max{f ⋆

i (ρz−i), ρzi} + (1 − βi)(ρzi). For each z = (z1, z2, ..., zn) ∈ V , we can
define a function gρi (z) by

gρi (z) = βi max{f ⋆
i (ρz−i), ρzi}+ (1− βi)(ρzi), ∀i.

As a result, g(z) := (gρi (z))i∈N is a correspondence from V to V . By using facts that V is
compact and convex and Brouwer’s fixed point theorem, we immediately get that there
exists a fixed point z⋆(ρ) ∈ V such that ∀i ∈ {1, 2, ..., n} we have gρi (z

⋆(ρ)) = z⋆(ρ). So,
we complete the proof of existence part.

Equilibrium Strategy From the proof above, we can easily construct an SSPE
strategy profile σ⋆(ρ) = (σ⋆

1(ρ), σ
⋆
2(ρ), ..., σ

⋆
n(ρ)) in the game G(ρ, β) as follows, for every

member i ∈ N ,

I. if becomes the proposer, then proposes the allocation vector that solves the above
optimization problem.

II. if becomes the responder, then accepts any proposal xi
j if and only if xi

j ≥ ρz⋆j .

In an SSPE, no proposer in any round would have the incentive to propose an unacceptable
allocation proposal as there exists a negotiation breakdown risk (time cost). Similarly,
no responder has the incentive to reject a proposal if it offers her a payoff that equals
her continuation value from rejecting such a proposal. Consequently, in every SSPE of
G(ρ, β), any selected proposer i in each round will propose x⋆

i such that it solves

Max
xi=(x1

i ,x
2
i ,...,x

n
i )∈V

xi
i subject to xj

i ≥ ρz⋆j ∀j ̸= i.
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This proposal x⋆
i will be accepted by all other members.

Equilibrium Payoff in SSPE Armed with the observation described above, we
immediately get that in any SSPE with payoff vector z(ρ) = (zρ1 , ..., zn(ρ)), every member
receives the payoff f ⋆

i (ρz(ρ)−i) if she is the proposer, and gets ρzi(ρ) if she is a responder.
Notice that the probability of each member i selected as the propose is βi, and therefore,
the expected payoff to each i ∈ {1, 2, ..., n} in this SSPE with payoff vector z(ρ) =
(zρ1 , ..., zn(ρ)) satisfies that

zi(ρ) = βif
⋆
i (ρz−i(ρ)) + (1− βi)(ρzi(ρ)).

Therefore, we have that in any SSPE, the expected payoff z⋆(ρ) is given by

z⋆i (ρ) = βif
⋆
i (ρz

⋆
−i(ρ)) + (1− βi)(ρz

⋆
i (ρ)) ∀i ∈ {1, 2, ..., n}.

It implies that

f ⋆
i (ρz

⋆
−i(ρ)) =

1− ρ

βi

z⋆i (ρ) + ρz⋆i (ρ).

As ρ → 1, we immediately get

f ⋆
i (z

⋆
−i) = z⋆i .

Denote by xi(ρ) = (ρz⋆1(ρ), ..., f
⋆
i (z

⋆
−i), ..., ρz

⋆
n(ρ)) the payoff vector proposed by every

member i who is selected as the propose in any SSPE of G(ρ, β). Clearly, the above
relation implies that

lim
ρ→1

xi(ρ) = z⋆ = lim
ρ→1

xj(ρ). (34)

That is, the proposals proposed by all members in any SSPE converge to the same z⋆ :
(z⋆i )i.

Nash Bargaining Solution Let us now establish the equivalence between the SSPE
with ρ → 1 and the Nash bargaining solution.

It is not hard to see that the set of feasible utilities V is closed, bounded, convex,
smooth and nonlevel due to the assumption that utility preference functions {ui}i are
continuous, concave and differentiable. Therefore, there exists a continuous, concave and
differential function F such that F (x) = 0 for any x ∈ ∂V ∩ Rn

+ and F (x) ≤ 0 for any
x ∈ V o ∩ Rn

+, where V o is the interior of V .
Any SSPE payoff vector xi(ρ) proposed by every member i in game G(ρ, β) must belong

to ∂V ∩ Rn
+. Otherwise, it would be not Pareto efficient and there will exist a Pareto-

improved vector that increases all member’s payoffs. So any member j ̸= i will reject this
payoff allocation proposal xi(ρ), which is the desired contradiction. Consequently, for any
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two i, j ∈ {1, 2, ..., n}, it follows that F (xi(ρ)) = F (xj(ρ)) = 0, where xi(ρ) and xj(ρ) are
the respective payoff vectors proposed by members i and j in an SSPE if they are selected
as the proposer in round 1. By using the Taylor’s Theorem, we see that there exists at
least one 0 < t < 1 such that

0 = F (xi(ρ))− F (xj(ρ)) =
∑
i

Fi(txi(ρ) + (1− t)xj(ρ))(x
k
i (ρ)− xk

j (ρ))

= [f ⋆
i (ρz

⋆
−i(ρ))− ρz⋆i (ρ)]Fi(txi(ρ) + (1− t)xj(ρ))− [f ⋆

j (ρz
⋆
−j(ρ))− ρz⋆j (ρ)]Fj(txi(ρ) + (1− t)xj(ρ))

= (1− ρ)
z⋆i (ρ)

βi

Fi(txi(ρ) + (1− t)xj(ρ))− (1− ρ)
z⋆j (ρ)

βj

Fj(txi(ρ) + (1− t)xj(ρ)),

where Fi is the partial derivative to the k − th coordinate. We can multiply 1
1−ρ

on both
sides of the above equation and then take ρ → 1. It yields that

z⋆i
βi

Fi(z
⋆) =

z⋆j
βi

Fj(z
⋆) (35)

for any i, j ∈ {1, 2, ..., n}, where we derive the above equality by relying on the fact in
(34), say, for any k, lim

ρ→1
xi(ρ) = z⋆.

As the last step, let us derive the Kuhn-Tucker condition of the optimization problem
for the Nash bargaining solution of (V, β). The computation is straightforward and it
reads as

βi

z⋆i
Πi(z

⋆
i )

βi − λFi(z
⋆) = 0, ∀i ∈ {1, ..., n},

and F (z⋆) = 0,

where λ is the respective Lagrange multiplier. Remark that we have proved a moment
ago that any SSPE z⋆ = (z⋆1 , z

⋆
2 , ..., z

⋆
n) ∈ V satisfies the conditions of F (z⋆) = 0 and (35),

which indeed also fulfil the above Kuhn-Tucker condition of the optimization problem for
the Nash bargaining solution of (V, β). So, as ρ → 1, the respective SSPE z⋆ defines the
solution of our original Nash bargaining problem. Proof completes.
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