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Abstract

We explore multiple rational bubbles with varied levels of confidence. Post-bursting,

aggregate bubble size contracts, while surviving bubbles gain value. Greater confi-

dence in a bubble increases its size, expanding aggregate bubble size but deflating

others. Fragile bubble assets, collectively, might rival a stable one due to diversifica-

tion benefits. Our stationary model provides practical insight into bubble behavior

by offering a theoretical upper bound on aggregate bubble size, applicable to mod-

els handling price fluctuations, nonstationarity, and potential bubble formations in

financial ecosystems. Our model has implications for crypto ETFs, CBDC issuance,

and cryptocurrency regulations, illuminating diverse bubble dynamics.
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1 Introduction

As famously stated in Minsky (1986), “everyone can create money; the problem is to get it

accepted.” With the recent rise of cryptocurrencies, this statement has become even more

relevant. Perhaps a more pressing question today is whether we need so many money-like

assets in the sense of classical bubbles (e.g., Tirole (1985)) and if so, what determines their

market sizes. A (pure) bubble naturally arises in response to market imperfections, such as
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the absence of liquid vehicles for transferring wealth across different periods. However, it

is unclear whether having more competing bubbles in the economy would provide greater

benefits. Nevertheless, we observe a diverse range of bubbles, including classical asset

bubbles such as gold and silver, as well as the recent explosion of cryptocurrencies. Is it

desirable to have them in such abundance? How does competition among asset bubbles

affect their pricing and survival? In this paper, we theoretically investigate these questions

using a classical bubble framework with multiple heterogeneous bubbles.

To address these questions, we study an overlapping generations (OLG) exchange econ-

omy. The market in this economy is imperfect in the sense that it lacks investment oppor-

tunities for the agents to transfer wealth over time. Agents live for two periods and receive

endowments when they are young and old. There exist multiple assets (henceforth referred

to as “bubbles”) that do not have any fundamental value. Agents prefer to transfer wealth

to their older selves to increase consumption utility, leading to a demand for these bubbles.

As a bubble is intrinsically valueless, it may burst at any time if agents lose confidence in

it (Weil (1987)). No one will want to hold a bubble once they expect it will not be accepted

in the future. To this end, we model the bursting of a bubble as a random event with a

certain probability. Because those bursting events are not synchronized, in our multi-bubble

economy, a rational agent would naturally invest in a portfolio of bubbles, exploiting the

benefits of diversification. This diversification motive, together with the agents’ confidence,

determines the current sizes of bubbles. Therefore, a basket of seemingly unstable bubble

assets, such as an ETF of cryptocurrencies, may transfer liquidity more efficiently than a

single, more stable bubble asset.

In equilibrium, confidence—the probability that a bubble will not burst—naturally

emerges as the fundamental factor determining a bubble’s size. In any multi-bubble econ-

omy, a bubble with a lower bursting probability tends to be larger. As agents gain con-

fidence in one bubble, it becomes more attractive, leading to a decrease in the size of its

competitors. On the other hand, with many bubbles in the market, we may reach a rel-

atively accurate prediction of the size of the bubble market without knowing the specific

confidence level of each bubble. Specifically, the size of the bubble market converges to that

of savings in the presence of money, where agents can save without incurring significant risk.

The law of large numbers and the fact that bubbles have no fundamental value dictate that

a fully diversified portfolio of many small bubbles provides near-perfect insurance against

the risk of bursting. Consequently, when bubbles burst, the growth of surviving bubbles

offsets a significant portion of welfare loss. Therefore, using the lost market value of burst

bubbles as a welfare indicator in a multi-bubble economy might significantly overstate the

welfare loss.
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In the analysis above, we focus on the stationary equilibrium where the size of each

bubble depends solely on the surviving bubbles in the current period. This approach allows

for tractable equilibrium characterizations and intuitive comparative statics. However, the

nature of a stationary model means that bubble price predictions are stable, which can be

at odds with the volatile prices observed in reality. On the other hand, in models without

a stationarity requirement over the equilibrium, such as those with forward-looking prices,

infinitely many self-fulfilling equilibria exist, and the model may fail to provide a strong

prediction.

To address this dilemma, we extend our discussion to encompass history-dependent

bubbles and stochastic shifts in bubble sizes in equilibrium. With infinitely many equilibria,

we focus on characterizing the common features. In any equilibrium scenario, the collective

size of any set of bubbles is (tightly) upper-bounded by the collective size of the bubble

economy in the stationary equilibrium when only these bubbles survive. This result provides

a tight upper bound (or a lower bound on confidence) for real-life bubbles with complex,

non-stationary trajectories. Moreover, this principle does not negate the possibility of

generating a positive net return in the bubble market. However, it suggests that as the

bubble market expands, achieving high returns becomes progressively challenging, even

when uncertainties exist over the true equilibrium bubble trajectories.

We also explore scenarios involving the creation of bubbles. The key proposition high-

lights that within any equilibrium, the combined size of existing bubbles cannot surpass

the aggregate size of those bubbles in the stationary equilibrium. This holds universally,

whether considering all bubbles together or individual bubbles within the equilibrium. Cru-

cially, this proposition does not restrict the possibility of larger aggregate bubble sizes in

subsequent periods due to new bubble additions but sets an upper limit based on the

stationary equilibrium with specific surviving bubbles.

Drawing implications from our results, we can discuss the potential efficiency of de-

centralized cryptocurrencies. It is theoretically possible that maximum efficiency could be

achieved in a scenario with a single centralized digital currency such as a CBDC when

carefully managed by the central bank or government.1 However, practical obstacles, in-

cluding technical feasibility, security measures, and long-term stability, cast doubt on this

possibility. Our results suggest that a more stable single centralized cryptocurrency may

not necessarily dominate a basket of many cryptocurrencies unless the single centralized

digital currency is entirely free from risk. A diversified portfolio made up of potentially

risky cryptocurrencies may even be more stable than a relatively stable centralized digital

1Modeling CBDC as a bubble with usage value (rather than a pure bubble in our baseline model) does
not change the main results.
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currency.

Our paper is related to a vast literature on rational bubbles, following classical works

such as Samuelson (1958) and Tirole (1985). Tirole (1985) shows that bubbles are sustain-

able in an OLG economy, based on Diamond (1965), in the presence of dynamic inefficiency,

where agents cannot consume more in the future, even when they desire increased future

consumption in the absence of a bubble.2 While most papers in this strand study de-

terministic bubbles, Weil (1987) notably extends Tirole (1985)’s model by introducing a

stochastic bubble that bursts with a certain probability. In that model, as the probabil-

ity of bursting increases, sustaining the bubble becomes more challenging.3 In real life, a

multitude of bubbles can emerge, and there is also a growing literature studying multiple

bubbles. Martin and Ventura (2012) study production economy models featuring multi-

ple bubbles and sentiment fluctuations, demonstrating the emergence of macroeconomic

boom-and-bust cycles, tied to the growth and busts of bubbles.4 Extending this line of

research, Martin and Ventura (2016) further explores the expansion of credit, examining

the role of bubbles as collateral in the process.

Unlike existing literature, where the bursting of bubbles is often driven by a common fac-

tor or sentiment, our model incorporates idiosyncratic forces that influence bubble bursts.

We extend Weil (1987)’s framework by introducing multiple bubbles with heterogeneous

bursting events. Our model offers new insights into the literature, particularly regarding

the diversification effect of investing in multiple bubbles and its implications for the size of

individual and aggregate bubbles in the economy.

2 Setup

Consider an infinite-horizon, discrete-time exchange economy with overlapping generations

of two-period-living agents. There is a single perishable consumption good. In each pe-

2Following this line of argument, whether agents are short-lived or long-lived, there is a vast literature
contributing to the understanding the emergence and applications of rational bubbles under imperfect
markets such as borrowing or credit constraints (e.g., Kocherlakota (1992), Grossman and Yanagawa
(1993), Santos and Woodford (1997), Caballero and Krishnamurthy (2006), Kocherlakota (2008), Miao
and Wang (2012), Gaĺı (2014), Hirano and Yanagawa (2016)). For instance, Farhi and Tirole (2012)
demonstrate the emergence of expansionary bubbles in a production economy in the presence of financial
frictions, specifically limited pledgeability.

3Following the seminal papers, there is a growing literature that employs stochastic bubbles in various
economic contexts. Miao and Wang (2018) study credit cycles with bubbles in a production economy
featuring long-lived agents. Dong, Miao, and Wang (2020) demonstrate that, within a dynamic new
Keynesian framework, bubbles can provide liquidity and consequently command a liquidity premium.
Asriyan, Fornaro, Martin, and Ventura (2021) study optimal monetary policy in the presence of credit
cycles driven by stochastic bubbles.

4For further details on additional applications of this type of model, refer to Martin and Ventura (2018).
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riod, one unit mass of young agents arrives. They are homogeneous and endowed with a

consumption good 𝑒𝑦 when young and 𝑒𝑜 when old. Each agent who arrives in period 𝑡

maximizes the expected utility of a bundle of consumption (𝑐𝑦,𝑡, 𝑐𝑜,𝑡) when young and old:

E𝑡[𝑢(𝑐𝑦,𝑡) + 𝛽𝑢(𝑐𝑜,𝑡)], (1)

where 𝛽 < 1 is the discount factor. The function 𝑢(·) is differentiable, increasing, strictly
concave, and satisfies the Inada condition 𝑢′(0) = ∞. We further assume that the agent’s

elasticity of intertemporal substitution (EIS) is greater than or equal to one, that is, 𝑥𝑢′(𝑥)

is increasing. With this assumption, the agent is willing to decrease his consumption and

increase his investment when expecting a higher return since the substitution effect over

the consumption dominates the income effect.5 Our analysis is general in the sense that

we do not impose further assumptions on the utility function. Due to the concavity of

the utility function, agents have incentives to smooth their consumption. Throughout the

paper, we assume that 𝑒𝑦 is sufficiently large to incentivize young agents to transfer the

consumption good from the first period to the second period.

The economy begins with 𝑛 ∈ N tradable assets that are intrinsically useless, meaning

they do not offer any payoff other than capital gains.6 Each asset has a unit supply. These

assets are “bubbles,” as they possess no intrinsic value but could have positive prices, with

archetypal examples being cryptocurrencies.7 For ease of notation, this collection of bubble

assets is referred to as the “bubble sector.”

Following Blanchard (1979), Blanchard and Watson (1982), and Weil (1987), we con-

sider stochastic bubbles with random prices. Similar to Weil (1987), where a single bubble

asset is featured, we assume that each bubble asset indexed by 𝑖 (henceforth, the “𝑖-th

bubble”) may lose its value next period with a constant probability 1− 𝑞𝑖 where 𝑞𝑖 reflects

agents’ confidence in the asset. The usual interpretation is that agents’ beliefs depend on

sunspots or sentiment processes, which are extrinsic to the economy (e.g., Cass and Shell

(1983), Weil (1987), Asriyan, Fuchs, and Green (2019)). For tractability, we further assume

that the collapse of bubbles is independent across time and assets.8

5This assumption is adopted by papers in heterogeneous agent models, for instance, (Achdou, Han,
Lasry, Lions, and Moll 2022) and (Light 2020), to establish the uniqueness of the equilibrium.

6For simplicity, we assume that there are no other means to transfer liquidity aside from bubbles, such
as money. Bubbles still arise even in the presence of money as long as the interest rate is less than the
growth rate of the economy (Wallace (1980)). Therefore, our results would remain qualitatively the same
under such conditions.

7Cryptocurrencies may have inherent service values, but our focus is on the case of pure bubbles, where
assets are solely used for storing liquidity.

8This assumption is not as restrictive as it appears to be. See Section 5 for a detailed discussion.
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The model’s timeline is as follows: The economy starts with 𝑛 bubbles owned by the

old generation. At the beginning of each period, the 𝑖-th bubble either continues to exist

with a probability of 𝑞𝑖 or collapses with a probability of 1 − 𝑞𝑖. The old generation then

sells all surviving bubbles to the young generation. At the end of the period, the old and

the young generation consume the perishable consumption good. We refer to an economy

as a 𝑛-bubble economy if there are 𝑛 bubbles surviving at the trading stage.

Throughout this paper, we focus on the stationary equilibrium in which the size of a

bubble remains constant across different periods if the set of surviving bubbles remains the

same. Let 𝐼 ⊂ {1, . . . , 𝑛} represent the index set of surviving bubbles in the current period.

We denote by 𝑏𝑖𝐼 the price of asset 𝑖 ∈ 𝐼 when the index set of surviving bubbles is 𝐼. Since

each asset has a unit supply, 𝑏𝑖𝐼 also represents the size of bubble 𝑖. Therefore, we will use

the terms “price” and “size” interchangeably.

The budget constraints of young agents are given by

𝑐𝑦 = 𝑒𝑦 −
∑︁
𝑗∈𝐼

𝑏𝑖𝐼𝑥
𝑖
𝐼 ; (2)

𝑐𝑜 = 𝑒𝑜 +
∑︁
𝑗∈𝐼′

𝑏𝑖𝐼′𝑥
𝑖
𝐼 ; (3)

𝑐𝑦,𝑐𝑜 ≥ 0, (4)

where 𝑥𝑖
𝐼 is the young agent’s holding of asset 𝑖. The index set 𝐼 and 𝐼 ′ represent the

surviving bubbles in the current period and the subsequent period, respectively. Since we

focus on the symmetric case, the market clearing conditions are

𝑥𝑖
𝐼 = 1 for all 𝐼 and 𝑖 ∈ 𝐼. (5)

For ease of notation, we denote by E the expectation under the information set of

the young generation instead of including the information set in the form of conditional

expectation. Then, the first-order condition for an interior maximum is

𝑏𝑖𝐼𝑢
′(𝑐𝑦)− 𝛽E

[︀
𝑏𝑖𝐼′𝑢

′(𝑐𝑜)
]︀
= 0 for each 𝑖 ∈ 𝐼. (6)

Without loss of generality, 𝑏𝑖𝐼′ = 0 if 𝑖 ̸∈ 𝐼 ′. The surviving probability of a bubble is given

by

𝑃 (𝑖 ∈ 𝐼 ′ | 𝑖 ∈ 𝐼) = 𝑞𝑖. (7)
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and

for all 𝑖 ∈ 𝐼, 𝑖 ∈ 𝐼 ′ are mutually independent events. (8)

Stationary equilibrium is defined as follows:

Definition 1. A stationary equilibrium is given by {𝑏𝑖𝐼}𝐼⊂{1,...,𝑛},𝑖∈𝐼 satisfying 𝑏𝑖𝐼 > 0 and

Eqs. (2)-(8).9

Remark 1. Two aspects of this definition are worth emphasizing. First, the equilibrium

specifies bubble sizes in all possible collapsing scenarios. Second, in this definition, we

require 𝑏𝑖𝐼 > 0 to rule out the trivial situations where bubbles exist but have a value of zero.

3 Two-Bubble Economy

To elucidate our primary findings and provide a clearer intuition, we begin by analyzing

a simplified model featuring two bubbles. In contrast to standard bubble models, such as

Tirole (1985) and Weil (1987), which feature a single bubble, our model can address the

following questions: (i) Does an equilibrium exist where all bubbles are traded at positive

prices? If such an equilibrium exists, is it unique? (ii) Is the bubble sector larger compared

to a single-bubble economy? (iii) Are the bubble sizes reflecting their “fundamentals”? In

other words, is the bubble with a lower collapse probability always larger in any economy?

(iv) How does the size of an individual bubble and the bubble sector change when the

agents’ confidence over one bubble changes?

The stationary equilibrium in this case is a quadruple {𝑏11, 𝑏22, 𝑏1{1,2}, 𝑏2{1,2}}, where 𝑏11

represents the size (price) of the first bubble when the second bubble has collapsed, and

𝑏1{1,2} represents the size of the first bubble when both bubbles have positive values, and so

on. We denote by 𝐵{1,2}, the size of the bubble sector in the two-bubble economy as the

sum of the sizes of two surviving bubbles:

𝐵{1,2} = 𝑏1{1,2} + 𝑏2{1,2}. (9)

9Note that the demand for bubble assets {𝑥𝑖
𝐼} and consumption choices {𝑐𝑦, 𝑐𝑜} are determined by the

prices of bubble assets according to Eqs. (2)-(5). Therefore, for the sake of brevity, we omit them in the
definition of equilibrium.
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The equilibrium conditions are

𝑏11𝑢
′(𝑒𝑦 − 𝑏11) =𝛽𝑞1𝑏

1
1𝑢

′(𝑒𝑜 + 𝑏11); (10)

𝑏22𝑢
′(𝑒𝑦 − 𝑏22) =𝛽𝑞2𝑏

2
2𝑢

′(𝑒𝑜 + 𝑏22); (11)

𝑏1{1,2}𝑢
′(𝑒𝑦 −𝐵{1,2}) =𝛽𝑞1𝑞2𝑏

1
{1,2}𝑢

′(𝑒𝑜 +𝐵{1,2}) + 𝛽𝑞1(1− 𝑞2)𝑏
1
1𝑢

′(𝑒𝑜 + 𝑏11); (12)

𝑏2{1,2}𝑢
′(𝑒𝑦 −𝐵{1,2}) =𝛽𝑞1𝑞2𝑏

2
{1,2}𝑢

′(𝑒𝑜 +𝐵{1,2}) + 𝛽𝑞2(1− 𝑞1)𝑏
2
2𝑢

′(𝑒𝑜 + 𝑏22). (13)

Eqs. (10)-(11) are the first-order conditions for the young generation with only one bubble in

the economy. Eqs. (12)-(13) are the first-order conditions with two bubbles in the economy.

In the presence of two bubbles, agents consider the possibility that the price of a surviving

bubble may change if the other one collapses in the subsequent period. This consideration

influences agents’ investment decisions, altering the size of the existing bubbles.

Our first result shows that a unique stationary equilibrium with positive bubble sizes

exists as long as the bubbles’ survival probabilities are above a threshold, denoted by 𝑞.

This can be interpreted as the minimum level of “confidence” in the bubble asset required

for trading. Interestingly, this threshold coincides with the one found in an economy with

a single stochastic bubble, as in Weil (1987). In other words, if a bubble can exist in a

single-bubble economy, it can also exist regardless of the presence of other bubbles in an

economy with multiple stochastic bubbles.

Proposition 1. There exists a unique stationary equilibrium if and only if 𝑚𝑖𝑛(𝑞1, 𝑞2) > 𝑞

where

𝑞 =
𝑢′(𝑒𝑦)

𝛽𝑢′(𝑒𝑜)
. (14)

Proof. In the case of one surviving bubble (say, the first bubble), due to the continuity and

the concavity of the utility function, there exists a unique 𝑏11 > 0 that solves Eq. (10) if and

only if 𝑢′(𝑒𝑦) < 𝑞1𝛽𝑢
′(𝑒𝑜), or equivalently, 𝑞1 > 𝑞 where the cutoff 𝑞 is given by Eq. (14).

Likewise for the second bubble, there exists a unique 𝑏22 > 0 that solves Eq. (11) if and only

if 𝑞2 > 𝑞.

In the case of two surviving bubbles (achievable when both 𝑞1 and 𝑞2 are greater than

𝑞, as analyzed previously), we can demonstrate the existence of unique positive solutions

for 𝑏1{1,2} and 𝑏2{1,2} given 𝑏11 and 𝑏22. To see this, Eqs. (12) and (13) together with Eq. (9)

imply

𝐵{1,2}
[︀
𝑢′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2})
]︀

=𝛽𝑞1(1− 𝑞2)𝑏
1
1𝑢

′(𝑒𝑜 + 𝑏11) + 𝛽𝑞2(1− 𝑞1)𝑏
2
2𝑢

′(𝑒𝑜 + 𝑏22).
(15)
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The right-hand side of Eq. (15) is strictly positive since 𝑏11, 𝑏
2
2 > 0. The left-hand side is

zero when 𝐵{1,2} is zero, and diverges to infinity as 𝐵{1,2} approaches 𝑒𝑦. Furthermore,

it is straightforward to show that the left-hand side increases in 𝐵{1,2} whenever it is

nonnegative, because 𝑢′(𝑒𝑦 − 𝐵{1,2}) − 𝛽𝑞1𝑞2𝑢
′(𝑒𝑜 + 𝐵{1,2}) increases in 𝐵{1,2}. Therefore,

the continuity of the left-hand side in 𝐵{1,2} implies that there exists a unique 𝐵{1,2} > 0

satisfying Eq. (15). Given this 𝐵{1,2}, there exists a unique 𝑏1{1,2}, 𝑏
2
{1,2} > 0 that satisfies

Eq. (12) and Eq. (13), respectively.

Following Proposition 1, we focus on the economically meaningful case in which both

bubbles are stable enough to exist, i.e., 𝑞𝑖 > 𝑞 for both 𝑖 = 1, 2. We then examine

the size of the bubble sector of the two-bubble economy. Since each of the two bubbles

collapses independently, the bubble sector becomes less risky due to the diversification

effect, encouraging agents to invest more and consequently leading to a larger size compared

to a single-bubble economy.

Proposition 2. A two-bubble economy has a larger bubble sector and smaller individual

bubbles than its one-bubble counterpart, i.e., 𝐵{1,2} > 𝑚𝑎𝑥(𝑏11, 𝑏
2
2), 𝑏

1
{1,2} < 𝑏11 and 𝑏2{1,2} < 𝑏22.

Proof. From Eq. (15), dropping the first term on the right-hand side and dividing both

sides by 𝐵{1,2} > 0, yields:

𝑢′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢
′(𝑒𝑜 +𝐵{1,2})− 𝛽𝑞2(1− 𝑞1)

𝑏22
𝐵{1,2}

𝑢′(𝑒𝑜 + 𝑏22) > 0.

The left-hand side of the inequality is increasing in 𝐵{1,2}. Furthermore, Eq. (11) implies

that the left-hand side equals zero when 𝐵{1,2} = 𝑏22. Thus, it follows that 𝐵{1,2} > 𝑏22. By

a similar argument, we can also show that 𝐵{1,2} > 𝑏11.

By Eq. (10) and Eq. (12), we have

𝑏1{1,2}[𝑢
′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2})] = 𝑏11[𝑢
′(𝑒𝑦 − 𝑏11)− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 + 𝑏11)].

Since 𝐵{1,2} > 𝑏11, the above implies that 𝑏11 > 𝑏1{1,2}. Similarly, 𝑏22 > 𝑏2{1,2}.

Next, we analyze the relationship between bubble size and its probability of bursting. A

bubble derives its value from its ability to transfer wealth across different time periods. The

effectiveness of this intertemporal wealth transfer depends on its probability of bursting. A

bubble with a lower probability of bursting has a stronger “fundamental”, making it more

attractive to agents and consequently resulting in a higher price. We demonstrate that this

is generally true given our assumptions over the utility function.
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Proposition 3. A bubble with a lower probability of bursting is larger (equivalently, more

expensive) than one with a higher probability of bursting, i.e., if 𝑞2 ≥ 𝑞1, then 𝑏2{1,2} ≥ 𝑏1{1,2}.

Proof. From Eqs. (12) and (13), we have

𝑏1{1,2}
[︀
𝑢′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2})
]︀
= 𝛽𝑞1(1− 𝑞2)𝑏

1
1𝑢

′(𝑒𝑜 + 𝑏11);

𝑏2{1,2}
[︀
𝑢′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2})
]︀
= 𝛽𝑞2(1− 𝑞1)𝑏

2
2𝑢

′(𝑒𝑜 + 𝑏22),

which implies

𝑏1{1,2}
𝑏2{1,2}

=
𝑞1(1− 𝑞2)

𝑞2(1− 𝑞1)
· 𝑏

1
1𝑢

′(𝑒𝑜 + 𝑏11)

𝑏22𝑢
′(𝑒𝑜 + 𝑏22)

=
1− 𝑞2
1− 𝑞1

· 𝑏
1
1𝑢

′(𝑒𝑦 − 𝑏11)

𝑏22𝑢
′(𝑒𝑦 − 𝑏22)

, (16)

where the second equality is due to Eqs. (10)-(11). Then, since 1− 𝑞2 ≤ 1− 𝑞1 and 𝑏11 ≤ 𝑏22,

it must be 𝑏2{1,2} ≥ 𝑏1{1,2}.

We further analyze the comparative statics of the bubble sector and the size of each

bubble when one bubble’s bursting probability changes. Two bubbles substitute each other

since they both help the agents to transfer their wealth to the future. If one bubble becomes

less likely to collapse, it should become more attractive and its competitor should become

less attractive. Moreover, the bubble sector as a whole should become more attractive to

the agents since it becomes more stable. We show that these intuitive predictions are true

in general.

Proposition 4. If 𝑞𝑖 increases, 𝑏
𝑖
{1,2} increases, while 𝑏−𝑖

{1,2} (where −𝑖 denotes the index of

the other bubble than the 𝑖-th one) decreases. The aggregate size 𝐵{1,2} increases whenever

𝑞𝑖 increases for any 𝑖 = 1, 2.

Proof. Without loss of generality, we focus on the case where 𝑞1 increases. Consider an

alternative economy where 𝑞1 is increased to 𝑞 while maintaining all other model primitives

unchanged. We differentiate all the quantities related to the new equilibrium with the

“hat” symbol. It is straightforward to show that 𝑏̂11 > 𝑏11 using Eq. (10). By Eq. (15), we
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derive

𝑢′(𝑒𝑦 − 𝐵̂{1,2}) =𝛽𝑞𝑞2𝑢
′(𝑒𝑜 + 𝐵̂{1,2}) + 𝛽𝑞(1− 𝑞2)

𝑏̂11

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏̂11)

+ 𝛽𝑞2(1− 𝑞)
𝑏22

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏22)

>𝛽𝑞1𝑞2𝑢
′(𝑒𝑜 + 𝐵̂{1,2}) + 𝛽𝑞1(1− 𝑞2)

𝑏̂11

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏̂11)

+ 𝛽𝑞2(1− 𝑞1)
𝑏22

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏22)

>𝛽𝑞1𝑞2𝑢
′(𝑒𝑜 + 𝐵̂{1,2}) + 𝛽𝑞1(1− 𝑞2)

𝑏11

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏11)

+ 𝛽𝑞2(1− 𝑞1)
𝑏22

𝐵̂{1,2}
𝑢′(𝑒𝑜 + 𝑏22).

The first inequality is a result of 𝑞 > 𝑞1 and 𝐵̂{1,2}𝑢
′(𝑒𝑜 + 𝐵̂{1,2}) > 𝑏22𝑢

′(𝑒𝑜 + 𝑏22) (due to

Proposition 2 and the assumption that the EIS is greater than or equal to one). The second

inequality is due to 𝑏̂11 > 𝑏11. If we consider the left-hand side minus the right-hand side as

a function of 𝐵̂{1,2}, it is increasing in 𝐵̂{1,2} and is equal to 0 when 𝐵̂{1,2} = 𝐵{1,2}. Thus

it must be 𝐵̂{1,2} > 𝐵{1,2}.

Moreover, we have

𝑏̂2{1,2}[𝑢
′(𝑒𝑦−𝐵̂{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 + 𝐵̂{1,2})]

=𝛽𝑞2(1− 𝑞)𝑏22𝑢
′(𝑒𝑜 + 𝑏22) + 𝛽𝑞2(𝑞 − 𝑞1)𝑏̂

2
{1,2}𝑢

′(𝑒𝑜 + 𝐵̂{1,2})

<𝛽𝑞2(1− 𝑞1)𝑏
2
2𝑢

′(𝑒𝑜 + 𝑏22)

=𝑏2{1,2}[𝑢
′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2})].

Since 𝑢′(𝑒𝑦 − 𝐵̂{1,2})− 𝛽𝑞1𝑞2𝑢
′(𝑒𝑜 + 𝐵̂{1,2}) > 𝑢′(𝑒𝑦 −𝐵{1,2})− 𝛽𝑞1𝑞2𝑢

′(𝑒𝑜 +𝐵{1,2}), it must

be 𝑏2{1,2} > 𝑏̂2{1,2}, which in turn implies 𝑏̂1{1,2} > 𝑏1{1,2}.

4 General Bubble Economy

In this section, we generalize our model to a multi-bubble economy. We show that all

results on the two-bubble economy derived in the previous section can be carried over to

a multi-bubble economy. Moreover, we derive a limiting result showing that when the

number of bubbles becomes large, each individual bubble becomes infinitesimal; regardless

of the bursting probability of each bubble, the bubble sector converges to the same limiting

11



size. We also extend the equilibrium definition to allow the equilibrium bubble size to be

random and time-dependent. We demonstrate that the stationary equilibrium serves as a

benchmark, as its bubble sector’s size is the largest among all equilibria. These findings

enable us to understand the welfare implications of bubble collapsing and the issuance of

CBDC. All proofs in this section are relegated to the appendix.

4.1 Existence and Uniqueness of the Equilibrium

We first analyze the existence and the uniqueness of the stationary equilibrium. Similar

to the two-bubble economy, the existence of a specific bubble depends only on its own

bursting probability. Moreover, the existence does not change in the number of bubbles in

the economy.

Proposition 1′. There exists a unique stationary equilibrium if and only if min𝑖{𝑞𝑖} > 𝑞.

This result depends on the assumption that bubbles’ collapses are independent events.

Under this assumption, it is always worthwhile to invest a positive amount in a bubble

since in some states of the world that bubble will be the last bubble left and the future

generation will be willing to invest in that bubble. This leads to the non-zero size of the

bubbles. From now on, we focus on the interesting situation by assuming min𝑖{𝑞𝑖} > 𝑞.

4.2 Equilibrium Size of Bubbles

In this section, we extend the results from the two-bubble economy to the general model.

Specifically, we analyze the following questions: (1) When there are more bubbles in the

economy, how do the individual and aggregate bubble sizes change? (2) Is a bubble with

a lower bursting probability always larger? (3) How will the bubble sizes change when the

agents become more confident in a specific bubble?

Proposition 2′. The aggregate bubble size becomes larger with more bubbles while each

individual bubble becomes smaller, i.e., for any 𝑗 ̸∈ 𝐼, 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼 and 𝑏𝑖𝐼 > 𝑏𝑖𝐼 ⋃︀{𝑗} for any

𝑖 ∈ 𝐼.

The equilibrium size of bubbles is determined by the riskiness of the investment, affected

by two factors: the stability of the bubbles and the diversification effect. The presence of

multiple bubbles offers opportunities for diversification, making them more valuable in

aggregation because the risks associated with each bubble are independent.

Specifically, the portfolio of bubbles provides insurance against the collapse of individual

bubbles. Enhanced diversification improves the investment opportunity set, increasing

12



Figure 1: Individual and Aggregate Bubble Size with Homogeneous Bubbles (Parametric
assumptions: 𝑢(𝑐) = 𝑐1−𝛾, 𝑒𝑦 = 20, 𝑒𝑜 = 3, 𝛾 = 0.5, 𝛽 = 0.98, 𝑞𝑖 = 0.8 for all 𝑖 ∈ {1, 2, ...})

agents’ willingness to invest more money in bubbles. Consequently, the size of the bubble

sector increases as the number of bubbles increases. On the other hand, the size of each

individual bubble becomes smaller as bubbles substitute for each other. Moreover, since the

young generation chooses between consumption and investment in this model, the young

generation consumes less in an economy with more bubbles. Figure 1 illustrate this.

We also conduct comparative statics while fixing the number of bubbles. The emphasis

is on the relative bubble size and how the sector changes when agents become more (or less)

confident about a bubble. We establish that a bubble’s bursting probability can indeed be

considered as its “fundamental”: In the equilibrium of any economy, a bubble with a lower

bursting probability is always larger.

Proposition 3′. A bubble with a lower bursting probability is larger than one with a higher

bursting probability, i.e., if 𝑖, 𝑗 ∈ 𝐼 and 𝑞𝑖 > 𝑞𝑗, then 𝑏𝑖𝐼 > 𝑏𝑗𝐼 .

Next, we examine the impact of changes in agents’ confidence on individual bubble sizes

and the overall bubble sector. Consistent with the two-bubble economy, when agents gain

more confidence in a particular bubble, it expands, causing its competitors to shrink. The

growth of the confident bubble dominates, resulting in an overall increase in the size of the

bubble sector.

13



Proposition 4′. Increased confidence in a specific bubble expands that bubble while shrink-

ing its competitors, and expanding the bubble sector, i.e., if 𝑞𝑗 > 𝑞ℎ and 𝑗, ℎ ̸∈ 𝐼, then

𝑏𝑗𝐼 ⋃︀{𝑗} > 𝑏ℎ𝐼
⋃︀
{ℎ}, 𝑏

𝑖
𝐼
⋃︀
{ℎ} > 𝑏𝑖𝐼

⋃︀
{𝑗}, and 𝐵𝐼

⋃︀
{𝑗} > 𝐵𝐼

⋃︀
{ℎ} for all 𝑖 ∈ 𝐼.

Figure 2 illustrates this.

Figure 2: Bubble Sizes across Varying Levels of Confidence (Parametric assumptions:
𝑢(𝑐) = 𝑐1−𝛾, 𝑒𝑦 = 20, 𝑒𝑜 = 3, 𝛾 = 0.5, 𝛽 = 0.98, 𝑞1 = 0.7, 𝑞2 = 0.8)

The next result examines the impact of an increased number of bubbles on the welfare

of both older and younger generations.

Corollary 1. Both the old and the young generation’s expected utility is increasing in the

number of bubbles in the economy.

We conduct an explicit welfare comparison: with an increased number of bubbles in the

economy, both the old and the young generations experience improved well-being. While

the old generation obviously benefits from a larger bubble sector with more bubbles, it

is intuitive, although not immediately evident, that the young generation is consistently

better off due to changes in bubble prices with varying numbers of bubbles.

4.3 Limiting Results

In this section, we characterize the bubble sector and individual bubbles in an economy

with a large number of bubbles. The analysis in previous sections establishes that the

14



bubble sector expands with more bubbles (Proposition 2′). On the other hand, as the

size of the bubble sector cannot exceed the endowment held by the young generation, the

size of the bubble sector should approach an upper bound when the number of bubbles

is large. Our analysis substantiates and expands this intuition by explicitly deriving the

size of the bubble sector when the number of bubbles is large. Surprisingly, the limiting

size of the bubble sector is “detail-free”, i.e., the bubble sector’s size converges to the same

upper bound under any bursting probability specifications of bubbles. Specifically, in any

economy, when the number of bubbles is large, the size of the bubble sector 𝑠 satisfies

𝑢′(𝑒𝑦 − 𝑠) = 𝛽𝑢′(𝑒𝑜 + 𝑠). (17)

The limiting size 𝑠 has a natural interpretation. Consider a scenario where the agent has

a perfect storage technology for the consumption good. Then eq. (17) is the first-order

condition for the optimal amount of storage 𝑠. In other words, with many bubbles in

the economy, the bubble sector essentially becomes “risk-free” regardless of the collapsing

probabilities of individual bubbles. Figure 3 illustrates this. We summarize the discussion

above into the following proposition.

Figure 3: The Upper Bound of Bubble Size (Parametric assumptions: 𝑢(𝑐) = 𝑐1−𝛾, 𝑒𝑦 =
20, 𝑒𝑜 = 3, 𝛾 = 0.5, 𝛽 = 0.98, 𝑞𝑖 = 0.8 for all 𝑖 ∈ {1, 2, ...})

Proposition 5. As |𝐼| diverges to ∞, the aggregate bubble size 𝐵𝐼 converges to a positive
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constant 𝑠, which is the unique solution of Eq. (17). Each individual bubble size 𝑏𝑖𝐼 converges

to zero.

This limiting result has welfare implications regarding bubbles’ bursting in an economy

with many bubbles. That is, in any economy with many bubbles, the welfare loss of bubbles’

bursting might be small even when the lost market value of collapsing bubbles is large. In

particular, when there are a substantial number of bubbles, there is a high likelihood that

the bubble sector’s size remains relatively stable compared to the previous period. This

stability is not due to collapsed bubbles having infinitesimal market values. Instead, it

occurs because surviving bubbles appreciate, counterbalancing a significant portion of the

agents’ losses. Utilizing the market value of collapsing bubbles as a welfare measure fails

to capture this appreciation effect.

The welfare analysis above is “bubble specific” in the sense that if each asset can

generate positive cash flow and the number of assets decreases in the economy, the agents

will suffer substantial welfare loss. This difference can also be illustrated from the individual

bubble’s perspective. An asset that may generate positive cash flows always has a price

bounded away from zero. Instead, in this economy, when the number of bubbles becomes

large, each bubble becomes infinitesimal regardless of its bursting probability.

5 Stationary Equilibrium as a Benchmark

In previous sections, we analyze the stationary equilibrium of the baseline model, whose

tractability leads to clear comparative statics and simple bubble dynamics. However,

tractability comes with the cost of making simplifying assumptions over both the equi-

librium concept and the model. Focusing on the stationary equilibrium is not without

loss of generality since it fails to capture the transition phase of the economy. From the

modeling perspective, the baseline model does not allow for (expected) bubble creation. If

the agents expect new bubbles to be created, they may change their investment decisions

over the existing bubbles. With these simplifications, our readers might wonder whether

this model can provide insights into the more complicated bubble sector in reality. In this

section, we provide a positive answer to this concern by demonstrating that the stationary

equilibrium of the baseline model is an important benchmark. Specifically, in any non-

stationary equilibrium or any stationary equilibrium with bubble creation, the size of the

bubble sector is upper-bounded by the corresponding equilibrium bubble sector’s size in

the baseline model.

A standard approach addressing the concern about simplifying assumptions in a model
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involves extending the model or solving the model under a less restrictive equilibrium

concept. However, this approach does not always lead to tractable models. In the rare

cases with tractability, readers might still suspect the results are driven by specific clever

setups rather than the robustness of the economic trade-offs. We approach this problem

from a different angle by showing that our analysis of the baseline model is still informative

even when the equilibrium concept or the model is mis-specified.

We provide a broad definition of the non-stationary equilibrium where the bubble sizes

are random variables depending on the entire history of the bubble size dynamics. We show

that in any equilibrium, the sum of the sizes of any subset of existing bubbles can only be

smaller than the aggregate bubble size in the stationary equilibrium with that subset of

bubbles. We also analyze the economy with a general bubble-creation function depending

on the set of existing bubbles. We predict that the aggregate bubble size is always larger

without creation.

The key insight behind our results is simple: rational expectation strongly disciplines

the possible bubble dynamics. An equilibrium bubble-size process needs to satisfy the

first-order conditions of the current and all future generations. Since agents’ elasticity

of inter-temporal substitution is greater than or equal to one, the willingness to invest

is increasing in return. This implies the bubble cannot be too large. In a single-bubble

economy, if the bubble is large in the current period, the first-order condition implies it

needs to be larger in some future states. However, the larger future bubble needs to grow

further, and this eventually leads to too large a bubble that cannot be sustained. The upper

bound of the bubble size can be obtained when the surviving bubble’s size does not change

in all future states, which corresponds to the bubble size in the stationary equilibrium.10

This result extends to the multi-bubble economy with some subtleties. With no restriction

over the surviving bubbles’ correlations, a bubble may become larger than its stationary

size in the equilibrium. Yet the same argument applies to the aggregate bubble size. That

is, the aggregate bubble size cannot be too large. The upper bound is provided by the

corresponding aggregate bubble size in the stationary equilibrium.

The purposes of this section are twofold. It demonstrates that this stylized model serves

as a nice benchmark for the more complicated reality. From a more technical perspective, we

illustrate that under mild assumptions, any complicated, non-stationary bubble dynamics

can be disciplined by a stationary, deterministic one. For the rest of the section, we provide

details of our generalizations and discuss the results.

10In the appendix, we provide an example to illustrate that our result will not hold without this assump-
tion.
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5.1 Non-stationary Equilibrium

In this section, we generalize the equilibrium concept to allow for (1) random future bubble

sizes and (2) non-stationary bubble size dynamics. To this end, we introduce the following

new notations. Consider an 𝑛-bubble economy (|𝐼| = 𝑛) in period 𝑡 = 0. Let 𝑏𝑖𝑡 ≥ 0

represent the realized size of bubble 𝑖 in period 𝑡, and let 𝑏𝑡 = (𝑏1𝑡 , ..., 𝑏
𝑛
𝑡 ) represent an

𝑛-dimensional vector comprising all bubble size realizations in period 𝑡. If bubble 𝑖 has

collapsed by period 𝑡, then 𝑏𝑖𝑡 = 0. The vector 𝐻𝑡 = {𝑏0, . . . , 𝑏𝑡} represents the history of

bubble size realizations up to period 𝑡. Without loss of generality, let 𝐻−1 = ∅. Lastly, we
define 𝑏̃𝑡(𝐻𝑡−1) = (𝑏̃1𝑡 , . . . , 𝑏̃

𝑛
𝑡 ) as an 𝑛-dimensional vector comprising non-negative random

variables that represent the sizes of bubbles in period 𝑡, dependent on the history up to

period 𝑡−1. The random variable 𝑏̃𝑖𝑡(𝐻𝑡−1) represents the 𝑖-th bubble’s size in period 𝑡 given

the history up to period 𝑡 − 1. We use the “tilde” symbol here to explicitly differentiate

random variables from their realizations.

Since the random variable 𝑏̃𝑡(𝐻𝑡−1) describes the dynamics of bubbles, it needs to satisfy

several properties. First, if a bubble collapses, its value remains zero forever. That is,

𝑏̃𝑖𝜏 = 0 if 𝑏𝑖𝑡−1 = 0 for all 𝜏 ≥ 𝑡. (18)

Furthermore, if bubble 𝑖 did not collapse in period 𝑡−1, its probability of bursting in period

𝑡 is 1− 𝑞𝑖. That is,

𝑃 (𝑏̃𝑖𝑡 > 0 | 𝑏𝑖𝑡−1 > 0) = 𝑞𝑖 for all 𝐻𝑡−1 with 𝑏𝑖𝑡−1 > 0. (19)

We also assume that bubble collapses are independent events. That is,

𝑏̃𝑖𝑡 > 0 are mutually independent for all 𝑖. (20)

Since the agent’s consumption is non-negative, it is impossible to have the bubble larger

than the young generation’s wealth. That is,

The support of 𝑏̃𝑡 is a subset of [0, 𝑒𝑦]
𝑛. (21)

This condition is implied by the assumption that 𝑢′(0) = +∞. Yet we choose to state it

explicitly since it plays an important role in establishing the upper-bound result. Finally,

we have first-order conditions for any realizations of the bubble size. That is, for any
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(𝑏1𝑡 , ..., 𝑏
𝑛
𝑡 ) in the support of 𝑏̃𝑖𝑡(𝐻𝑡−1) at time 𝑡− 1, for any 𝑖 ∈ {1, 2..., 𝑛} we have

𝑏𝑖𝑡𝑢
′(𝑒𝑦 −

𝑛∑︁
𝑗=1

𝑏𝑗𝑡) = 𝛽𝐸

(︃
𝑏̃𝑖𝑡+1(𝐻𝑡)𝑢

′(𝑒𝑜 +
𝑛∑︁

𝑗=1

𝑏̃𝑗𝑡+1(𝐻𝑡))

)︃
where 𝐻𝑡 = 𝐻𝑡−1

⋃︁
{𝑏𝑡}. (22)

Definition 2. In an n-bubble economy, an equilibrium is a set of random variables {𝑏̃𝑡(𝐻𝑡−1)}∞𝑡=0

that satisfies (18), (19), (20), (21) and (22).

Several aspects of this definition deserve more discussion. The stationary equilibrium

is a special case of this more general definition. Specifically, in the stationary equilibrium,

𝑏̃𝑡(𝐻𝑡−1) only depends on positive realizations in 𝑏𝑡−1 and 𝑏𝑡 is uniquely determined by

the positive coordinates in 𝑏𝑡. Moreover, in any n-bubble economy, there are infinitely

many non-stationary bubble dynamics that satisfy this more general equilibrium definition.

For example, in a single-bubble economy, if we focus on equilibrium with a deterministic

surviving bubble size, there are infinitely many equilibria in which the surviving bubble’s

size approaches zero over time (asymptotically bubbleless as in (Tirole 1985)). With random

surviving bubble size, we can fit any (realized) bubble size dynamics as long as the path

stays below the stationary bubble size.11

The independence assumption is not a strong assumption under this equilibrium def-

inition. Independence only requires that the collapse probability of one bubble does not

change regarding the collapse of the other bubbles. However, it imposes no restrictions on

the surviving bubbles’ sizes. Since this generalized equilibrium definition allows for stochas-

tic bubble size (fixing surviving bubbles) and explicit time dependency, we can construct

an equilibrium where a bubble’s size is negatively affected by bursting, i.e., an equilibrium

where a surviving bubble shrinks after another bubble bursts.12 Moreover, under this gen-

eral definition of equilibria, the correlation between the sizes of two surviving bubbles can

either be positive or negative.

Finally, it is helpful to connect the first-order condition in this definition to its more

intuitive counterpart in the stationary equilibrium. Fixing time 𝑡, let 𝐼 be the index set

over the dimensions of the positive realizations in 𝑏𝑡. Moreover, we can denote 𝑏̃𝑖𝑡+1(𝐻𝑡) as

𝑏𝑖𝐼′,𝑡+1 when 𝑏̃𝑡+1(𝐻𝑡) has index set 𝐼 ′.13 Let 𝐵𝐼,𝑡 =
∑︀𝑛

𝑗=1 𝑏
𝑗
𝑡 and 𝐵𝐼′,𝑡+1 =

∑︀𝑛
𝑗=1 𝑏

𝑗
𝐼′,𝑡+1.

14

11This can be done by constructing an equilibrium where the surviving bubble size has three possible
realizations with corresponding probability specifications that satisfy the first-order condition: (1) jump up
to the stationary bubble size, (2) transit to the bubble size specified by the realized path and (3) decrease
to a size close to zero.

12Notice that in the stationary equilibrium, by Proposition 2′, a (surviving) bubble always grows when
another bubble bursts.

13It happens with a probability of
∏︀

𝑗∈𝐼 𝑞𝑗
∏︀

𝑟∈𝐼/𝐼′(1− 𝑞𝑟).
14We do not need to require 𝑗 ∈ 𝐼 since 𝑏𝑗𝐼,𝑡 ≡ 0 when 𝑗 ̸∈ 𝐼.
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The transformation leads to the familiar first-order condition

𝑏𝑖𝐼,𝑡𝑢
′(𝑐𝑦,𝑡)− 𝛽E𝑡

[︀
𝑏𝑖𝐼′,𝑡+1𝑢

′(𝑐𝑜,𝑡+1)
]︀
= 0 (23)

where 𝑐𝑦,𝑡 = 𝑒𝑦 − 𝐵𝐼,𝑡 and 𝑐𝑜,𝑡+1 = 𝑒𝑜 + 𝐵𝐼′,𝑡+1. We use the simplified first-order condition

(23) in the following analysis.

Since we allow for random future bubble size and do not require the equilibrium to be

stationary, a great many bubble dynamics can be rationalized as equilibrium outcomes. To

give an extreme example, in a single-bubble economy, any trajectory of the bubble size can

be supported by an equilibrium as long as the trajectory stays below the bubble size in

the stationary equilibrium. Given this observation, our goal is to understand the bubble

size dynamics that cannot be supported by the equilibrium given the model parameters. It

turns out that the equilibrium bubble sizes of the stationary equilibrium provide important

insight into this problem. Specifically, in any equilibrium, the sum of the bubble sizes

of any subset of existing bubbles must be smaller than the aggregate bubble size in the

stationary equilibrium with that subset of bubbles.

Proposition 6. In any equilibrium, the sum of the sizes of any set of bubbles is upper-

bounded by the aggregate bubble size in the stationary equilibrium with that set of bubbles,

i.e., for any index set 𝐼 and 𝐼 ⊂ 𝐼,
∑︀

𝑖∈𝐼 𝑏
𝑖
𝐼,𝑡 ≤ 𝐵𝐼 . Specifically, when 𝐼 = 𝐼, 𝐵𝐼,𝑡 ≤ 𝐵𝐼 ;

when 𝐼 = {𝑖}, 𝑏𝑖𝐼,𝑡 ≤ 𝑏𝑖𝑖.

It is informative to consider two extreme cases of this result. Applying this result

to all existing bubbles shows that the aggregate bubble size in any equilibrium must be

smaller than the aggregate bubble size in the stationary equilibrium. Applying this result

to a specific bubble indicates that in equilibrium, any bubble must be smaller than its

stationary bubble size in a single bubble economy. Moreover, this proposition does not

imply that the agent cannot achieve a positive net return over the bubble sector. This

proposition instead suggests that the upper bound of the realized return is lower when

the bubble sector is larger. In other words, the agent cannot achieve a high return over a

bubble when it is already large.

5.2 Bubble Creation

In this section, we extend the model to address the situation where new bubbles can be

created and added to the economy. Since the unexpected creation of bubbles will not change

the economy described by the baseline model, here we focus on the expected creation of

bubbles in a stationary manner. More specifically, we focus on a stationary equilibrium
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where both the bubble price and the creation decision are time-homogeneous and depend

on the set of surviving bubbles. In each period, after the old generation sells bubbles to

the young generation, new bubbles are created and distributed to the young generation for

free before the economy enters the next period. When the index set of surviving bubbles

is 𝐼, denote the index set of bubbles after creation by 𝐶(𝐼).

This general specification of bubble creation nests a wide range of bubble creation

models. The baseline model with no bubble creation corresponds to the case where 𝐶(𝐼) = 𝐼

for all 𝐼. It can also describe the situation where the government creates one additional

bubble each period, independent of the existing bubbles, and distributes the newly-created

bubble to the young generation. In this case, 𝐶(𝐼) = 𝐼
⋃︀
{𝑗} for 𝑗 ̸∈ 𝐼 for all 𝐼. It also

nests settings where firms create bubbles strategically for profit. If the prices of the bubbles

only depend on the set of surviving bubbles 𝐼, it is without loss of generality to focus on

the strategy depending on 𝐼. For example, consider a situation where, in each period,

an entrepreneur is selected from the young generation, capable of creating bubbles at a

fixed unit cost. After creation, they must distribute most of the bubbles to the young

generation for free to build the market but can retain a fraction to sell for profit in the

next period when they are old. In a stationary equilibrium, any optimal creation strategy

can be summarized by 𝐶(𝐼). The key assumption is that the entrepreneur can only retain

a small number of bubbles, limiting their impact on the economy to bubble creation.

To differentiate the equilibrium with bubble creation from the stationary equilibrium

of the baseline model, we use the “check” symbol for the equilibrium with bubble creation.

The first-order condition can be expressed as

𝑏̌𝑖𝐼𝑢
′(𝑒𝑦 − 𝐵̌𝐼)− 𝛽E𝑡

[︀
𝑏̌𝑖𝐼′𝑢

′(𝑒𝑜 + 𝐵̌𝐼′)
]︀
= 0,

where the index set 𝐼 and 𝐼 ′ represent the surviving bubbles in the current period and the

subsequent period, respectively. The key difference from the baseline model is that we need

to differentiate the set of bubbles before and after the bubble creation. In this expression,

the index set in the subscript represents the set of surviving bubbles before the bubble

creation. The index set after bubble creation in the current period is 𝐶(𝐼) while the index

set after bubble creation in the next period is 𝐶(𝐼 ′).

In an economy with one-shot bubble creation (which is not stationary), the change

in the existing bubbles’ sizes is easy to predict. Since newly created bubbles substitute

existing bubbles in transferring wealth, bubble creation will reduce the equilibrium size of

existing bubbles. However, the intuition becomes less clear in an economy with stationary

bubble creation. When the current bubble creation decision not only affects the bubble
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today but also the future bubble creation decisions, it is difficult to rule out the possibility

of an equilibrium where bubble sizes stay large. We show that the sum of the sizes of any

subset of existing bubbles is upper-bounded by the corresponding aggregate bubble size in

the stationary equilibrium.

Proposition 7. For any 𝐼 ⊆ 𝐼,
∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼 ≤ 𝐵𝐼 . Specifically, when 𝐼 = 𝐼, 𝐵̌𝐼 ≤ 𝐵𝐼 ; when

𝐼 = {𝑖}, 𝑏̌𝑖𝑖 ≤ 𝑏𝑖𝑖.

Applying this result to all existing bubbles shows that the aggregate bubble size in any

equilibrium must be smaller than the aggregate bubble size in the stationary equilibrium.

Applying this result to a specific bubble indicates that in equilibrium, any bubble must be

smaller than its stationary bubble size in a single bubble economy. Another point worth

noting is that this result is about the size of the existing bubbles. Since the newly created

bubbles are distributed to the young generation for free, they do not contribute to the

current aggregate bubble size 𝐵̂𝐼 . This result does not rule out the possibility that the

aggregate bubble size in the next period, with the addition of new bubbles, is larger than

𝐵𝐼 . Instead, our result implies that it will be bounded by 𝐵𝐼′ , the stationary equilibrium

of the baseline model with surviving bubbles 𝐼 ′.

5.3 Implications for Estimating Confidence Measures

In this section, we illustrate the importance of the upper bound results in applying the

model to measure agents’ confidence over bubble assets given the observed data. Our

model provides a simple framework to quantify confidence focusing on the stationary equi-

librium.15 Yet stationarity is a strong requirement and the lack of it in the observations

might invalidate the measurement. We use the results established in this section to justify

using the stationary equilibrium in our framework to measure confidence when the true

bubble dynamics are not necessarily stationary. Specifically, the confidence measurement

in this framework remains valid when the true bubble dynamics are non-stationary as long

as we interpret the measurement as the lower bounds of confidence rather than the accurate

estimations.

Consider a two-bubble economy as an example. Suppose we can find a period of time in

which both bubbles exist and the agents’ confidence over the two bubbles does not change.

The quantities of interest are 𝑞1 and 𝑞2, the agents’ confidence over the first and the second

bubble. From the observation, we can obtain the bubble sizes within that period 𝑏1{1,2} and

𝑏2{1,2}, the discount factor 𝛽, and the agents’ endowments 𝑒𝑦 and 𝑒𝑜. From the analysis of

15In our model, stationarity means that each bubble’s size only depends on the current set of bubbles
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the two-bubble economy, we have four equations Eqs. (10)-(13) with four unknowns 𝑞1, 𝑞2,

𝑏11 and 𝑏22.
16 The following proposition shows that if there is a solution for the estimation

problem, it must be unique.

Proposition 8. If, given 𝑏1{1,2} and 𝑏2{1,2}, there exists a solution (𝑞1, 𝑞2, 𝑏
1
1, 𝑏

2
2) for the system

of equations Eqs. (10)-(13), then the solution is unique.

Several concerns need to be addressed when interpreting the estimated values of confi-

dence measure 𝑞1 and 𝑞2. The first concern relates to the scope of estimation. In this model,

bubbles substitute each other. Thus, if a third bubble traded by the agents is omitted from

the estimation, the measurement of 𝑞1 and 𝑞2 would be inaccurate. Second, the estimation

of 𝑞1 and 𝑞2 crucially relies on assuming the bubble size dynamics we observe are from the

stationary equilibrium, which is hard to test.

To address these concerns, we investigate the implications of the confidence measure-

ment without the stationary assumption using the results from this section. Suppose the

time interval of interest can be divided into 𝑇 + 1 periods from 0 to 𝑇 . Denote the size

of bubble 𝑖 in period 𝑡 by 𝑏𝑖,𝑡. Note that if the bubble dynamics are strictly stationary,

we should expect 𝑏1,0 = · · · = 𝑏1,𝑇 and 𝑏2,0 = · · · = 𝑏2,𝑇 . Let 𝑏̄𝑖 = 𝑚𝑎𝑥𝑡𝑏𝑖,𝑡, the largest

bubble size of bubble 𝑖 in this time interval. By Proposition 6, this is upper-bounded by

the stationary size of bubble 𝑖 in a single-bubble economy. Moreover, by Proposition 2′,

the size of bubble 𝑖 is increasing in 𝑞𝑖. Thus, the agent’s confidence over the first (second)

bubble must be higher than 𝑞
1
(𝑞

2
), which is the confidence over the first (second) bubble

in the stationary equilibrium of a single bubble economy when the observed bubble size is

𝑏̄1 (𝑏̄2). Applying Proposition 6 to the bubble sector leads to a joint constraint over the

confidence. Let 𝐵̄ = 𝑚𝑎𝑥𝑡(𝑏1,𝑡 + 𝑏2,𝑡) be the largest aggregate bubble in the time interval

and 𝜏 = 𝑚𝑎𝑥𝑡(𝑏1,𝑡 + 𝑏2,𝑡) be the corresponding period. By Proposition 6, this is upper-

bounded by the stationary size of the bubble sector in a two-bubble economy. Let 𝑞1,𝜏

and 𝑞2,𝜏 be the confidence levels in a two-bubble economy with bubble sizes 𝑏1,𝜏 and 𝑏2,𝜏

and the true confidence levels over two bubbles be 𝑞1 and 𝑞2. Proposition 2′ provides a

joint confidence bound over 𝑞1 and 𝑞2, the true confidence levels over two bubbles: either

𝑞1 ≥ 𝑞1,𝜏 or 𝑞2 ≥ 𝑞2,𝜏 .

6 Discussion

The recent emergence of cryptocurrencies, notably Bitcoin, has sparked considerable in-

terest and debate. Our paper aims to contribute to the discussion by studying the role of

16Notice that since both bubbles exist within the chosen period of time, 𝑏11 and 𝑏22 are not observable.
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cryptocurrencies and CBDCs as pure bubbles that store value (or provide liquidity) and

examining their welfare consequences.17 In the following subsections, we discuss how our

results can be applied to cryptocurrencies and CBDCs.

6.1 Cryptocurrencies

Cryptocurrency Exchange-Traded Funds (Crypto ETFs), which involve investing in cryp-

tocurrencies such as Bitcoin, Ethereum, or a basket (or mix) of different cryptocurrencies,

are gaining attention in the financial landscape. Our theoretical investigation into the dy-

namics of these bubbles can provide valuable insights into the desirability of a multitude

of such bubble assets.

First, taking the stationary equilibrium as the benchmark, a crypto ETF can offer

more stability than individual cryptocurrencies. The diversification effect, achieved through

investing in a mix of cryptocurrencies such as Bitcoin, Ethereum, or other digital assets,

plays a pivotal role. This inclusion minimizes the impact of bursting bubbles on the overall

portfolio, providing resilience against market fluctuations. It is worth noting that the

diversification effect of mixing cryptocurrencies is stronger than the diversification effect of

mixing other assets due to the strong substitution effect among bubbles. That is, bubbles do

not generate utility flows and their values are entirely derived from shifting agents’ wealth

into the future. Specifically, by Proposition 5, if a crypto ETF consists of many different

digital assets, its price may still be stable even when one or several of its components burst.

This proposition also predicts that the volatility difference between a single asset and an

ETF (with multiple assets) is larger in the cryptocurrency asset class than in other asset

classes. Therefore, Crypto ETFs can be an attractive option for investors seeking a more

secure foothold in the volatile cryptocurrency landscape.

Second, the optimal ETF is determined by weighting it according to the market value

of cryptocurrencies. In practice, this implies investors should choose a crypto ETF that

includes more digital assets over a bitcoin-tracking ETF since investing in the former leads

to a higher expected utility. As the cryptocurrency market expands, the difference in utility

is expected to grow in tandem.

Third, the emergence of better bubbles (or more stable liquidity vehicles) may eventually

17Many papers in the literature focus on cryptocurrencies as tokens used by platforms (e.g., Cong, Li,
and Wang (2021), Cong, Li, and Wang (2022)). There are also many papers focusing on characteristics
deriving from blockchain systems, such as coin mining (e.g., Prat andWalter (2021), Biais, Bisière, Bouvard,
Casamatta, and Menkveld (2023)). Another strand of literature focuses on the analysis and discussion
of CBDC, including its design, impact on financial intermediation, stability, and its implications for the
existing monetary system (e.g., Brunnermeier and Niepelt (2019), Fernández-Villaverde, Sanches, Schilling,
and Uhlig (2021), Agur, Ari, and Dell’Ariccia (2022)).
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substitute existing ones to a large extent. Propositions 3′-4′ demonstrate that more stable

bubbles crowd out unstable bubbles by decreasing the weights of unstable ones in the

bubble sector. For example, even in a scenario where cryptocurrencies may eventually

become stable and popular, the ones used in the future do not necessarily have to be the

existing ones in the market today. As better cryptocurrencies emerge over time, the existing

ones may shrink, if not disappear.

Fourth, if we take into account the possibility that the prices of cryptocurrencies may

not evolve as specified by the stationary equilibrium in our model, Proposition 6 implies

that the stationary size of the bubble sector in our model is the tight upper bound on

the size of crypto ETFs. Moreover, if we take the possibility of the inclusion of tokens

created in the future, Proposition 7 indicates the same upper bound applies. This insight

is crucial for investors, signaling that while there is potential for returns, it is inherently

limited by the stationary equilibrium. In essence, there exists a realistic ceiling to the

upside potential, guiding investors to form nuanced expectations and align their investment

strategies accordingly. This insight can assist investors in navigating the crypto market,

steering clear of overly optimistic projections.

6.2 CBDC

Drawing implications from our results, it becomes evident that the efficiency of decentral-

ized cryptocurrencies is a complex issue. The concept of maximum efficiency theoretically

favors a single centralized digital currency, such as a CBDC, when managed adeptly by

a central authority. However, for this centralized digital currency model to work effec-

tively, the central bank or government must optimize various aspects, such as monetary

policy and regulatory measures, as CBDC may have various potential impacts on the

banking system (e.g., Andolfatto (2018), Chiu, Davoodalhosseini, Jiang, and Zhu (2020),

Fernández-Villaverde, Sanches, Schilling, and Uhlig (2021)). Nevertheless, the practical

implementation of such a scenario raises significant concerns. Technical feasibility, for in-

stance, presents challenges in creating a robust and scalable centralized digital currency

infrastructure (e.g., Tian, Zhao, and Olivares (2023)). Moreover, ensuring the security of

a single currency against potential threats and maintaining long-term stability in an ever-

evolving financial landscape adds layers of complexity that cast doubt on the feasibility of

achieving ultimate efficiency through centralization alone.

Our findings shed light on the dynamics between a single stable centralized digital cur-

rency and a basket of diverse cryptocurrencies such crypto ETFs. While one might assume

that a stable centralized digital currency would dominate the market, our results suggest
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otherwise. Even a relatively stable centralized digital currency may not necessarily out-

perform a diversified portfolio of potentially risky cryptocurrencies. The key factor here

is the presence of idiosyncratic risk. There is a growing literature that investigates port-

folio strategies for cryptocurrencies in the presence of idiosyncratic risk (e.g., Platanakis,

Sutcliffe, and Urquhart (2018), Petukhina, Trimborn, Härdle, and Elendner (2021)). For

example, Tian, Zhao, and Olivares (2023) shows that portfolio diversification across 10

major cryptocurrencies can significantly improve investment results in terms of risk. If a

centralized digital currency is entirely free from risk, it might hold an advantage, but such

a scenario is challenging to achieve in practice. On the other hand, a diversified portfolio

can leverage the inherent differences and risk profiles of various cryptocurrencies to create

a more stable overall investment. This insight challenges conventional thinking and under-

scores the importance of considering risk as a fundamental component of cryptocurrency

efficiency and stability.

In this respect, CBDCs may also be used as one of the possible ingredients in a well-

diversified portfolio consisting of asset bubbles. For example, Usher, Reshidi, Rivadeneyra,

and Hendry (2021) argue that CBDCs have the potential to function as a more effective

alternative instrument or an outside option in the field of digital payments when contrasted

with the current methods of regulation and legal enforcement. In conclusion, a diversified

portfolio of various bubble assets including cryptocurrencies, despite its inherent risks, may

provide greater stability. As the cryptocurrency landscape continues to evolve, it is crucial

to consider these complexities when evaluating the efficiency and stability of different digital

currency models.

7 Conclusion

In a world where the creation of money-like assets is no longer the exclusive domain of

traditional financial institutions, the question of whether we need a plethora of such assets

becomes increasingly pertinent. In this regard, we delve into the dynamics of multiple

heterogeneous asset bubbles within an OLG economy with imperfect financial markets.

Our results provide valuable insights into the role and desirability of diverse bubble as-

sets. While individual bubbles may inherently lack stability due to their absence of intrinsic

value, the presence of multiple, diverse bubbles offers advantages through diversification,

effectively mitigating the risks associated with their potential collapse. Our analysis re-

veals that as the number of bubbles increases, the speculative market as a whole expands,

albeit with the diminishing significance of each individual bubble. Furthermore, bubbles
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with lower probabilities of bursting tend to be larger and more enduring, underscoring the

importance of stability in attracting investor confidence. Ultimately, our findings suggest

that within a sufficiently large market of diverse bubble assets, the bubble sector can effec-

tively function as a substitute for a risk-free asset. This phenomenon has implications for

the emergence and sustainability of cryptocurrencies.

While more centralized digital currencies, such as CBDCs, may theoretically offer opti-

mal efficiency due to their stability, practical challenges and the potential for diversification

benefits within a decentralized cryptocurrency landscape complicate the landscape. This

illustrates that the appeal of multiple bubble assets may endure in our evolving financial

ecosystem.

Appendix

Some Notations

To simplify the notation, define the transition probability

𝑃 (𝐼 ′ | 𝐼) =
∏︁
𝑙∈𝐼′

𝑞𝑙
∏︁

𝑟∈𝐼∖𝐼′
(1− 𝑞𝑟).

This can be interpreted as the probability that the next period’s bubbles have an index set

𝐼 ′ when the current bubbles’ index set is 𝐼. If 𝐼 ′ ̸⊆ 𝐼, 𝑃 (𝐼 ′ | 𝐼) = 0. 𝑃 (𝐼 | 𝐼) =
∏︀

𝑙∈𝐼 𝑞𝑙

corresponds to the probability of no bursting. Denote 𝐼 ∖ {𝑖} as 𝐼−𝑖.

Proof of Proposition 1′:

All propositions are established through induction over |𝐼|. By Proposition 1, 𝑚𝑖𝑛(𝑞𝑖) > 𝑞

is necessary for the existence and uniqueness of the equilibrium. We hereby prove that it

is also sufficient. The claim holds true when |𝐼| = 1 because this is equivalent to a special

case of Proposition 1 where there is only one active bubble. Now, suppose the claim in

this proposition holds when |𝐼| = 𝑘. Then, when |𝐼| = 𝑘 + 1, for each 𝑖 ∈ 𝐼, the following

first-order condition should be satisfied:

𝑏𝑖𝐼 [𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑢′(𝑒𝑜 +𝐵𝐼)𝑃 (𝐼 | 𝐼)] = 𝐶𝑖, (A.1)

where

𝐶𝑖 = 𝛽𝑞𝑖
∑︁

𝐼′⊊𝐼−𝑖

𝑃 (𝐼 ′ | 𝐼−𝑖)
[︀
𝑏𝑖𝐼′ ⋃︀{𝑖}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑖})
]︀
> 0.

27



Note that 𝐶𝑖 is well-defined in the sense that it is uniquely determined by the values of

𝑏𝑖𝐼′
⋃︀
{𝑖} and 𝐵𝐼′

⋃︀
{𝑖}, which, in turn, are uniquely determined by the induction hypothesis

(|𝐼 ′
⋃︀
{𝑖}| ≤ 𝑘). Summing all the first-order conditions Eq. (A.1) for all 𝑖 ∈ {1, 2, . . . , 𝑘+1}

gives

𝐵𝐼 [𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑢′(𝑒𝑜 +𝐵𝐼)𝑃 (𝐼 | 𝐼)] =

𝑘+1∑︁
𝑖=1

𝐶𝑖. (A.2)

Following a similar argument as the proof of Proposition 1, there is a unique 𝐵𝐼 > 0

that solves Eq. (A.2). Given this 𝐵𝐼 , for any 𝑖 ∈ 𝐼, 𝑏𝑖𝐼 is then uniquely determined by

𝑏𝑖𝐼 = 𝐵𝐼
𝐶𝑖∑︀𝑘+1

𝑗=1 𝐶𝑗
.

Proof of Proposition 2′:

We first prove the first claim of the proposition that, for any 𝑗 ̸∈ 𝐼, 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼 . When

|𝐼| = 1, this claim is already proven by Proposition 2. Suppose the claim holds for all

|𝐼| ≤ 𝑘 − 1. Summing all the first-order conditions for all 𝑖 ∈ 𝐼, we have

𝑢′(𝑒𝑦 −𝐵𝐼) = 𝛽
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
[︂
𝐵𝐼′

𝐵𝐼

𝑢′(𝑒𝑜 +𝐵𝐼′)

]︂
(A.3)

where 𝐵∅ is defined to be 0. Applying the same argument to the case with 𝐼
⋃︀
{𝑗}, we have

𝑢′(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗}) =𝛽

∑︁
𝐼′⊆𝐼

⋃︀
{𝑗}

𝑃 (𝐼 ′ | 𝐼
⋃︁

{𝑗})
[︂

𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

]︂

=𝛽

{︃
(1− 𝑞𝑗)

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
[︂

𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

]︂

+ 𝑞𝑗
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
[︂
𝐵𝐼′

⋃︀
{𝑗}

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})

]︂}︃

>𝛽

{︃
(1− 𝑞𝑗)

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
[︂

𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

]︂
+ 𝑞𝑗

∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐼)
[︂

𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

]︂

+ 𝑞𝑗𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼
⋃︀
{𝑗})

}︃
.

(A.4)

The inequality in Eq. (A.4) is due to the induction hypothesis, i.e., 𝐵𝐼′
⋃︀
{𝑗} > 𝐵𝐼′ because

|𝐼 ′| ≤ 𝑘 − 1 for all 𝐼 ′ ⊊ 𝐼 (note that |𝐼| = 𝑘). Considering both sides of the inequality
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as functions of 𝐵𝐼
⋃︀
{𝑗}, the left-hand side of the inequality increases in 𝐵𝐼

⋃︀
{𝑗}, while the

right-hand side decreases. Furthermore, if 𝐵𝐼
⋃︀
{𝑗} had the same value as 𝐵𝐼 , the right-hand

side of the inequality would match the right-hand side of Eq. (A.3), requiring the left-hand

side of the inequality to equal the right-hand side of the inequality. This contradiction

implies that, for the inequality to hold, it must be 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼 .

We now prove the second claim that 𝑏𝑖𝐼 > 𝑏𝑖𝐼 ⋃︀{𝑗} for any 𝑖 ∈ 𝐼. When |𝐼| = 1, this claim

is already proven by Proposition 2. Suppose the claim holds for all |𝐼| ≤ 𝑘−1. For |𝐼| = 𝑘,

the first-order condition for 𝑏𝑖𝐼 can be written as

𝑏𝑖𝐼𝑢
′(𝑒𝑦 −𝐵𝐼) = 𝛽

∑︁
𝐼′⊆𝐼 ,𝑖∈𝐼′

𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′).

For 𝑗 ̸∈ 𝐼, from the first-order condition of 𝑏𝑖𝐼 ⋃︀{𝑗}, we have

𝑏𝑖𝐼
⋃︀
{𝑗}𝑢

′(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗}) = 𝛽

[︂
(1− 𝑞𝑗)

∑︁
𝐼′⊆𝐼 ,𝑖∈𝐼′

𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞𝑗
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′ ⋃︀{𝑗}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})

]︂
< 𝛽

[︂
(1− 𝑞𝑗)

∑︁
𝐼′⊆𝐼 ,𝑖∈𝐼′

𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞𝑗
∑︁

𝐼′⊊𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞𝑗𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼 ⋃︀{𝑗}𝑢
′(𝑒𝑜 +𝐵𝐼)

]︂
= 𝛽

[︂ ∑︁
𝐼′⊊𝐼 ,𝑖∈𝐼′

𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ (1− 𝑞𝑗)𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼𝑢′(𝑒𝑜 +𝐵𝐼)

+ 𝑞𝑗𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼 ⋃︀{𝑗}𝑢
′(𝑒𝑜 +𝐵𝐼)

]︂
.

The inequality follows from the induction hypothesis and 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼 for any 𝐼 and 𝑗 ̸∈ 𝐼.

Moreover, 𝑢′(𝑒𝑦 − 𝐵𝐼
⋃︀
{𝑗}) > 𝑢′(𝑒𝑦 − 𝐵𝐼). The inequality and the first-order condition for

𝑏𝑖𝐼 together imply

𝑏𝑖𝐼 ⋃︀{𝑗}[𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑞𝑗𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼)] < 𝑏𝑖𝐼 [𝑢

′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑞𝑗𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼)].

Since 𝑢′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑞𝑗𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼) > 0, it must be 𝑏𝑖𝐼 > 𝑏𝑖𝐼
⋃︀
{𝑗}.
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Proof of Proposition 3′:

Proof. For each 𝑖 ∈ 𝐼, the following first-order condition should be satisfied:

𝑏𝑖𝐼 [𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑢′(𝑒𝑜 +𝐵𝐼)𝑃 (𝐼 | 𝐼)] = 𝐶𝑖, (A.5)

where

𝐶𝑖 = 𝛽𝑞𝑖
∑︁

𝐼′⊊𝐼−𝑖

𝑃 (𝐼 ′ | 𝐼−𝑖)
[︀
𝑏𝑖𝐼′

⋃︀
{𝑖}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑖})
]︀
.

Because 𝑢′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑢′(𝑒𝑜 +𝐵𝐼)𝑃 (𝐼 | 𝐼) is fixed, 𝐶𝑖 > 𝐶𝑗 implies 𝑏𝑖𝐼 > 𝑏𝑗𝐼 . Therefore, we

only need to show that 𝑞𝑖 > 𝑞𝑗 implies 𝐶𝑖 > 𝐶𝑗. The claim is already proven when |𝐼| = 2

in the two-bubble economy. Suppose the result holds for |𝐼| = 𝑘. We now show that the

conclusion holds for |𝐼| = 𝑘 + 1. We perform a term-by-term comparison by identifying

each 𝐼 ′−𝑖 ⊊ 𝐼−𝑖 with a 𝐼 ′−𝑗 ⊊ 𝐼−𝑗 using the following constructions: If 𝑗 ̸∈ 𝐼 ′−𝑖, let 𝐼
′
−𝑗 = 𝐼 ′−𝑖;

if 𝑗 ∈ 𝐼 ′−𝑖, let 𝐼
′
−𝑗 = (𝐼 ′−𝑖 ∖ {𝑗})

⋃︀
{𝑖} ⊊ 𝐼−𝑗.

Now we compare the corresponding terms in 𝐶𝑖 (related to 𝐼 ′−𝑖) and 𝐶𝑗 (related to

𝐼 ′−𝑗). If 𝑗 ̸∈ 𝐼 ′−𝑖, 𝐼
′
−𝑖 = 𝐼 ′−𝑗. Since 𝑞𝑖 > 𝑞𝑗, by Proposition 4′, 𝑏𝑖𝐼′−𝑖

⋃︀
{𝑖} > 𝑏𝑗𝐼′−𝑗

⋃︀
{𝑗} and

𝐵𝐼′−𝑖

⋃︀
{𝑖} > 𝐵𝐼′−𝑗

⋃︀
{𝑗}.

18 Moreover, 𝑞𝑖(1− 𝑞𝑗) > 𝑞𝑗(1− 𝑞𝑖). Thus,

𝛽𝑞𝑖𝑃 (𝐼 ′−𝑖 | 𝐼−𝑖)𝑏
𝑖
𝐼′−𝑖

⋃︀
{𝑖}𝑢

′
(︁
𝑒𝑜 +𝐵𝐼′−𝑖

⋃︀
{𝑖}

)︁
> 𝛽𝑞𝑗𝑃 (𝐼 ′−𝑗 | 𝐼−𝑗)𝑏

𝑖
𝐼′−𝑗

⋃︀
{𝑗}𝑢

′
(︁
𝑒𝑜 +𝐵𝐼′−𝑗

⋃︀
{𝑗}

)︁
.

If 𝑗 ∈ 𝐼 ′−𝑖, 𝐼
′
−𝑖

⋃︀
{𝑖} = 𝐼 ′−𝑗

⋃︀
{𝑗}. From the induction hypothesis 𝑏𝑖𝐼′−𝑖

⋃︀
{𝑖} > 𝑏𝑗𝐼′−𝑗

⋃︀
{𝑗}. Thus

the same inequality holds. This implies that for |𝐼| = 𝑘 + 1, 𝑞𝑖 > 𝑞𝑗 implies 𝐶𝑖 > 𝐶𝑗 and

the proof is complete.

Proof of Proposition 4′:

Proof. First, consider the change in the aggregate bubble size. When |𝐼| = 0, this obser-

vation trivially holds. Suppose the claim holds for all |𝐼| ≤ 𝑘. When |𝐼| = 𝑘 + 1, from the

18The argument is not tautological since the proof of Proposition 4′ does not depend on Proposition 3′
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first order condition we have

𝑢′(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗}) =𝛽

∑︁
𝐼′⊆𝐼

⋃︀
{𝑗}

𝑃 (𝐼 ′ | 𝐼
⋃︁

{𝑗}) 𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

=𝛽

[︂
(1− 𝑞𝑗)

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼) 𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞𝑗
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
𝐵𝐼′

⋃︀
{𝑗}

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})

]︂
>𝛽

[︂
(1− 𝑞ℎ)

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼) 𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞ℎ
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
𝐵𝐼′

⋃︀
{𝑗}

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})

]︂
>𝛽

[︂
(1− 𝑞ℎ)

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼) 𝐵𝐼′

𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞ℎ
∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐼)
𝐵𝐼′

⋃︀
{ℎ}

𝐵𝐼
⋃︀
{ℎ}

𝑢′(𝑒𝑜 +𝐵𝐼′
⋃︀
{ℎ})

+ 𝑞ℎ𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼
⋃︀
{𝑗})

]︂
.

(A.6)

By Proposition 2′, 𝐵𝐼′
⋃︀
{𝑗}𝑢

′(𝑒𝑜+𝐵𝐼′
⋃︀
{𝑗}) > 𝐵𝐼′𝑢

′(𝑒𝑜+𝐵𝐼′). Moreover, 𝑞𝑗 > 𝑞ℎ. These facts

imply the first inequality. The second inequality follows from the induction hypothesis (i.e.,

𝐵𝐼′
⋃︀
{𝑗} > 𝐵𝐼′

⋃︀
{ℎ} for 𝐼

′ ⊊ 𝐼). Regarding the leftmost term and the rightmost term of (A.6)

as functions of 𝐵𝐼
⋃︀
{𝑗}. The left-hand side is increasing in 𝐵𝐼

⋃︀
{𝑗} and the right-hand side

is decreasing in 𝐵𝐼
⋃︀
{𝑗}. When 𝐵𝐼

⋃︀
{𝑗} = 𝐵𝐼

⋃︀
{ℎ}, both sides are equal to 𝑢′(𝑒𝑦 − 𝐵𝐼

⋃︀
{ℎ}).

Thus, for the inequality to hold, it must be that 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼

⋃︀
{ℎ} and the claim holds for

|𝐼| = 𝑘 + 1.

Next, consider the comparison between 𝑏𝑖𝐼
⋃︀
{𝑗} and 𝑏𝑖𝐼

⋃︀
{ℎ}. The situation when |𝐼| = 1

has been analyzed in the two-bubble economy. Suppose the claim holds for all |𝐼| ≤ 𝑘. For
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|𝐼| = 𝑘 + 1,

𝑏𝑖𝐼
⋃︀
{𝑗}𝑢

′(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗})

=𝛽[(1− 𝑞𝑗)
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞𝑗
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′ ⋃︀{𝑗}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})]

<𝛽[(1− 𝑞ℎ)
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞ℎ
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′ ⋃︀{𝑗}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗})]

<𝛽[(1− 𝑞ℎ)
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞ℎ
∑︁

𝐼′⊊𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′ ⋃︀{ℎ}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{ℎ})

+ 𝑞ℎ𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼 ⋃︀{𝑗}𝑢
′(𝑒𝑜 +𝐵𝐼

⋃︀
{ℎ})].

(A.7)

By Proposition 2′, 𝑏𝑖𝐼′ > 𝑏𝑖𝐼′ ⋃︀{𝑗} and 𝐵𝐼′ < 𝐵𝐼′
⋃︀
{𝑗}. Moreover, 𝑞𝑗 > 𝑞ℎ. These facts lead

to the first inequality. Notice that when 𝐼 ′ ⊆ 𝐼, |𝐼 ′| ≤ 𝑘. From the induction hypothesis,

𝑏𝑖𝐼′
⋃︀
{ℎ} > 𝑏𝑖𝐼′

⋃︀
{𝑗}. Moreover, from the first part of the proof, 𝐵𝐼′

⋃︀
{𝑗} > 𝐵𝐼′

⋃︀
{ℎ}. These two

facts together imply the second inequality and 𝑏𝑖𝐼
⋃︀
{𝑗}𝑢

′(𝑒𝑦−𝐵𝐼
⋃︀
{𝑗}) > 𝑏𝑖𝐼

⋃︀
{𝑗}𝑢

′(𝑒𝑦−𝐵𝐼
⋃︀
{ℎ}).

Thus,

𝑏𝑖𝐼
⋃︀
{𝑗}𝑢

′(𝑒𝑦 −𝐵𝐼
⋃︀
{ℎ})

<𝛽[(1− 𝑞ℎ)
∑︁

𝐼′⊆𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′𝑢′(𝑒𝑜 +𝐵𝐼′)

+ 𝑞ℎ
∑︁

𝐼′⊊𝐼 ,𝑖∈𝐼′
𝑃 (𝐼 ′ | 𝐼)𝑏𝑖𝐼′ ⋃︀{ℎ}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{ℎ})

+ 𝑞ℎ𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼 ⋃︀{𝑗}𝑢
′(𝑒𝑜 +𝐵𝐼

⋃︀
{ℎ})].

(A.8)

Subtract 𝑞ℎ𝑃 (𝐼 | 𝐼)𝑏𝑖𝐼 ⋃︀{𝑗}𝑢
′(𝑒𝑜 + 𝐵𝐼

⋃︀
{ℎ})] from both sides of (A.8) and plug in the first

order condition regarding 𝑏𝑖𝐼
⋃︀
{ℎ} to get

𝑏𝑖𝐼 ⋃︀{𝑗}[𝑢
′(𝑒𝑦 −𝐵𝐼

⋃︀
{ℎ})− 𝛽𝑞ℎ𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼

⋃︀
{ℎ})]

<𝑏𝑖𝐼 ⋃︀{ℎ}[𝑢
′(𝑒𝑦 −𝐵𝐼

⋃︀
{ℎ})− 𝛽𝑞ℎ𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼

⋃︀
{ℎ})]

(A.9)

Since 𝑢′(𝑒𝑦 − 𝐵𝐼
⋃︀
{ℎ}) − 𝛽𝑞ℎ𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 + 𝐵𝐼

⋃︀
{ℎ}) > 0, it must be 𝑏𝑖𝐼

⋃︀
{ℎ} > 𝑏𝑖𝐼

⋃︀
{𝑗}.

Moreover, since 𝐵𝐼
⋃︀
{𝑗} ≥ 𝐵𝐼

⋃︀
{ℎ} and for all 𝑖 ∈ 𝐼, 𝑏𝑖𝐼 ⋃︀{ℎ} > 𝑏𝑖𝐼 ⋃︀{𝑗}, it must be 𝑏𝑖𝐼 ⋃︀{𝑗} >

𝑏ℎ𝐼 ⋃︀{ℎ}.
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Proof of Corollary 1:

Proof. The old generation’s utility is increasing since 𝐵𝐼 is increasing in |𝐼|. For the young
generation, it is sufficient to show that for any 𝑗 ̸∈ 𝐼,

𝑢(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗}) + 𝛽

∑︁
𝐼′⊆𝐼

⋃︀
{𝑗}

𝑃 (𝐼 ′ | 𝐼
⋃︁

{𝑗})𝑢(𝑒𝑜 +𝐵𝐼′ )

>𝑢(𝑒𝑦 −𝐵𝐼) + 𝛽
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝑢(𝑒𝑜 +𝐵𝐼′ ).
(A.10)

Since 𝑢 is concave and 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼

𝑢(𝑒𝑦 −𝐵𝐼)− 𝑢(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗}) =

∫︁ 𝑒𝑦−𝐵𝐼

𝑒𝑦−𝐵𝐼
⋃︀
{𝑗}

𝑢′(𝑥)𝑑𝑥 <
(︀
𝐵𝐼

⋃︀
{𝑗} −𝐵𝐼

)︀
𝑢′(𝑒𝑦 −𝐵𝐼

⋃︀
{𝑗}).

Moreover,

𝛽
∑︁

𝐼′⊆𝐼
⋃︀
{𝑗}

𝑃 (𝐼 ′ | 𝐼
⋃︁

{𝑗})𝑢(𝑒𝑜 +𝐵𝐼′ )− 𝛽
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝑢(𝑒𝑜 +𝐵𝐼′ )

=𝛽𝑞𝑗
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
∫︁ 𝑒𝑜+𝐵𝐼′

⋃︀
{𝑗}

𝑒𝑜+𝐵𝐼′

𝑢′(𝑥)𝑑𝑥

>𝛽𝑞𝑗
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
(︀
𝐵𝐼′

⋃︀
{𝑗} −𝐵𝐼′

)︀
𝑢′(𝑒𝑜 +𝐵𝐼′

⋃︀
{𝑗}).

Thus, it is sufficient to show

𝛽𝑞𝑗
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)
(︀
𝐵𝐼′

⋃︀
{𝑗} −𝐵𝐼′

)︀
𝑢′(𝑒𝑜 +𝐵𝐼′

⋃︀
{𝑗})−

(︀
𝐵𝐼

⋃︀
{𝑗} −𝐵𝐼

)︀
𝑢′(𝑒𝑦 −𝐵𝐼

⋃︀
{𝑗}) > 0.

(A.11)

(A.11) is equivalent to

𝐷1 −𝐷2 > 0.

33



where

𝐷1 =𝐵𝐼𝑢
′(𝑒𝑦 −𝐵𝐼

⋃︀
{𝑗})− 𝛽𝑞𝑗

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝐵𝐼′𝑢
′(𝑒𝑜 +𝐵𝐼′

⋃︀
{𝑗})

>𝐵𝐼𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑞𝑗

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝐵𝐼′𝑢
′(𝑒𝑜 +𝐵𝐼′)

=𝛽(1− 𝑞𝑗)
∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝐵𝐼′𝑢
′(𝑒𝑜 +𝐵𝐼′)

=𝐵𝐼
⋃︀
{𝑗}𝑢

′(𝑒𝑦 −𝐵𝐼
⋃︀
{𝑗})− 𝛽𝑞𝑗

∑︁
𝐼′⊆𝐼

𝑃 (𝐼 ′ | 𝐼)𝐵𝐼′
⋃︀
{𝑗}𝑢

′(𝑒𝑜 +𝐵𝐼′
⋃︀
{𝑗}) = 𝐷2.

The second line is from 𝐵𝐼
⋃︀
{𝑗} > 𝐵𝐼 and the concavity of 𝑢(·). The third and fourth lines

are from the first-order condition. This establishes the proposition.

Proof of Proposition 5:

Proof. It is sufficient to establish the convergence result in the symmetric case when each

bubble collapses with probability 𝑞. This is because from the established results, 𝐵𝐼 is larger

(smaller) than the bubble sector of a symmetric case with 𝑞 = min𝑖{𝑞𝑖} (𝑞 = max𝑖{𝑞𝑖}).
Fixing 𝑞, we denote by 𝑏𝑘 the size of each individual bubble in the economy with 𝑘

symmetric bubbles (due to the bursting of other existing bubbles). Notice that 𝑘𝑏𝑘 is

increasing in 𝑘 (Proposition 2′) and bounded above. Moreover, 𝑥𝑢′(𝑥) is increasing in 𝑥.

This implies that 𝑘𝑏𝑘𝑢
′(𝑒𝑜+𝑘𝑏𝑘) is increasing in 𝑘 with a finite upperbound. Thus, for any

𝜖 > 0, there exists 𝑁 such that for 𝑚,𝑛 ≥ 𝑁 , 𝑛𝑏𝑛𝑢′(𝑒𝑜+𝑛𝑏𝑛)
𝑚𝑏𝑚𝑢′(𝑒𝑜+𝑚𝑏𝑚)

≥ 1 − 𝜖. Let 𝑚 = 𝑁2, since(︀
𝑛

𝑖+1

)︀
=
(︀
𝑛−1
𝑖

)︀
· 𝑛
𝑖+1

, from the first-order condition we have

𝑢′(𝑒𝑦 −𝑚𝑏𝑚) =𝑞𝛽
𝑚−1∑︁
𝑖=0

(︂
𝑚− 1

𝑖

)︂
𝑞𝑖(1− 𝑞)𝑚−1−𝑖 𝑏𝑖+1

𝑏𝑚
𝑢′(𝑒𝑜 + (𝑖+ 1)𝑏𝑖+1)

=𝛽

𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
𝑞𝑖(1− 𝑞)𝑛−𝑖 𝑖𝑏𝑖

𝑚𝑏𝑚
𝑢′(𝑒𝑜 + 𝑖𝑏𝑖)

>𝛽

𝑚∑︁
𝑖=𝑁

(︂
𝑚

𝑖

)︂
𝑞𝑖(1− 𝑞)𝑛−𝑖 𝑖𝑏𝑖

𝑚𝑏𝑚

𝑢′(𝑒𝑜 + 𝑖𝑏𝑖)

𝑢′(𝑒𝑜 +𝑚𝑏𝑚)
𝑢′(𝑒𝑜 +𝑚𝑏𝑚)

≥𝛽(1− 𝜂(𝑁))(1− 𝜖)𝑢′(𝑒𝑜 +𝑚𝑏𝑚)

(A.12)

where 𝜂(𝑁) is the probability of having less than 𝑁 successes in a binomial distribution
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with success probability 𝑞 and 𝑚 = 𝑁2 number of trials. We have

𝜂(𝑁) <

(︂
𝑁2

𝑁

)︂
(1− 𝑞)𝑁

2−𝑁 ·
𝑁∑︁
𝑖=0

𝑞𝑖(1− 𝑞)𝑁−𝑖 <

(︂
𝑁2

𝑁

)︂
(1− 𝑞)𝑁

2−𝑁 .

Clearly, this quantity goes to 0 as 𝑁 → ∞. Moreover, Eq. (A.12) holds for arbitrary 𝜖

when 𝑁 is large. Let 𝑠 = 𝑙𝑖𝑚𝑛→∞𝑛𝑏𝑛 be the limiting size of the bubble sector. It must be

𝑢′(𝑒𝑦 − 𝑠) ≥ 𝛽𝑢′(𝑒𝑜 + 𝑠).

For the upperbound, notice that
(︀
𝑛−1
𝑖

)︀
𝑏𝑖+1𝑢

′(𝑒𝑜 + (𝑖 + 1)𝑏𝑖+1) <
(︀

𝑛
𝑖+1

)︀
𝑏𝑛𝑢

′(𝑒𝑜 + 𝑛𝑏𝑛) for

any integer 𝑖 smaller than 𝑛. Thus,

𝑏𝑛𝑢
′(𝑒𝑦 − 𝑛𝑏𝑛) =𝑞𝛽

𝑛−1∑︁
𝑖=0

(︂
𝑛− 1

𝑖

)︂
𝑞𝑖(1− 𝑞)𝑛−1−𝑖𝑏𝑖+1𝑢

′(𝑒𝑜 + (𝑖+ 1)𝑏𝑖+1)

=𝛽
𝑛−1∑︁
𝑖=0

(︂
𝑛

𝑖+ 1

)︂
𝑞𝑖+1(1− 𝑞)𝑛−1−𝑖 𝑖+ 1

𝑛
𝑏𝑖+1𝑢

′(𝑒𝑜 + (𝑖+ 1)𝑏𝑖+1)

<𝛽
𝑛−1∑︁
𝑖=0

(︂
𝑛

𝑖+ 1

)︂
𝑞𝑖+1(1− 𝑞)𝑛−1−𝑖𝑏𝑛𝑢

′(𝑒𝑜 + 𝑛𝑏𝑛)

=𝛽[1− (1− 𝑞)𝑛]𝑏𝑛𝑢
′(𝑒𝑜 + 𝑛𝑏𝑛)

(A.13)

Thus, for any 𝑛, 𝑢′(𝑒𝑦 − 𝑛𝑏𝑛) < 𝛽𝑢′(𝑒𝑜 + 𝑛𝑏𝑛). Thus, it must be 𝑢′(𝑒𝑦 − 𝑠) ≤ 𝛽𝑢′(𝑒𝑜 + 𝑠).

This means the aggregate bubble size 𝑛𝑏𝑛 converges to 𝑠.

To see that the individual bubble size converges to zero, it is sufficient to analyze the

situation where one bubble’s surviving probability is 𝑞 and all other bubbles’ surviving

probability is 𝑞, which is slightly above 𝑞. We aim to show that when the number of

bubbles becomes large, the size of the bubble with surviving probability 𝑞 converges to

zero. To simplify the notation (since we only focus on one specific bubble), Let 𝑏𝑛+1 be the

size of that bubble (survive with probability 𝑞) and 𝐵𝑛+1 be the size of the bubble sector

when that bubble and 𝑛 other bubbles (with surviving probability 𝑞) in the economy. For

𝑚 = 𝑁2, we have

𝑏𝑚[𝑢
′(𝑒𝑦 −𝐵𝑚)− 𝛽𝑞𝑞𝑚𝑢′(𝑒𝑜 +𝐵𝑚)]

<𝛽𝑞(1− 𝑞𝑚 − 𝜂(𝑁))𝑏𝑁+1𝑢
′(𝑒𝑜 +𝐵𝑁+1) + 𝛽𝑞𝜂(𝑁)𝑏1𝑢

′(𝑒𝑜 +𝐵1)
(A.14)

where 𝜂(𝑁) <
(︀
𝑁2

𝑁

)︀
(1 − 𝑞)𝑁

2−𝑁 is the probability of having less than 𝑁 successes in a

binomial distribution with success probability 𝑞 and 𝑚 = 𝑁2 number of trials. Suppose 𝑏𝑛

does not converge to zero. Since it is decreasing with a lower bound, it converges to 𝑑 > 0.
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Take 𝑁 → ∞,

𝑑𝑢′(𝑒𝑦 − 𝑠) ≤ 𝛽𝑞𝑑𝑢′(𝑒𝑜 + 𝑠). (A.15)

This cannot be true since 𝑞 < 1. Contradiction. By Proposition 3, we can conclude that

fixing 𝑖 ∈ 𝐼, 𝑏𝑖𝐼 → 0 as |𝐼| → ∞.

Proof of Proposition 6:

Proof. To illustrate the key insight, we first prove 𝐵𝐼,𝑡+1 ≤ 𝐵𝐼 via induction and then

discuss how the argument can be modified slightly to establish
∑︀

𝑖∈𝐼 𝑏
𝑖
𝐼,𝑡 ≤ 𝐵𝐼 .

Consider a simplified situation of a single-bubble economy where the future bubble size

is deterministic. With only one bubble, we can simplify our notation from 𝐵{1},𝑡 = 𝑏1,𝑡 to

𝑏𝑡. Let 𝜃𝑡+1 =
𝑏𝑡+1

𝑏𝑡
be the return of the bubble between period 𝑡 and 𝑡+ 1. For any 𝑏𝑡 > 0,

the first-order condition can be written as

𝑢′(𝑒𝑦 − 𝑏𝑡)− 𝛽𝑞𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝑏𝑡) = 0.

Since the first-order condition must hold for all 𝑡, we may drop the time subscript when

there is no confusion and write the first-order condition as

𝑢′(𝑒𝑦 − 𝑏)− 𝛽𝑞𝜃𝑢′(𝑒𝑜 + 𝜃𝑏) = 0.

Fixing 𝜃, the left-hand side increases with 𝑏. Thus, for any given 𝜃, there exists a unique

bubble size 𝑏 satisfying the first-order condition. Let’s denote this unique solution as 𝑏(𝜃).

The bubble size in the stationary equilibrium corresponds to 𝑏(1).

We now show that 𝑏(𝜃) is increasing in 𝜃. For any constant 𝑏, note that

𝛽𝑞𝜃𝑢′(𝑒𝑜 + 𝜃𝑏) =
𝛽𝑞

𝑏

𝜃𝑏

𝑒𝑜 + 𝜃𝑏
(𝑒𝑜 + 𝜃𝑏)𝑢′(𝑒𝑜 + 𝜃𝑏),

is increasing in 𝜃.19 If 𝜃 > 𝜃, we have

𝑢′(𝑒𝑦 − 𝑏(𝜃))− 𝛽𝑞𝜃𝑢′(𝑒𝑜 + 𝜃𝑏(𝜃)) < 0.

Since the left-hand side approaches ∞ when 𝑏 → 𝑒𝑦 and there exists a unique 𝑏 satisfying

the first-order condition, it must be 𝑏(𝜃) > 𝑏(𝜃).

We now show that in any equilibrium, 𝑏𝑡 ≤ 𝑏(1) for all 𝑡. If not, then it must be

𝑏𝑡 = 𝑏(𝜃𝑡+1) with 𝜃𝑡+1 > 1 since 𝑏(𝜃) is increasing. Thus, 𝑏𝑡+1 > 𝑏𝑡. Define function 𝜃(𝑏)

19Here we use the assumption that 𝑥𝑢′(𝑥) is increasing for all 𝑥.
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to be the inverse function of 𝑏(𝜃). 𝜃(𝑏) is well-defined since 𝑏(𝜃) is increasing. Consider

𝜃𝑡+2 = 𝜃(𝑏𝑡+1). If 𝜃(𝑏𝑡+1) does not exist (due to 𝑏𝑡+1 not in the range of 𝑏(·)), it cannot be
an equilibrium since there is no return to justify the bubble size 𝑏𝑡+1. However, if 𝜃(𝑏𝑡+1)

exists, since 𝜃(𝑏) is increasing, 𝜃𝑡+2 > 𝜃𝑡+1 > 1. Iterating forward, we have 𝑏𝑡+𝑛 > 𝜃𝑛𝑡+1𝑏𝑡,

which diverges to infinity when 𝑛 → ∞ and it cannot be an equilibrium since the bubble

size should be smaller than the endowment 𝑒𝑦.

This argument extends to the situation of random bubble size on the path where the

bubble does not collapse. In this case, the first-order condition is

𝑢′(𝑒𝑦 − 𝑏𝑡)− 𝛽𝐸𝑡[𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝑏𝑡)] = 0.

Using the independence assumption, we can represent the above equation as follows:

𝑢′(𝑒𝑦 − 𝑏𝑡)− 𝛽𝑞𝐸𝑡[𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝑏𝑡) | 𝜃𝑡+1 > 0] = 0.

Suppose there exists an equilibrium in which 𝑏𝑡 > 𝑏(1) for some 𝑡 on a sample path. Since

𝜃𝑢′(𝑒𝑜+𝜃𝑏) is increasing in 𝜃, there must exist a realization of 𝜃𝑡+1 such that 𝜃𝑡+1 ≥ 1+ 𝜖𝑡+1

where 𝜖𝑡+1 > 0 is the unique solution of the following equation:

𝑢′(𝑒𝑦 − 𝑏𝑡)− 𝛽𝑞(1 + 𝜖𝑡+1)𝑢
′[𝑒𝑜 + (1 + 𝜖𝑡+1)𝑏𝑡] = 0. (A.16)

On that equilibrium path, 𝑏𝑡+1 > 𝑏𝑡 > 𝑏(1). From the first-order condition of 𝑏𝑡+1, since

𝑢′(𝑒𝑦 − 𝑏𝑡+1) > 𝑢′(𝑒𝑦 − 𝑏𝑡) and 𝑢′(𝑒𝑜 + 𝜃𝑏) is decreasing in 𝑏, there must exist a realization

of 𝜃𝑡+1 such that 𝜃𝑡+2 ≥ 1 + 𝜖𝑡+2 > 1 + 𝜖𝑡+1.
20 Iterating forward to see that there exists a

sample path where lim
𝑛→∞

𝑏𝑡+𝑛 → ∞. Contradiction.

Note that a similar bound applies to the size of one bubble in an n-bubble economy.

Specifically, for any 𝑖 ∈ 𝐼, the first-order condition is

𝑏𝑖𝐼,𝑡𝑢
′(𝑒𝑦 −𝐵𝐼,𝑡)− 𝛽E𝑡

[︀
𝑏𝑖𝐼′,𝑡+1𝑢

′(𝑒𝑜 +𝐵𝐼′,𝑡+1)
]︀
= 0.

Using the independence assumption and noting that 𝑏𝑖𝐼,𝑡 ≤ 𝐵𝐼,𝑡 and 𝑏𝑖𝐼′,𝑡+1 ≤ 𝐵𝐼′,𝑡+1, the

first order condition implies that

𝑢′(𝑒𝑦 − 𝑏𝑖𝐼,𝑡)− 𝛽𝑞𝐸𝑡[𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝑏

𝑖
𝐼,𝑡) | 𝜃𝑡+1 > 0] ≤ 0.

By a similar argument, 𝑏𝑖𝐼,𝑡 < 𝑏𝑖𝑖 for all 𝐼, 𝑡 and 𝑖 ∈ 𝐼.

20The inequality 1 + 𝜖𝑡+2 > 1 + 𝜖𝑡+1 is due to Eq. (A.16) and 𝑏𝑡+1 > 𝑏𝑡.
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We proceed by induction over |𝐼|. Suppose 𝐵𝐼,𝑡 ≤ 𝐵𝐼 for all |𝐼| ≤ 𝑚− 1. For |𝐼| = 𝑚,

the first-order conditions implies that

𝐵𝐼,𝑡 [𝑢
′(𝑒𝑦 −𝐵𝐼,𝑡)− 𝛽𝑃 (𝐼 | 𝐼)𝐸𝑡[𝜃𝑡+1𝑢

′(𝑒𝑜 + 𝜃𝑡+1𝐵𝐼,𝑡) | 𝐼 ′ = 𝐼]]

=𝛽
∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐼)𝐸𝑡[𝐵𝐼′,𝑡+1𝑢
′(𝑒𝑜 +𝐵𝐼′,𝑡+1) | 𝐼 ′],

where 𝜃𝑡+1 =
𝐵𝐼,𝑡+1

𝐵𝐼,𝑡
. Notice that the expectation on the left-hand side corresponds to the

situation where no bubble bursts and 𝐼 ′, the index set of the next period, is the same as

𝐼. The terms on the right-hand side correspond to the situation where at least one bubble

bursts in the (𝑡 + 1)𝑡ℎ period. By the induction hypothesis and the first-order conditions

of the stationary equilibrium,

𝛽
∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐼)𝐸𝑡[𝐵𝐼′,𝑡+1𝑢
′(𝑒𝑜 +𝐵𝐼′,𝑡+1) | 𝐼 ′]

≤𝛽
∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐼)𝐵𝐼′𝑢
′(𝑒𝑜 +𝐵𝐼′)

=𝐵𝐼 [𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼)] .

This implies

𝐵𝐼,𝑡 [𝑢
′(𝑒𝑦 −𝐵𝐼,𝑡)− 𝛽𝑃 (𝐼 | 𝐼)𝐸𝑡[𝜃𝑡+1𝑢

′(𝑒𝑜 + 𝜃𝑡+1𝐵𝐼,𝑡) | 𝐼]]

≤𝐵𝐼 [𝑢
′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼)]

(A.17)

Suppose there exists an equilibrium such that in some scenarios 𝐵𝐼,𝑡 > 𝐵𝐼 > 0. Fix a

𝐵𝐼,𝑡 > 𝐵𝐼 , we have,

𝛽𝑃 (𝐼 | 𝐼) [𝐸𝑡[𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝐵𝐼,𝑡) | 𝐼]− 𝑢′(𝑒𝑜 +𝐵𝐼)]

≥𝑢′(𝑒𝑦 −𝐵𝐼,𝑡)− 𝑢′(𝑒𝑦 −𝐵𝐼)

>0.

We have shown that 𝜃𝑡+1𝑢
′(𝑒𝑜 + 𝜃𝑡+1𝐵𝐼,𝑡) is increasing in 𝜃𝑡+1 and is decreasing in 𝐵𝐼,𝑡.

Moreover, since 𝐵𝐼,𝑡 > 𝐵𝐼 , 𝑢
′(𝑒𝑜 + 𝐵𝐼,𝑡) < 𝑢′(𝑒𝑜 + 𝐵𝐼). Thus, there must exist a sample

path such that 𝜃𝑡+1 ≥ 1 + 𝜖𝑡+1 where 𝜖𝑡+1 > 0 is the unique solution of

(1 + 𝜖𝑡+1)𝑢
′(𝑒𝑜 + (1 + 𝜖𝑡+1)𝐵𝐼,𝑡) = 𝑢′(𝑒𝑜 +𝐵𝐼).

Since 𝜃𝑡+1 > 1, 𝐵𝐼,𝑡+1 = 𝐵𝐼,𝑡𝜃𝑡+1 > 𝐵𝐼,𝑡. With a similar argument, there exists a sample
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path such that 𝜃𝑡+2 ≥ 1 + 𝜖𝑡+2 where 𝜖𝑡+2 > 0 is the unique solution of

(1 + 𝜖𝑡+2)𝑢
′(𝑒𝑜 + (1 + 𝜖𝑡+2)𝐵𝐼,𝑡+1) = 𝑢′(𝑒𝑜 +𝐵𝐼).

Moreover, since 𝐵𝐼,𝑡+1 > 𝐵𝐼,𝑡, it must be 𝜖𝑡+2 > 𝜖𝑡+1. Iterate forward, there exists a

sample path such that 𝐵𝐼,𝑡+𝑛 > 𝜃𝑛𝑡+1𝐵𝐼,𝑡. This implies that along the chosen sample path,

lim
𝑛→∞

𝐵𝐼,𝑡+𝑛 diverges to infinity. Contradiction.

Following a similar argument, we can show that for any 𝐼 and 𝐼 ⊂ 𝐼,
∑︀

𝑖∈𝐼 𝑏
𝑖
𝐼,𝑡 ≤ 𝐵𝐼 .

To complete the discussion, we hereby show that the agents’ elasticity of intertemporal

substitution greater than one (𝑥𝑢′(𝑥) increasing) is necessary for Proposition 6. Specifically,

there exist situations with the agents’ EIS smaller than 1 where the aggregate bubble size

in the stationary equilibrium is smaller than its counterpart in other equilibria.

We consider an oscillating equilibrium in a single-bubble economy as in Weil (1987)

where the agents’ utility function is CRRA with relative risk aversion 𝛾 and EIS 1
𝛾
. In the

equilibrium, if the surviving bubble is large in the current period, it will be small in the next

period (if it survives), or vice versa. By Proposition 6, when 𝛾 ≤ 1, no such equilibrium

exists. We hereby show that when 𝛾 is large, such equilibrium exists and when the bubble

is large, its size is larger than the bubble size in the unique stationary equilibrium.

Proposition A.1. In a single-bubble economy with CRRA utility, when 𝛾 is large enough,

there exists an oscillating equilibrium where the surviving bubble’s size oscillates between 𝑏𝑙

and 𝑏ℎ and 𝑏ℎ > 𝑏(1) where 𝑏(1) corresponds to the bubble size in the stationary equilibrium.

Proof. By Grandmont (1985) Lemma 1.2., 𝜃𝑏(𝜃) is increasing in 𝜃, the return over the

bubble (given the bubble does not collapse). If there exists an oscillating equilibrium, since

𝑏ℎ > 𝑏(1), when the current bubble size is 𝑏𝑙, 𝜃 > 1 and this implies 𝑏ℎ > 𝑏(1).

By Grandmont (1985) Equation (4.10), with CRRA utility, a sufficient condition for an

oscillating equilibrium is

𝛾 > 2 · 𝑒𝑜 + 𝑏(1)

𝑏(1)
+

𝑒𝑜 + 𝑏(1)

𝑒𝑦 − 𝑏(1)
· 𝛾

where

𝑏(1) =
(𝛽𝑞)

1
𝛾 𝑒𝑦 − 𝑒𝑜

1 + (𝛽𝑞)
1
𝛾

.

This is equivalent to

[1− (𝛽𝑞)
1
𝛾 ]𝛾 >

2(𝛽𝑞)
1
𝛾 (𝑒𝑦 + 𝑒𝑜)

1 + (𝛽𝑞)
1
𝛾

.
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The condition can be satisfied by taking 𝛾 large.

Proof of Proposition 7:

Proof. We prove by contradiction with induction over |𝐼| from 1 to |𝐼| for arbitrary 𝐼.

First, consider the situation where |𝐼| = 1. Let 𝐼 = {𝑖}. The first-order conditions for the

bubble 𝑖 ∈ 𝐼 is

𝑏̌𝑖𝐼𝑢
′(𝑒𝑦 − 𝐵̌𝐼) = 𝛽

∑︁
𝐼′⊆𝐶(𝐼)

𝑃 (𝐼 ′ | 𝐶(𝐼))
[︀
𝑏̌𝑖𝐼′𝑢

′(𝑒𝑜 + 𝐵̌𝐼′)
]︀
. (A.18)

If 𝑖 ̸∈ 𝐼 ′, 𝑏̌𝑖𝐼′ ≡ 0. 𝐶(𝐼) is the index set of bubbles after the creation in the state 𝐼.

𝐵̌𝐼 =
∑︀

𝑗∈𝐼 𝑏̌
𝑗
𝐼 is the value of the bubble sector when the surviving bubbles’ index set is

𝐶(𝐼) after creation; 𝐵̌𝐼′ =
∑︀

𝑗∈𝐼′ 𝑏̌
𝑗
𝐼′ is the value of the bubble sector when the surviving

bubbles’ index set is 𝐶(𝐼 ′) after creation.

Let 𝜃(𝐼 ′) =
𝑏̌𝑖
𝐼′

𝑏̌𝑖𝐼
. From Eq. (A.18), we have

𝑢′(𝑒𝑦 − 𝐵̌𝐼) = 𝛽
∑︁

𝐼′⊆𝐶(𝐼)

𝑃 (𝐼 ′ | 𝐶(𝐼))
[︀
𝜃(𝐼 ′)𝑢′(𝑒𝑜 + 𝐵̌𝐼′)

]︀
. (A.19)

This implies

𝑢′(𝑒𝑦 − 𝑏̌𝑖𝐼) ≤𝑏̌𝑖𝐼𝑢
′(𝑒𝑦 − 𝐵̌𝐼)

≤𝛽
∑︁

𝐼′⊆𝐶(𝐼)

𝑃 (𝐼 ′ | 𝐶(𝐼))
[︀
𝜃(𝐼 ′)𝑢′(𝑒𝑜 + 𝜃(𝐼 ′)𝑏̌𝑖𝐼)

]︀
,

where the first inequality is because 𝑏̌𝑖𝐼 < 𝐵̌𝐼 , the second inequality is due to Eq. (A.19),

𝑢′(𝑒𝑜 + 𝐵̌𝐼′) ≤ 𝑢′(𝑒𝑜 + 𝑏̌𝑖𝐼′), and the definition of 𝜃(𝐼 ′).

Following a similar argument as in the proof of Proposition 6 , if 𝑏̌𝑖𝐼 > 𝑏𝑖𝑖, there must

exist a 𝐼 ′ ⊆ 𝐶(𝐼) where 𝜃(𝐼 ′) ≥ 1+𝜖 with 𝜖 > 0. This leads to contradiction and it must be

𝑏̌𝑖𝐼 ≤ 𝑏𝑖𝑖. That is, the bubble size of a bubble with surviving probability 𝑞𝑖 in any equilibrium

with bubble creation must be (weakly) smaller than that bubble in a single-bubble economy

without creation.

Suppose
∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼 ≤ 𝐵𝐼 holds for all |𝐼| ≤ 𝑘. Fix |𝐼| = 𝑘 + 1, let 𝜃(𝐼 ′) =

∑︀
𝑖∈𝐼 𝑏̌

𝑖
𝐼′∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼

. We

have
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∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼

⎡⎣𝑢′(𝑒𝑦 −
∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼)− 𝛽
∑︁

𝐼⊆𝐼′⊆𝐶(𝐼)

𝑃 (𝐼 ′ | 𝐶(𝐼))𝜃(𝐼 ′)𝑢′(𝑒𝑜 + 𝜃(𝐼 ′)
∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼)

⎤⎦
≤
∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼

⎡⎣𝑢′(𝑒𝑦 − 𝐵̌𝐼)− 𝛽
∑︁

𝐼⊆𝐼′⊆𝐶(𝐼)

𝑃 (𝐼 ′ | 𝐶(𝐼))𝜃(𝐼 ′)𝑢′(𝑒𝑜 + 𝐵̌𝐼′)

⎤⎦
=𝛽

∑︁
𝐼′⊆𝐶(𝐼),𝐼 ̸⊆𝐼′

𝑃 (𝐼 ′ | 𝐶(𝐼))

⎡⎣∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼′𝑢
′(𝑒𝑜 + 𝐵̌𝐼′)

⎤⎦
≤𝛽

∑︁
𝐼′⊆𝐶(𝐼),𝐼 ̸⊆𝐼′

𝑃 (𝐼 ′ | 𝐶(𝐼))

⎡⎣∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼′𝑢
′(𝑒𝑜 +

∑︁
𝑖∈𝐼

𝑏̌𝑖𝐼′)

⎤⎦
≤𝛽
∑︁
𝐼′⊊𝐼

𝑃 (𝐼 ′ | 𝐶(𝐼)) [𝐵𝐼′𝑢
′(𝑒𝑜 +𝐵𝐼′)]

=𝐵𝐼

[︁
𝑢′(𝑒𝑦 −𝐵𝐼)− 𝛽𝑃 (𝐼 | 𝐼)𝑢′(𝑒𝑜 +𝐵𝐼)

]︁
.

The first inequality is due to
∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼 ≤ 𝐵̌𝐼 ≡

∑︀
𝑖∈𝐼 𝑏̂

𝑖
𝐼 and 𝜃(𝐼 ′)

∑︀
𝑖∈𝐼 𝑏̌

𝑖
𝐼 =

∑︀
𝑖∈𝐼 𝑏̌

𝑖
𝐼′ ≤ 𝐵̌𝐼′ ≡∑︀

𝑖∈𝐼′ 𝑏̌
𝑖
𝐼′ . The first equality is due to the first-order conditions regarding 𝑏̂𝑖𝐼 for all 𝑖 ∈ 𝐼

and the independence assumption. The second inequality is due to
∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼′ ≤ 𝐵̌𝐼′ .

21 The

third inequality is from the induction hypothesis. The second equality is implied by the

first-order condition of the baseline model. If
∑︀

𝑖∈𝐼 𝑏̌
𝑖
𝐼 > 𝐵𝐼 , the argument from the proof of

Proposition 6 applies and on some sample paths, the bubble size will diverge, which cannot

be an equilibrium.

Proof of Proposition 8:

Proof. We prove the claim by contradiction. Note that by the first order conditions

Eqs. (10)-(11), 𝑏11 is uniquely determined by 𝑞1 and 𝑏22 is uniquely determined by 𝑞2. More-

over, when 𝑞1 = 𝑞2, 𝑏
1
1 = 𝑏22. Thus, given 𝑒𝑦, 𝑒𝑜, 𝛽 and 𝑢(·), there exists an strictly increasing

function 𝑓(·) such that 𝑏11 = 𝑓(𝑞1) and 𝑏22 = 𝑓(𝑞2). Thus, we can focus on analyzing the

uniqueness of 𝑞1 and 𝑞2.

Suppose there are two tuples (𝑞1, 𝑞2) and (𝑞1, 𝑞2) that satisfies Eqs. (12)-(13). It cannot

be 𝑞1 = 𝑞1 since the first-order conditions would imply 𝑞2 = 𝑞2. Without loss of generality,

assume 𝑞1𝑞2 > 𝑞1𝑞2. Then, the assumption together with Eq. (12) implies 𝑞1(1− 𝑞2)𝑓(𝑞1) >

𝑞1(1 − 𝑞2)𝑓(𝑞1). Also, the assumption together with Eq. (13) implies 𝑞2(1 − 𝑞1)𝑓(𝑞2) >

21Note that if 𝑖 ̸∈ 𝐼 ′, 𝑏̌𝑖𝐼′ ≡ 0.
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𝑞2(1− 𝑞1)𝑓(𝑞2). Thus, when 𝑞1 > 𝑞1, it must be that 𝑞2 > 𝑞2, or vice versa. By Proposition

4, however, it must be either 𝑞1 > 𝑞1, 𝑞2 < 𝑞2 or 𝑞1 < 𝑞1, 𝑞2 > 𝑞2. This contradicts.
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