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Abstract

Evidence of excess volatilities at high asset prices is associated with bubbles.
We propose a new asset price bubble testing methodology based on volatility
estimates. Examining the current U.S. equity bull market, we find that the
S&P 500 and Dow Jones do not exhibit bubbles, but the Nasdaq does. We
stress test our methodology with individual stocks and simulation models
to build confidence in the procedure. We show that these results are robust
to various adjustments for outliers.
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1 Introduction

Asset price bubbles are characterized by three elements: a deviation from an asset’s
fundamental value, extended price run-ups, and an eventual crash (Blanchard, 1979;
Diba and Grossman, 1988; Jarrow et al., 2010; Brunnermeier and Oehmke, 2013; Fama,
2014; Shiller, 2016; Greenwood et al., 2019). Empirically identifying asset price bubbles
is challenging because the traditional methodology requires an explicit estimation of
the asset’s fundamental value. The identification requires postulating and estimating a
stochastic process for the asset’s cash flows, risk premium, default-free interest rates,
and liquidation value. In the literature, there is a substantial disagreement on the
estimation techniques. As a consequence, given the resulting controversy, it is widely
believed that one cannot empirically test for the existence of price bubbles.

The purpose of this paper is to show that this common belief is false, and that one
can easily test for the existence of price bubbles by using a new methodology that side-
steps these difficulties in estimating an asset’s fundamental value. This methodology is
based on the local martingale theory of bubbles. Therein, a bubble can be identified
solely by studying the characteristics of the market price process itself, in particular its
volatility (under reasonable hypotheses documented below). If the asset’s volatility
increases sufficiently fast with the level of the asset’s price, then this is a necessary and
sufficient condition for the existence of a price bubble.1 The asset’s volatility is easily
estimated and this necessary and sufficient condition empirically tested. We apply this
methodology to the current U.S. equity market to determine if it is experiencing a price
bubble. A question of considerable current interest.

This paper also makes a second contribution to the literature. We refine and extend
the statistical methodology contained in Choi and Jarrow (2022) for testing asset price
bubbles. The existingmethodology has six limitations. The first is that this methodology
needs to be extended to include cash flows. Second, the variance estimator needs to
be augmented to include non-equal price observation times and price level intervals.2
Third, although the existing volatility estimator is consistent, it is biased for small
sample sizes. Fourth, the hypothesis testing procedure is conservative, being based
on upper and lower bounds for the “true” volatility function, which results in regions
where there are inconclusive results with respect to the existence of price bubbles. Fifth,
the robustness procedure does not include information from the estimated volatility’s

1This theory is reviewed in Section 2 below.
2The detailed reasons for this and subsequent statements are given below in section 3.
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sampling distribution. And finally, the standard errors in a regression estimating the
upper and lower bounds for the volatility functions are not adjusted for probable
heteroskedasticity and autocorrelation.

This paper addresses these six limitations. First, we include cash flows. Second,
we allow for non-equal time and price intervals. Third, we create and implement a
small sample bias adjustment. Fourth, if the hypothesis testing approach yields an
inconclusive result, we employ Bayesian statistics to provide a posterior probability
of the asset price exhibiting a bubble. Fifth, we develop a robustness check based on
the volatility’s sampling distribution. And finally, in the volatility function’s upper
and lower bound estimations, we adjust the regression estimates’ standard errors for
heteroskedasticity and autocorrelation.

To validate the bubble testing methodology, we simulate two hypothetical markets,
one with the asset price exhibiting a bubble and one without. We simulate 10,000 paths
for the risky asset’s prices over 3 years in both markets, and apply our bubble testing
methodology to see if it correctly identifies the bubble and no-bubble markets. The
simulation validates the methodology. For the no-bubble market, using a hypothesis
test at the 95% significance level, only 0.04% of the simulated paths are misclassified
as bubbles. Exactly as should occur. For the bubble market, using a conservative
hypothesis test, 71% are initially classified correctly as bubbles. For those simulated
paths in the bubble market that are inconclusive for this hypothesis test, approximately
41% exhibit a posterior probability of a bubble of more than 90%. The remaining
simulated paths remain inconclusive, with the exception that 39% exhibit a posterior
probability of a bubble of less than 10%. This is to be expected given the hypothesis
testing is conservative, and there is error in the price process’s path due to simulating a
continuous stochastic differential equation with a discretized Euler scheme.

We apply this refined bubble detection technology to the U.S. equity market from
March 2023 to March 2024 using daily price data to see if the current bull market is a
price bubble. We present three main findings. The S&P 500 and Dow Jones indices do
not exhibit price bubbles, while the Nasdaq index does. Various robustness checks are
performed on the estimation that confirm the validity of these conclusions.

Second, we provide various case studies to provide anecdotal, but confirmatory
evidence, that the method does correctly identify bubbles. We select three stocks that
are often alleged to contain bubbles (Bitcoin, Meta, NVIDIA) and three stocks that are
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not (JP Morgan, Bank of America, Wells Fargo).3 When we apply our methodology to
these securities, Bitcoin and NVIDIA have price bubbles, while Meta does not. For the
banks, JP Morgan, Wells Fargo have no bubbles, but Bank of America does.

Finally, we test our methodology on a recent event with respect to Lyft. On February
14th 2024, Lyft announced an erroneous earnings projection that stated a 500 basis
point margin instead of a 50 basis point margin. Although the CEO corrected this
mistake in less than an hour, the firm’s stock surged at least 67% higher based on the
incorrect earnings release.4 Intuitively, if Lyft did not undergo a fundamental change
between February 13th and February 14th , this phenomenon reflects a price bubble.
We apply our methodology to two time periods: March 1st 2023 to February 13th 2024
(pre-announcement) and March 1st 2023 to March 14th 204 (post-announcement). We
show that at a 1% significant level, Lyft was not in a bubble before the announcement,
but reflected a bubble after the announcement.

Our paper is related to two literatures. First, it relates to an econometric literature
testing for price bubbles (Jarrow et al., 2011a,b; Shiryaev et al., 2016; Phillips et al., 2015;
Phillips and Shi, 2020; Jarrow and Kwok, 2021; Choi and Jarrow, 2022). Similar to our
paper, these studies primarily focus on estimating the explosive feature of price bubbles
(e.g., the Feller test, augmented Dickey-Fuller test). Our method differs from those
using the local martingale theory of bubbles in our extrapolation procedure. Our paper
also relates to the statistical literature detecting and adjusting for outliers (Grubbs, 1969;
Rocke and Woodruff, 1996; Aguinis et al., 2013). Our methodology uses the convex hull
of volatility estimates to conservatively approximate the minimum and maximum area
under the extrapolated volatility function. As such, it is potentially vulnerable to large
and small volatility estimates. We provide a new technique for modifying these outliers
based on the sampling distribution to check for this possibility.

This paper is organized as follows. Section 2 provides a summary of the local
martingale theory of bubble. Section 3 juxtaposes the existing and new methodologies.
Section 4 documents the simulation results, and Section 5 presents the empirical results.
Section 6 provides robustness tests, and Section 7 concludes.

3Although Bitcoin is not a stock, Bitcoin is a cryptocurrency widely documented to have periodic
price bubbles (Chaim and Laurini, 2019; Choi and Jarrow, 2022). Therefore, we include it in the set of
alleged-bubble stocks.

4Rana, Preetika. ”Lyft Shares Surge as Strong Earnings Report Offsets Typo Confusion”, The Wall
Street Journal, 14 February, 2024.
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2 The Local Martingale Theory of Bubbles

This section briefly reviews the local martingale theory of bubbles. For a detailed
presentation see Jarrow (2018), chapter 3. The local martingale theory of bubbles is
based on a continuous time, continuous trading, frictionless and competitive market
model over a finite horizon [0, T ]. Traded are a default-free money market account
(mma) and risky assets. Without loss of generality, we assume that there is only one
risky asset traded.

Denote the time t market price of the risky asset by Ŝt, and assume that it is always
non-negative. Let Gt denote the asset’s cumulative cash flow at time t, starting with
G0 = 0. The cumulative cash flow process is non-decreasing and therefore a finite
variation process. Denote the time t value of the money market account (mma) by

Bt = e
∫ t
0 rsds

where B0 = 1 and rt is the default-free spot rate of interest.
Starting at time 0, the value of a position in the stock plus reinvested cash flows (in

the mma) over [0, t] is
Ŝt +

(∫ t

0

1

Bs

dGs

)
Bt.

We suppose that the market is arbitrage-free (i.e., the market satisfies No Free Lunch
with Vanishing Risk). Hence, by the First Fundamental Theorem of asset pricing, there
exists a risk neutral probability Q, equivalent to the statistical probability P, such that
the normalized asset’s price process plus reinvested cash flows,

Ŝt +
(∫ t

0
1
Bs
dGs

)
Bt

Bt

=
Ŝt

Bt

+

∫ t

0

1

Bs

dGs,

is aQ local-martingale. A local-martingale is a generalization of amartingale. Equivalent
means that Q and P agree on zero probability events.

The market is not assumed to be complete, hence, by the Second Fundamental
Theorem of asset pricing, there could be an infinite number of risk neutral probabilities.
If the market is incomplete, we assume that a unique risk neutral probability Q is
chosen by the market, either via an economic equilibrium or via the asset market being
embedded in a larger market including traded derivatives that is complete.

The asset’s fundamental value at time t, Ft, is defined to be the expected value of the
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asset’s liquidation payoff at time T plus all reinvested cash flows over [t, T ], discounted
to the present, i.e.

Ft := EQ
t

(
ŜT

BT

+

∫ T

t

1

Bs

dGs

)
Bt (1)

where EQ
t denotes the conditional expectation at time t using the risk neutral proba-

bilities Q. The use of the risk neutral probabilities Q adjusts for risk in computing this
present value. This is the classical definition of an asset’s fundamental value in the
economics literature.

The asset’s price bubble is defined to be

βt = Ŝt − Ft. (2)

Note that the stock price Ŝt is after all cash flows have been paid at time t.
Using the definition of the fundamental value, we can rewrite the normalized bub-

ble’s magnitude as

βt

Bt

=

(
Ŝt

Bt

+

∫ t

0

1

Bs

dGs

)
︸ ︷︷ ︸

normalized asset price
+ reinvested cash flows over [0, t]

(A1)

− EQ
t

(
ŜT

BT

+

∫ T

0

1

Bs

dGs

)
︸ ︷︷ ︸

expected normalized liquidation value
+ reinvested cash flows over [t, T ]

(A2)

.

Since (A1) is a Q local-martingale, it is a non-negative Q supermartingale. This implies
that

Ŝt

Bt

+

∫ t

0

1

Bs

dGs ≥ EQ
t

(
ŜT

BT

+

∫ T

0

1

Bs

dGs

)
.

We can further deduce that the normalized asset’s price bubbles is non-negative, i.e.(
βt

Bt

)
≥ 0. Given the normalized fundamental value (A2) is a Qmartingale, it follows

that a price bubble exists (β > 0) if and only if the asset’s price plus reinvested cash flows
(A1) is not a Qmartingale. In this case, we say that (A1) is a strict Q local martingale.
This key insight provides the theoretical basis of our bubble detection methodology.

The statistical methodology for detecting asset price bubbles tests to see if
the price process

(
Ŝt

Bt
+
∫ t

0
1
Bs
dGs

)
is a strict Q local-martingale (bubble) or

a Q martingale (no bubble).
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3 The New Statistical Methodology

This paper provides a new statistical methodology for detecting asset price bubbles,
extending the previous approaches used by (Jarrow et al., 2011a; Obayashi et al., 2017;
Jarrow and Kwok, 2021; Choi and Jarrow, 2022). First, we briefly review its most recent
application to detecting bubbles in cryptocurrencies and foreign currencies by Choi
and Jarrow (2022). Second, we explain our new refinements and contributions to the
bubble detection methodology.

3.1 The Existing Methodology

Choi and Jarrow (2022) study bubbles in assets that do not have cash flows, i.e. Gt ≡ 0.
To simply the notation, let St :=

Ŝ
B
denote the normalized risky asset’s price process.5

And, to simplify the exposition, we will call S the risky asset’s price process, dropping
the qualifier “normalized.”

The statistical methodology assumes that St follows the diffusion process

dSt = µ(St)dt+ σ(St)dWt (3)

where S0 is a constant andWt is a standard Brownian motion withW0 = 1.
There are two key characteristics of this diffusion process that are exploited for the

testing of an asset price bubble. The first is that S is a strictQ local martingale if and only
if S is a strict P local martingale (Jarrow et al., 2022). This implies that we do not need
to estimate or determine the risk neutral probability Qwhen testing for price bubbles.
The second is that the characterization of S being a strict P local martingale depends
solely on the asset’s volatility function, σ(x). This is evidenced by the following result.

The normalized price process S is a strict local martingale under P if and
only if

∫ ∞

ε

x

σ(x)2
ds < ∞ for any ε > 0. (4)

Hence, testing for a price bubble is equivalent to investigating whether the integral in
(4) is finite or not. If the integral converges, there is a bubble. If it diverges, then there

5In the estimation below, the stock’s price is divided by the value of a money market account before
performing the estimation methodology.
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is no bubble. Note that the integral is finite if the variance function increases at a faster
rate than the price implying the bubbles are associated with large return variances at
high price levels.

To estimate the volatility function at the level x, the observation period is partitioned
into the discrete time steps t1 = 0, t2, t3, ..., tn = T where n is the total number of price
observations over the time interval [0, T ]. Then, assuming that the time steps are of
equal length, ti+1 − ti =

1
n
units of a year, the estimator at the level x [expression (5), p.

842, (Jarrow et al., 2011b)] of the variance function is given by

Vn(x) =

∑n
i=1 1{|Sti−x|<hn}n(Sti+1

− Sti)
2∑n

i=1 1{|Sti−x|<hn}
. (5)

where
1{|Sti−x|<hn} =

{
1 if |Sti − x| < hn

0 otherwise

and hn is a constant depending upon the sample size n. Here, the the denominator
counts the number of stock prices observed in the price level interval [x− hn, x+ hn]

and the numerator computes the variance estimator for each time step, (Sti+1
− Sti)

2,
prorated per year, where Sti is in the interval [x− hn, x+ hn].

This is a consistent estimator with Vn(x) → σ2(x) if: (i) σ is bounded above and
below from zero with three continuous and bounded derivatives, and (ii) nhn → ∞
and nh4

n → 0 as n → ∞. It can be shown (see the appendix) that if nh3
n → 0 as n → ∞,

then for large Nn
x , the sampling distribution of this estimator is approximately

Vn(x) ∼ Φ

(
σ2(x), 2

V 2
n (x)

Nn
x

)
(6)

where Φ(mean, variance) is the normal distribution, and Nn
x :=

∑n
i=1 1{|Sti−x|<hn}

counts the number of observations Sti across i = 1, ..., n in the interval [x− hn, x+ hn].
Note that this is an asymptotic distribution for the estimator as Nn

x → ∞, when hn → 0

and n → ∞.
Next, to test for convergence of the integral (4), the volatility function σ(x) needs

to be estimated over all the asset price levels x ∈ [0,∞). Here, the price level range
is partitioned into equally spaced subintervals [0 = x0, x1, x2, . . . , xK = max{Sti : i =

1, ..., n}] for some K > 0 where xj − xj−1 = 2hn for j = 1, ..., K. Because max{Sti : i =

1, ..., n} is finite, this implies that to check for convergence of the interval, one must
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extrapolate the volatility’s behavior from the observed price levels to those that the
asset’s price has not yet reached.

Choi and Jarrow (2022) developed an extrapolation technique based on bounding
the volatility function using two convex hulls of the estimated volatilities.6 Fix a trading
horizon [0, T ]where we observe prices {Sti}i with i ∈ {1, 2, ..., T}. We estimate volatil-
ities for each price partition {hj}j such that we produce a set of price-volatility pairs
{(Sj, σ(Sj))}j .7 The procedure consists of the following steps.

1. Extrapolation: Select the best power functions σk(x) = αkx
βk to fit both the lower

(k = l) and upper (k = u) convex hulls. By construction σ2
l (x) ≤ σ2(x) ≤ σ2

u(x).
Then, estimate the regression

ln(σk(Sj)) = ln(αk) + βk ln(Sj) + εj (7)

with αk ≥ 0 and εj the regression residuals to obtain the estimated regression
coefficients β̂k for k ∈ {u, l}.

2. Evaluation (Point Estimation): Define the integrals Iu :=
∫∞
1

x
σ2
l (x)

dx and Il :=∫∞
1

x
σ2
u(x)

dx. Note the subscripts for the upper and lower integrals have been reversed
from the variance functions, so that

Iu > I > Il

where I in given in expression (4).

(a) First compute the estimate β̂l in order to evaluate the convergence of the
upper bound Iu for the integral I . The upper bound is evaluated using the
lower convex hull’s approximating function σ2

l (x). If the estimated coefficient
β̂l > 1, then this implies the lower convex hull’s integral Iu < ∞ converges
and there is a bubble.

(b) If the estimate β̂l implies the lower convex hull’s integral Iu = ∞ diverges,
then this does not guarantee divergence of I . In this case, use the upper
convex hull to obtain the estimate β̂u to evaluate divergence of the lower
bound Il for the integral I .

6Jarrow et al. (2011a,b); Chaim and Laurini (2019) extrapolate the volatility function using a Gaussian
kernel and Reproducing Kernel Hilbert Spaces.

7Note the total number of price partitions hn depends on the sample size n.
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(c) If the estimated coefficient β̂u ≤ 1, then this implies that the lower integral
Il = ∞ diverges. Thus, I = ∞ diverges, and there is no bubble.

(d) If the point estimate β̂u implies the lower integral Il < ∞ converges, then
the test is inconclusive. This occurs if β̂u > 1.

3. Evaluation (Hypothesis Testing): The hypothesis test uses the point estimates of β
obtained in the previous section. The following algorithm controls for both Type I
and Type II errors.

(a) Step 1: Test the null hypothesis of no bubble using the point estimate β̂l to
evaluate the upper bound Iu on the true integral at the 0.95 confidence level.
Reject the null if β̂l > 1 + 1.645σ̂l. If rejected, stop. The conclusion is that a
bubble exists. Otherwise due to the fact that this is upper bound and there
is potentially a large Type II error, go to step 2.

(b) Step 2: Test the null hypothesis of a bubble using the point estimate β̂u to
evaluate the lower bound Il on the true integral at the 0.95 confidence level.
Reject the null if β̂u ≤ 1 − 1.645σ̂u. If rejected, stop. The conclusion is that
there is no bubble. Otherwise, go to step 3.

(c) Step 3: Stop. The testing is inconclusive, because step 1 accepts the hypothesis
of no bubble and step 2 accepts the hypothesis of a bubble, both tests having
potentially large Type II errors.

For a robustness check, Choi and Jarrow (2022) winsorize the largest and smallest
volatility estimates by replacing them with the respective second largest and smallest
estimates.

3.2 Limitations

The existing bubble testing methodology has six limitations in applications. First, the
estimation methodology was constructed for assets with no cash flows. Clearly, this is
violated for many assets of interest.

Second, the existing variance estimator has equally spaced time and price level
partitions. For time, the partitions are denoted 1

n
, where n is the number of price

observations. Fixing n as the sample size, for an application the observations may be at
different time intervals, e.g. transaction times (which are unequal) or daily (weekends
issues). For this reason, it is important to adjust the variance estimator to handle these
different possibilities. Given the variance estimator is consistent if both hn → 0 and

9
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n → ∞, it must be the case that Nn
x → ∞ for the estimator to have a small sampling

standard error. This process involves a tradeoff between the size and number of price
bins we choose. On the one hand, if the size of the price intervals (i.e., [x− hn, x+ hn])
becomes too tight (i.e., hn ≈ 0), then each bin will virtually have no prices observed.
On the other hand, if the number of observed prices (i.e.,Nn

x ) is too large (i.e.,M ≈ ∞),
then the number of partitions will naturally decrease making it challenging to generate
a sufficient pair of price-volatility estimates. Unfortunately, for the asset price partition
[0 = x0, x1, x2, . . . , xK = max{Sti : i = 1, ..., n}] equally spaced at 2hn, the volatility
estimates Vn(x) for x close to zero and x close to max{Sti : i = 1, ..., n} will have the
smallest values for Nn

x , and consequently the largest sampling standard errors. These
potential large sampling errors could significantly impact the extrapolationmethodology
employed.

Third, since it is an consistent estimator, it is likely that the estimate is biased for
small sample sizes. And, the smaller the sample size Nn

x in any price level interval
[x− hn, x+ hn], potentially the larger the bias. As with the first limitation, this is likely
to impact the the volatility estimates Sn(x) for x close to zero and x close tomax{Sti :

i = 1, ..., n}, due to the smaller values for Nn
x .

The intuition for this bias can be explained as follows. If Eti(Sti+1
) > Sti (typical

for stocks that require a risk premium) and σ2(x) is increasing in x (necessary for
a price bubble), then the estimator will be biased upward. The bias stems from the
fact that 1{|Sti−x|<hn} uses the points Sti ∈ [x − hn, x + hn] close to x to estimate the
variance σ2(x) for the single point {x}. It does this by estimating the variance for a point
Sti in a neighborhood of x, σ2(Sti). On average σ2(Sti) will be close to σ2(x) because
Sti ∈ [x−hn, x+hn]; sometimes above, sometimes below x. But, the estimator computes
the sample variance by using the next observation Sti+1

as well, for which σ2(Sti+1
) will

be larger than σ2(Sti) if Eti(Sti+1
) > Sti and σ2(x) is increasing. Intuitively, using both

σ2(Sti) and σ2(Sti+1
) to compute the estimator (roughly, their average) will result in an

upward bias in the estimate for σ2(x).
Fourth, the testing method’s reliance on the upper and lower bounds of the convex

hull points renders the testing to be rather conservative. Consequently, there exist
inconclusive regions where one cannot assert the presence of price bubbles. This is
problematic in practice where one wants to know if an asset price exhibits a bubble. For
this inconclusive region, one would like to compute a point estimate for the probability
that the asset exhibits a bubble.

Fifth, the existing procedure’s choice of replacing the largest and smallest estimated

10
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variances by the second largest and smallest estimates is somewhat arbitrary. If the
second largest and smallest estimates are materially different from the largest and
smallest counter parts, the resulting convex hull might be substantially differently than
that from the initial interpolated points. Utilizing the sample distribution statistic
improves the robustness of the method.

Finally, the regression residuals may exhibit heteroskedasticity or autocorrelation.
Although the estimated price-volatility pairs are cross-sectional data (i.e., an estimate
from the snapshot over a fixed trading period), there is a form of ordering preserved. For
example, when an asset price increases significantly today, it typically remains elevated
for a period of time. The existing method prescribes a convex hull onto this potentially
autocorrelated data, and this ordering can cause the residuals to be correlated with
respect to the asset price level. Also, the true volatility function’s envelopes are only
being approximated by a power function. Homoskedasticity widens our estimate’s
standard errors and autocorrelation produces biased estimates, which affect the existing
method’s hypothesis testing.

3.3 The NewMethodology

There are five extensions to the existing statistical methodology in this paper. First, we
allow the risky asset to have cash flows. Second, we extend the methodology to allow
unequal time and price level partitions. The purpose of which is to have a minimal
sample size Nn

x across price level intervals, so that the sampling standard errors are
more uniform across price levels, especially for the smallest and largest partition levels.
Third, we introduce a small sample size bias adjustment. Fourth, we develop a point
estimate for the probability of a price bubble conditional on obtaining an inconclusive
result in hypothesis testing. Fifth, we provide a collection of robustness tests, based
on the sampling distribution of the variance estimator. Each of these extensions are
discussed next.

3.3.1 Cash Flows

The purpose of this subsection is to show that the introduction of cash flows does not
impact the estimation methodology. With cash flows, the evolution of the risky asset’s

11
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price plus reinvested cash flows
(
St +

∫ t

0
1
Bs
dGs

)
is

dSt +
1

Bt

dGt =

[
µ(St)dt+

1

Bt

dGt

]
+ σ(St)dWt.

As evidenced by this evolution, the volatility of the risky asset price plus reinvested cash
flows is identical to that of the risk asset’s price process. Because the characterization of
a bubble is based on expression (4), which only involves the volatility function σ(x),
and both St and

(
St +

∫ t

0
1
Bs
dGs

)
have the same volatility function, a bubble exists in St

if and only if it exists in
(
St +

∫ t

0
1
Bs
dGs

)
. Hence, we have proven the following result.

The estimation methodology without cash flows applies to risky assets with
cash flows.

3.3.2 Unequal Time Intervals and Price Level Partitions

The existing formula has equal time partitions, denoted 1
n
, where n is the number

of price observations. Fixing n as the sample size, in applications, it is important to
adjust the variance estimator to handle unequal time intervals. In addition, the existing
methodology constructs a price level partitioning with equal price level intervals. As
noted earlier, such a partitioning will have unequal sample sizes Nn

x for different price
levels x. And, the different sample sizes will result in larger standard errors of the
estimates for low sample size intervals. These intervals will impact the shape of the
upper and lower convex hulls of the volatility functions. To make the sample sizes Nn

x

more uniform across x, we allow the price level partitions to be increasing in the price
level x, and we select the size of the intervals to give a lower bound on Nn

x across all x.
The appendix derives the modified variance estimator, given by

Vn (xj) =

∑n
i=1 1{Sti∈[2

∑j−1
k=1 hk,2

∑j
k=1 hk]}(Sti+1

− Sti)
2 · 1

[ti+1−ti]

Nn
xj

, (8)

where we partition the price axis into m bins in the following fashion. First, fix the size
of the first partition h1 > 0. Then, set hj = θ × j × h1 for j = 1, ...,m where θ ∈ (0, 1).
The partition is

{0, 2h1, 2h1 + 2h2, 2
3∑

k=1

hk, · · · , 2
m∑
k=1

hk}

where m is an even number. This partitioning has the size of the price level interval
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increasing as the price level increases. For example, if h1 = 5 and θ = 1
2
, then the

partition points are {0, 10, 17.5, 27.5, · · · , 2∑m
k=1 hk}. Next, we choose {h1,m, θ}, using

an iterative procedure, so thatmin{Nn
x } is large. Finally, we choose {h1,m, θ} so that

min{Nn
x } is large. The iterative process continues to obtain the largest possible price

footprint in each price interval.

3.3.3 Small Sample Size Bias Adjustment

As explained earlier, if Eti(Sti+1
) > Sti (typical for stocks that require a risk premium)

and σ2(x) is increasing in x (necessary for a price bubble), then the estimator will
be upward biased. The proof of this assertion is contained in the appendix. Using a
linear approximation for the volatility function, the appendix shows that an unbiased
estimator for σ2(x) is

σ̂2(x) =
Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti−x)

Nn
x

. (9)

As given, we see that if on average Sti > x, the bias adjustment reduces the estimated
variance. That is, the unadjusted variance estimate is biased upward. And, the smaller
the price level x, the larger is the variance adjustment.

3.3.4 The Probability of a Bubble given an Inconclusive Result

The hypothesis testing method, based on upper and lower bounds for the volatility
function, is conservative. As such, even after all the extensions just discussed, there is a
region where the hypothesis testing is inconclusive. To obtain a point estimate of the
probability of a bubble in the inconclusive region, we take a Bayesian perspective and
view βk for k ∈ {u, l} as random variables.

We assume that the posterior distribution for these random variables is given by
the sampling distributions for the estimates (β̂k) based on the standard errors (σ̂βk

),
obtained from the regression of the upper and lower convex hulls in expression (7).
Under the assumption, the appendix shows that a point estimate for the probability of
a bubble is

P̂ rob(bubble) = 1−

[
Φ

(
1−β̂l

σ̂2
β̂l

)
+ Φ

(
1−β̂u

σ̂2
β̂u

)]
2

(10)

where Φ(·) is the standard normal cumulative distribution function.
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3.3.5 Robustness Tests

The convex hull method developed by Choi and Jarrow (2022) winsorizes the maximum
and minimum estimated volatility points with their second highest and lowest volatility
points, respectively. In the new method, we modify the maximum and minimum
estimated volatility points based on the sampling distribution of the standard error,
given in expression (6) above. The estimate of the variance’s standard error is√

2
V 2
n (x)

Nn
x

=
√
2
Vn(x)√

Nn
x

,

which increases with Vn(x). The robustness test procedure is as follows.

• Replace the maximum value V ∗
n (x) with V ∗

n (x) − κ
√
2V ∗

n (x)√
Nn

x

with κ > 0 a constant,
and

• Replace the minimum value V #
n (x)with V #

n (x) + κ
√
2V #

n (x)√
Nn

x

.

• Given the sampling distribution in the previous section, these κ determine the
probability that the variance exceeds the adjusted variance estimator, i.e.

P

{
σ2(x) > V #

n (x) + κ
√
2
V #
n (x)√
Nn

x

}
= 1− Φ {k}

where Φ is the standard (0, 1) cumulative normal distribution function.

• For various choices of κ (i.e., 0.05,0.10,0.15,0.20), evaluate the bubble test results.

Choosing various levels of κ provides a sensitivity analysis that indicates the impact of
the likelihood of the error in the estimated variance on the hypothesis test for a bubble.

3.3.6 Heteroskedasticity and Autocorrelation

When fitting the linear regression in expression (7) to the volatility function’s lower and
convex hulls, the regression residuals may exhibit heteroskedasticity or autocorrelation.
To address this possibility, we use the Newey-West variance estimator (White, 1980;
Newey and West, 1987) to generate consistent standard errors.

14



DRAFT [DO NOT CIRCULATE] Version: April, 2024 © Choi & Jarrow

4 Simulation

To validate the bubble testing methodology, we construct a hypothetical market, where
the risky asset price follows a constant elasticity of variance (CEV) process under an
equivalent local martingale measure Q, given by

dS(t)

S(t)
= αSβ−1

t dWt (11)

where Wt is a standard Brownian motion, initialized at W0 = 1, with α ≥ 0 and β

constants.
We fix α = 0.3 per year (typical for a stockmarket index), and construct two different

markets, one with a bubble (β = 1.5) and one without (β = 0.5). Using a Euler scheme,
we discretize the continuous-time evolution as

S(ti+1) = S(ti) exp

[
−1

2

(
αSβ−1

t

)2
(ti+1 − ti) +

(
αSβ−1

t

)√
ti+1 − tiZi+1

]
(12)

where the time interval corresponds to one day, i.e. (ti+1 − ti) =
1

365
.

We simulate a path for the risky asset’s price over 3 years (1095 days), and then
apply our bubble testing methodology to see if it correctly identifies the bubble and
no-bubble markets. Given the randomness in the simulation itself, we perform this
exercise 10,000 times for each market.

It is well-known (see Chapter 4, Jaeckel (2002) and Chapter 6, Glasserman (2002))
that the Euler scheme has an approximation error that converges to zero as the time
intervals uniformly converge to zero. In our context, this approximation error can be
viewed as analogous to the existence of market micro-structure noise (e.g., bid/ask
prices) in actual realized market prices. Nonetheless, given our small time step, this
discretizing of the price process’ path is not large enough to change a simulated bubble
market into a no-bubble market and conversely.8

Figure 1 (Figure 2) consists of four plots. The first two plots present the simulated
price paths and price distribution for β = .5 and β = 1.5. First, we note that price

8This is not the case, however, with β = 1, which is on the boundary of the no bubble market. In
a simulation, this approximation error could transform the no bubble market into one containing a
bubble. Because the purpose of the simulation is to see if our statistical methods can identify a bubble
in a controlled experiment, the case β = 1 eliminates the control. Consequently, we do not simulate a
hypothetical market with β = 1.
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paths are more disperse with β = 1.5. This visually confirms that the CEV process with
β = 1.5 yields more volatility at higher realized price levels. The middle figure plots
the number of assets that accept and reject the first (second) test’s null hypothesis. The
last figure plots the percentage of assets that fall in each posterior bubble probability
bucket given the results are inconclusive for β = .5 and β = 1.5. When evaluating these
results, recall that our hypothesis testing is conservative, with a 95% significance level.
Consequently, we would expect to see around 5% of the no bubble markets categorized
as bubbles in step 1, and the same for the hypothesis testing of bubble markets in step 2.

Recall that step 1 tests the null hypothesis of no bubble. For β = .5 (no bubble),
only 0.04% of the simulated paths are misclassified as bubbles. Exactly as expected.
For β = 1.5 (bubbles), 71% are classified correctly as bubbles. Remember, however,
that this hypothesis test is based on a lower bound for the volatility function, so it is
conservative, and it will reject fewer no-bubbles than if the “true” volatility function
had been utilized.

For those paths that are not rejected in step 1, considering type II error, step 2 tests
the null hypothesis of a bubble. For the 0.96% of the simulations (9544 paths) accepting
the null hypothesis of no bubble for β = .5, 85% reject the hypothesis of a bubble in
step 2. This is strong evidence supporting the validity of the testing methodology.
We emphasize that this is a conservative test using the upper bound for the volatility
function at the 95% significance level, so it will reject fewer bubbles than if the “true”
volatility function had been utilized. Next, in step 2, for the 29% of the simulations
(2832 paths) for β = 1.5 that do not reject no-bubble in step 1, only 5.4% reject a the
path as having a bubble. This is what we expect since we are using a 95% significance
level in this hypothesis test.

Finally, for all those paths that result in an inconclusive determination after both
steps 1 and 2, for β = .5, approximately 45% (39%) exhibit a posterior bubble probability
of more than 90% (less than 10%). And, for β = 1.5, approximately 41% (49%) exhibit
a posterior bubble probability of more than 90% (less than 10%). When we add the
additional 950 paths for β = 1.5 that are inconclusive, but with a posterior probability
of a bubble greater than 90%, a combined total of 81% of the 10,000 simulation paths for
β = 1.5 exhibit price bubbles. In conjunction, these simulation results provide strong
evidence in support of the methodology’s ability to identify asset price bubbles.
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Figure 1. Simulated Paths. The figure graphs the simulated price paths & distributions of
a Constant Elasticity of Variance (CEV) process for β ∈ {.5, 1.5} with 10,000 iterations. The first
two graphs represent test 1 results pertaining to the lower convex hull. The last graph plots the
posterior probability distribution of the CEV process with β = .5 exhibiting a bubble.
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Figure 2. Simulated Paths. The figure graphs the simulated price paths & distributions of
a Constant Elasticity of Variance (CEV) process for β ∈ {.5, 1.5} with 10,000 iterations. The first
two graphs represent test 2 results pertaining to the upper convex hull. The last graph plots the
posterior probability distribution of the CEV process with β = 1.5 exhibiting a bubble.
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5 The Empirical Investigation

Our empirical investigation consists of three parts. In the first we examine daily closing
prices of three US major indices (S&P 500, Dow Jones Industrial Average, Nasdaq) to
see if they exhibit price bubbles. In the second, we examine five individual stocks and
one cryptocurrency (case studies) to provide confidence that the procedure works well.
Here, we examine three assets that are often alleged as containing bubbles (Bitcoin,
Meta, NVIDIA) and three banks stocks that are not (JP Morgan, Bank of America, Wells
Fargo).

The third looks at a recent event in Lyft’s stock on February 14th 2024. On that
day, Lyft announced an erroneous earnings projection stating that the firm expected
to increase its margin by 500 basis points; the correct expected margin increase was 50
basis points, which the Lyft CEO corrected less than an hour following the initial release.
However, the Lyft stock traded 67% higher than the previous day’s closing price in the
interim. We hypothesize that this surge in the Lyft stock’s price due to an erroneous
earnings projection is a bubble. We apply our methodology to the pre-announcement
(March 1, 2023 – February 13, 2024) and post-announcement (March 1, 2023 – March 4,
2024) periods to test this hypothesis.

5.1 Data

We collect the data from the LSEG Data & Analytics’ Workspace platform. The sample
data consists of ten assets: three indices (S&P 500, DJI, Nasdaq), three assets that may
exhibit bubbles (Bitcoin, Meta, NVIDIA), three assets that may not (JP Morgan, Bank
of America, and Wells Fargo), and Lyft. The sample period is from March 1st 2023
to March 4th 2023 consisting of 264 trading days. Given our statistical methodology
assumes a normalized price process (see Section 3.1), we use the Secured Overnight
Financing Rate (SOFR) over the sample period to compute the normalized closing daily
asset prices. For the money market account, let the time t money market account value
be Bt where rt is the default-free spot rate (per year). In symbols, we compute

Bt = e

t−1∑
s=0

rs( 1
365)

,

where the normalized asset price is St

Bt
.
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TABLE I. Descriptive Statistics of the Regression Sample

The table presents descriptive statistics of the sample’s ten assets. The sample consists of the daily
closing prices of three major US equity indices and seven stocks over 264 trading days from March 1 2023
to March 4 2024. Bitcoin (BTC) is in 1000 US Dollars. Columns (1)–(10) are based on quoted prices
without the money market account normalization. Columns (1A)–(10A) are based on the normalization
using the Secured Overnight Financing Rate Data (SOFR) over the sample period.

SP500 DJI NASDAQ BTC Meta NVIDIA JPM BoA WellsFargo Lyft
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Mean 4353.28 34276.71 13398.33 0.03 299.64 432.16 147.30 29.37 42.61 11.04
Std. Dev 250.74 1575.07 1060.23 0.01 67.69 122.37 13.04 2.24 3.85 1.95

Min 3851.44 31648.80 11127.79 0.01 173.42 226.98 124.63 24.57 36.15 7.93
Max 4949.88 37732.97 15681.86 0.05 484.00 821.19 179.85 34.15 53.77 18.37
N 264 264 264 264 264 264 264 264 264 264

(1A) (2A) (3A) (4A) (5A) (6A) (7A) (8A) (9A) (10A)
Mean 4272.38 33644.55 13146.41 0.03 293.57 423.19 144.52 28.83 41.82 10.83

Std. Dev 207.98 1278.42 919.20 0.01 63.30 115.68 11.44 2.08 3.47 1.82
Min 3847.12 30898.25 11116.70 0.01 173.42 226.98 124.35 23.99 36.07 7.86
Max 4769.50 36384.40 15110.39 0.05 466.36 791.15 173.27 34.14 51.80 17.72
N 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00

Figure 3. Historical Price of S&P 500 fromMarch 1 2023 to March 4 2024. This figure
plots the quoted price (raw) and normalized price (by the money market account) of S&P 500.

Table I provides descriptive statistics of the ten assets’ quoted (raw) and normalized
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prices. Figure 3 plots a juxtaposition of the S&P 500 paths for normalized (red) and
raw (black) historical prices from March 1 2023 to March 4 2024. The price process
normalized by the cost of borrowing cash overnight (collateralized by Treasury) trends
lower as the cost has risen from 4.5% to 5.38% during the sample period.

5.2 The Baseline Model

The baseline model is described in Section 3.1. Given are risky asset price observations
{Sti}i over a fixed horizon, i ∈ {1, 2, ..., T}, from which we generate a set of price and
estimated volatility pairs {(Sj, σ(Sj))}j where j corresponds to the jth bin of a price
interval.9 For these price-volatility pairs, we generate upper and lower convex hulls.
For each convex hull, we fit the best power functions σk(x) = αkx

βk where k = l and
k = u correspond to the lower and upper convex hull, respectively. We perform the
ordinary least squares regression:

ln(σk(Sj)) = ln(αk) + βk ln(Sj) + εj. (13)

First, we evaluate whether β̂l exceeds 1+1.645σ̂l. If β̂l exceeds this threshold, then
we reject the null hypothesis (no bubble) and conclude that the asset has a bubble.
Otherwise, we evaluate whether β̂u is less than 1-1.645σ̂u. If β̂u is less then this threshold,
we reject the null hypothesis (bubble) and conclude the asset does not have a price
bubble. Otherwise, our hypothesis testing is inconclusive. In this last case, we compute
the posterior probability of a bubble given an inconclusive result.

5.3 The Results

This section provides the results for all the assets selected for investigation.

5.3.1 The Baseline Model

We apply the methodology to three major U.S. equity indices: the S&P 500, the Dow
Jones Industrial Average, and the Nasdaq. Table II documents our findings. Columns
(1), (3), and (5) report the coefficient estimates, 95% confidence interval thresholds,
results of the hypothesis tests, and the posterior probability of a bubble for the S&P 500,

9Recall that for each price interval, we obtain a pair of price and volatility estimate.
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Dow Jones, and Nasdaq. The odd columns provide the numbers for the lower convex
hulls and the even columns report the numbers for the upper convex hulls.

TABLE II. Baseline Regression Results: Index

The table reports the coefficient estimates of the regression in (13) for the lower (βl) and upper (βu)
convex hulls of three major US equity indices from March 2023 to March 2024 using daily closing prices.
Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of a bubble.
Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the probability of a
bubble is given using a Bayes’ posterior distribution. All standard errors are computed with the
Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

US Stock Market
S&P 500 DJI NASDAQ

(1) (2) (3) (4) (5) (6)
β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Coefficient -4.709∗∗∗ -2.634∗ -2.082∗∗∗ 1.672 2.316∗∗∗ 1.963∗∗∗
(0.306) (1.564) (0.237) (2.730) (0.240) (0.822)

95 CI Threshold 1.503 -1.573 1.389 -3.491 1.395 -0.352
(Test 1) H0: No Bubble Accept Accept Reject
(Test 2) H0: Bubble Reject Accept
Result Inconclusive No Bubble Inconclusive Inconclusive Bubble NA
P (Bubble|Inconclusive) NA 0.35% NA

R2 0.973 0.265 0.893 0.071 0.937 0.489
N 264 264 264 264 264 264

For the S&P 500 and Dow Jones indices, we accept the hypothesis of no bubble (test
1). For the Nasdaq, we reject the hypothesis of no bubble at the 1% level, indicating that
it exhibits a price bubble.

Next, for the the S&P 500 and Dow Jones indices, we investigate test 2. The S&P 500
rejects the hypothesis of a bubble at the 10% significance level, indicating it does not
exhibit a bubble. For the Dow Jones index, we cannot reject the hypothesis of a bubble.
Hence, the Dow Jones index yields an inconclusive result. Here, we compute the the
posterior probability of bubble, which is 0.35%. Hence, the Dow Jones index is unlikely
to exhibit a price bubble.

5.3.2 The Case Studies

Here, we apply the methodology to two sets of assets: (i) those alleged to have bubbles
and (ii) those alleged to not. The first set consists of Bitcoin, Meta, and NVIDIA, the
second set consists of JP Morgan, Bank of America, and Wells Fargo.
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TABLE III. Baseline Regression Results: Alleged Bubble Assets

The table reports the coefficient estimates of the regression in (13) for the lower (βl) and upper
(βu) convex hulls of two U.S. stocks and Bitcoin from March 2023 to March 2024 using daily
closing prices. Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the
inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution. All
standard errors are computed with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Alleged Bubbles
Bitcoin Meta NVIDIA

(1) (2) (3) (4) (5) (6)
β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Estimate 1.360∗∗∗ 1.659∗∗∗ 0.361∗∗∗ 0.366∗ 1.284∗∗∗ 1.235∗∗∗
(0.533) (0.080) (0.109) (0.238) (0.140) (0.253)

95 CI Threshold 1.877 0.868 1.179 0.609 1.230 0.584
(Test 1) H0: No Bubble Accept Accept Reject
(Test 2) H0: Bubble Accept Reject
Result Inconclusive Inconclusive Inconclusive No Bubble Bubble NA
P (Bubble|Inconclusive) 100% NA NA

R2 0.503 0.986 0.642 0.283 0.932 0.806
N 264 264 264 264 264 264

TABLE IV. Baseline Regression Results: Alleged No Bubbles

The table reports the coefficient estimates of the regression in (13) for the lower (βl) and upper
(βu) convex hulls of three U.S. stocks from March 2023 to March 2024 using daily closing prices.
Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of a bubble.
Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the
probability of a bubble is given using a Bayes’ posterior distribution. All standard errors are
computed with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Alleged No Bubble Assets
JP Morgan Bank of America Wells Fargo

(1) (2) (3) (4) (5) (6)
β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Estimate -2.473∗∗∗ -2.594∗∗∗ 1.692∗∗∗ 1.741∗∗∗ -1.001∗∗∗ -0.850∗
(0.387) (0.225) (0.364) (0.597) (0.199) (0.672)

95 CI Threshold 1.636 0.630 1.599 0.018 1.328 -0.106
(Test 1) H0: No Bubble Accept Reject Accept
(Test 2) H0: Bubble Reject Reject
Result Inconclusive No Bubble Bubble NA Inconclusive No Bubble
P (Bubble|Inconclusive) NA NA NA

R2 0.876 0.959 0.660 0.573 0.791 0.224
N 264 264 264 264 264 264
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Table III and Table IV document our findings. For Bitcoin and Meta, test 1 accepts
the hypothesis of no bubble, while NVIDIA rejects the hypothesis of no bubble at the
1% significance level. Hence, we conclude NVIDIA has a bubble.

For test 2, we cannot reject the hypothesis of a bubble for Bitcoin, although it is
rejected for Meta at the 10% significance level. Hence, this implies Meta has no bubble,
and for Bitcoin the testing is inconclusive. Then, we compute the posterior probability of
a bubble for Bitcoin, which is 100%. Hence, we conclude that Bitcoin exhibits a bubble.

For the bank stocks, we cannot reject the hypothesis of no bubble for both JP Morgan
andWells Fargo. However, we reject the hypothesis of no bubble for the Bank of America
at the 1% significance level. Hence, we conclude that Bank of America has a bubble.
Applying test 2 to JP Morgan and Wells Fargo, we reject the hypothesis of a bubble
at the 1% and 10% significant levels, respectively, indicating that these stocks do not
exhibit bubbles.

5.4 Ex-post Analysis of Lyft

On February 14th 2024, Lyft issued an earnings projection stating that its margins would
increase by 500 basis points. Less than an hour after the release, the Lyft CEO corrected
the typo and stated that the projected estimate is 50 basis points. In the interim, the
company’s stock surged as much as 67% based on the erroneous initial report. From the
perspective of the local martingale theory, the Lyft episode provides an ideal ex-post
laboratory to test our new methodology.

We perform two regressions. First, we apply the new methodology to Lyft stock
prices from March 1st 2023 to February 13th 2024, a day before the erroneous earnings
projection. Second, we include the post-earnings-announcement date which is after
February 14th 2024. Intuitively, if there was no fundamental change to Lyft as a firm
except the incorrect earnings statement, we hypothesize that our refined technology
can detect a post-announcement bubble.

Table V documents our findings. In the pre-announcement period, test 1 cannot
reject the hypothesis of no bubble. And, test 2 cannot reject the hypothesis of a bubble.
Hence, these tests are inconclusive. Then, computing the posterior probability of a
bubble, we see that it is 0%. Hence, we conclude that there is no bubble in the pre-
announcement period. In the post-announcement period, test 1 rejects the hypothesis of
no bubble at the 1% significance level, yielding the conclusion that there was a bubble.
In conjunction, we see that the bubble testing methodology confirms our hypothesis
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TABLE V. Ex-post Analysis: Lyft

The table reports the coefficient estimates of the regression in (13) for the lower (βl) and upper (βu)
convex hulls of Lyft stock. The test examines two periods: (i) before the erroneous earnings projection
statement date (March 1, 2023 – Feb 13, 2024) and (ii) after the CEO correction date (March 1, 2023 –
March 4, 2024). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of
a bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the
probability of a bubble is given using a Bayes’ posterior distribution. All standard errors are computed
with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Lyft
Pre-Announcement Post-Annoucement

March 1, 2023 - Feb 13, 2024 March 1, 2023 - March 4, 2024
(1) (2) (3) (4)
β̂l β̂u β̂l β̂u

Bubble Estimate 0.947∗∗∗ 0.727∗∗∗ 1.590∗∗∗ 1.530∗∗∗
(0.002) (0.368) (0.199) (0.337)

95 CI Threshold 1.003 0.394 1.327 0.445
(Test 1) H0: No Bubble Accept Reject
(Test 2) H0: Bubble Accept
Result Inconclusive Inconclusive Bubble NA
P (Bubble|Inconclusive) 0% NA

R2 0.999 0.401 0.878 0.785
N 250 250 264 264

about the Lyft stock price surge after the false earnings announcement is a bubble.

6 Robustness Tests

We perform a robustness check on the baseline results by applying an error adjustment
to themaximumandminimum estimated volatilities. We investigatewhether our results
are sensitive to changes in these two extreme volatility estimates. In this procedure, we
reduce the largest volatility estimate by κ times the standard error, and we increase the
smallest volatility estimate by κ times the standard error. The larger the κ, the larger the
probability distribution of the estimated volatility that exceeds the adjusted volatility
estimate.

Figure 4 demonstrates the robustness check procedure for κ values .05, .15, .1, and
.2 applied to the lower convex hull of the S&P 500 price-volatility pairs for the sample
period. As the values increase, it visually shows the largest and smallest volatility
estimates are adjusted downward and upward, respectively, based on the standard error
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Figure 4. Outlier Correction for S&P 500. The figure plots the adjustment of the maximum and
minimum estimated volatilities for κ ∈ {.05, .15, .1, .2}

distribution. Intuitively, if a subject asset exhibits a price bubble, then adjusting the
highest volatility estimate potentially alters the fitted line of the interpolated convex
hull to be less explosive.

We re-estimate the regressions for all the assets after applying the robustness adjust-
ments. Table VI, Table VII, Table VIII, and Table IX document our findings. Column
(1) provides the adjustments we make in κ to treat the outlier points of the convex
hulls. Column (2) provides the probability that the variance is greater than the adjusted
estimator. Columns (4) and (5) provide the test results of the null hypotheses. Column
(6) documents the results. Column (7) provides the posterior probability of a bubble
given an inconclusive result from the hypothesis testing.
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TABLE VI. Robustness Results: Baseline Index

The table presents an executive summary of the baseline regression results when the maximum and
minimum volatility estimates are adjusted downward and upward respectively based on the standard
error distribution method developed in Section 3.3.5. The adjustment parameter κ take values .05, .1, .15,
and .2. The κ determines the probability that the variance exceeds the adjusted variance estimator
denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive
case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)
κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 SP500 Accept Reject No Bubble NA
0.05 0.52 DJI Accept Accept Inconclusive 0.00%
0.05 0.52 NASDAQ Reject Accept Bubble NA
0.1 0.54 SP500 Accept Reject No Bubble NA
0.1 0.54 DJI Accept Accept Inconclusive 0.00%
0.1 0.54 NASDAQ Reject Accept Bubble NA
0.15 0.56 SP500 Accept Reject No Bubble NA
0.15 0.56 DJI Accept Accept Inconclusive 0.00%
0.15 0.56 NASDAQ Reject Accept Bubble NA
0.2 0.58 SP500 Accept Reject No Bubble NA
0.2 0.58 DJI Accept Accept Inconclusive 0.01%
0.2 0.58 NASDAQ Reject Accept Bubble NA

TABLE VII. Robustness Results: Allegedly Bubble

The table presents an executive summary of the bubbly asset regression results when the maximum and
minimum volatility estimates are adjusted downward and upward respectively based on the standard
error distribution method developed in Section 3.3.5. The adjustment parameter κ take values .05, .1, .15,
and .2. The κ determines the probability that the variance exceeds the adjusted variance estimator
denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive
case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)
κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 BTC Accept Accept Inconclusive 100.00%
0.05 0.52 Meta Accept Reject No Bubble NA
0.05 0.52 NVIDIA Reject Accept Bubble NA
0.1 0.54 BTC Accept Accept Inconclusive 100.00%
0.1 0.54 Meta Accept Reject No Bubble NA
0.1 0.54 NVIDIA Reject Accept Bubble NA
0.15 0.56 BTC Accept Accept Inconclusive 100.00%
0.15 0.56 Meta Accept Reject No Bubble NA
0.15 0.56 NVIDIA Reject Accept Bubble NA
0.2 0.58 BTC Accept Accept Inconclusive 100.00%
0.2 0.58 Meta Accept Reject No Bubble NA
0.2 0.58 NVIDIA Reject Accept Bubble NA
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TABLE VIII. Robustness Results: Allegedly No Bubble

The table presents an executive summary of the non-bubbly asset regression results when the maximum
and minimum volatility estimates are adjusted downward and upward respectively based on the
standard error distribution method developed in Section 3.3.5. The adjustment parameter κ take values
.05, .1, .15, and .2. The κ determines the probability that the variance exceeds the adjusted variance
estimator denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates
the null hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the
inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)
κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 JPM Accept Reject No Bubble NA
0.05 0.52 BoA Reject Accept Bubble NA
0.05 0.52 WF Accept Reject No Bubble NA
0.1 0.54 JPM Accept Reject No Bubble NA
0.1 0.54 BoA Accept Accept Inconclusive 99.00%
0.1 0.54 WF Accept Reject No Bubble NA
0.15 0.56 JPM Accept Reject No Bubble NA
0.15 0.56 BoA Accept Accept Inconclusive 98.62%
0.15 0.56 WF Accept Reject No Bubble NA
0.2 0.58 JPM Accept Reject No Bubble NA
0.2 0.58 BoA Accept Accept Inconclusive 98.15%
0.2 0.58 WF Accept Reject No Bubble NA

TABLE IX. Robustness Results: Lyft

The table presents an executive summary of the Lyft regression results (post- and pre-announcement)
when the maximum and minimum volatility estimates are adjusted downward and upward respectively
based on the standard error distribution method developed in Section 3.3.5. The adjustment parameter κ
take values .05, .1, .15, and .2. The κ determines the probability that the variance exceeds the adjusted
variance estimator denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2
evaluates the null hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In
the inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)
Period κ P (Φ(0, 1) > |κ|) (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

Post-announcement

0.05 0.52 Reject Accept Bubble NA
0.1 0.54 Reject Accept Bubble NA
0.15 0.56 Accept Accept Bubble NA
0.2 0.58 Accept Accept Bubble NA

Pre-Annoucement

0.05 0.52 Accept Accept Inconclusive 0.00%
0.1 0.54 Accept Accept Inconclusive 0.00%
0.15 0.56 Accept Accept Inconclusive 0.00%
0.2 0.58 Accept Accept Inconclusive 0.00%

These analyses indicate that our main regression results are robust even after ad-
justing for the outliers. In the baseline results, S&P 500 and Dow Jones do not have
bubbles and Nasdaq does for all values of κ. In the case studies, Bitcoin’s conditional
probability of a bubble remains 100% for all κ values. Both Meta and NVIDIA have
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the identical hypothesis test results implying that Meta does not have a bubble and
NVIDIA has a bubble. The results for JP Morgan and Wells Fargo remain without a
bubble for all values of κ. Bank of America accepts the null hypothesis of no-bubble at
κ = .05. However, it enters the inconclusive region where its posterior probability of a
bubble remains close to 100% for the κ values .1, .15, and .2. These checks document
that our initial results are robust to the adjustments of the largest and smallest volatility
estimates.

7 Conclusion

In this paper, we provide five refinements to the existing bubble testing methodology
based on the local martingale theory of bubbles. First, we enrich the existing method
to encompass a large class of assets with cash flows. Second, we allow unequal time
intervals and price level partitions to accommodate the reality of transaction times and
trading days being uneven. Third, we identify the upward bias issue of the variance
estimator and rectify the bias by making a small sample size adjustment. Fourth, we
increase our understanding of the inconclusive results by taking a Bayesian view to com-
pute the point estimate for the posterior probability of a bubble given an inconclusive
result. Finally, we address the potential presence of heteroskedasticity and autocorrela-
tion persistent in asset price data and the convex hull approach by implementing the
Newey-West adjustments.

We apply the enhanced econometric procedure to the U.S. equity market. We show
that the Nasdaq index, certain technology stocks, and Bitcoin exhibit bubbles. Con-
versely, we show that the S&P 500 and Dow Jones Industrial indices and certain bank
stocks do not. In the ex-post analysis of Lyft stock, we find that it exhibits a bubble
after the erroneous earnings announcement. In the pre-announcement results, Lyft’s
posterior probability of a bubble given inconclusiveness is zero.

To stress test our new methodology, we simulate a path of a constant elasticity of
variance (CEV) price process in a market with a bubble and another market without a
bubble over three years. In 10,000 simulated paths, we show that only a small fraction
of the no-bubble market is misclassified as bubbles while the converse is true in the
bubble-market. These results provide strong evidence in support of the methodology’s
ability to identify asset price bubbles.

Contrary to the extant literature’s divergent views, the main implication of our paper
is that a consistent test for asset price bubbles is empirically viable and testable based on
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the local martingale theory of bubbles. The refinements proposed in this paper can be
enhanced and applied further to more diverse and general asset classes in subsequent
research.
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Tables & Figures

Figure 5. Partitioning Price Intervals as a Function of the Asset Price. The figure
juxtaposes the existing method’s even partitioning (above) against our new methodology’s uneven
partitioning (below) taking unequal trading days and transaction times into account.
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Figure 6. Number of Observed Prices by Un-equispaced Partition Bins. The figure plots
the number of price levels (i.e., price footprint) we observe by the number of implemented partitions.
The green, pink, and black dots correspond to the partitioning of five, 15, and 25 bins of S&P 500 over the
sample period (March 2023 – March 2024).
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A Appendix

A.1 Unequal Time Intervals Between Price Observations
Fixing n as the sample size, the time observations may be at transaction times, daily, or weekly. For
this reason, it is important to adjust the variance estimator accordingly. For arbitrary discrete intervals
[ti, ti−1], the conditional variance is

varti
(
Sti+1 − Sti

)
= σ2(Sti)[ti+1 − ti].

As an approximation, the estimator is:

varti
(
Sti+1 − Sti

)
≈ (Sti+1 − Sti)

2.

Combined, this implies
σ2(Sti) ≈

(Sti+1
− Sti)

2

[ti+1 − ti]
.

With multiple observations in small intervals around x, our estimator becomes

Vn(x) ≈

∑n
i=1 1{|Sti

−x|<hn}(Sti+1
− Sti)

2 · 1
[ti+1−ti]∑n

i=1 1{|Sti
−x|<hn}

(14)

Using daily observations, we have [ti+1 − ti] =
1

365 .

A.2 The Standard Error
The distribution of the estimator is (Theorem 2, p. 843, Jarrow et al. (2011a)):

√
Nn
x

(
Vn(x)

σ2(x)
− 1

)
∼

√
2Φ(0, 1) (15)

whereNn
x =

∑n
i=1 1{|Sti

−x|<hn} counts the number of observations i = 1, ..., n in the interval [x− hn, x+ hn].
Hence,

Vn(x) ∼ Φ

(
σ2(x), 2

σ4(x)

Nn
x

)
.

Replace σ4(x)with S2
n(x), to obtain

Vn(x) ∼ Φ

(
σ2(x), 2

S2
n(x)

Nn
x

)
.

The standard error (sample standard deviation) of Vn(x) is estimated as:√
2
V 2
n (x)

Nn
x

=
√
2
Vn(x)√
Nn
x

.

Note that the standard error increases with Vn(x).
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A.3 Robustness Test
This robustness test adjusts the maximum and minimum observed variance estimates, which typically
have the largest standard errors. The procedure is as follows.

• Replace the maximum value V ∗
n (x)with V ∗

n (x)− κ
√
2
V ∗
n (x)√
Nn

x

with κ > 0 a constant, and

• replace the minimum value V #
n (x)with V #

n (x) + κ
√
2
V #
n (x)√
Nn

x

.

• Given the sampling distribution in the previous section, these κ determine the probability that the
variance exceeds the adjusted variance estimator, i.e.

P

{
σ2(x) > V #

n (x) + κ
√
2
V #
n (x)√
Nn
x

}
= 1− Φ {k}

where Φ is the standard (0, 1) cumulative normal distribution function.

• We try various choices of κ > 0, i.e κ = 0.05, 0.10, 0.15, 0.20.

A.4 Unequal Price Levels
A problem with the large size of the standard error bands is that if hn is small, the number of elements
in {|St − x| < hn}, i.e. Nn

x =
∑n
i=1 1{|Sti

−x|<hn} is small. Our estimator is consistent as hn → 0 and
n→ ∞, implying Nn

x → ∞. In a finite sample, as hn gets smaller, Nn
x gets smaller as well. So, there is a

trade-off with the size of hn and the size of Nn
x .

A.4.1 Equal Price Level Partitions

We give the details of the equal price level partition so that the unequal price level partition case is more
easily understood.

Consider the graph where the x - axis is time and the y - axis is the stock price level. On the x - axis
we have the times t1 = 0, t2, t3, ..., tn = T where n is the total number of price observations over the time
interval [0, T ].

Partition the y - axis in equal units of 2hn where hn is in dollars. Here, the y - axis now has the
partition points at

{0, 2hn, 4hn, 6hn, · · · ,mhn}

wherem is an even number. The partitioned intervals are

{[0, 2hn], [2hn, 4hn], . . . [(j − 1)hn, jhn], . . . , [(m− 2)hn,mhn]} .

The midpoint of these intervals are the stock price levels

{x2 = hn, x4 = 3hn, ..., xm = (m− 1)hn}
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used in the variance estimators. For example, x2 = hn ∈ [0, 2hn]. Note to keep the notation simple, we
index the stock price levels j = 2, 4, ...,m with the same index as the upper value of the partitions on the
y - axis.

For ti, i = 1, ..., n − 1 compute the estimate of the sample variance using (Sti+1 − Sti)
2. Note that

this looks forward to the next time period to compute the value.
Consider the stock price level xj . Compute the sample variance as

Vn(xj) =

∑n
i=1 1{|Sti

−xj|<hn}(Sti+1
− Sti)

2 · 1
[ti+1−ti]∑n

i=1 1{|Sti
−xj|<hn}

=

∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}(Sti+1 − Sti)
2 · 1

[ti+1−ti]∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}

=

∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}(Sti+1
− Sti)

2 · 1
[ti+1−ti]

Nn
xj

(16)

Note that the numerator is the sum of the (Sti+1 − Sti)
2 · 1

[ti+1−ti] for those times ti where the stock
price is in the jth partition of the y - axis, i.e, Sti ∈ [(j − 1)hn, jhn]. The denominator is the sum of the
times where the stock price is in the jth partition of the y - axis, i.e. Sti ∈ [(j − 1)hn, jhn].

The choice of “hn” should be done so that Nn
xj

is a large number for most xj for j = 2, 4, ...,m. We
want Nn

xj
large so that the sampling distribution is approximately correct, i.e. near the asymptotic result.

A.4.2 Increasing hn in Stock Price Level

Because the variance Vn(xj) is increasing in xj , we can make hn = hn(x) increasing in x. To keep the
notation simple, we will drop the n subscript in the notation for the partition.

We partition the price axis intom bins in the following fashion. First, set the size of the first partition
h1 > 0. Then, set hj = θ × j × h1 for j = 1, ...,m where θ ∈ (0, 1). The partition is

{0, 2h1, 2h1 + 2h2, 2

3∑
k=1

hk, · · · , 2
m∑
k=1

hk}

wherem is an even number. The price level intervals are{
[0, 2h1] , [2h1, 2h1 + 2h2] , · · · ,

[
2

m−1∑
k=1

hk, 2

m∑
k=1

hk

]}
.

In the variance estimator, xj is the midpoint of the jth interval
[
2
∑j−1
k=1 hk, 2

∑j
k=1 hk

]
, computed as

xj =
2
∑j−1
k=1 hk + 2

∑j
k=1 hk

2
= 2

(j−1)∑
k=1

hk + hj .
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The variance estimator is

Vn (xj) =

∑n
i=1 1{Sti

∈[2
∑j−1

k=1 hk,2
∑j

k=1 hk]}(Sti+1
− Sti)

2 · 1
[ti+1−ti]

Nn
xj

. (17)

We note that the estimator will still be consistent as long as for each price level partition k, nhk → ∞ and
nh4k → 0 as n→ ∞ as required by the hypothesis of the theorem.

A.5 Small Sample Size Bias Adjustment
Our variance estimator is consistent, but may contain a small sample bias. To obtain a correction for any
small sample bias, we add the following assumption.

Assumption: (Linear approximation)

σ(x) ≈ ϕ+ ηx

for constants ϕ, η. These do not need to be positive, the result does not depend on the sign of these
constants. In addition, we require σ(x) → 0 as x→ 0, which implies ϕ = 0, i.e.

σ(x) ≈ ηx.

(Conservative Assumption)
This is a conservative assumption because we are assuming that as an approximation, the process is

geometric Brownian motion, which has no bubbles. This implies the assumed volatility function increases
in xmore slowly than that needed for the existence of an asset price bubble. This ends the remark.

We now prove under this assumption that our variance estimator is biased, and we derive a small
sample bias adjustment.

Proof. Under the linear approximation assumption,

d
(
σ2(x)

)
dx

= 2η2x = 2
σ2(x)

x
.

Hence,

σ2(Sti) = σ2(x) +
d
(
σ2(x)

)
dx

(Sti − x) + ε

≈ σ2(x) +
2σ2(x)

x
(Sti − x) .

To see the bias, we first replace σ2(Sti) in this expression with our estimator for a single observation,
(Sti+1

−Sti
)2

ti+1−ti . This gives
(Sti+1 − Sti)

2

ti+1 − ti
≈ σ2(x) +

2σ2(x)

x
(Sti − x) .
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Summing across i = 1, ..., n and multiplying by

1{|Sti
−x|<hn}
Nn
x

gives our estimator on the left side:

Vn(x) =

n∑
i=1

1{|Sti
−x|<hn}
Nn
x

(Sti+1 − Sti)
2

[ti+1 − ti]
= σ2(x) +

2σ2(x)

x

n∑
i=1

1{|Sti
−x|<hn} (Sti − x)

Nn
x

(18)

where
n∑
i=1

1{|Sti
−x|<hn}
Nn
x

= 1.

This shows the following result:

Under the linear approximation assumption, the variance estimator is biased. If on average
Sti > x, then the estimator will be biased upward.

This will typically be the case, as discussed earlier, if Eti(Sti+1
) > Sti and σ2(x) is increasing in x.

A.5.1 The Bias Correction

Using expression (18), an approximately unbiased estimator for σ2(x) can be shown to be the following.

σ̂2(x) =
Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

(19)

Proof:

Et

 Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x



= Et


σ2(x)

(
1 + 2

x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

 = σ2(x).

A.6 Inconclusive Region and the Probability of Default
The hypothesis testing method, based on upper and lower bounds for the volatility function, is conserva-
tive. As such, there is a region where the hypothesis testing is inconclusive. In this inconclusive region,
this section computes a lower bound on the probability of default.

Recall that the lower convex hull and the upper convex hull functions satisfy the inequalities
σ2
l (x) ≤ σ2(x) ≤ σ2

u(x) by construction where x ∈ [0,∞). Given the integrals: I :=
∫∞
1

x
σ2(x)dx,

40



DRAFT [DO NOT CIRCULATE] Version: April, 2024 © Choi & Jarrow

Iu :=
∫∞
1

x
σ2
l (x)

dx, and Il :=
∫∞
1

x
σ2
u(x)

dx, this implies that

Iu > I > Il.

This is because the estimates are in the denominator of the integrals. Therefore,10

Iu <∞ ⇒ I <∞ ⇒ Il <∞. (20)

We note that
I <∞ ⇔ bubble.

Next assume that the upper and lower convex hulls satisfy

σk(x) := αkx
βk , (21)

where αk ≥ 0 and k ∈ {u, l}. Substitution into the integrals yields:

Ik <∞ ⇔ βk > 1

for k ∈ {u, l}.
Given the hypothesis testing provides no conclusion regarding whether the price process exhibits a

bubble, we take the Bayesian perspective that the variance functions, integrals, and betas are random
variables on a probability space (Ψ,G ,P)whereP is the posterior distribution for these randomvariables
given the price observations xi ∈ [0,∞) : i = 1, ..., n.

Given this interpretation, letting ψ ∈ Ψ, then for a given x ∈ [0,∞), σ(x)ψ : Ψ → R and σk(x)ψ : Ψ →
R are random functions, and {I (ψ),Ik(ψ), β(ψ), βk(ψ)} are random variables for k ∈ {u, l}. Because
we are not interested in the parameter αk,we assume it is a constant for k ∈ {u, l}.

On this probability space, we have the following events: bubble = {ψ ∈ Ψ : I < ∞} and {ψ ∈ Ψ :

Ik <∞} for k ∈ {u, l}. Note that these events are exhaustive and mutually exclusive, i.e. {ψ ∈ Ψ : I <

∞} ∪ {ψ ∈ Ψ : I = ∞} = Ψ, and the same for Ik, k ∈ {u, l}.
Expression (20) gives11

{ψ ∈ Ψ : Iu <∞} ⊆ {ψ ∈ Ψ : I <∞} ⊆ {ψ ∈ Ψ : Il <∞},

which implies that
P{βl > 1} = P{Iu <∞} ≤ P{I <∞} = P{bubble}

and
P{bubble} ≤ P{Iu <∞} = P{βu > 1}.

10In the other direction, Il = ∞ ⇒ I = ∞ ⇒ Ik = ∞.
11Similarly, the complements satisfy

{ω ∈ Ω : Il = ∞} ⊂ {ω ∈ Ω : I = ∞} ⊂ {ω ∈ Ω : Iu = ∞}.
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The probability distribution (law) for βk, k ∈ {u, l} is denoted

Prob(βk ≤ x) := P{β−1
k ((−∞, x])}

for (−∞, x] ∈ B(R), the Borel σ-algebra. Then,

1− Prob(βl ≤ 1) = P{βl > 1} ≤ P{bubble}

and
P{bubble} ≤ P{βu > 1} = 1− Prob(βu ≤ 1).

We add the following assumption, motivated by the point estimation for βk obtained from the
regression analysis and its sampling distribution.

Assumption (Normal Distribution)

Prob(βk ≤ x) = Φ
(
β̂k, σ̂

2
β̂k

)
with mean EP(βk) = β̂k and variance varP(βk) = σ̂2

β̂k
.

Under this assumption,

Prob (βl > 1) = 1− Φ

(
1− β̂l
σ̂2
β̂l

)
≤ P{bubble}

and
P{bubble} ≤ 1− Φ

(
1− β̂u
σ̂2
β̂u

)
= Prob (βu > 1) .

Given diffuse priors across the upper and lower bounds on the probability of a bubble, our point estimate
is

P̂{bubble} = 1−

[
Φ

(
1−β̂l

σ̂2
β̂l

)
+ Φ

(
1−β̂u

σ̂2
β̂u

)]
2

.
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