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shortcoming, many researchers have contributed to substantial new models. In this
article, we employ Heston and Nandi (2000) closed-form GARCH option model in
the TAIEX options pricing. As a benchmark model we choose the ad hoc BS
model that has the flexibility of fitting to the strike and term structure of observed
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found that the GARCH model has smaller out-of-sample valuation errors in
pricing TAIEX options than the ad hoc BS model does.
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1. Introduction

The Black-Scholes (1973) model assumes the asset price follows geometric
Brownian motion and i1s log-normally distributed with constant volatility.
Consequently, all options on the same asset should provide the same implied
volatility. However, Fama (1965) and Mandelbrot (1966) found that stock returns
exhibit both fat-tailed marginal distributions and volatility clustering. In practice,
Black-Scholes implied volatilities tend to differ across exercise prices and time to
maturity. Options that are deep in the money or out of the money have higher
implied volatilities than at the money options. The failure of the Black-Scholes
model to describe the structure of reported option prices 1s thought to arise from its
constant volatility assumption. These features are interpreted as evidence of
stochastic volatility of financial asset prices. To overcome the shortcoming, many
researchers have contributed to substantial new models that incorporate stochastic
volatility 1n the last two decades. It i1s thus interesting to examine whether the
stochastic volatility option pricing models provide improvements to the
Black-Scholes model.

Early amendments include the constant-elasticity-of-variance model by Cox
(1975), the jump-diffusion model by Merton (1976), the compound-option model
by Geske (1979), and the displaced-diftusion model by Rubinstein (1983).
Empirically, these models face the difficulty that the variance rate i1s not
observable. Latest amendments are two types: implied volatility and stochastic
volatility. The latter include continuous-time stochastic models and discrete-time
stochastic generalized autoregressive conditional heteroskedasticity (GARCH)
models.

Continuous-time stochastic volatility models are effective for option pricing,



but can be difficult to implement. Although these models assume that volatility 1s
observable, 1t 1s very difficult to filter a continuous volatility variable from discrete
observations. One alternative is to use implied volatilities computed from option
prices. But empirically, this approach requires estimating many volatilities, one for
every date and 1s computationally burdensome in a long time series of options
records. In any case, continuous-time models must be augmented with nontrivial
volatility estimation techniques.

Moreover, the continuous-time model can serve as the limit of a certain
GARCH model. For example, Nelson (1990) showed that the GARCH (1, 1)
model converged to a certain diffusion model. Duan (1996) argued that most of the
existing bivariate diffusion models that had been used to model asset returns and
volatility could be represented as limits of a family of GARCH models. As a
special case, the particular GARCH option model proposed by Heston and Nandi
(2000) was proved to contain Heston’s (1993) stochastic volatility model as a
continuous-time limit,

On the other hand, the GARCH model has an advantage over the
continuous-time model in that the volatility 1s readily observable in the history of
asset prices. As a result, 1t 1s possible to price an option only using the information
from the observations of asset prices. In contrast, the continuous-time stochastic
model has an inherent disadvantage that 1t assumes that volatility 1s observable,
but it 1s impossible to exactly filter volatility from discrete observations of spot
asset prices in a continuous-time stochastic volatility mode. Consequently, it is
impossible to price an option solely on the basis of the history of asset prices.
Since volatility 1s unobservable, one has to use the volatility implied from one
option to value other options. Unfortunately, this method 1s not always feasible

especially when the related options are thinly traded. Thus, the GARCH model 1s
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chosen over the continuous-time model when comparing the empirical
performance of the stochastic option model and the discrete-time model.

Duan (1995) cited the econometric method — GARCH into discrete-time
model and proposed the GARCH option pricing model to extend the
Black-Scholes model. The ARCH model was first introduced by Engle (1982) and
Bollerslev (1986) made an improvement as GARCH model. Under the GARCH
process, the kev hypothesis 1s conditional heterskedasticity and the variance is
determined by a series of parameters and a sequence of random variables which
are noise. To capture the negative correlation between returns and conditional
volatility, Engle and Ng (1993) presented the NGARCH model. The general
theory of GARCH option pricing, however, applies to the NGARCH model.

However, most GARCH models did not have closed-form solutions for option
prices. These models were typically solved by Monte Carlo simulation (Engle and
Mustafa (1992), Amin and Ng (1993), Duan (1995)) that can be slow and
computationally intensive for empirical work. More recently, Hanke (1997)
provided a network approach, Ritchken and Trevor (1999) provided a lattice
approximation to value American options and Duan, Gauthier and Simonato (1999)
provided Markov chain approach tfor GARCH process with single lags in the
variance dynamics. Heston and Nandi (2000) developed a closed-form solution for
Furopean option values (and hedge ratios) in a GARCH model. The model
allowing for multiple lags in the time series dynamics of the variance process and
also for correlation between returns of the spot asset and variance did provide
another choice to price options.

We employ Heston and Nandi (2000) closed-form GARCH model in the
TAIEX options pricing. As a benchmark model we choose the ad hoc BS model of

Dumas, Fleming and Whaley (1998, henceforth DFW) that has the flexibility of
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fitting to the strike and term structure of observed implied volatilities by using a
separate implied volatility for each option. It 1s found that the GARCH model has
smaller valuation errors (out-of-sample) than the ad hoc BS model.

The rest of this study organmized as follows. Methodology including data
description and the model we used are provided in Section 2. Section 3 reports the
in-sample estimation through MLE and out-of-sample pricing results, while

Section 4 concludes.

2. Data and Methodology

2.1 TAIFEX Options Market Overview

The Taiwan Futures Exchange launched an index option on the TAIEX
starting at 12/24/2001, which can be used as a hedging tool for investors,
especially institutional investors, to protect their investment position.,

The TAIEX Options achieved a total of 1,566,446 contracts by the end of
2002, accounting for 19.72% of the market total for the vear. According to Trade
Data Global Services, the TAIFEX is in the 30th place in terms of trading volume
of all products, edging up 6 places from 2001. A total of 139,575 contracts settled
in 2002, including 70,604 index futures contracts and 68,971 TAIEX Options
contracts which count for 50.58% and 49.42% respectively.

Following five index futures and options, TAIFEX launched equity options in
early 2002. The product was debuted on 01/20/2003. In the first round of listing,
five underlving stocks, namely Nan Ya, China Steel, UMC, TSMC, and Fubon
were introduced. Periodic review will be carried out to add new contracts on

different underlyings.



TAIFEX also have finished the drafts of contract specifications and trading rules
for TSEC Taiwan 50 Index Futures, short-term interest rate futures and government
bond futures. The TSEC Taiwan 50 Index Futures was launched at 06/30/2003 in
coordination with the listing of TSEC Taiwan 50 ETF. The short-term interest rate
futures and government bond futures is launched at 01/02/2004.

2.2 Data description

The sample of TAIEX options 1s from the Taiwan Futures Exchange
(TAIFEX). The data set 1s formed by closing prices every Wednesday (or the next
trading day if Wednesday is a holiday) from 07/01/2002 to 06/30/2003. Since
many of the stocks in the TAIEX do not pay cash dividends, we assume the
dividends to be zero and need not to subtract it from the current index level. For
the risk free rate, 1-year time deposits interest rates reported on the board of Bank
of Taiwan, interpolated to match the maturity of the option is used.

Three rules are applied to the dataset. First, we eliminate options with fewer
than 6 or more than 60 days to expiration. The short-term options have substantial
time decay that could interfere with one’s being able to isolate the volatility
parameters. The long-term options, on the other hand, are not included because
they are not actively traded.

Second, only option records in which moneyness, K/S, lies between 0.9 and
1.1 are included in the sample. This excludes some very deep out-of-the-money
and deep in-the-money options that are either infrequently traded.

Third, the options are ruled out if their prices do not satisfy the boundary

condition:

S() = C(t,T) 2 Max(0, S(t)—PVD —Ke ") (2.2.1)



The first inequality must hold because a call option enables one to buy one share
of underlying asset and so the option can never be worth more than the asset itself.
The second inequality must be satisfied since it ensures that there is no arbitrage
opportunity.

The data set consists of 820 observations. The average number of options per
day i1s 16 with a minimum of 7 and a maximum of 20. The whole sample is
divided into 10 categories that are based on moneyness and the time to maturity. In
terms of moneyness, the data set 1s divided into five categories: deep in-the-money
options with K/S < 0.95, m-the-money options with 095 < K/S < (.99,
at-the-money option with 0.99 < K/S <1.01, out-of-the-money options with 1.01
< K/S < 1.05, and deep out-of-the-money options with K/S = 1.05. The terms to
expiration are classified as (1) short-term (less than 30 days); (2) medium-term
(between 30 to 60 days)

Table 1 provides the average call option prices based on moneyness and
maturity. It shows that the average option price 1s a decreasing function of
moneyness and an increasing function of days to maturity.

We find that the average option price of short-term deep out-of-the-money
call options 1s the lowest while that of the medium-term deep in-the-money
options 1s the highest. Out-of-the-money and deep out-of-he-money options count
for 45% of total and short-term options takes up 50% alone. Before pricing options,
we compute spot volatility. In computing the spot volatility, we use the daily
history of spot index levels that trace back up to 1 year (252 days) before. We
move the TAIEX index level windows from 07/01/2001 to 06/30/2003 to calculate

the spot volatility on 07/01/2002 to 06/30/2003.



2.3 The Model

We price TAIEX options based on the closed-form GARCH option valuation
model [Heston & Nandi (2000)]. In general, GARCH models are typically solved
by simulation that can be slow and computationally intensive for empirical work.
By contrast, the closed-form GARCH model provides an analytical solution and
would be more powerful in option pricing.
A. The Closed-Form GARCH Option Pricing Model

The model has two basic assumptions. In the following section, we name this
model as “H-N GARCH model.” The first assumption is that the log-spot price

follows a particular GARCH process.

Assumption 1: The spot asset price, S(t) (including accumulated interest or

dividends) follows the following process over time steps of length A

log(S(1))=1og(S(t = A))+ 7 + 2h(t) + Jh(D)z(1)

W)= o+ i LAt —iA)+ Zq: o, (2 —in) - 7, =AY |

23.1)

r :the continuously compounded interest rate for the time interval A
z(t) : standard normal disturbance
h(t) : the conditional variance of the log retum between t - A and is known from

the information set at time t - A

As the ou and [Pi1 parameters approach zero, it is equivalent to the
Black-Scholes model observed at discrete intervals.

Here we will focus on the first-order process (p=q=1). The first-order process



1s stationary with finite mean and vanance if 8 +o,%,* =1. In this model one can

directly observe h(t + A) as a function of the spot price as follows:

h(t+A)= o+ Bht—A) 032

(los(S(0))- 10g(S(t = A) = r = (1) = 7, (D) |
)

+ o

1

a,  the kurtosis of the distribution and a zero value implies a deterministic time
varying variance
v, : asymmetric influence of shocks; a large negative shock, z(t) raises the

variance more than a large positive z(t)

In general the variance process h(t) and the spot return are correlated as follows:

Cov,, [1(t+ A),log(S(0))] = —2ex, 7, (1) (233)

Given positive «, and p, value for results in negative correlation between
spot returns and variance.

The second assumption of the model concerns the pricing of options and other
derivative securities. The spot price has a conditionally lognormal distribution
over a single period. Since variance 1s not stochastic over this interval, Heston &

Nandi assumed that the Black-Scholes-Rubinstein formula holds.

Assumption 2: The value of a call option one period prior to expiration obeys the

Black-Scholes-Rubinstein formula.



Assumptions 1 and 2 allow us to dertve the prices of all contingent claims that
can be written as functions of the spot asset price. Since long-term options are
functions of S(t) and h( t + A), and h( t + A)) can be written as a function of S(t) in
equation (2.3.4), this includes options of all maturities. Equation (2.3.1) is

algebraically equivalent to

log(S(t)) = log(S(t — A))+r - %h(t) + V(D" ()
(2.3.4)

h(t)= o+ Zp:/i At —iN)+ Zg:aI (z*(r —iN) =y, \Jh(t - z‘A))z

z () = z(t) + (/1 + ;Jh(t)
where,

. 1
W=y tA+ 5
z (t) : standard normal distribution under the risk-neutral probabilities.

Formalize this property as the following proposition.

Proposition 1: The risk-neutral process takes the same GARCH form as equation

(2.3.1) with A replaced by — % and y, replaced by yio= b At % .

This proposition is trivial by noting that z'(f), » and L as defined above
make the one period return from investing in the spot asset equal to the risk free
rate. We proceed to solve for the generating function of the GARCH process (2.3.1)
and use it to produce option prices. Let f{¢p) denote the conditional generating

function of the asset price
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This 1s also the moment generating function of the logarithm of S(T). The
function f{¢) depends the parameters and state variables of the model, but these
arguments are suppressed for notational convenience. We shall use the notation

£*(p) to denote the generating function for the risk-neutral process.

Proposition 2: The generating function takes the log-linear form

AT, )+ i B.(&:T, )t + 2A—iA)

F(#)=S(T) exp (23.5)

+§Ci(z(r+A—z'A)— Vi \/my

AT )= At + AT, 0) +9A+ B (1 + AT, Po

_ ;1H(1 ~20,B,(t + AT, 4))

where, (2.3.6)
Bl<r;T,¢)=¢(ﬂ+yl)—;yf + BB+ AT $)
V-ny

1-2a,B,(1 + A T. §)

for the single lag (p=g=1) version and these coeflicients can be computed

recursively from the boundary conditions:

AT T,9)=0
23.7)
B (1:T.¢)=0
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Since the generating function of the spot price is the moment generating
function of the logarithm of the spot price, t{i¢p) 1s the characteristic function of the

logarithm of the spot price.

Proposition 3: If the characteristic function of the log spot price 1s (1) then

(2.3.8)
A1 1 K SGe)

0

where Re| | denotes the real part of a complex number. An option price is simply
the discounted expected value of the payott, Max(S(T)-K,0) calculated using the
risk-neutral probabilities.

Corollary: At time t, a European call option with strike price K that expires at

time T is worth

C=e " VE [Max(S(t)-K.0)]= %S(r)

A wRe{K NEGA D}dgﬁ (23.9)

T ig f(1)

_ KQW{ 11 TR{ K_i-éf(fgﬁ)} J ¢J
2 &y i

This completes the option pricing formula. As in the Black—Scholes formula,
(2.3.9) can be written as (2.3.10). Delta of the call value 1s simply as equation

(2.3.11). The other hedge ratios like the vega and the gamma can be calculated by
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straight differentiation in equation (2.3.9) and the expression for delta respectively.

Put option values can be calculated using the put-call parity.

C- S(r){l R TR{K G H)}dqﬁJ

2" 72X S i¢ F()
(23.10)
—Ke T l+lTRe w dg
2 7y ig
acli e wRe{W}d;ﬁ 23.11)
2 xS i (D)

In contrast to the Black-Scholes formula, this formula 1s a function of the
current asset price, S(t), and the conditional vaniance, h( t + A). Since h(t +A) 1s a
function of the observed path of the asset price, the option formula is effectively a
function of current and lagged asset prices. In contrast to continuous-time models,
volatility 1s a readily observable function of historical asset prices and need not be
estimated with other procedures.

B. Ad Hoc Black-Scholes Model

The measuring errors seem to be subjective for various purposes. One way to
gauge the prediction errors 1s to measure them against a benchmark. For the BS
model, volatility 1s constant across all exercise prices and maturities, although
consistent theoretically 1s perhaps too restrictive in practice. Since he GARCH
model has four more parameters than the BS model, it may have an unfair

advantage over the BS model. To account for the sneer patterns in Black-Scholes
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implied volatilities, many market makers simply smooth the implied volatility
relation across exercise prices and maturities, and then value options using the
smoothed relation. To harmony with this practice, we follow DFW (1998) to fit the
Black-Scholes model to the reported structure of option prices each week using the
following model (ad hoc Black-Scholes model) to describe the Black-Scholes

implied volatility.

c=a,+akK+a,K*+a,r+a, 7’ +akKr (2.3.12)

o 1s the implied volatility for an option of exercise price K and time to maturity 7 .
Obviously, applying the ad hoc Black-Scholes model in this context 1s internally
inconsistent because the Black-Scholes model 1s based on the assumption of
constant volatility. Nevertheless, the procedure 1s a variation of what 1s applied in
practice as a mean of predicting option prices.

The empirical analysis follows the methodology laid out below. First, we use
maximum likelihood method with rolling sample procedure to estimate the
parameters of the GARCH process. As for the ac hoc Black-Scholes model, we
imply the volatility from the model of DFW (1998) and find its correspondent
in-sample estimated parameters. Second, we use these parameters to compute
volatility. Finally, the volatility obtained by the in-sample GARCH option pricing
model and the ac hoc Black-Scholes model are used to price the out-of-sample

options and their pricing accuracy 1s examined.
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3. Empirical Results

3.1 Maximum Likelihood Estimation

The empirical analysis focuses mainly on the single factor (one lag) version
of the GARCH model. We set A = 1 as daily index returns are used to model the
evolution of volatility. Unlike continuous time stochastic volatility models wherein
the volatility process is unobservable, all the parameters that enter the pricing
formula can be easily estimated directly from the history of asset prices through
maximum likelihood estimation (MLE).

The maximum likelihood method 1s applied to the TAIEX daily return series
before GARCH option pricing because of the following reasons. First, a
prerequisite to apply the GARCH option model 1s that the return series of the
underlying asset behaves like a GARCH process. Next, the conditional volatility
applied in the GARCH option pricing models 1s obtained directly from the TAIEX
index return series instead of inferred from the market option prices. Therefore, we
have to obtain the spot volatility before the in-sample fit and out-of-sample pricing
errors can be examined. Third, the conditional volatility of the underlying asset
can be easily filtered by the maximum likelihood method for the GARCH model.

Table 2 shows the maxamum likelihood estimates of the GARCH model, both
when y, 1s non-zero and when it is restricted to zero, on the daily closing index
levels and the futures prices of the shortest maturity contracts from 01/02/2001 to
12/31/2003. The parameters are quite similar across the analysis of spot and
futures data. The parameter that measures the degree of mean reversion (as given
by 4, + oy y,* =1) 15 0.9475 from the cash/spot data and 0.9294 from the futures data.
The volatility of volatility, as measured bye,, 1s 1.46e-5 from the spot data and

2.51e-5 from the futures data. The annualized long-run mean of volatility /
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standard deviation 1s 26.42% trom the spot data and 29.93% for the futures data.
The skewness parameter y, are both positive indicating that shocks to returns
and volatility 1s negatively correlated.

But while we use a likelihood ratio test, the symmetric versions for spot and
futures data aren’t rejected which imply that the negative correlations between
returns and volatility of TAIEX and TAIFEX aren’t significant.

The likely reasons for the lower asymmetric effect may be the introduction of
futures and options. The Taiwan Futures Exchange (TAIFEX) launched its first
product on July 21, 1998. In 2002, the average daily trading volume reached
32,033 contracts, a 66.39% growth trom 2001. The TAIEX Options has shown an
exponential growth from third quarter 2002 since first traded in December 2001,
and the daily trading volume has arrived at 136,935 contracts on May 30, 2003.
Index futures and index options trading improve the liquidity and depth of the spot
market. They provide reliable information and lower the response of bad news.
The other reason may be the inexpensive transaction costs attract the noise traders
in the spot market and put them tform spot market to futures or option market,
either reduce the asymmetric effect.

Both symmetric and asymmetric versions are available to value the option
prices. To simplify the procedure, we choose the asymmetric version for pricing.
3.2 In-Sample Estimation

Researchers who use time series models prefer longer sample period; that’s to
say, the more the sample periods, the better are the estimations. Since the
distribution of stock returns varies with time, we may sacrifice the characteristics
of volatility clustering or the accuracy of volatility estimations for a longer sample
period. Thus, we use rolling sample procedure to update the parameters of the

GARCH model. At each time we used the time-series of returns from the previous
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252 days to filter the variance.

20|01 06.12 2002.06.26 20|02.07.03
In-the-sample period (252 trading days) Out-of-sample
20|01.06.19 2002.07.03 20|02.07.10
In-the-sample period (252 trading days) Out-of-sample
20|02.06.12 2003.06.18 20|03.06.25
In-the-sample period (252 trading days) Out-of-sample

Table 3 represents the estimates form the updated GARCH model using
maximum likelithood estimation. We then plug the parameter estimates obtained
from the above MLEs into the options valuation formula to compute option values.
3.3 Out-of-Sample Pricing

We evaluate the updated out-of-sample prediction based on the following
steps. For the GARCH option pricing model, we assume that the estimates are
constant over one week. Then, we input the previous week’s estimates to the
GARCH option pricing model and compute current week’s model-determined
option prices. For the ad hoc Black-Scholes model, we use the implied volatility of
the previous week to value the current option prices by assuming that the implied

volatility does not change over one week. Both models predict one week ahead.
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Let e (1, t) denote the model error in valuing option 1 at time t, e (1, t) 1s the
difference between the model value of option and the market price of that option at
time t. To assess the fitness, we present the mean absolute error (MAE), mean
percentage error (MPE), and root mean squared error (RMSE) for each model
respectively, where C,, is the market price of option and N is the number of

options traded on Wednesday (or the next trading day).

MAE =;IZ e(i, 1) (3.3.1)
_ 1 e@n
MPE = NZ—CM (3.3.2)

RMSE = {%Ze(i, 1) (3.3.3)

Table 4 reports the out-of-sample valuation errors for the various models
aggregated across all three out-of-sample periods. The aggregate root mean
squared valuation errors are $24.21 and $14.42 for ad hoc BS and the updated
GARCH model respectively. It also reports out-of-sample mean absolute error
(MAE) that measures the absolute values of the valuation errors for all options.
The aggregate out-of-sample MAE’s are $19.29 and $12.00 for ad hoc BS and the
updated GARCH model respectively. And MPE 1s 25.94% for ad hoc BS and 20%
for the updated GARCH model.

The valuation errors by different option monevness and maturity categories
are shown in Table 5. Looking at the valuation errors by moneyness and maturity,
we find that the GARCH model is able to value deep out-of-the-money options

(K/S = 1.05 for calls) better for all maturities than the ad hoc BS.
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For example, the RMSE for deep out-of-the-money calls (K/S > 1.05) that
have less than thirty days to maturity is NT$10.26 for the updated GARCH versus
NT$21.55 for the ad hoc BS. For near-the-money options, the results are mixed.
For short-term ( = 30 days to expiration) near-the-money ( 0.99 = K/S <1.01)
call options, the ad hoc BS model has higher valuation errors than both versions of
the GARCH. For medium-term ( > 30 days ) near-the-money calls, the updated
GARCH has lower valuation errors than the ad hoc BS while for medium-term
near-the-money call options.

In terms of maturity only, the percentage valuation errors under the GARCH
tend to decrease with an increase in maturity, especially for out-of-the-money
options. Short-term ( = 30 days to expire ) out-of-the-money options often tend
to be the most difficult to value (in terms of percentage valuation error) under both
GARCH and the ad hoc BS, especially for GARCH, the magnitude of valuation

errors under the GARCH 1s substantially higher.

4. Conclusion

The empirical performance of the GARCH option pricing model and the ad
hoc Black-Scholes model on TAIEX options has been evaluated in this article. The
GARCH option pricing model outperforms the ad hoc Black-Scholes model in
term of out-of-sample pricing according to the in-sample estimates. The ad hoc BS
model uses a separate implied volatility for each option (specific to its strike and
time to maturity) extracted from market prices and is designed to produce a very
close fit to the shape of the implied volatilities across strike prices and maturities;
also 1t 1s updated every period. In contrast, the GARCH model filters the volatility

from the history of asset prices and uses rolling sample procedure to obtain its
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parameters.

Although the GARCH option pricing model outperforms the ad hoc
Black-Scholes model, the magnitude of valuation errors of out-of-the-money
options 1s substantially high and 1s most difficult to value. There are some likely
explanations listed below.

First of all, model selection 1s subjective and could lead to determinated
errors. Wang (1995) employed AGARCH model, EGARCH model, GIR-GARCH
model, NGARCH and VGARCH asymmetric models to investigate the
asymmetric etfect in TAIEX return series. He found that GJIR-GARCH (1,1)
captured the asymmetry best. However, there 1s no closed-form solution for
GIR-GARCH model provided.

Secondly, the data set 1s only sampled by closing prices every Wednesday (or
the next trading day if Wednesday is a holiday) and used the time-series of retums
from the previous 252 days to filter the variance. How to estimate in-sample 1s the
key to price and it also could lead to estimated errors.

Third, in this article we filter the volatility from the history of asset prices
through maximum likelihood estimation. However, the weakness of the method 1s
that 1t contains only information in the historical TAIEX index prices. This
information set 1s not necessarily the same as market option prices since the
information in daily index time series 1s backward-looking while market option
prices are forward- looking. In fact, when we try to value option prices in this way,
the average pricing error is ridiculously high. Since the H-N GARCH model has a
closed-form solution for option values, a natural candidate for parameter
estimation 1s a non-linear least squares (NLS) procedure that tries to match model
option values to observed option prices as closely as possible. These extensions

are left for future research.
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Table 1 Sample Properties of TATEX Options

Moneyness Time to maturity Subtotal
K/S = 30 >30
Deep in-the-money <0.95 362.7396 407.4598 0.2232
In-the-money [0.95,099) 197.9770 273.8046 0.2122
At-the-money [0.99, L.o1) 116.6364 189.4889 0.1085
Out-of-the-money [ 1.01, L.05) 65.1425 131.9655 0.2122
Deep out-of-the-money = 1.05 25,7922 76.8571 0.2439
Subtotal 0.4963 0.5037 1

The reported numbers are respectively the average option prices for each moneyness-maturity category while the

proportion of the number of observations in this category to the number of all the call options in the whole

sample are shown in parentheses. The sample peried extends every Wednesday (or the next trading day if

Wednesday 1s a holiday) from 07/01/72002 to 06/30/2003. S denotes the spot TAIEX index level and K is the

£XEICIse price.
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Table 2-a Maximum Likelihood Estimation

@, B, 7 ® b o Bi+ouy” Log-Likelihood
GARCH(spot) 1.46E-05 0.9475 0.1605  OQ0E+00 02162 26.42% 0.9475 2656.7008
GARCH, 71 = O(spot) 1.52E-05 0.9452 0.00B+00  0.0771 26.48% 0.9452 2656.3709
GARCH(futures) 2.51E-05 0.9294 0.1526  OQ0E+00  0.1161 29.93% 0.9294 2576.6032
GARCH, #: = O(futures) 2.64F-05 0.9260 0.00E+00  0.0193 29.99% 0.9260 2576.1945

Maximum Likelihood Estimates of the GARCH model withp=q=1and A=1 (day) using the spot/cash TAIEX levels and TAIFEX futures prices for the unrestricted
( 7170 and restricted (¥1 =0) model.

log(S(2))=1log(S(t — A))+ r+ Ah(e) + Jh(1)z(1)
hify=w+ fhit—A)+ o (z(.t C A gl A)T
The log-likelihood function 1s Z;— 0.5(10g(h(t)) +2(0)* ) where T 1s the number of days in the sample. The daily closing index levels form 01/02/2001~

12/31/2003 are used. The futures prices are those of the shortest maturity contracts. Number of observations = 741. Asymptotic standard errors appear in

parentheses. 0 1s the annualized long run volatility {standard deviation) implied by the parameter estimates defined to be equal to \/ 252(c0+ o ) - B — g1, )

B, + oy 7, measures the degree of mean reversion in that 3, +a,7,> =1 implies that the variance process is integrated
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Table 2-b Maximum Likelihood Estimation

8 a, B e ) A 7] b +a, }/12 Log-Likelihood # of observations

2001

GARCH(spo) 2.00E-05 0.9442 0.3141 0.00E+00 0.8143 30.08% 0.9442 835.3569 244
GARCH, 71 =0(spot) 1.79E-05 0.9497 0.00E+00 0.9588 29.95% 0.9497 835.6522 244
2002

GARCH(spo) 2.70E-06 0.9618 10.2420 7.85E-06 5.0266 26.46% 0.9620 872.9950 248
GARCH, 71 =0(spot) 1.84E-06 0.9791 3.93E-06 6.1007 26.38% 0.9791 872.5234 248
2003

GARCH(spo) 4 98E-06 0.9688 0.1438 5.00E-10 -0.2665 20.06% 0.9688 947 4773 249
GARCH, 71 =0(spot) 5.18E-06 0.9676 5.00E-10 -0.0564 20.08% 0.9676 947 5188 249

Maximum Likelihood Estimates of the GARCH model withp=q=1and A=1 (day) using the spot TAIEX levels for the umrestricted (71 #0) and restricted
(%1 =0) model in 2001, 2002, and 2003, respectively.



Table 3

Parameter Estimates From The Weekly Estimation

This table reports the parameter estimates from the weekly {every week) estimation of the GARCH model. Note however that the last Wednesday of the first half of each

year appears in this sample. Variance, h(t +1) 1s drawn {rom the daily history (last 252 days) of index levels.

o, B 7 &) A o B 8! &) A

2002713 1.97E-05 09471 01041 1.32E-08 0770 2003/112 2.56E-06 0.9539 58589 1.59E-08 44741
2002/7/10 |.63E-05 0.9571 0.1304 640E-09 0.8369 2003/1/8 2.20E-06 09823 44209 240E-06 4.6492
2002/7/17 1.50E-05 0.9607 0.1858 0.00E+Q0 09229 0031115 |.8IE-05 0.9008 21,4740 6.51E-06 0.7467
200217724 1.30E-05 (.9654 (.3459 0.00E+00 10178 2¥3/1/22 1.66E-05 0.9049 41,8601 3.74E-06 0.3094
200217131 1 49E-05 0.9603 0.2085 3.30E-09 0.7320 2326 1.91E-06 0.8717 11.8400 3.36E-05 87195
H028/7 |.35E-05 0.9642 0.5731 0.00E+Q0 09164 20037212 |.93E-05 09158 31.6137 9.00E-10 0.2592
2002/8/14 1 40E-05 0.9649 04237 0.00E+Q0 0.7370 200372119 | ATE-05 0.8876 534416 TATE-0H 0.2475
2002/8/21 1.30E-05 0.9677 0.2796 0.00E+00 0.9233 2K)3/226 1 44E-05 (.8762 62,4654 T51E-5 0.2060
2002/8/28 1.35E-05 0.9655 .2685 4 90E-09 0.8417 LIRTETAS 1.85E-05 0.9008 38.3234 4.64E-05 0.2327
2002/9/4 I,15E-05 0.9696 0.1936 0.00E+Q0 09233 20037312 |.73E-06 0.9267 12,3677 1.8TE-05 69007
2002/9/11 1.26E-05 0.9651 0.0877 1.80E-09 12842 2K3/3/19 1.74E-05 (.8802 42,8563 9.90E-06 0.2473
2002/9/18 1.25E-05 0.9672 0.2678 1.S0E-09 1.1539 2K3/326 1.55E-05 0.8772 51.4939 LOE-05 03184
2002/9/25 I,15E-05 0.9694 0.6534 1L 10E-09 1.0680 2003/412 |.82E-05 0.8700 42,3614 131E-05 04087
2002/10/2 9.80E-06 09726 0.2516 8.00E-10 1.5096 2003/4/9 746E-06 0.8771 18,9099 299E-05 2.5697
2002/10/9 8.93E-06 0.9733 0.0458 8.00E-10 1.3761 2K3/4/16 6.71E-06 (.8827 18,1032 2.90E-05 27294
20210/ 16 4 42E-06 (.9848 0.1923 1.90E-09 1.9691 2344723 6.73E-06 0.8571 18.3082 3.66E-05 2.8350
2002/10623 4.08E-06 0.9870 0.0929 8.00E-10 23312 20034130 6.99E-06 0.8045 20,2257 342E05 24467
2002/10/30 1.50E-06 0.9887 04783 181E-08 54352 20034507 5.85E-06 0.8626 19,8262 362E-05 29462
2002/11/6 901E-06 0.8977 28554 2773E-05 37375 2R3/ 14 206E-06 0.8770 13,5197 3.52E05 7.5079
00211713 1 46E-06 0.9815 33396 4,15E-08 69573 2003/5/21 3.63E-06 0.8733 9,1573 362E-05 40754
2002/11/20 2.28E-06 0.980 26369 3.79E-06 53143 2003/5/28 |.33E-05 0.8477 36,6811 282E-05 1.0250
2021127 2.66E-06 0.9784 40774 421E-05 50757 2R36/5 I.I4E-05 (.8822 34,4599 2. 14E-05 0.7801
2002/12/4 242E-06 0.9728 4.5939 6.04E-06 5.5049 2036/ 1.0BE-05 (.8891 26.4099 2.17E05 0.4099
2002/12/11 208E-06 0.9675 29622 761E-08 57287 2003/6/18 I.13E-05 09158 26,4825 IL.I8E-05 00719
002/12/18 3ITE-06 0.9803 S8 3.07E-06 4,084 2003/6/25 .37E-05 0.9384 28,2814 1.35E-08 04861
2R2/12/25 6.25E-06 0.9246 9.6908 2. 19E-05 5.1631

Averge 9 30E-06 09302 14,3292 | 21E-05 23703 | Standard deviation |  5.77E-06 0.0450 17.0057 | 27505 23247




Table 4

Aggregate Valuation Errors Across Various Models

Measure Error

Model
RMSE MAE

MPE

GARCH 14.4197 12.0009

0.2000
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Table 5

Out-of-Sample Pricing Errors by Moneyness and Maturity

Moneyness Model Time to maturity
K/S =130 > 30
Panel A: RMSE
< (.95 GARCH 10.2617 16.1409
[0.95,0.99) GARCH 13.3932 18.7983
[0.99,1.01) GARCH 12.9021 20.1889
[ 1.01, 1.05) GARCH 10.5416 18.5720
= 1.05 GARCH 6.7572 14,7690
Panel B: MAE
<0.95 GARCH 8.71¢el 14.0570
[0.95,0.99) GARCH 12.1047 16.1891
[0.99,1.01) GARCH 11.4444 18.1676
[ 1.01, 1.05) GARCH 9.0187 16.3402
= 105 GARCH 5.2579 12.8144
Panel C: RMPE
< (.95 GARCH 0.0264 0.0369
[0.95,0.99) GARCH 0.0688 0.0650
[0.99,1.01) GARCH 0.1140 0.1055
[ 1.01, 1.05) GARCH 0.2201 0.1487
= 105 GARCH 0.8160 0.2202
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Figure 1 Daily TATEX Index Level (from 07/01/2001 to 06/30/2003)
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Figure 2 Daily TATEX Index Return Rate {from 07/01/2001 to 06/30/2003)
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Figure 3 Probabilities of TATIEX Index Returns (from 01/02/2001~ 12/31/2003)

It shows than TATFEX index returns distribute fat-tailed and leptokurtosis.
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Figure 4 TAIEX Options Implied Volatilities
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Figure 5-a Daily Annualized Spot Volatilities ( asymmetric version )

This figure shows the daily annualized spot volatilities form the asymmetric GARCH model.
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Figure 5-b Daily Annualized Spot Volatilities { symmetric version )

This figure shows the daily annualized spot volatilities form the symmetric GARCH model.
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Figure 6 Relative Pricing Errors for Call Options (less than 30 days to maturity)
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Figure 7 Relative Pricing Errors for Call Options (more than 30 days to maturity)
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