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Option Pricing under Extended Normal

Distribution

Abstract

This paper proposes a closed pricing formula for European options when the dynam-
ics of an underlying asset price does not follow the typical geometric Brownian motion
as in a Black-Scholes framework. Instead the return distribution of the underlying asset
is supposed to have any different degrees of skewness and kurtosis relative to the normal
distribution by introducing the extended normal distribution. We suggest the moment
restriction so that the pricing model under any arbitrary distribution for an underlying
asset must satisfy the arbitrage-free condition.

Numerical experiments and comparison of empirical performance of the proposed
model with the Black-Scholes, ad hoc Black-Scholes, and Gram-Chalier distribution
model are carried out. In particular, we make an estimation of implied parameters such
as volatility, skewness and kurtosis of the return on the underlying asset from the mar-
ket prices of the KOSPI 200 index options, and perform in-sample and out-of-sample
test. These results support the previous finding that the actual density of the underly-

ing asset shows skewness to the left and high peaks.

Key Words: option pricing, extended normal distribution, Gram-Chalier series expan-
sion, martingale restriction, moment restriction, skewness, kurtosis, KOSPI 200 index

option



1 Introduction

One of the assumptions previously made in earlier works on the valuation of an option is
that the underlying stock price follows a geometric Brownian motion through time which
produces a log-normal distribution for the stock price between any two points in time.
The diffusion processes provide a nice framework to analyze lots of financial derivatives
mathematically and simplify the analysis with a relatively-less complicated Ito stochastic
calculus. The option pricing models of Black-Scholes (1973) and Merton (1973) are derived
in this framework.

However, there are several deficiences reported in the Black-Scholes framework. First,
the market prices of options are frequently different from those derived using Black-Scholes
formula especially in deep-in-the-money and deep-out-of-the money options. These mis-
pricings arise since the true return distribution of the underlying asset shows asymmetric
leptokurtic features such as a high peak or heavier tails with skewed left or right. These de-
ficiencies are addressed in empirical studies by Black (1975), Macbeth and Merville (1980),
Rubinstein (1985), and Whaley (1982). Another drawback is the so-called volatility smile:
the implied volatility of an option as a function of its strike price resembles smile curve.
However it should be constant in a framework of Black-Scholes model.

A number of studies have been made to overcome these deficiencies, and the approaches
are categorized into three groups. The first group extends the Black-Scholes framework by
incorporating stochastic jumps or stochastic volatility. This group includes Merton (1973),
Hull and White (1987), Heston (1993), Bates (1996), and Bakshi, Cao, and Chen (1997).
Since the models of this group explain the stock movement with multiple stochastic factors,
the market is no longer complete, and so there may exist many equivalent martingale
measures, which complicates dealing with the analysis.

The second group uses other distributions for the rate of return on the underlying asset
rather than the normal distribution. Jarrow and Rudd (1982), Corrado and Su (1996),
Rubinstein (1998) and Li (2000) develop option pricing models by using distribution with
third and fourth moments for the underlying assets. In particular, Jarrow and Rudd (1982)
use Edgeworth series expansion to the log-normal distribution function, and Corrado and
Su (1996) apply the Gram-Chalier series expansion to the normal distribution function.
Ritchey (1990) proposes an option pricing formula under an assumption that the underlying

asset’s return is distributed as k-component independent normal mixtures. Janicki et al.



(1997) and Hurst et al. consider the problem of pricing options when the process of the
underlying asset is assumed to be driven by an a-stable Levy motion. Bibby and Sgrensen
(1997) propose a pricing model under the assumption that the underlying asset price follows
a hyperbolic diffusion process. Despite their usefulness in explaining the stock movement
with skewness and kurtosis, their stochastic models does not satisfy the condition of Levy
process, and so it is not easy to transform the models in any discrete framework such as
binomial tree model.

Finally, third group estimates the stochastic density function of the underlying asset
directly from the market option prices. This group includes Derman and Kani (1994),
Dupire (1994), and Rubinstein (1994). Also a study of Ait-Sahalia and Lo (1998) estimates
the stochastic density function with a non-parametric method.

As pointed out by Harrison and Kreps (1979), and Harrison and Pliska (1981, 1983),
the value of a European style option is a discounted expected value of the option payoff
at the maturity under risk-neutral measure. In a complete market, only one risk-neutral
measure exists, and the discounted asset price should satisfy the martingale property. This
condition is called martingale restriction by Longstaff (1995). In this paper, we propose an
equivalent condition to the martingale restriction, namely, moment restriction, using the
property of moment generating function so that the option pricing model satisfy the risk-
neutral condition or arbitrage-free condition. Using this restriction we correct the pricing
formula of Corrado-Su (1996) based on the Gram-Chalier series expansion, which however
is not satisfying the martingale restriction.

The main part of our research is to suggest another pricing formula for European options
when the return of the underlying asset follows the extended normal distribution, which
allows different degrees of skewness and kurtosis of the return on the underlying asset by
taking a linear combination of two normal distributions with Gram-Chalier series expansion.

By imposing the moment restriction on the expected value of the natural logarithm of
the asset price, we derive another risk neutral option pricing model. The form of extended
normal distribution suggested in this paper has been never addressed in previous researches,
as we know, and the associated pricing model outperforms previous models such as Black-
Scholes (1973), Corrado-Su (1996), and Dumas, Flemming, and Whaley (1998), as a result
of in-sample test, and out-of-sample test.

The paper is organized in the following way. Section 2 describes a general model for

the valuation of European options when the underlying asset follows a general probability



distribution under a risk-neutral measure. We begin Section 3 with the derivation of a
pricing formula when the underlying asset follows an extended normal distribution. This
section is the main part of this paper. Section 4 represents numerical examples and compares
the empirical performance of the proposed model with previous pricing models. For this
purpose, we estimate the values of the parameters such as volatility, skewness and kurtosis
from the market prices of the KOSPI 200 index options. Finally, Section 5 concludes with

suggestions for future research.

2 Risk-neutral Valuation Model

We assume throughout this paper that (1) there are no friction such as asymmetric taxes,
transaction costs, bid-ask spreads, and trading takes place continuously in the financial
markets, (2) there are two tradable assets in the market, a risky asset and a risk-free asset,
(3) the risk-free interest rate and the volatility of the rate of return on the risky asset are
known and constant through time. We also assume the market is complete so that there
exists a unique equivalent martingale measure for this market. Let S; denote the risky asset
price at time t. Under a risk-neutral measure, P, where it exists, the asset price should

satisfy the following condition, which is called martingale restriction by Longstaff (1995):
Martingale restriction: E{S7} = Spe™ 7,

where E denotes the expectation operator under the risk-neutral measure P, and Sy is an
initial price of underlying asset. The moment generating function, M (0), of an arbitrary

distribution, under which a random variable Y follows, is given by
M(0) = E{e™}. (1)
In particular, the moment generating function for In S with 8 = 1 is given by
M(1) = E{e" T} = E{Sr}. (2)

Thus martingale restriction can be rewritten as follows, which we call moment restriction
for the risk-neutral valuation, and it imposes the restriction for the mean of futures stock

prices under the risk-neutral measure.



Moment restriction: M(1) = Spe™™.

Unless the mean of the future stock price after T satisfies the moment generating function
with & = 1, the valuation formula from this framework is not a risk-neutral valuation
scheme, and so it is not no arbitrage option pricing model.

Now consider the option pricing model with moment restriction. When the density
function of logarithmic asset price is h(y), the price of a European call option C, with

exercise price X, and time to maturity of 7', is given by
C=eRE{(Sy — X))}

— T /X (Sr — X)dP(Sy) 3)

— e 7 fexply) - X3 hly)dy.
InX

We apply the moment restriction to the two distributions for logarithmic stock prices at
maturity; normal distribution, and Gram-Chalier distribution, and derive the corresponding

option pricing formula under each different distribution in the following subsection.

2.1 Normal distribution

Black-Scholes (1973) assume that the natural logarithm of the asset price follows the normal
distribution with mean m and standard deviation of ¢v/T. Since the moment generating
function of the normal distribution is given by M (0) = exp{mf + 026?T/2}, it follows from

the moment restriction that:
M(1) = exp{m + ¢°T/2} = Spe" . 4)

Thus the mean value m is given by

m = In(Spe’™) — 102T
2 5
1 5)
= 1In(Sp) + (r — EUZ)T.

If we let h,, s denote the density of normal with mean m and standard deviation s = Ux/T,

the price of a European call C' with exercise price X, and time to maturity 7', is follows



from the Equation (3) that

€= [ fexp(y) = X} by
InX

_ e—rT/ {exp(sy —+ m) — X} hO,l(y)dy
(InX—m)/s

1 o ~
=e Texp <m + —32) / hsi(y)dy — e "TX ho,1(y)dy
2 (InX—m)/s (InX—m)/s

= 50/ hsi(y)dy — e T X ho(y)dy.
(InX—m)/s (InX—m)/s

By letting ®(z) = [*__ ho,1(x)dz, the same formula as Black-Scholes(1973) can be derived
by

2 _InX —InX
O — Sy (W—n> e T (&)
S S

== Soq)(dl) - XG_TT(I)(dQ),

where
B In(Sy/X) + (7“ + %02) T

dy = . dy=dy —oVT.
1 O’\/T 2 1

2.2 Gram-Chalier distribution

In this subsection we derive a pricing formula of a European call when the risk neutral
distribution of the future asset price follows a different distribution from the normal with
non-zero skewness and kurtosis greater than three.

Now consider a Gram-Chalier series expansion, He ;(x), as follows

d3h(zx 1 d*h(x
He p(7) = h(x) — éf dx(g ) + ﬁ(k —3) d:c(4 )

= h(z) {1 + %5@3 — 3z) + 2—14(k — 3)(z* — 622 +3)} ,

(7)

where h denotes the density function of standard normal. Next, define a new probability

density function.

Definition 1. If the density function of a random variable Y is given by

y—m

Fmaer(s) =+ Hea (2, 0



then the random variable is called to follow Gram-Chalier distibution, GC(m,o,&, k), with

mean m, standard deviation o, skewness £, and kurtosis k.

Figure 1 illustrates the density function of normal and Gram-Chalier distribution, with
skewness(§) -0.3 and kurtosis(k) 3.4. The moment generating function of the Gram-Chalier
distribution is given by

o0
M(0) = exp(mQ)/ exp(ofz)He i, (2)dz. 9)
—00

Now we will derive the pricing formula for a European call when the logarithmic price
of the asset follows a Gram-Chalier distribution. We suppose the natural logarithm of the
asset price at time 7', In Sz, follows a Gram-Chalier distribution, GC(m,oV/T, ¢, k). The

mean of In S7, m, should satisfy the moment restriction, and so m is given using the moment

generating function as follows:

T
m=1In|— Soexp(rT) (10)
f_oo exp(sz)He i (2)dz
Since
/ exp(sz) 7 (ZZ) dz = (—s)z/ exp(sz)h(z)dz = (—s)" exp (532) ,
oo z oo
the denumerator inside of the logarithmic function of Equation (10) is evaluated as:
/OO exp(sz)He p(2)dz = e 132 1+ 1533 + ! (k—3)s?
X =exp| = — —(k — .
PR ek P32 6 24
Therefore the mean m is obtained as follows:
L 5 los 1 4
m:1n50+(7"—§0)T—1n l—i—ags —|—ﬁ(k—3)s . (11)

In the Black-Scholes formula, the third term of Equation (11) disappears since the skewness(§)
is 0, and the kurtosis(k) is 3. Thus the Black-Scholes formula can be regarded as a special

case of this formula.

Remark 1. In the formula of Corrado-Su (1996), they assume the natural logarithm of
the asset price at time T, In Sy follows the Gram-Chalier distribution, GC(m’,J\/T,f, k),

where

1
m' =1InSy+ (r — 502)T,



which is the same as in the Black-Scholes model, although the underlying distribution
changes. As a result, the expected value of the asset price at the maturity under the risk-

neutral measure is given by

E{Sr} = Soe'" {1 { §53 + 243 } # Soe'”

which shows that the pricing model of Corrado-Su(1996) does not satisfy risk-neutral valu-

ation scheme.

Once the distribution for the asset price at the maturity is provided, we can evaluate

the price of a European call as follows.

Proposition 1. If the natural logarithm of the asset price follows the Gram-Chalier distri-
bution, GC(m, oVT,E, k) under the risk-neutral measure, where the mean value m is given
by Equation (11), then the arbitrage-free price of a European call, C, with exercise price X
and time to maturity T is given by

C = So®(Dy) — Xe "Td(Dy)

(12)
+ Xe'T {UﬁElq)'(Dg) + B @ (Do) + E2<I>”’(D2)} ,

where

b, — m(S/X) + (r+30*) T —In{1+0TE}
1 — O‘\/T Y

D2:D1_0—\/T
:—ga\/—+ (k 3)o?
Egzﬂ(k—3)aﬁ,

and where ®, ®', ", ®" denote the normal distribution function, its first, second, and third

derivative function, respectively.
Proof. See the Appendix. O

If the skewness is 0, and kurtosis is 3, i.e., £ =0, kK = 3, then both F; and F5 equal to

zero, and so the pricing formula is the same as what Black-Scholes (1973) derived.

Remark 2. In their independent research, Jurczenko et al. (2004) also corrected the pric-
ing formula of Corrado-Su (1996), and proposed another formula by imposing the restriction

of risk-neutral condition. Their corrected formula is the same as Equation (12) we derived.



3 Option Pricing under Extended Normal Distribution

We begin this section with introducing a new distribution for the asset price at the maturity.
Let Ay, denote the density function of normal distribution with mean m and standard

deviation o. Also define p, , and 3 for k£ > 0 as follows:

p=1—%7
azl_%Vhl—m(g—Q, (13
=1+ p(lp)<§1>

This allows us to adjust the levels of kurtosis to any non-negative real numbers in a dis-
tribution. Now consider the following transformations which allow the distribution to
have any flexible levels of skewness. First we define a linear combination of two normal
density functions with each having different standard deviation «, and [, respectively,

lg(x) = p hool(x) + (1 —p) hog(x). Next, define a new function, Jgy, for real &,

Je(z) = h(e) — 1)
:p{l + % ( 3 _ 3(121‘)} ho,a(l’) + (1 —p) {1 + 6iﬂﬁ (5133 - 362x)} hO,ﬁ(x)-

(14)

Thus the new function J¢ ;(x) has the flexible levels of kurtosis and skewness, after two
transformations. In order to make the function a probability density, we finally normalize

it as follows.

Definition 2. If the density function of a random variable Y is given by

fmoenk(y) = %Jf,k <y — m> , (15)

a

then the random variable Y is called to follow extended normal distribution EN(m,o,&, k)

with mean m, standard deviation o, skewness &, and kurtosis k.

The moment generating function of extended normal distribution, EN(m,o,&, k), is

given by:

[e.9]

M(6) = exp(mb) / exp(002) Jen(2)dz (16)

—00



Now suppose that the logarithmic asset price at time T follows the extended normal
distribution, EN (m, oVT,E, k). The mean of In S under the risk-neutral measure is given
by

m=ln|-— So exp(rT) 7 (17)
J oo exp(sz) Jep(z)dz
where s = ov/T. Since
[e.e] 1 o0
/ exp(sz)Jep(2)dz = <1 + 6553) / exp(sz)lk(z)dz
1
we can obtain the mean value:
1
m=1InSy+rT —In(A+ B) —In(1+ 6{33), (18)

where
A= pe%O‘%Q, B=(1 —p)e%ﬁQSQ.
Now consider the price of a European call option.

Proposition 2. If the natural logarithm of the asset price follows the Gram-Chalier distri-
bution, EN (m, oVT,¢, k) under the risk-neutral measure, where the mean value m is given
by Equation (17), then the arbitrage-free price of a European call, C, with exercise price X

and time to maturity T is given by

A D B D
C =25 [A+B@<E+as>+A+B¢(§+ﬂs>}
o

D

B

e 2)e(2)
6 o o? a

~ In(So/X) +rT —In(A+ B) —In (14 3¢s%)
- oVT
Proof. See the Appendix. O

where

D

If the skewness is 0, and the kurtosis is 3, i.e., £ = 0, and k = 3, then the above pricing

formula coincides to the Black-Scholes formula.

10



Now consider an underlying asset that pays a dividend yield at a rate ¢ per annum. If

we let Fy = Soe" 97 then the price of a European call is given by

C = Fye T [Achb <§ —I—as> + M%@ (g —i—ﬁs)}
— Xe T [p@ (g) +(1-p)® (g)} (20)
e (-2)e ()7 (- 2)¢ ()
5 (F/X) ~In(A+B) —In (14 3¢&s°)

— e :

In fitting the implied parameters of the proposed model, and conducting empirical tests

where

to follow, we will use the above pricing formula in Equation (20) instead of using that in

Equation (19).

4 Empirical Performance

This section gives some numerical examples and compares the empirical performance of the
proposed model with the three previous models with respect to in-sample and out-of-sample

pricing errors.

4.1 Data Description

We use, for our empirical work, KOSPI 200 (Korea Stock Price Index 200) option prices
provided officially by the KSE (Korean Stock Exchanges). These options are traded at KSE
with expiration dates in the three near-term months along with the following one month
from the March expiration cycle (March, June, September, December). The sample period
extends from Dec 13, 2002 through Dec 11, 2003, which is from the next day of the maturity
date of options that expire December 2002 through the day right before the maturity date
of options that expire December 2003. We use as the risk-free interest rate the CD 91 days
interest rates announced daily by Bank of Korea. For the purpose of parameter estimation
for several models to follow, we use the price quotes at 2:45 PM on each trading day.
There are several possible approaches to determining the expected future rate of dividend

payments by the stocks that compose the index until the expiration of an option. For

11



example, Bakshi, Cao and Chen (1997) estimate the daily dividends directly from the
market, and Poteshman (2001) extracts the quantity Se~?", where ¢ denotes the dividend
yield per annum, from the transactions data from the index futures markets via spot-futures
parity. The approach of Poteshman (2001) is simple to use, but is not applicable at least in
Korea, since the KOSPI 200 index futures contracts expire only in March, June, September,
and December. We instead determine the implied futures price Fy from the call and put

prices by using the put-call parity:
C—-P=c¢"T(F-X), (21)

where C' and P are the call and put option prices on the KOSPI 200 index respectively, and
X is the strike price. Finally we eliminate the deep in-the-money options and options with

less than six-days to expiration since they may incur liquidity-related biases.

4.2 Numerical Illustration

As reported in Table 1 and 2, and illustrated in Figure 2 and 3, we compute the European
call option prices using the extended normal model we propose here whose pricing formula
is expressed in Equation (20), with varying the kurtosis but fixing skewness zero, and with
varying skewness but fixing kurtosis 3, respectively. In particular, Table 1 presents call
option prices at kurtosis of 3.0, 4.0, 5.0, and 6.0, respectively for the range of exercise prices
from 80.0 to 115.0 with 2.5 interval. Also Table 2 shows the call prices at skewness of -0.4,
-0.2, 0.0, 0.2 and 0.4, respectively for the same range of exercise prices. If skewness is 0
and kurtosis is 3.0, it turns out that the prices are equivalent to those computed using the
Black-Scholes formula. Figure 2 and 3 illustrate the difference of option prices derived by
subtracting the Black-Scholes prices from the prices using the extended normal model, with
varying the kurtosis or the skewness. In computing the option prices, the futures price Fy
is 97.5, the risk-free interest rate r is 5%, the volatility of the underlying asset o is 30%,
and the time to maturity is 0.1 year.

As shown in Figure 2, the ITM (in-the-money) and OTM (out-of-the-money) option
prices derived using the extended normal model become larger, and ATM (at-the-money)
option prices become smaller if the kurtosis increases. Also as shown in Figure 3, the
ITM option prices derived using the extended normal model become smaller, but OTM
option prices become larger if the skewness increases. These results imply that if the actual

kurtosis of the distribution for the underlying asset is greater than three, the Black-Scholes

12



model systematically overprices ATM calls while it underprices deep ITM and deep OTM
calls. They also imply that if the actual skewness of the distribution for the underlying
asset is less than zero, the Black-Scholes model systematically overprices OTM calls while

it underprices I'TM calls.

4.3 Parameter Estimation and In-Sample Performance

For the empirical comparison to follow, we concentrate on the four model: the Black-
Scholes model (hereafter BS), the ad hoc Black-Scholes model (hereafter ahBS) based on
the deterministic volatility function proposed by Dumas, Flemming and Whaley (1998),
the corrected version of Corrado-Su (1996, 1997) model (hereafter CS), and the extended
normal model we propose here (hereafter EN).

In estimating the parameters of the deterministic volatility function in ad hoc Black-

Scholes model, we approximate the volatility with the quadratic polynomial function:
o(X) = a(X/F = )"+, (22)

where F is the futures price, X is the exercise price, and the parameters «, 3, denote the
degree of smile, the center axis of the smile, and the minimum level of the volatility, respec-
tively. As we point out previously, the Corrado-Su model does not satisfy the arbitrage-free
condition and it has been corrected by Jurczenko et al. (2004). We call as CS here the
corrected version of Corrado-Su model.

In making an estimation of the implied values of parameters for each model, we apply
the Levenberg-Marquart method. First let the function V(X,0,&, k) denote the model-
based option price computed from the proposed pricing formula when the exercise price is
X, volatility is o, skewness is £, and kurtosis is k, respectively. Secondly V; is denoted by
the market price of a KOSPI 200 index option with exercise price X; for all: =1,2,... , N.
Then one can obtain the estimated values of parameters (o,& and k) by minimizing the

following term:

N

ST V(X 0,6, k) - Vi)Y (23)

i=1

Since the I'TM call option data has biases due to a low level of liquidity, we transform the
OTM put option prices into the equivalent call prices by applying the put-call parity, and
use them in fitting the parameters, as in Ait-Sahalia and Lo (1998).

13



Table 3 shows the estimated values of the associated parameters for each model; implied
volatility for BS, «, 8, for ahBS, implied volatility, implied skewness and implied kurtosis
for CS and EN model. The values of the implied volatility for each model is nearly the
same in that the maximal difference between them is at most 0.01 as seen in Table 3. The
degree of skewness turns out to be negative values and the kurtosis are greater than three
for the CS and EN model, as expected. The difference of the values are greater than that of
implied volatility, but is not larger than 0.05 for skewness and 0.35 for kurtosis, respectively.
This result implies that the actual density of the underlying stock index shows skewness to
the left and high peaks as pointed out by previous researches.

Table 4 reports the monthly average MSE (mean squared errors) between the market
price and the model determined price for each KOSPI 200 index option collected at 2:45
PM on every trading day, with respect to moneyness, F'//X, where F' is the implied futures
price and X is the strike price. As one expects, the model determined prices with more
parameters better fit the market prices. The result that ahBS, CS, and EN models with
three structured parameters have less pricing errors than the BS with one parameter is not
so surprising. Therefore it is a natural step to examine each model’s out-of-sample pricing

performance to follow.

4.4 Out-of-Sample Pricing Performance

To measure the out-of-sample pricing performance for each model, we first estimate the
parameter values from the previous day’s market option prices and then use them as input
to compute the current day’s model determined option prices. This procedure is repeated for
every option and each day in the sample to evaluate the pricing errors in three different ways:
MSE (mean squared errors), MAE (mean absolute errors), and MPE (mean percentage
errors). Table 5, 6 and 7 summarize the average pricing errors between the market price
and the model price with different measures with respect to moneyness, F'/X, where F is
the implied futures price and X is the strike price. The out-of sample pricing performance
of the model EN is better than the BS model and not less than the ahBS and CS models
on all three measures, MSE, MAE and MPE.

14



5 Conclusion

This research proposes a closed pricing formula for European options when the natural
logarithm of the underlying asset price is extended normally distributed, which allows us to
manipulate the skewness and kurtosis for the distribution on the underlying return. This
study also suggests the moment restriction so that the pricing model under any arbitrary
distribution for an underlying asset must satisfy the arbitrage-free condition or risk-neutral
valuation scheme. Those two works constitute the main contribution of this paper.

Numerical experiments and comparison of empirical performance of the proposed model
with the Black-Scholes, ad hoc Black-Scholes, and Gram-Chalier distribution model are
carried out to show that the new proposed formula fits the real market prices better than
the classical Black-Scholes formula, and competes with the ad hoc Black-Scholes and Gram-
Chalier model. In particular, we make an estimation of implied volatility, skewness and
kurtosis of the return on the underlying assets from the market prices of the KOSPI 200
index options, and perform in-sample and out-of-sample test. These results support the
previous finding that the actual density of the underlying stock index shows skewness to
the left and high peaks.

Future research includes in-sample and out-of-sample empirical test to verify the empir-
ical performance of this proposed model using foreign option market data such as S&P 500

index option in the U.S.
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Appendix

A Proof of Proposition 1

Proof. Consider the expected value of the option payoff at the maturity under the risk-

neutral measure:

E{(Sr— X)) = [ {exp(y) = X} funmery)dy

In X
= [ fexploy - m) - X} Healo)dy
(InX—m)/s
= / {exp(sy +m) — X} h(y)dy
(InX—m)/s
1 & d3h
- 65 / {exp(sy +m) — X} LWy
(InX—m)/s
> d*h(y)
— (k-3 / exp(sy+m) — X dy,

where s = oy/T. Using the partial integration allows the evaluation of the integrand as

follows.
i—2
o h(y) 1djh InX —m
exp(sy +m dy = —-X s)i I _
/(lnX—m)/s{ ( ) dy"’ jg()( ) dyJ S
+(—s ’/ exp(sy +m)h(y)dy
(InX—m)/
Thus the expected payoff is given by:
E{(S7 — X)T} = {1 + 58 + 21 (k: 3)s }/ exp(sy +m)h(y)dy
(InX— m)/s
o] InX —
s h(y)dy + X { &+ o (k 3)s } h (u>
(InX-m)/s s

{§s+ (k—3)s }h’(@)
+X{24(k 3)}}/’(@)
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= xoo h(y)dy, we can simplify the above

Using the normal distribution function, ®(x)

equation as follows:
BUSr - X)) = {14 56° + 5= 9) }eXp<m+152)¢(w>
so( “> b o) (5229
{£s+ }cb”(lnx m)

+X{2 (k—3)s }(I)’” (Q)

Therefore the price of a call option with time to maturity of T, C' = e "TE{(Sy — X )T}, the

O

discounted expected payoff under the risk-neutral measure can be derived as asserted

B Proof of Proposition 2

Proof. Consider the expected value of the option payoff at the maturity under the risk-

neutral measure:
E{(Sr— X))t} = ) (exp(sy +m) — X) Je (y)dy
o0 InX —m
/ (exploy -+ m) = X) () — & {saxr (M)
(InX—m)/s §

—S2Xlk (M) _ 53/ exp(sy + m)lk(y)dy}
S (In X—m)/s

o0

Ik (y)dy

nX—-m)/s
— —InX
+§{3Xl,’€ <m lnX> L 2X <m n )}
6 s s
_ SoerT
A+ B

o hoalo)dy + (1= p) |
( (InX—m)/s

- X
In X—m)/s

¢ o oo () s ()

1 o
_ <1 + —533) / exp(sy +m)l(y)dy — X
a (InX—m)/s

o0

eXp(Sy)ho,ﬁ(y)dy]

[ ety + - [
(InX—m)/s (InX—m)/s

o

ho,ﬁ(y)dy]

5
—InX —InX
+52X {phqa <7m SH ) + (1 —p)h(],ﬁ (7m Sn >}:| .
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Rearranging the above equation yields:

E{(Sy — X)T} = Spe'”

A & B &
ha25a y)dy + / h 25,8\Y dy
A+B (InX—m)/s ’ ( ) A+B (InX—m)/s g ﬁ( )

- X [p/(oo ho,o(y)dy + (1 —p) /oo ho,,@(y)dy]

In X—m)/s (InX—m)/s

£X ~lnX\ 1- —InX
o () ()

2 {pho,a (g) + (1= p)hog (@) H

Transforming hg o into hg ;1 by normalizing gives:

E{(ST — X)Jr} = SoerT

A [ B[
A+ B /ﬂnXa?s?m)/gél(y) AV /(mx,azsam)/g’sl(y) y]

- X [p /(00 ho,1(y)dy + (1 —p) /OO h071(y)dy]

In X—m)/as (InX—m)/Bs

EXs | p m—1InX m—1InX
T\ hoy (| ———
6 |« a“s as

1-— —InX —InX
* p<3_mﬂ2? )h‘”<m iy ﬂ

It follows by the normal distribution function, ®(z) = ffoo ho(y)dy, that:

A m+a?s? —InX B m+ (%s> —In X
. + — rT
E{(Sr=X)"} Soe [A+B(I>( as >+A+B¢< Bs >]

_X[p(I)(m—lnX)+(1_p)@<m—lnX>]
as 0Os

+§Xs [Q <s— m—zlnX> o (m—lnX>

6 |« a“s as

1—p m—InX\ ,/m—-InX

— )

- v ()]

By letting D = W7 we obtain:

E{(St—X)*} = Spe'” [icb <Q+as>+ lj ®<9+ﬂs>]

A+ B o

s [pq) (g) +(1—p)® 7
a2 (@)




Therefore the price of a European call is given by:
A D B D
O:SQ|: @( -i-ozs)—i— <I><—+ﬁs)]

A+B \a
)} (24)
i

— Xe T [pq) (g) +(1—p)

D

5

Xs _, D\ (D
< T[S(S‘@ﬁ’(&)

In(So/X) + 1T —In(A+ B) —In (1 + $&5%)
D =
oVT

where
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C Figures and Tables
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Ext. Normal (skew:-0.3, kurt:3.4)

Figure 1: Comparison of Density for Normal, Gram-Chalier and Extended Nor-

mal

This figure compares the density function of standard normal, Gram-Chalier, and extended normal
distributions. In the Gram-Chalier, and extended normal distribution, the skewness is -0.3 and

kurtosis is 3.4.
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Figure 2: Call Option Prices with Varying Kurtosis

This figure compares the differences of European call option prices computed using the extended
normal model proposed here, with different kurtosis 3, 4, 5, 6. The current futures price is 97.5, the
range of exercise prices is from 80 to 115, risk-free interest rate is 5%, the volatility of underlying is

30%, and the time to maturity is 0.1 year.
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Figure 3: Call Option Prices with Varying Skewness

This figure compares the differences of European call option prices computed using the extended
normal model proposed here, with different skewness -0.4, -0.2, 0, 0.2, 0.4. The current futures price
is 97.5, the range of exercise prices is from 80 to 115, risk-free interest rate is 5%, the volatility of
underlying is 30%, and the time to maturity is 0.1 year.
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