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Option Pricing under Extended Normal

Distribution

Abstract

This paper proposes a closed pricing formula for European options when the dynam-

ics of an underlying asset price does not follow the typical geometric Brownian motion

as in a Black-Scholes framework. Instead the return distribution of the underlying asset

is supposed to have any different degrees of skewness and kurtosis relative to the normal

distribution by introducing the extended normal distribution. We suggest the moment

restriction so that the pricing model under any arbitrary distribution for an underlying

asset must satisfy the arbitrage-free condition.

Numerical experiments and comparison of empirical performance of the proposed

model with the Black-Scholes, ad hoc Black-Scholes, and Gram-Chalier distribution

model are carried out. In particular, we make an estimation of implied parameters such

as volatility, skewness and kurtosis of the return on the underlying asset from the mar-

ket prices of the KOSPI 200 index options, and perform in-sample and out-of-sample

test. These results support the previous finding that the actual density of the underly-

ing asset shows skewness to the left and high peaks.

Key Words: option pricing, extended normal distribution, Gram-Chalier series expan-

sion, martingale restriction, moment restriction, skewness, kurtosis, KOSPI 200 index

option
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1 Introduction

One of the assumptions previously made in earlier works on the valuation of an option is

that the underlying stock price follows a geometric Brownian motion through time which

produces a log-normal distribution for the stock price between any two points in time.

The diffusion processes provide a nice framework to analyze lots of financial derivatives

mathematically and simplify the analysis with a relatively-less complicated Ito stochastic

calculus. The option pricing models of Black-Scholes (1973) and Merton (1973) are derived

in this framework.

However, there are several deficiences reported in the Black-Scholes framework. First,

the market prices of options are frequently different from those derived using Black-Scholes

formula especially in deep-in-the-money and deep-out-of-the money options. These mis-

pricings arise since the true return distribution of the underlying asset shows asymmetric

leptokurtic features such as a high peak or heavier tails with skewed left or right. These de-

ficiencies are addressed in empirical studies by Black (1975), Macbeth and Merville (1980),

Rubinstein (1985), and Whaley (1982). Another drawback is the so-called volatility smile:

the implied volatility of an option as a function of its strike price resembles smile curve.

However it should be constant in a framework of Black-Scholes model.

A number of studies have been made to overcome these deficiencies, and the approaches

are categorized into three groups. The first group extends the Black-Scholes framework by

incorporating stochastic jumps or stochastic volatility. This group includes Merton (1973),

Hull and White (1987), Heston (1993), Bates (1996), and Bakshi, Cao, and Chen (1997).

Since the models of this group explain the stock movement with multiple stochastic factors,

the market is no longer complete, and so there may exist many equivalent martingale

measures, which complicates dealing with the analysis.

The second group uses other distributions for the rate of return on the underlying asset

rather than the normal distribution. Jarrow and Rudd (1982), Corrado and Su (1996),

Rubinstein (1998) and Li (2000) develop option pricing models by using distribution with

third and fourth moments for the underlying assets. In particular, Jarrow and Rudd (1982)

use Edgeworth series expansion to the log-normal distribution function, and Corrado and

Su (1996) apply the Gram-Chalier series expansion to the normal distribution function.

Ritchey (1990) proposes an option pricing formula under an assumption that the underlying

asset’s return is distributed as k-component independent normal mixtures. Janicki et al.
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(1997) and Hurst et al. consider the problem of pricing options when the process of the

underlying asset is assumed to be driven by an α-stable Levy motion. Bibby and Sørensen

(1997) propose a pricing model under the assumption that the underlying asset price follows

a hyperbolic diffusion process. Despite their usefulness in explaining the stock movement

with skewness and kurtosis, their stochastic models does not satisfy the condition of Levy

process, and so it is not easy to transform the models in any discrete framework such as

binomial tree model.

Finally, third group estimates the stochastic density function of the underlying asset

directly from the market option prices. This group includes Derman and Kani (1994),

Dupire (1994), and Rubinstein (1994). Also a study of Aı̈t-Sahalia and Lo (1998) estimates

the stochastic density function with a non-parametric method.

As pointed out by Harrison and Kreps (1979), and Harrison and Pliska (1981, 1983),

the value of a European style option is a discounted expected value of the option payoff

at the maturity under risk-neutral measure. In a complete market, only one risk-neutral

measure exists, and the discounted asset price should satisfy the martingale property. This

condition is called martingale restriction by Longstaff (1995). In this paper, we propose an

equivalent condition to the martingale restriction, namely, moment restriction, using the

property of moment generating function so that the option pricing model satisfy the risk-

neutral condition or arbitrage-free condition. Using this restriction we correct the pricing

formula of Corrado-Su (1996) based on the Gram-Chalier series expansion, which however

is not satisfying the martingale restriction.

The main part of our research is to suggest another pricing formula for European options

when the return of the underlying asset follows the extended normal distribution, which

allows different degrees of skewness and kurtosis of the return on the underlying asset by

taking a linear combination of two normal distributions with Gram-Chalier series expansion.

By imposing the moment restriction on the expected value of the natural logarithm of

the asset price, we derive another risk neutral option pricing model. The form of extended

normal distribution suggested in this paper has been never addressed in previous researches,

as we know, and the associated pricing model outperforms previous models such as Black-

Scholes (1973), Corrado-Su (1996), and Dumas, Flemming, and Whaley (1998), as a result

of in-sample test, and out-of-sample test.

The paper is organized in the following way. Section 2 describes a general model for

the valuation of European options when the underlying asset follows a general probability
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distribution under a risk-neutral measure. We begin Section 3 with the derivation of a

pricing formula when the underlying asset follows an extended normal distribution. This

section is the main part of this paper. Section 4 represents numerical examples and compares

the empirical performance of the proposed model with previous pricing models. For this

purpose, we estimate the values of the parameters such as volatility, skewness and kurtosis

from the market prices of the KOSPI 200 index options. Finally, Section 5 concludes with

suggestions for future research.

2 Risk-neutral Valuation Model

We assume throughout this paper that (1) there are no friction such as asymmetric taxes,

transaction costs, bid-ask spreads, and trading takes place continuously in the financial

markets, (2) there are two tradable assets in the market, a risky asset and a risk-free asset,

(3) the risk-free interest rate and the volatility of the rate of return on the risky asset are

known and constant through time. We also assume the market is complete so that there

exists a unique equivalent martingale measure for this market. Let St denote the risky asset

price at time t. Under a risk-neutral measure, P, where it exists, the asset price should

satisfy the following condition, which is called martingale restriction by Longstaff (1995):

Martingale restriction: E{ST } = S0e
rT ,

where E denotes the expectation operator under the risk-neutral measure P, and S0 is an

initial price of underlying asset. The moment generating function, M(θ), of an arbitrary

distribution, under which a random variable Y follows, is given by

M(θ) = E{eθY }. (1)

In particular, the moment generating function for lnST with θ = 1 is given by

M(1) = E{elnST } = E{ST }. (2)

Thus martingale restriction can be rewritten as follows, which we call moment restriction

for the risk-neutral valuation, and it imposes the restriction for the mean of futures stock

prices under the risk-neutral measure.
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Moment restriction: M(1) = S0e
rT .

Unless the mean of the future stock price after T satisfies the moment generating function

with θ = 1, the valuation formula from this framework is not a risk-neutral valuation

scheme, and so it is not no arbitrage option pricing model.

Now consider the option pricing model with moment restriction. When the density

function of logarithmic asset price is h(y), the price of a European call option C, with

exercise price X, and time to maturity of T , is given by

C = e−rTE{(ST −X)+}

= e−rT
∫ ∞
X

(ST −X)dP(ST )

= e−rT
∫ ∞

lnX
{exp(y)−X}h(y)dy.

(3)

We apply the moment restriction to the two distributions for logarithmic stock prices at

maturity; normal distribution, and Gram-Chalier distribution, and derive the corresponding

option pricing formula under each different distribution in the following subsection.

2.1 Normal distribution

Black-Scholes (1973) assume that the natural logarithm of the asset price follows the normal

distribution with mean m and standard deviation of σ
√
T . Since the moment generating

function of the normal distribution is given by M(θ) = exp{mθ+σ2θ2T/2}, it follows from

the moment restriction that:

M(1) = exp{m+ σ2T/2} = S0e
rT . (4)

Thus the mean value m is given by

m = ln(S0e
rT )− 1

2
σ2T

= ln(S0) + (r − 1
2
σ2)T.

(5)

If we let hm,s denote the density of normal with mean m and standard deviation s = σ
√
T ,

the price of a European call C with exercise price X, and time to maturity T , is follows
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from the Equation (3) that

C = e−rT
∫ ∞

lnX
{exp(y)−X}hm,s(y)dy

= e−rT
∫ ∞

(lnX−m)/s
{exp(sy +m)−X}h0,1(y)dy

= e−rT exp
(
m+

1
2
s2

)∫ ∞
(lnX−m)/s

hs,1(y)dy − e−rTX
∫ ∞

(lnX−m)/s
h0,1(y)dy

= S0

∫ ∞
(lnX−m)/s

hs,1(y)dy − e−rTX
∫ ∞

(lnX−m)/s
h0,1(y)dy.

By letting Φ(x) =
∫ x
−∞ h0,1(x)dx, the same formula as Black-Scholes(1973) can be derived

by

C = S0Φ
(
m+ s2 − lnX

s

)
−Xe−rTΦ

(
m− lnX

s

)
= S0Φ(d1)−Xe−rTΦ(d2),

(6)

where

d1 =
ln(S0/X) +

(
r + 1

2σ
2
)
T

σ
√
T

, d2 = d1 − σ
√
T .

2.2 Gram-Chalier distribution

In this subsection we derive a pricing formula of a European call when the risk neutral

distribution of the future asset price follows a different distribution from the normal with

non-zero skewness and kurtosis greater than three.

Now consider a Gram-Chalier series expansion, Hξ,k(x), as follows

Hξ,k(x) = h(x)− 1
6
ξ
d3h(x)
dx3

+
1
24

(k − 3)
d4h(x)
dx4

= h(x)
{

1 +
1
6
ξ(x3 − 3x) +

1
24

(k − 3)(x4 − 6x2 + 3)
}
,

(7)

where h denotes the density function of standard normal. Next, define a new probability

density function.

Definition 1. If the density function of a random variable Y is given by

fm,σ,ξ,k(y) =
1
σ
Hξ,k

(
y −m
σ

)
, (8)
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then the random variable is called to follow Gram-Chalier distibution, GC(m,σ, ξ, k), with

mean m, standard deviation σ, skewness ξ, and kurtosis k.

Figure 1 illustrates the density function of normal and Gram-Chalier distribution, with

skewness(ξ) -0.3 and kurtosis(k) 3.4. The moment generating function of the Gram-Chalier

distribution is given by

M(θ) = exp(mθ)
∫ ∞
−∞

exp(σθz)Hξ,k(z)dz. (9)

Now we will derive the pricing formula for a European call when the logarithmic price

of the asset follows a Gram-Chalier distribution. We suppose the natural logarithm of the

asset price at time T , lnST , follows a Gram-Chalier distribution, GC(m,σ
√
T , ξ, k). The

mean of lnST , m, should satisfy the moment restriction, and so m is given using the moment

generating function as follows:

m = ln

[
S0 exp(rT )∫∞

−∞ exp(sz)Hξ,k(z)dz

]
. (10)

Since ∫ ∞
−∞

exp(sz)
dih(z)
dzi

dz = (−s)i
∫ ∞
−∞

exp(sz)h(z)dz = (−s)i exp
(

1
2
s2

)
,

the denumerator inside of the logarithmic function of Equation (10) is evaluated as:∫ ∞
−∞

exp(sz)Hξ,k(z)dz = exp
(

1
2
s2

){
1 +

1
6
ξs3 +

1
24

(k − 3)s4

}
.

Therefore the mean m is obtained as follows:

m = lnS0 + (r − 1
2
σ2)T − ln

{
1 +

1
6
ξs3 +

1
24

(k − 3)s4

}
. (11)

In the Black-Scholes formula, the third term of Equation (11) disappears since the skewness(ξ)

is 0, and the kurtosis(k) is 3. Thus the Black-Scholes formula can be regarded as a special

case of this formula.

Remark 1. In the formula of Corrado-Su (1996), they assume the natural logarithm of

the asset price at time T , lnST follows the Gram-Chalier distribution, GC(m′, σ
√
T , ξ, k),

where

m′ = lnS0 + (r − 1
2
σ2)T,
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which is the same as in the Black-Scholes model, although the underlying distribution

changes. As a result, the expected value of the asset price at the maturity under the risk-

neutral measure is given by

E{ST } = S0e
rT

{
1 +

ξ

6
s3 +

k − 3
24

s4

}
6= S0e

rT ,

which shows that the pricing model of Corrado-Su(1996) does not satisfy risk-neutral valu-

ation scheme.

Once the distribution for the asset price at the maturity is provided, we can evaluate

the price of a European call as follows.

Proposition 1. If the natural logarithm of the asset price follows the Gram-Chalier distri-

bution, GC(m,σ
√
T , ξ, k) under the risk-neutral measure, where the mean value m is given

by Equation (11), then the arbitrage-free price of a European call, C, with exercise price X

and time to maturity T is given by

C = S0Φ(D1)−Xe−rTΦ(D2)

+Xe−rT
{
σ
√
TE1Φ′(D2) + E1Φ′′(D2) + E2Φ′′′(D2)

}
,

(12)

where

D1 =
ln(S0/X) +

(
r + 1

2σ
2
)
T − ln

{
1 + σ2TE1

}
σ
√
T

,

D2 = D1 − σ
√
T ,

E1 =
1
6
ξσ
√
T +

1
24

(k − 3)σ2T,

E2 =
1
24

(k − 3)σ
√
T ,

and where Φ,Φ′,Φ′′,Φ′′′ denote the normal distribution function, its first, second, and third

derivative function, respectively.

Proof. See the Appendix.

If the skewness is 0, and kurtosis is 3, i.e., ξ = 0, k = 3, then both E1 and E2 equal to

zero, and so the pricing formula is the same as what Black-Scholes (1973) derived.

Remark 2. In their independent research, Jurczenko et al. (2004) also corrected the pric-

ing formula of Corrado-Su (1996), and proposed another formula by imposing the restriction

of risk-neutral condition. Their corrected formula is the same as Equation (12) we derived.
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3 Option Pricing under Extended Normal Distribution

We begin this section with introducing a new distribution for the asset price at the maturity.

Let hm,σ denote the density function of normal distribution with mean m and standard

deviation σ. Also define p, α, and β for k ≥ 0 as follows:

p = 1− 9
k2
,

α2 = 1− 1
p

√
p(1− p)

(
k

3
− 1
)
,

β2 = 1 +
1

1− p

√
p(1− p)

(
k

3
− 1
)
.

(13)

This allows us to adjust the levels of kurtosis to any non-negative real numbers in a dis-

tribution. Now consider the following transformations which allow the distribution to

have any flexible levels of skewness. First we define a linear combination of two normal

density functions with each having different standard deviation α, and β, respectively,

lk(x) = p h0,α(x) + (1− p) h0,β(x). Next, define a new function, Jξ,k for real ξ,

Jξ,k(x) = lk(x)− ξ

6
l ′′′k (x)

= p

{
1 +

ξ

6α6

(
x3 − 3α2x

)}
h0,α(x) + (1− p)

{
1 +

ξ

6β6

(
x3 − 3β2x

)}
h0,β(x).

(14)

Thus the new function Jξ,k(x) has the flexible levels of kurtosis and skewness, after two

transformations. In order to make the function a probability density, we finally normalize

it as follows.

Definition 2. If the density function of a random variable Y is given by

fm,σ,ξ,k(y) =
1
σ
Jξ,k

(
y −m
σ

)
, (15)

then the random variable Y is called to follow extended normal distribution EN(m,σ, ξ, k)

with mean m, standard deviation σ, skewness ξ, and kurtosis k.

The moment generating function of extended normal distribution, EN(m,σ, ξ, k), is

given by:

M(θ) = exp(mθ)
∫ ∞
−∞

exp(σθz) Jξ,k(z)dz (16)
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Now suppose that the logarithmic asset price at time T follows the extended normal

distribution, EN(m,σ
√
T , ξ, k). The mean of lnST under the risk-neutral measure is given

by

m = ln

[
S0 exp(rT )∫∞

−∞ exp(sz) Jξ,k(z)dz

]
, (17)

where s = σ
√
T . Since∫ ∞
−∞

exp(sz)Jξ,k(z)dz =
(

1 +
1
6
ξs3

)∫ ∞
−∞

exp(sz)lk(z)dz

=
(

1 +
1
6
ξs3

){
pe

1
2
α2s2 + (1− p)e

1
2
β2s2

}
,

we can obtain the mean value:

m = lnS0 + rT − ln(A+B)− ln(1 +
1
6
ξs3), (18)

where

A = pe
1
2
α2s2 , B = (1− p)e

1
2
β2s2 .

Now consider the price of a European call option.

Proposition 2. If the natural logarithm of the asset price follows the Gram-Chalier distri-

bution, EN(m,σ
√
T , ξ, k) under the risk-neutral measure, where the mean value m is given

by Equation (17), then the arbitrage-free price of a European call, C, with exercise price X

and time to maturity T is given by

C = S0

[
A

A+B
Φ
(
D

α
+ αs

)
+

B

A+B
Φ
(
D

β
+ βs

)]
−Xe−rT

[
pΦ
(
D

α

)
+ (1− p)Φ

(
D

β

)]
+
ξXs

6
e−rT

[
p

α

(
s− D

α2

)
Φ′
(
D

α

)
+

1− p
β

(
s− D

β2

)
Φ′
(
D

β

)]
,

(19)

where

D =
ln(S0/X) + rT − ln(A+B)− ln

(
1 + 1

6ξs
3
)

σ
√
T

Proof. See the Appendix.

If the skewness is 0, and the kurtosis is 3, i.e., ξ = 0, and k = 3, then the above pricing

formula coincides to the Black-Scholes formula.
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Now consider an underlying asset that pays a dividend yield at a rate q per annum. If

we let F0 = S0e
(r−q)T , then the price of a European call is given by

C = F0e
−rT

[
A

A+B
Φ
(
D

α
+ αs

)
+

B

A+B
Φ
(
D

β
+ βs

)]
−Xe−rT

[
pΦ
(
D

α

)
+ (1− p)Φ

(
D

β

)]
+Xe−rT

ξs

6

[
p

α

(
s− D

α2

)
Φ′
(
D

α

)
+

1− p
β

(
s− D

β2

)
Φ′
(
D

β

)]
,

(20)

where

D =
ln(F0/X)− ln(A+B)− ln

(
1 + 1

6ξs
3
)

σ
√
T

.

In fitting the implied parameters of the proposed model, and conducting empirical tests

to follow, we will use the above pricing formula in Equation (20) instead of using that in

Equation (19).

4 Empirical Performance

This section gives some numerical examples and compares the empirical performance of the

proposed model with the three previous models with respect to in-sample and out-of-sample

pricing errors.

4.1 Data Description

We use, for our empirical work, KOSPI 200 (Korea Stock Price Index 200) option prices

provided officially by the KSE (Korean Stock Exchanges). These options are traded at KSE

with expiration dates in the three near-term months along with the following one month

from the March expiration cycle (March, June, September, December). The sample period

extends from Dec 13, 2002 through Dec 11, 2003, which is from the next day of the maturity

date of options that expire December 2002 through the day right before the maturity date

of options that expire December 2003. We use as the risk-free interest rate the CD 91 days

interest rates announced daily by Bank of Korea. For the purpose of parameter estimation

for several models to follow, we use the price quotes at 2:45 PM on each trading day.

There are several possible approaches to determining the expected future rate of dividend

payments by the stocks that compose the index until the expiration of an option. For
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example, Bakshi, Cao and Chen (1997) estimate the daily dividends directly from the

market, and Poteshman (2001) extracts the quantity Se−qT , where q denotes the dividend

yield per annum, from the transactions data from the index futures markets via spot-futures

parity. The approach of Poteshman (2001) is simple to use, but is not applicable at least in

Korea, since the KOSPI 200 index futures contracts expire only in March, June, September,

and December. We instead determine the implied futures price F0 from the call and put

prices by using the put-call parity:

C − P = e−rT (F0 −X), (21)

where C and P are the call and put option prices on the KOSPI 200 index respectively, and

X is the strike price. Finally we eliminate the deep in-the-money options and options with

less than six-days to expiration since they may incur liquidity-related biases.

4.2 Numerical Illustration

As reported in Table 1 and 2, and illustrated in Figure 2 and 3, we compute the European

call option prices using the extended normal model we propose here whose pricing formula

is expressed in Equation (20), with varying the kurtosis but fixing skewness zero, and with

varying skewness but fixing kurtosis 3, respectively. In particular, Table 1 presents call

option prices at kurtosis of 3.0, 4.0, 5.0, and 6.0, respectively for the range of exercise prices

from 80.0 to 115.0 with 2.5 interval. Also Table 2 shows the call prices at skewness of -0.4,

-0.2, 0.0, 0.2 and 0.4, respectively for the same range of exercise prices. If skewness is 0

and kurtosis is 3.0, it turns out that the prices are equivalent to those computed using the

Black-Scholes formula. Figure 2 and 3 illustrate the difference of option prices derived by

subtracting the Black-Scholes prices from the prices using the extended normal model, with

varying the kurtosis or the skewness. In computing the option prices, the futures price F0

is 97.5, the risk-free interest rate r is 5%, the volatility of the underlying asset σ is 30%,

and the time to maturity is 0.1 year.

As shown in Figure 2, the ITM (in-the-money) and OTM (out-of-the-money) option

prices derived using the extended normal model become larger, and ATM (at-the-money)

option prices become smaller if the kurtosis increases. Also as shown in Figure 3, the

ITM option prices derived using the extended normal model become smaller, but OTM

option prices become larger if the skewness increases. These results imply that if the actual

kurtosis of the distribution for the underlying asset is greater than three, the Black-Scholes
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model systematically overprices ATM calls while it underprices deep ITM and deep OTM

calls. They also imply that if the actual skewness of the distribution for the underlying

asset is less than zero, the Black-Scholes model systematically overprices OTM calls while

it underprices ITM calls.

4.3 Parameter Estimation and In-Sample Performance

For the empirical comparison to follow, we concentrate on the four model: the Black-

Scholes model (hereafter BS), the ad hoc Black-Scholes model (hereafter ahBS) based on

the deterministic volatility function proposed by Dumas, Flemming and Whaley (1998),

the corrected version of Corrado-Su (1996, 1997) model (hereafter CS), and the extended

normal model we propose here (hereafter EN).

In estimating the parameters of the deterministic volatility function in ad hoc Black-

Scholes model, we approximate the volatility with the quadratic polynomial function:

σ(X) = α(X/F − β)2 + γ, (22)

where F is the futures price, X is the exercise price, and the parameters α, β, γ denote the

degree of smile, the center axis of the smile, and the minimum level of the volatility, respec-

tively. As we point out previously, the Corrado-Su model does not satisfy the arbitrage-free

condition and it has been corrected by Jurczenko et al. (2004). We call as CS here the

corrected version of Corrado-Su model.

In making an estimation of the implied values of parameters for each model, we apply

the Levenberg-Marquart method. First let the function V (X,σ, ξ, k) denote the model-

based option price computed from the proposed pricing formula when the exercise price is

X, volatility is σ, skewness is ξ, and kurtosis is k, respectively. Secondly Vi is denoted by

the market price of a KOSPI 200 index option with exercise price Xi for all i = 1, 2, . . . , N .

Then one can obtain the estimated values of parameters (σ, ξ and k) by minimizing the

following term:

N∑
i=1

{V (Xi, σ, ξ, k)− Vi}2 . (23)

Since the ITM call option data has biases due to a low level of liquidity, we transform the

OTM put option prices into the equivalent call prices by applying the put-call parity, and

use them in fitting the parameters, as in Aı̈t-Sahalia and Lo (1998).
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Table 3 shows the estimated values of the associated parameters for each model; implied

volatility for BS, α, β, γ for ahBS, implied volatility, implied skewness and implied kurtosis

for CS and EN model. The values of the implied volatility for each model is nearly the

same in that the maximal difference between them is at most 0.01 as seen in Table 3. The

degree of skewness turns out to be negative values and the kurtosis are greater than three

for the CS and EN model, as expected. The difference of the values are greater than that of

implied volatility, but is not larger than 0.05 for skewness and 0.35 for kurtosis, respectively.

This result implies that the actual density of the underlying stock index shows skewness to

the left and high peaks as pointed out by previous researches.

Table 4 reports the monthly average MSE (mean squared errors) between the market

price and the model determined price for each KOSPI 200 index option collected at 2:45

PM on every trading day, with respect to moneyness, F/X, where F is the implied futures

price and X is the strike price. As one expects, the model determined prices with more

parameters better fit the market prices. The result that ahBS, CS, and EN models with

three structured parameters have less pricing errors than the BS with one parameter is not

so surprising. Therefore it is a natural step to examine each model’s out-of-sample pricing

performance to follow.

4.4 Out-of-Sample Pricing Performance

To measure the out-of-sample pricing performance for each model, we first estimate the

parameter values from the previous day’s market option prices and then use them as input

to compute the current day’s model determined option prices. This procedure is repeated for

every option and each day in the sample to evaluate the pricing errors in three different ways:

MSE (mean squared errors), MAE (mean absolute errors), and MPE (mean percentage

errors). Table 5, 6 and 7 summarize the average pricing errors between the market price

and the model price with different measures with respect to moneyness, F/X, where F is

the implied futures price and X is the strike price. The out-of sample pricing performance

of the model EN is better than the BS model and not less than the ahBS and CS models

on all three measures, MSE, MAE and MPE.

14



5 Conclusion

This research proposes a closed pricing formula for European options when the natural

logarithm of the underlying asset price is extended normally distributed, which allows us to

manipulate the skewness and kurtosis for the distribution on the underlying return. This

study also suggests the moment restriction so that the pricing model under any arbitrary

distribution for an underlying asset must satisfy the arbitrage-free condition or risk-neutral

valuation scheme. Those two works constitute the main contribution of this paper.

Numerical experiments and comparison of empirical performance of the proposed model

with the Black-Scholes, ad hoc Black-Scholes, and Gram-Chalier distribution model are

carried out to show that the new proposed formula fits the real market prices better than

the classical Black-Scholes formula, and competes with the ad hoc Black-Scholes and Gram-

Chalier model. In particular, we make an estimation of implied volatility, skewness and

kurtosis of the return on the underlying assets from the market prices of the KOSPI 200

index options, and perform in-sample and out-of-sample test. These results support the

previous finding that the actual density of the underlying stock index shows skewness to

the left and high peaks.

Future research includes in-sample and out-of-sample empirical test to verify the empir-

ical performance of this proposed model using foreign option market data such as S&P 500

index option in the U.S.
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Appendix

A Proof of Proposition 1

Proof. Consider the expected value of the option payoff at the maturity under the risk-

neutral measure:

E{(ST −X)+} =
∫ ∞

lnX
{exp(y)−X} fm,s,ξ,k(y)dy

=
∫ ∞

(lnX−m)/s
{exp(sy +m)−X}Hξ,k(y)dy

=
∫ ∞

(lnX−m)/s
{exp(sy +m)−X}h(y)dy

− 1
6
ξ

∫ ∞
(lnX−m)/s

{exp(sy +m)−X} d
3h(y)
dy3

dy

+
1
24

(k − 3)
∫ ∞

(lnX−m)/s
{exp(sy +m)−X} d

4h(y)
dy4

dy,

where s = σ
√
T . Using the partial integration allows the evaluation of the integrand as

follows.∫ ∞
(lnX−m)/s

{exp(sy +m)−X} d
ih(y)
dyi

dy = −X
i−2∑
j=0

(−s)i−j−1d
jh

dyj

(
lnX −m

s

)
+(−s)i

∫ ∞
(lnX−m)/s

exp(sy +m)h(y)dy.

Thus the expected payoff is given by:

E{(ST −X)+} =
{

1 +
1
6
ξs3 +

1
24

(k − 3)s4

}∫ ∞
(lnX−m)/s

exp(sy +m)h(y)dy

−X
∫ ∞

(lnX−m)/s
h(y)dy +X

{
1
6
ξs2 +

1
24

(k − 3)s3

}
h

(
lnX −m

s

)
−X

{
1
6
ξs+

1
24

(k − 3)s2

}
h′
(

lnX −m
s

)
+X

{
1
24

(k − 3)s
}
h′′
(

lnX −m
s

)
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Using the normal distribution function, Φ(x) =
∫ x
−∞ h(y)dy, we can simplify the above

equation as follows:

E{(ST −X)+} =
{

1 +
1
6
ξs3 +

1
24

(k − 3)s4

}
exp

(
m+

1
2
s2

)
Φ
(
m+ s2 − lnX

s

)
−XΦ

(
m− lnX

s

)
+X

{
1
6
ξs2 +

1
24

(k − 3)s3

}
Φ′
(

lnX −m
s

)
−X

{
1
6
ξs+

1
24

(k − 3)s2

}
Φ′′
(

lnX −m
s

)
+X

{
1
24

(k − 3)s
}

Φ′′′
(

lnX −m
s

)
Therefore the price of a call option with time to maturity of T , C = e−rTE{(ST −X)+}, the

discounted expected payoff under the risk-neutral measure can be derived as asserted.

B Proof of Proposition 2

Proof. Consider the expected value of the option payoff at the maturity under the risk-

neutral measure:

E{(ST −X)+} =
∫ ∞

(lnX−m)/s
(exp(sy +m)−X) Jξ,k(y)dy

=
∫ ∞

(lnX−m)/s
(exp(sy +m)−X) lk(y)dy − ξ

6

{
sX l ′k

(
lnX −m

s

)
−s2X lk

(
lnX −m

s

)
− s3

∫ ∞
(lnX−m)/s

exp(sy +m)lk(y)dy

}

=
(

1 +
1
6
ξs3

)∫ ∞
(lnX−m)/s

exp(sy +m)lk(y)dy −X
∫ ∞

(lnX−m)/s
lk(y)dy

+
ξ

6

{
sX l ′k

(
m− lnX

s

)
+ s2X lk

(
m− lnX

s

)}
=

S0e
rT

A+B

[
p

∫ ∞
(lnX−m)/s

exp(sy)h0,α(y)dy + (1− p)
∫ ∞

(lnX−m)/s
exp(sy)h0,β(y)dy

]

−X

[
p

∫ ∞
(lnX−m)/s

h0,α(y)dy + (1− p)
∫ ∞

(lnX−m)/s
h0,β(y)dy

]

+
ξ

6

[
sX

{
ph′0,α

(
m− lnX

s

)
+ (1− p)h′0,β

(
m− lnX

s

)}
+s2X

{
ph0,α

(
m− lnX

s

)
+ (1− p)h0,β

(
m− lnX

s

)}]
.
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Rearranging the above equation yields:

E{(ST −X)+} = S0e
rT

[
A

A+B

∫ ∞
(lnX−m)/s

hα2s,α(y)dy +
B

A+B

∫ ∞
(lnX−m)/s

hβ2s,β(y)dy

]

−X

[
p

∫ ∞
(lnX−m)/s

h0,α(y)dy + (1− p)
∫ ∞

(lnX−m)/s
h0,β(y)dy

]

− ξX

6

[
(m− lnX)

{
p

α2
h0,α

(
m− lnX

s

)
+

1− p
β2

h0,β

(
m− lnX

s

)}
−s2

{
ph0,α

(
m− lnX

s

)
+ (1− p)h0,β

(
m− lnX

s

)}]

Transforming h0,α into h0,1 by normalizing gives:

E{(ST −X)+} = S0e
rT

[
A

A+B

∫ ∞
(lnX−α2s2−m)/αs

h0,1(y)dy +
B

A+B

∫ ∞
(lnX−β2s2−m)/βs

h0,1(y)dy

]

−X

[
p

∫ ∞
(lnX−m)/αs

h0,1(y)dy + (1− p)
∫ ∞

(lnX−m)/βs
h0,1(y)dy

]

+
ξXs

6

[
p

α

(
s− m− lnX

α2s

)
h0,1

(
m− lnX

αs

)
+

1− p
β

(
s− m− lnX

β2s

)
h0,1

(
m− lnX

βs

)]

It follows by the normal distribution function, Φ(x) =
∫ x
−∞ h0,1(y)dy, that:

E{(ST −X)+} = S0e
rT

[
A

A+B
Φ
(
m+ α2s2 − lnX

αs

)
+

B

A+B
Φ
(
m+ β2s2 − lnX

βs

)]
−X

[
pΦ
(
m− lnX

αs

)
+ (1− p)Φ

(
m− lnX

βs

)]
+
ξXs

6

[
p

α

(
s− m− lnX

α2s

)
Φ′
(
m− lnX

αs

)
+

1− p
β

(
s− m− lnX

β2s

)
Φ′
(
m− lnX

βs

)]
By letting D = m−lnX

s , we obtain:

E{(ST −X)+} = S0e
rT

[
A

A+B
Φ
(
D

α
+ αs

)
+

B

A+B
Φ
(
D

β
+ βs

)]
−X

[
pΦ
(
D

α

)
+ (1− p)Φ

(
D

β

)]
+
ξXs

6

[
p

α

(
s− D

α2

)
Φ′
(
D

α

)
+

1− p
β

(
s− D

β2

)
Φ′
(
D

β

)]
.
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Therefore the price of a European call is given by:

C = S0

[
A

A+B
Φ
(
D

α
+ αs

)
+

B

A+B
Φ
(
D

β
+ βs

)]
−Xe−rT

[
pΦ
(
D

α

)
+ (1− p)Φ

(
D

β

)]
+
ξXs

6
e−rT

[
p

α

(
s− D

α2

)
Φ′
(
D

α

)
+

1− p
β

(
s− D

β2

)
Φ′
(
D

β

)]
,

(24)

where

D =
ln(S0/X) + rT − ln(A+B)− ln

(
1 + 1

6ξs
3
)

σ
√
T
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Figure 1: Comparison of Density for Normal, Gram-Chalier and Extended Nor-
mal

This figure compares the density function of standard normal, Gram-Chalier, and extended normal
distributions. In the Gram-Chalier, and extended normal distribution, the skewness is -0.3 and
kurtosis is 3.4.
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Figure 2: Call Option Prices with Varying Kurtosis

This figure compares the differences of European call option prices computed using the extended
normal model proposed here, with different kurtosis 3, 4, 5, 6. The current futures price is 97.5, the
range of exercise prices is from 80 to 115, risk-free interest rate is 5%, the volatility of underlying is
30%, and the time to maturity is 0.1 year.
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Figure 3: Call Option Prices with Varying Skewness

This figure compares the differences of European call option prices computed using the extended
normal model proposed here, with different skewness -0.4, -0.2, 0, 0.2, 0.4. The current futures price
is 97.5, the range of exercise prices is from 80 to 115, risk-free interest rate is 5%, the volatility of
underlying is 30%, and the time to maturity is 0.1 year.
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Pantéon-Sorbonne, Paris.

[24] Jurczenko, E., Maillet, B. and Negrea, B. (2004). Skewness and Kurtosis Implied by

Option Prices: A Second Comment. forthcoming in Quantitative Finance.

[25] Li, F. (2000). Option Pricing: How Flexible Should the SPD be? Journal of Derivatives,

7, 49–65.

[26] Longstaff, F. A. (1995). Option Pricing and the Martinagle Restriction. Review of

Financial Studies, 8, 1091-1124.

[27] MacBeth, J. and Merville, L. (1980). Tests of the Black-Scholes and Cox Call Option

Valuation Models. Journal of Finance, 35, 285–303.

31



[28] Merton, R. C. (1973). Theory of Rational Option Pricing. Bell Journal of Economics

and Management Science, 4, 141–183.

[29] Merton, R. C. (1976). Option Pricing when the Underlying Stock Returns are Discon-

tinuous. Journal of Financial Economics, 5, 125–144.

[30] Poteshman, A. M. (2001). Underreaction, Overreaction, and Increasing Misreaction to

Information in the Options Market. Journal of Finance, 56, 851–876.

[31] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1987). Numerical

Recipes: The Art of Scientific Computing. New York: Cambridge University Press.

[32] Protter, P. (1990). Stochastic Integration and Differential Equations: A new Approach.

Springer-Verlag.

[33] Ritchey, R. J. (1990). Call Option Valuation for Discrete Normal Mixtures. Journal of

Financial Research, 4, 285–296.

[34] Rubinstein, M. (1985). Nonparametric Tests of Alternative Option Pricing Models

Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes

from August 23, 1976 through August 31, 1978. Journal of Finance, 40, 445–480.

[35] Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance, 69, 771–818.

[36] Rubinstein, M. (1998). Edgeworth Binomial Trees. Journal of Derivatives, 5, 20–27.

32


