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Implied Volatility with Transaction Costs and

the Market Efficiency of the KOSPI 200 Option Market”

ABSTRACT

The “smile” m Black-Scholes implied volatilities 15 observed mn the KOSPI 200 index option market. In
addition, the Black-Scholes implied volatility 1s not an unbiased estimator of the future realized volatility over
the remaining life of the option.

This paper examines the possibility that measurement errors in variables and transaction costs cause these
anomalies. Stnulation results show that measurement errors and transaction costs may explain the volatility
smile observed in the real world. However, unlike the result of Christensen and Prabhala (1998), empirical
results show that measurement errors and transaction costs are not enough to fully explamn the bias of the
mplied volatilities, especially for ATM options, mn forecasts of the future realized volatility We also
document evidence that trading strategies that exploit these anomalies can be profitable. We interpret the
empirical evidence documented m this paper as suggesting evidence that the KOSPI200 options market may

not be efficient.



1. Introduction

In an efficient market, the prices of traded assets reflect all the information available to investors.

Specifically, option prices should convey the market information regarding the future volatility of the

underlying asset returns. Under the assumptions of Black and Scholes (1973), the so-called Black-Scholes

mplied volatility should reflect complete information about the future volatility expected to be realized over

the remaming life of the option. The Black-Scholes implied volatility 1s determimed uniquely across those

options with different exercise prices and the same expiration date. Therefore, the inplied volatilities across

the moneyness should be flat.

If the market is efficient and no errors in the variables exist, then the observed option prices reflect the

rational expectation of mvestors conceming the future volatilities of the underlymg assets. Thus, the BS

mmplied volatility should be an unbiased estimator of the realized volatility. Day and Lewis (1992), using the

data from 1983 through 1989, found that the implied volatilities of OEX options have sufficient information

regarding one-week volatility.

However, Canma and Figlewski (1993) examined whether the implied volatility was an unbiased

estimator of future volatility in the OEX option market from 1983 through 1987, and found that implied

volatility had virtually no correlation with future retum volatility. Moreover, they found that the histonical

volatility has better forecasting power than the mnplied volatility. In addition, Lamoureux and Lastrapes



(1993) documented that the forecasting power of the historical volatility 1s better than the unplied volatility,

using the individual stock options data from 1982 to 1984. The foregoing empirical evidence calls into

question the joint hypothesis that the Black-Scholes model is correct and the market is efficient. On the other

hand, Jonon (1995) showed that the forecasting power of the implied volatilities of the CME exchange

options on futures 1s better than the estimators usmng historical data, GARCH(1,1) or MA(20).

Christensen and Prabhala (1998) suggested that the result of Camna and Figlewski was caused by

problems with the sample period, usage of overlapping data and measurement errors. Christensen and

Prabhala reexamined the relationship between implied volatility and the subsequent realized volatility for the

OEX options marlet using the non-overlapping ATM option data for a long time. Using the 2518 method to

diminish the errors m variables, they showed that the wnplied volatility 1s an unbiased forecast of future

volatility.

Tn reality, Implied volatilities across the moneyness are not flat. Tn many markets, a “smile” or “smirk™ is

observed. This phenomenon can be observed when the underlying asset’s return process is not a geometric

Browmian motion or when transaction costs or measurement errors exist, or both.

Many authors showed that the Black-Scholes implied volatility would display a smile pattern when the

underlying asset’s return follows a jump-diffusion process or a diffusion process with stochastic volatility. In

addition, Kim et al. (1994) and Hentschel (2003) showed that either transaction costs or the measurement



errors i variables could cause smiles to occur

The first goal of this paper is to examine whether the Black-Scholes implied volatility is an unbiased

forecast of the realized return volatility and if it is flat across the moneyness in the KOSPT 200 index option

market. If the implied volatility 1s an unbiased estimator of the future volatility that the market expects, then

the following equation holds:

IV =E,.(c),

where IV is the implied volatility, and £, .. (&) denotes the market’s expectation for ¢ . This relation

leads to a regression test for the rationality of a forecast as shown below:

c=a+ fF(D)+u.

where & is the realized volatility of the underlying asset’s return, £'(D) is the forecast of ¢ based on

the information set @, and # is the regression residual. If the forecast is the expected value of &

conditional on @, the regression estimates for & and £ should be O and 1, respectively. Canina and

Figlewski considered the implied volatility and the historical volatility as F (®,) and F,(®,). They

tried to verify that the information contents of implied volatility (@,) include that of historical volatility

(D, ) by “encompassing regression”:

og=o+ P F(@)+ [, (D,)+u.

The full mformed forecast’s coeflicient, ﬂl should still be 1 and the less mformed forecast should be



P, =0. We can test the joint hypothesis of the market efficiency and the Black-Sholes economy using the

above regression. In this paper, we show that the joint hypothesis does not hold true in KOSPT 200 option

market.

The second goal of this paper 1s to analyze why the hypothesis examined 1s rejected. First, this paper

exammes the relation between the Black-Scholes mnplied volatility and the realized volatility by using a

simulation of the conditions under which transaction costs exist. The transaction costs and the measurement

errors m variables seem to be able to explam the “smile” but cannot explam the bias of implied volatilities,

especially for the ATM options, in forecasts of the realized volatility.

Also, we test the market efficiency by means of the trading strategy that uses the forecast of the future

volatility. The strategy 1s to sell the overvalued options which have mplied volatilities that are greater than

the forecast and to buy the undervalued options which have implied volatilities that are lower than the forecast.

This strategy leads to profits even after considering the transaction costs. Therefore, the market efficiency of

the KOSPT 200 option market is doubtful. Additional evidence supporting market inefficiency is given.

We begin the analysis m section 2 with a data description of the KOSPI 200 option market and a simple

hypothesis test. The data show a volatility smile, and the hypothesis that the implied volatilities are unbiased

estimators of the future realized volatility is rejected for all moneyness. Section 3 examines the effect of the

transaction costs and the measurement errors m variables. The simulation procedure 1s described and the



effect 15 analyzed. In addition, test results obtained by using the 2SLS estimation to dimmish the errors in

variables are shown. Section 4 suggests a trading strategy using the forecast of the future volatility. Also, in

section 4, the profits obtained by the proposed strategy are reported. Cur conclusions are presented in section

. Data Description and the Hypothesis

2.1 Sampling procedure

We use the closing prices for the KOSPT 200 index options traded on the KSE (Korea Stock Hxchange).

The KOSPT 200 index option contracts are by far the most actively traded index options in terms of the

number of contracts traded. In 2002, the number of contracts traded m the KOSPI200 options market was

about 1.93 billion, which 1s larger than the sum of all the options contracts traded m CME, CBOT and CBOE.

Trading of KOSPT 200 index options began in July 1997 and our sample covers the period from October

1999 to March 2003. The option expires on the second Thursday of each month, and 43 expiration dates are

available within the sample period.

To obtain the historical volatilities and the realized volatilities, the KOSPT 200 index data from August

1999 through April 2003 are used. We elimmated the put options and those options with fewer than 3 or

more than 30 days to expiration. In addition, the options that violate the upper and lower bounds for option



prices are eliminated to calculate the Black-Scholes implied volatilities. The upper and lower bounds are
S,-D,-Xe'"" <C, <S8, -D,,

where St is stock index, [D, is the present value of the dividends over the remaining life of the option,
X 18 the strike price, 7 1s the riskless mterest rate, and 7" is the expiration date. The possibility of an
early exercise need not be considered, since the KOSPI 200 index option is European. This elimination
procedure results in a remamder of 10371 observations and 785 trading days.

The dividends are obtamned from the average of past dividend amounts for the year We used the 90-day
CD rate converted into continuous compounding as a riskless interest rate for each day.

At time t, the historical volatility is calculated using the KOSPT 200 index for the past 50 dates (from t-50
to t-1). The ex-post realized volatility 1s calculated over each option’s life (from t to T). These are computed

as the sample standard deviation of the daily mdex retumns. They are calculated from

HY, (or RV,) = \/%z(ui 7).
—li=1

i-1

S 1<
where I, = II{SI and © = —Zul . The Black-Scholes implied volatility is obtained by inverting
g

the Black-Scholes formula numerically.



2.2 Descriptive Statistics and the Smile

Table 1 reports the descriptive statistics for the variables considered. Descriptive statistics for each year

are reported respectively. Panel A shows the properties of the time series of the KOSPI200 index’s daily log

return. The average of the 1-day return 1s almost zero and the volatility varies from 0.313 to 0.478. The

distribution of the retumn 1s negatively skewed and leptokurtic. This implies that the return process does not

follow the log-normal distribution and an assumption of the Black-Scholes model 1s violated.

Panel B reports the statistics for the ex-post realized volatility. The average of the realized volatility and

the volatility of retun in panel A are approximately the same value. The standard deviation of the realized

volatility varies from 0.076 to 0.167.

Panel C presents the statistics for the Black-Scholes mmplied volatility classified by the moneyness,

defined by X /.S . We regard an option with a moneyness of less than 0.95 as in-the-money, an option with a

moneyness greater than 0.95 but less than 1.05 as at-the-money, and an option with a moneyness greater than

1.05 as out-of-the-money. The mean value of the implied volatilities of at-the-money (ATM) options is much

closer to both the 1-day return volatility and the ex-post realized volatility than that of the wmplied volatilities

of in-the-money (ITM) or out-of-the-money (OTM) options. This shows that the implied volatilities of TTM or

OTM options may be overestimated under the Black-Scholes economy where the implied volatility should be

an unbiased estimator of the realized volatility.



The data also reveal the volatility smile. The implied volatility of ITM or OTM options 15 greater than

that of ATM options and thus the volatility smile is observed. The distribution of the implied volatility is

thicker at the ATM than it is at the TTM or the OTM. This phenomenon is illustrated in Figure 1.

Figure 1 shows the relationship between moneyness and the implied wvolatility. The implied volatility

curve 1s U-shaped and the standard deviation of the implied volatilities of ATM options 1s much smaller than

that of ITM or OTM options as shown in this figure. This fact 13 confirmed by the standard deviation reported

m panel C oftable 1.

Roughly speaking, the implied volatilities of the ATM options seem to have the most accurate and

efficient information about the realized volatility.

2.3 The Main Hypothesis and Its Test

Under the condition that the market is efficient and that the Black-Scholes assumptions hold, the implied

volatility of an option should be an unbiased estimator of the future realized volatility. As in the previous

works such as Canina and Figlewski (1993) or Christensen and Prabhala (1998), we can test the jomt

hypothesis that the marlket is efficient and the Blacl-Scholes assumptions hold using the following regression

equations:
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RV, =a+ 1V, +¢, (1
RV, =a+[HV, te, )
RV, =a+ IV, + 5, HV, +¢, 3
where R} is the ex-post realized volatility of the KOSPI 200 index returns from the time ¢ through the
option’s expiration date, /7)) is the historical volatility over the past 50 days, and [} is the Black-
Scholes implied volatility of the option.

If the implied volatility is an unbiased estimator of the realized volatility, /3, should not be different
from 1 statistically in eq. (1). If the market is efficient so that the information contained in the implied
volatility contains that of the historical volatility, ﬁl and f , should be 1 and O, respectively in eq. (3).

The results from the OLS regressions are reported m Table 2. We estumate the regression equations using
the options with 10, 15, 20, 25, and 30 days to expiration. Because we used the overlapping data, a serial
correlation problem occurs. We calculate the standard errors following Hansen (1982)" to solve this problem.
The coefficients of the implied volatility and the historical volatility, the standard errors, R-square coefficient,
and the number of observation are reported for each of the subsamples defmed by moneyness.

This table shows that the ﬁl s are statistically significantly different from 1. The joint hypothesis that

the market 1s efficient and that the Black-Scholes assumptions hold is rejected for every subsample. The

coefficients of wmplied volatility for eq. (1) vary from 0.016 to 0.330 and the coefficient m the ITM or the

11



OTM 1s greater than that of the ATM. In comparison with the estimates of eq. (2), the coefficients of the

implied volatility are less than those of the historical volatility. Thus, the implied volatility is more severely

biased than the historical volatility as a forecast of the future realized volatility.

The coefficients for eq. (3) confirm that the forecasting power of the historical volatility exceeds that of

the mmplied volatility in general. However, we find that the implied volatilities of ATM options have more

mformation than those of the ITM or OTM options, and the slope coefficients of ATM options are roughly the

same value as the slope coefficient of the historical volatility. This result 1s consistent with table 1 and the

figure 1. The implied volatilities calculated from the ITM or OTM options are overestimated, and a volatility

smile occurs. This means the implied volatility is overvalued and is more severely biased for the ITTM or OTM

options.

This test shows that the Black-Scholes assumptions are false or that the market 15 mefficient, or both.

Many researchers have tried to explain this anomaly, that is, the volatility smile and the bias of the implied

volatility for predicting the future realized volatility. These phenomena might occur because the returmn does

not follow the geometric Browmian motion process. If the return process follows a jump process or, 1f

volatility varies stochastically, the Black-Scholes implied volatility will display a smile and will contain less

information about the future volatility.®

Another explanation 1s that there exist transaction costs, market frictions, and measurement errors n

12



variables m the real world. Errors can arise from bid-ask spreads, transaction costs, nonsyncronous trading

problem, and finite quotations of the observed prices. Eirors caused by transaction costs or by marlket frictions

exist in the option price, which makes it difficult to compute the real implied volatility. These errors make the

mmplied volatility vary proportionally to the vega, causing a smile to occur.

Alternatively, the market 13 mefficient and a trading strategy that generates profit opportunities exists.

There might be overreaction or underreaction m the option market that generates profitable strategies.

In the following sections, we consider the effect of transaction costs and the measurement errors n

variables using a simulation. In addition, we test whether trading strategies using forecasts of the future

realized volatility and a volatility smile generate profits exceeding transaction costs.

. Simulation with Transaction Costs and the Test

3.1 Simulation method

For the simulation, we assume the stock index follows a geometric Brownian motion and there exist

errors m the stock mdex and the call option prices. We can generate the stock mdex series that follows the

geometric Brownian motion process using the initial value of the stock index, its expected rate of return, its

volatility, and time mnterval.
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2
S (t+ A1) =S, (Hexp y—% A+, A,

where we assume that the initial vales of S(0)=100, g£=0.1, and At=0.0025. The disturbance
term has a standard normal distribution, &, ~ N (0,1). We assume that the remaining life of the options is
0.125 year and that the period for calculating the historical volatilities is 0.125 year. Therefore, we need a
stock mdex series for 0.25 year and we need to generate 0.25/0.0025=100 stock mdex prices.

When generating the stock indexes, ¢, is given by a random number between 0.2 and 0.6 to make the
regression results reliable. The volatility of the 7th series, &, is given by &, =0.457. +0.2, where 17
1s uniformly distributed between O and 1.

Strike prices are assumed to be 82.5, 95, 97.5, 100, 102.5, 105, and 107.5; 7 different strike prices, at
intervals of 2.5. We calculate each call option price using the Black-Scholes formula with the true volatility.
This price is regarded as the true option price that reflects the exact mmplied volatility. However, the option
prices we observe are contaminated by errors m the stock mdex and in the call option price itself. The errors

can arise from transaction costs, tick size restriction, or non-synchronicity between the index price and the

option price. We generate the errors following Hentschel (2003). The observed stock index, s , and call

option prices, C , are calculated by adding the error term to the true price as follows:

S, =S, +e, ,where e, ~N(0,0.25%) and
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C, =C, +e_, where ¢, ~N(0,5,")

0.03  (X/S>11
o 007 (1L.1>X/S>1.0) ;
is givenby o, = with the moneyness.

0.11 (1.0>X/S>09)
0.15 (X/S<0.9)

where o o

§ and 5 are the observed stock index and the call price, respectively; S and C are true values;

and e, and e, are error terms that have mdependent Gaussian distributions. The prices of the index and
the call option prices are rounded off to three decimal places to consider finite quotation.

Figure 2 shows the effect of measurement errors in the stock index and the call option price described

earlier. The variance of € is caloulated by

!

Var(C)=Var(e,) + @gj Var(e, )(ggj,

In(S/X)+(r+c*/2)T

ot

where Zg =d(d). d = , and () is the standard normal distribution
function.

Figure 2 shows the Black-Scholes option prices and its 95% confidence interval when the measurement
errors in the stock index and in the option price are as above. We assume that the strike price is 100, the true

implied volatility is 0.3, the time to expiration is 1 month, and the riskless interest rate is 0.05 for this figure.

In the upper figure of figure 2, dotted lines indicate the upper and lower confidence intervals and the lower
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line 18 the no-arbitrage lower boundary. In the lower figure, the standard deviations of the call option price are

represented.

In this figure we can find that the TTM or the OTM option prices can violate the lower no-arbitrage

boundary easily. This means that a truncation problem exists in estimating the implied volatility, and that the

ITM and the OTM options lying on the no-arbitrage region are overvalued, resultmg in a volatility smile. Kim

et al. (1994) and Hentschel (2003) showed that the errors 1 variable may make a smile. This truncation

problem 1s severe m the deep ITM options since the standard deviation of the call option increases as

moneyness decreases and the deep OTM option prices observed can never be negative in the real world.

Figure 3 shows that a smile can be caused by errors in variables. We calculate the theoretical price, using

the Black-Scholes formula and the real data of the KOSPI 200 mdex, strike prices, riskless rates, time to

expiratior, and ex-post realized volatility. Errors are added to the theoretic prices as m the simulation method.

Implied volatilities are obtained from these theoretical Black-Scholes option prices with errors. Figure 3

shows that the errors in the option prices can make the volatility smile similar to what is observed in reality, as

shown m figure 1.

The next section examines whether measurement errors in variables can make an implied volatility biased,

thus rejecting the jomt hypothesis that the market 1s efficient and that the Black-Scholes economy holds.
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3.2 Simulation Results

To consider transaction costs and market frictions, a simulation is conducted as described in the previous

section. We first generate 3000 series of the stock index and call option prices. The 51st stock index and

option prices are regarded as the time-0 prices. The historical volatility 1s calculated from the 1st through the

51st prices, and realized volatility 1s calculated from the 51st through the 101st prices. Since we assume that

there are 7 different strike prices, we can get 21000 pawrs of impled volatility, historical volatility, and

realized volatility. In this sunulation, there is no overlapping between the observations and the number of

observations is large enough. The regression formulas from eq. (1) to eq. (3) are estimated by OLS for each

subsample divided by moneyness.

Table 3 presents the estimation results. In panel A, we use the data without errors mn variables for a

benchmark to compare with the case that considers transaction costs or errors. In eq. (1), constant terms are

nearly 0 and the slope coefficients of the implied volatility are nearly 1. Tmplied volatility is an unbiased

forecast of the realized volatility. The result from eq. (2) shows that the historical volatility has some

forecasting power. Examming eq. (3), the coefficients of the mmplied volatility are nearly 1 as before.

However, the coefficients of the historical volatility drop to as low as 0, and the sum of the coefficients of the

mmplied volatility and the historical volatility 1s nearly 1. This result ndicates that the forecasting power of the

mplied volatility far exceeds that of the lustorical volatility and that the mformation reflected m the mnplied

17



volatility contams that of the historical volatility. This result holds regardless of moneyness.

Tn panel B, the data contain errors in stock index and option prices. Tn eq. (1), the slope coefficients fall a

little over all moneyness and the slope coefticient of deep ITM falls sharply to 0.683. TTM options are more

mfluenced by errors rather than are ATM or OTM options, which 13 expected. The estimates of eq. (2) are

approximately the same as those in panel A

In eq. (3), the coefficients of the implied volatility and the historical volatility remain at nearly 1 and 0,

respectively, for the ATM options. However, the coefficient of the implied volatility 1s 0.246, less than the

historical volatility, 0.619, for the deep TTM options. In addition, the R-square coefficient is 0.689 for the

deep TTM, which is dropped from 0.847 in panel A. The coefficients of the implied volatility and the

historical volatility for the deep OTM are 0.822 and 0.131, respectively. In the case that there exist errors n

the variables, the sum of the coefficients of the mplied volatility and the historical volatility 1s nearly 1.

This table 3 shows that the error can make an implied volatility seem to be biased for deep ITTM options.

Tt cannot fully explain, however, the result that the implied volatility is severely biased as shown in table 2.

As Christensen and Prabhala (1998) pomt out, this result can be caused by the sampling procedure. In

table 2, we use overlapping data under the condition that the number of observations is small. Table 4 reports

the estimation result, using the overlapping data with a small mumber of observations. Only 80 series are

considered, and the implied volatilities are computed from 51st, 61st, 71st, 81st, and 91st stock mdex and

18



option prices. Moreover, the historical volatility and realized volatility are obtained from the past 50 pairs of

observations and from the next observations over the remaining lifetime, respectively. The total number of

observations 1s 2800.

The regression results that are analogous to table 3 are reported i table 4 using the overlapping data. In

table 4, the standard errors are calculated following the Hansen method since we are using overlapping data.

In panel A, the results are smilar to those m panel A of table 3. The standard errors of coefficients

mcrease, and the coefficient of the implied volatility deviates from 1 more severely. In eq. (3), however, the

coefficients of the implied volatility and the historical volatility are still close to 1 and 0, respectively, and

their sum is nearly 1.

In panel B, the results change considerably. The coefficient of the implied volatility m eq. (1) 1s nearly 0

for deep ITM options. In addition, the value for deep OTM options drops to 0.157. The explanatory powers of

the implied volatilities for deep ITM or deep OTM options are less than 10%. Tn eq. (3), the coefficients of the

mmplied volatility for deep ITM and OTM options are nearly 0 and the historical volatility dominates the

mmplied volatility. These results are consistent with table 2.

However, the coefficients of the implied volatility for ATM and OTM options are still nearly 1 for both

eq. (1) and eq. (3). In addition, the R-square coefficients are more than 70%.

To summarize, the measurement errors caused by the transaction costs or market frictions and the
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problem with the sampling procedure cannot fully explam the anomaly that the implied volatility 1s biased.

3.3 2SLS estimation

Christensen and Prabhala (1998) used the 25LS method to reduce the effect of errors m variable. They

used a historical volatility and an mmplied volatility of 1 month ago as mstruments to dimmish emrors m

today’s implied volatility. They considered past mmplied volatility to be correlated with true implied volatility

but, quite plausibly, uncorrelated to the measurement error associated with present mmplied volatility. We

conduct the 251.S estimation following Christensen and Prabhala (1998).

We sample the implied volatility of options with 24 days to expiration and 21 days to expiration and

examme the 3 week forecasting power of the impled volatility. For the first stage regression, the inplied

volatilities of options with 21 days to expiration are regressed on a constant, the implied volatility of options

with 24 days to expiration, and the historical volatility of the option. The first stage regress equation is,

WV.o=a+p IV, ,+p,HV, +¢&,. 4

where [V , isthe implied volatility of the option with 24 days to expiration.

For the second stage regression, the realized volatilities are regressed on a constant, the implied volatility

estimated from the first stage regression, and the historical volatility. The second stage regression equations

]
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RV,=a+pBIV, +¢,, (%)
RV,=a+pIV,+ BHV, +&, ©6)

~

where [l is the estimate from the first stage regression.

Table 5 reports the estimation results. Panel A and panel B show the estimates of the first stage regression
and those of the second stage regressions. The result of eq. (5) m panel B demonstrates that the coefficients of
mplied volatilities mmproved greatly m comparison with the values m table 2. The coefficient values of the
mplied volatility range from 0.523 to 0.765 for the ATM and OTM options. The coefficient of the mnplied
volatility increases, while that of the historical volatility in eq. (6) decreases, especially for the ATM and the
OTM options. The coefficient values of the implied volatility range from 0.403 to 0.709 except for those of
the deep ITM options.

The coefficients of the mmplied volatility obtaned by the simulation following the method described n
the previous section are nearly 1 except for the deep TTM, though not presented in this paper. The 2515
method diminishes most of the errors that are mutually independent.

This result mdicates that the measurement errors exist and such errors make the umplied volatility more
severely biased. However, the coefficients of the implied volatility are still far from one. The errors-in-

variables problem partially accounts for the bias of the implied volatility, but they cannot fully account for the

results of table 2.

21



4. Forecast of the Future Volatility and Trading Strategy

Tn the previous section, we examined the effect of the transaction costs and the errors in variables. These

errors can result in a volatility smile observed and an implied wvolatility biased from the actual one.

Nevertheless, those errors alone cannot fully account for the empirical anomaly of the KOSPI 200 mdex

option market.

There are two possibilities that may explain the anomaly documented so far. First, there 1s the

possibility that the Black-Scholes model 1s mcorrect. For example, Bakshi Cao and Chen (1997), Bates

(1996) and many other researchers document that the Black-Scholes model is rejected.  The failure of the

Black-Scholes model might explain the anomaly under discussion. The other possibility is that the market is

mefficient. For example, Stemn (1989) and Poteshman (2001) discussed this possibility.

In this section, we explore mvestment strategies that may generate profit opportunities using the forecast

of the future volatility and the Black-Scholes formula. Tf the market is efficient, abnormally profitable

strategies cannot exist. The market efficiency is, however, doubtful if there is an abnormally profitable

strategy.

4.1 The Forecasting Power of Various Volatility Estimators

For the tradmg strategy, the forecast of the future volatility 1s needed. If the BS assumptions are correct
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and the prices can be observed without errors, we can obtamn the umque implied volatility across the
moneyness at time t. In the real world, we observe that implied volatilities are different from each other across
’

the moneyness. The observed 1mplied volatility vector, denoted & = [O'l, Lo O'n] . can be observed from
n options with different strike prices. To obtamn a forecast of future volatility from these observed mnplied
volatilities, we consider the following statistics using cross-sectional individual implied volatilities:

1. Mean

2. Median

3. The mnplied volatility of the option whose moneyness 1s closest to 1

4. Vega-weighted average

5. Hentschel’s estimator

6. Hentschel’s estimator considering a volatility smile with quadratic specification

. r

The mean and the median of & = [0'1,0'2,...,0'n] can be a forecast of the future volatility if the

volatility can be regarded as constant over time. The implied volatility of the ATM option is considered

because 1t contams the most accurate nformation about the future volatility, as shown in a previous section.
in in

The vega-weighted average is & = wa g, wa , where W, = aC/aO' .
=1 =1

Hentschel’s estimator 1s the cross-sectional estimator of the wmplied volatilities with measurement errors

using the FGLS method. Hentschel (2003) suggested this measure and showed that this 13 an efficient
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estimator of the mmplied volatility.

There exists a weighted average of the observed implied volatilities that has the minimum variance
among all such unbiased weighted averages. This efficient estimator is the GL.S weighted average obtained by
regressing implied volatilities on a constant,

c=10+¢,
where & is the observed implied volatility, # is ann-vector of cnes, & is a true volatility, and & , 1san
error in the observed implied volatility. The efficient estimator of & is obtained by the GLS estimation as
below.
c=0'd=(L ) /TF,
where Z is the covariance matrix for implied volatilities from a cross-section of options. With independent
measurement errors in prices, the covariance matrix for the mnplied volatilities 1s obtamed as below.
oo | Oo

S =Var(e,) = E[gaga'} =09\
o' o

where A = E|:€x€x’i| = diag [V(z;‘c1 )A , V(gcn )V(SS ), V(é‘r ), V(&‘t )] is the covariance matrix of the

_ _ oo (do, | oC |
underlymg errors and the souwrce of the errors 1s x=(C1,...,CH,S, f‘,t). = 1s the
ox oC; )\ ox,

Tacobian matrix of implied volatility derivatives. To implement the FGI.S method, the Jacobian matrix can be

calculated from partial derivatives of the BS formula.
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And the estmnator, which considers a volatility smile with a quadratic specification, 15 obtamned by the
following regression:
F=1f,+(K/S-DB +E/S-1’ B, +¢,.
=Xp+e,
where K =(K,,A,K,) is the column vector of strike prices, f=(f,,0,.0,) . and
X =[tL(K/S-1)(K/S- 1)2] . The coefficients can be estimated by the FGLS method.
B=(X"T'X)'XTF.

We take ﬁo, the value at K /.S =1, as a forecast.

For the covariance matrix of the underlying errors, we assume that V(SC) and V(&‘S) are equal to
the variance presumed in the previous section, and V(é‘r )= 0.001* and V(é‘f ) = 0.0001%. (0.0001 year
1s translated to about 50 minutes)

We can obtain the time series of 785 cross-sectional estimators. These are the forecast of the realized
volatility over the remaining lifetime of the options with the same expiration date. The forecast estimators are
regressed onto the ex-post realized volatilities using eq. (1) and eq. (3). The data of every trading day with
less than 30 days to expiration are used.

The results are presented m table 6 and m figure 4. Table 6 reports the regression estimation results and

figure 4 shows the relation between the cross-sectional forecasts and the ex-post realized volatilities.
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The first column of table 6 presents the result when the historical volatility over the prior 50 trading days

is used as a forecast of the future volatility. The second through the seventh columns report the forecasting

power of the various cross-sectional forecasts mentioned above. Because we use the data from every trading

day, the use of overlapping data 1s mevitable. Thus, the standard errors are calculated by the Hansen method.

The estimation result of eq. (1) shows that the coefficient of each forecast ranges from 0.065 to 0.224.

The coefficients of the historical volatility, implied volatility of ATM option, and Hentschel’s estimators are

greater than the others. These coefficients have values of approximately 0.2. The R-square coefficient of the

regressions is greatest when Hentschel’s estimators are used.

Tn eq. (3), the coefficients of the cross-sectional estimators range from 0.041 to 0.152, and the

coefficients of the historical volatility range from 0.112 to 0.204. The sum of the coefficients of the cross-

sectional forecast and the lustorical volatility 15 about 0.25. In eq. (3) as well as 1 eq. (1), the coefficients of

the implied volatility from the ATM option and those from Hentschel’s estimators are greater than the others.

In this table, we can find that the forecasting power of the mean, the median, and the Vega-weighted

average of cross-sectional observations is lower than that of Hentschel’s estimators or of the implied volatility

from the ATM option. However, the forecasting power of the cross-sectional estimators is very low in general.

Figure 4 shows the relationship between the cross-sectional estimators and the ex-post realized volatility.

The pairs of the cross-sectional estimators mentioned above and the ex-post realized volatilities are dotted.
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The regression line 1s the solid line. The dashed line shows the pomts where the value of the estimator equals

the ex-post realized volatility.

Positive correlations between the estimates and the ex-post realized volatilities are observed in every

figure. However, the deviation from the dashed line 1s positive for the lower values of the estimators and

negative for the higher values of the estimators, thus the slopes of the regression lmes are less than 1. This

shows that the estimators are somewhat biased.

In the next section, we explore mvestment strategies using the Black-Scholes formula and the forecasts of

the future volatility. The implied volatility of the option whose moneyness is closest to 1 and Hentschel’s

estimator are used as the forecasts.

4.2 The trading strategy and its profit

We test the market efficiency by way of a trading strategy that uses the forecast of the future volatility.

The strategy is “Buy the undervalued and Sell the overvalued” relative to a theoretical price calculated by the

Black-Scholes formula and the volatility forecast. The trading strategy 1s as follows:

1. For each day t, find the theoretical prices for the options with different strike prices using the Black-

Scholes formula. We use the forecasts described m the previous section for the future volatility of
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5.

KOSPI 200 mdex.

Tdentify the overvalued and the undervalued by comparison with the theoretical prices computed in
the previous step.

Compute the hedge ratio for delta-hedging. By the Black-Scholes formula, the hedge ratio is
— 8C/8S =—N(d,). Delta-hedging reduces the risk of the shift of call option prices caused by
the change of the underlying asset’s price.

Buy the undervalued and sell the overvalued with delta-hedging. Set the position m the options to be
proportional to the ratio of the difference between the theoretical price and the observed price. The

number of call options to be bought or sold, X, , is calculated by the following equation:

BE
X, = 10000{%).
¢

where C, is the observed call opticn price at time t and C fBS 1s the theoretical price computed by
the Black-Scholes formula. A positive value for X, indicates a long position in the call option and a
short position in the index, and a negative value for x, indicates a short position in the call option
and a long position in the index.

We assume the holding period is 1 day. Therefore, the profit generated during a day is calculated by,

proﬁtt =X (Ct+1 _Ct)_xt A, (Sm _S:)’
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where S, is the KOSPI 200 index at time t, and A = N(d,). The portfolio is rebalanced every

day.

The tradmng profit 13 shown m table 7. In tlis table, we assume that we can buy or sell at the observed

price without any transaction costs. The data that breach the arbitrage bounds and so were elimmated in the

. . . . . .4
previous analysis are ncluded m this analysis.

Panel A used the ex-post realized volatility as a forecast. Since the ex-post realized volatility is not

available in advance, the results of panel A are somewhat imaginary. The profits using the ex-post realized

volatility are considered as the maximum value of profits. The estimates from regression equation eq. (3)

obtaimned from the Hentschel’s estimator or the ATM estimator are used, respectively, for panels B and C. In

panel D, the Hentschel’s estimator 1s used as a forecast.

Each panel reports the number of observations, the total profit, and the total profit over total investment.

The values of total profit over total investment can be negative if the net investment is negative. We report the

mean of daily profits and their t-values under the null hypothesis, “the mean of daily profits equals zero.”

Tn panel A, the profits are positive in all the subsamples and are statistically significant for almost all the

subsamples. In panels B, C, and D, the profits are similar to one another In general those profits are much

smaller, relative to the profits from panel A This shows that the forecast of the future volatility is not a perfect
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estimator. The overall average of daily profit changes from 783 to 220 and the t-values also become smaller.

One subsample, the OTM option in 2001, produces negative profits. The negative profits in 2001 arise from

the 9.11 shock in Korean financial market.

Though nearly the same amounts of profits are shown m panel A regardless of the moneyness, the size of

the profits 1s very different across the moneyness in panels B, C, and D. The largest decline is shown mn the

OTM options and the smallest decline 1s shown m the ITM options. Trading the ITM options seems the most

profitable.

These results show that the volatility smile is not caused entirely by the misspecification of the

underlying asset process assumed by the Black-Scholes model. The Black-Scholes formula seems to identify

the overvalued options and the undervalued options very well, and the trading profit is positive in most cases.

If the underlying process does not follow a log-normal process but follows another process, such as a jump-

diffusion or a process with stochastic volatility, and the market is efficient, then the strategies that uses a

volatility smile should generate zero profits on average.

The results of table 7 do not show that the market 1s mefficient. Due to the transaction costs, mvestors

may not be able to make money with this proposed strategy. Next, we consider the transaction costs caused by

bid-ask spreads.’” We assume that the observed prices are the midpoints of bid and ask prices. Investors are

assumed to pay the observed price plus half of the spread when they buy a security, and then receive the
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observed price minus half of the spread when they sell a security.

We assume that the bid-ask spreads of call options are as follows:

001 C<3
: . 0.05 3<C«<5
bid - ask spreads of the call option = :
0.10 5<C<10
0.25 10=<C

We also assume that the bid-ask spreads of the mdex are 0.2 and fixed. These bid-ask spreads of the call
option and the mdex are estimated from the transaction data of call options and futures on the KOSPI 200
mdex, with the maturities of which are less than one month.

Transaction costs, at time t, caused by bid-ask spreads are computed by the following equation, assuming
a one-time rebalance.

Transaction costs= ‘xf —-X

‘ ' S?C_i' ‘Arxr - At—lxt—l ‘ ' SES >
where §. and s, are bid-ask spreads of a call option and the KOSPL 200 index, respectively.

The trading profits are shown in table 8. The format of this table is equivalent to that of table 7. The
profits reported in panel A are all positive and statistically significant. In comparison with table 7, the daily
profits decrease on average to 84% of the daily profits of the case without transaction costs. The ratios range
from 52% to 94% for each subsample.

Panels B, C, and D show that the profits are similar in each case. Positive profits are observed for all the

ITM subsamples, and most of the other subsamples. However, some negative profits are reported and their t-
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values are less than those m table 7. In comparison with table 7, the daily profits decrease on average to about

70% of the daily profits of the case without transaction costs. Profits for the ITM subsamples are largest and

the profits generated from the ATM or the OTM options are much smaller relative to the profits in panel A.

However, the mvestment strategy still seems profitable after transaction costs, and the profits from ITM

options are still statistically significant. Though not reported m this paper, if trading is permitted only when

the option price’s deviation from the theoretical price is greater than the bid-ask spreads, the profit of the

strategy 1s greater than the results presented m table 8 and 1s statistically significant.

These results show that the profits, even after deducting transaction costs, are positive for the trading

strategy using the forecast of the future volatility and the Black-Scholes formula. This fact is not consistent

with the hypothesis that the KOSPI200 index option market is efficient. However, we can see that the trading

profits tend to become smaller with tune in tables 7 and 8. This mdicates that the profit opportunities have

decreased and the marlket has become more efficient.

4.3 Additional Evidence

We examine the serial-correlation of the errors in the implied volatility. If the volatility smile is caused by

transaction costs or measurement errors m variables, then the time-series of the errors mn the mnplied volatility

should be mdependent as Hentschel assumes. We calculate the errors in the mplied volatility by subtracting
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the ex-post realized volatility from the estimated implied volatility as follows:
error, = IV, _R]'/;ex—posi

Because we restricted the data to only those options within 30 days to expiration, we do not have enough
data to analyze the autocorrelation structure of the error. For the test of the serial correlation, a runs-test® is
conducted. For a run-test, we construct a time-series of indicators that 1s 1 for the overvalued and -1 for the
undervalued. The options that breach the lower no-arbitrage boundary are also considered to be undervalued.

indicaior, = Sz'gn(errorg )

In addition, the first-order autocorrelation coefficients of the indicators’ time-series are examined.

The first-order autocorrelation coefficients and the z-statistics of the runs-tests are calculated for each
option’s time-series. The distribution of these values is shown m the Figure 5. The left figure shows the
histogram for the first-order autocorrelation of the series and the right figure shows the histogram for the z-
statistics obtained by the runs-test. Both figures show the positive autocorrelation of the errors in the implied
volatilities. This result cannot be accounted for by the transaction costs or by the measurement errors unless
they are serially correlated. This evidence 1s consistent with the results m section 4.2 and mmplies that market

inefficiency may be caused by overreaction or underreaction in the options marlet.
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5. Conclusion

We found that the volatility smile is observed in KOSPT 200 index option market. Tn addition, we

document that the Black-Scholes implied volatility is not an unbiased estimator of the future realized

volatility over the remaming life of the option.

These anomalies cannot be accounted for m the pure Black-Scholes economy. This paper examines the

possibility that measurement errors in variables and transaction costs can explain the volatility smile and the

bias of umplied volatility as a forecast of the future volatility. From a simulation with the errors in variables,

we can observe a volatility smile similar to those observed in the real world. The volatility smile seems to be

explained by the errors in variables and transaction costs, but the bias cannot be fully accounted for, especially

with regard to the ATM options. Though we consider the overlapping feature of small samples, the errors n

variables cammot explamn the coefficients of the implied volatility of the ATM or the OTM options. 25L3

estimation results also suggest that the emrors in variables cannot fully explain the bias. The volatility smile

and the bias of the implied volatilities in the KOSPT 200 options are explained only partially by transaction

costs and measurement errors.

If the anomalies are caused by market nefficiency, some trading strategies using this anomaly should

generate profit opportunities. We examined whether a strategy of sellmg the overvalued and buymg the

undervalued, using the Black-Scholes formula, brings profits to mvestors. We document that this strategy with
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delta-neutral hedging generates substantial trading profits even after taking transaction costs equivalent to the

bid-ask spreads into consideration. These results show that the volatility smile is not caused entirely by the

misspecification of the underlying process as the Black-Scholes log-normal process. We also find that the

profit opportunities tend to disappear over time.

Other evidence supporting the market inefficiency is presented in this paper. The series of the values that

mdicate the overvalued or the undervalued shows positive serial-correlations. This cannot be explamed by the

errors n variable or transaction costs. We also found that the option price’s deviation from the Black-Scholes

theoretical price is too large to be accounted for by measurement errors in variables and errors caused by

model specification.
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Footnotes

! To settle the serial correlation problem caused by the overlapping data, the Hansen method is used for

estimating the covariance matrix for the coefficients.

¥ = ZiQ(k:J')ékéJ(Xk'Xj) where ék and éj are the residual for observations k& and j from

Z| =

=l =1

OLS regressionand X, is the row vector of the independent variable matrix for observation # . In addition,

O(k, j) is an indicator function taking the value 1 if there is an overlap between the observation £ and

and O otherwise. The covariance matrix for the coefficients is ()= (X" X)) P(x'X)™.

* Das and Sundaram (1999) and Tompkins (2001) pointed out that a jump or a stochastic volatility cannot

fully explain the smile.

3 The standard deviation of the errors in variable is assumed following Hentschel (2003). Hentschel assumes
the standard deviation is one quarter of the bid-ask spread. Vijh (1990) reports that the errors broadly have a

normal distribution with a zero mean and a standard deviation of one quarter of the bid-ask spread.
* The trading profits using the data that satisfy no arbitrage boundary are a little smaller than the profits using
the whole data. However, the positive profits are still obtained with this strategy, and the main results remain

qualitatively inchanged.

5 . . .
We 1gnore the brokerage commaissions and other costs because the transaction occurred once a day and these

costs are msignificant to the institutional mvestors.

® Assume that the probability of “H and ‘1.’ is 0.5 respectively and the events are independent. Expectation of
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a mumber of runs is approximately EF(R)=n/2+1 and the standard erroris SE(R)= Jn—1/2, wheren

F—E(R)
SE(R)

1s the number of events. The test statistics 1s z =
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Table 1. Descriptive Statistics

Stafistics total 2003 2002 2001 2000 1999
Panel A: Time series of stock index retumn
mean -0.0003 0.0005 -0.0005 0.0012 -0.0031 0.0011
daily log return volatility 0.3857 0.3129 0.3339 0.3538 0.4776 0.4017
of index skewness -0.2972 0.18288 -0.1083 -0.6202 -0.2226 -0.0739
kurtosis 4.8266 3.0405 3.7055 7.5338 3.9560 3.1498
Panel B: Ex-post realized wolatility
mean 0.3701 0.2881 0.3261 0.3671 0.4369 0.3663
‘ - standard devation 0.1395 0.0804 0.1056 0.1670 0.1426 0.0764
realized wolafility
skewness 0.9754 0.3921 0.4050 21377 -0.3608 0.5366
kurtosis 5.4338 2. 1607 4.5105 10.8717 2.5664 3.8336
Panel C: Black-Scholes implied volatility
rmean 0.6396 0.4230 0.6723 0.6556 0.5800 0.6865
[Th standard devation 0.4301 0.1955 0.5809 0.4695 0.3473 0.3116
(%/5<0.395) skewness 3.1351 3.08489 2.8846 2.5343 4.2115 1.7136
kurtosis 16.8581 15.6508 13.9978 11.3416 27.5662 7.0241
rmean 0.3945 0.3397 0.3618 0.3586 0.4464 0.4683
(o.ggyx/s standard deviation  0.0877  0.0857  0.0619  0.1075  0.1004  0.0811
<1.05) skewness 0.9333 0.4784 1.5663 1.0328 0.9578 0.9909
o kurtosis 4.9266 3.89382 11.6260 4.5442 4.7384 4.3548
implied
volatility
rmean 0.4721 0.4500 0.4295 0.4083 0.5383 0.4983
aTM standard devation 0.1538 0.1815 0.1307 0.1155 0.1605 0.0807
(X%/5>1.08) skewness 2.2009 2.7897 3.2879 2.3203 1.8420 2.10B0
kurtosis 10.70483 12.6166 18.0624 12.9686 3.8278 10,1316
mean 0.4890 0.4227 0.4793 0.4602 0.5222 0.5413
total standard devation 0.2705 0.1703 0.3413 0.2874 0.1943 0.1989
skewness 5.2240 3.0937 5.3403 4.4782 4.6304 3.4451
kurtosis 47.530h 15.7518 42.7454 31.7947 48.5311 19.6912

Panel A reports the descriptive statistics for daily time series of log return of KOSPI 200 index from

August 1999 through April 2003. Mean, volatility which is the sample standard deviation of retums,

skewness, and kurtosis are reported. Panel B reports the statistics for ex-post realized volatility over the

remaining life of an oprtion. Panel C shows the statistics for the Black-Scholes implied volatility classified by

moneyness. Sample period for panel B and C 1s from October 1999 to March 2003 and the options whose

time to expirations are 3~30 days are used.
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Table 2. The Regression Results

moneyness  x/5<0.85 0.85<%/S 0.95<%/S 1.05 4%/ 1,15/

<0.95 <1.05 <1.15 Total
Eqg. (1)
constant 0.3400 0.2965 0.2731 0.2396 0.2831 0.3455
se (0.002) (0.002) (0.004) (0.004) (0.002) (0.001)
I 0.07156h 0.1595 0.2590 0.3304 0.2131 0.0655
se (0.003) (0.004) (0.003) (0.008) (0.003) (0.001)
R2 0.0046 0.0360 0.0334 0.0444 0.0526 0.0109
N 136 308 h2g 478 G625 2076
Eqg. (2)
constant 0.1383 0.2495 0.2628 0.2437 0.1551 0.2085
se (0.074) (0.006) {0.005) (0.008) (0.004) (0.002)
HY 0.6154 0.3033 0.2938 0.3409 0.5765 0.4310
se (0.042) (0.016) (0.013) (0.012) (0.003) (0.005)
R2 0.0888 0.0360 0.0314 0.0445 0.1734 0.0791
N 136 308 h2g 478 G625 2076
Eq.(3)
constant 0.1248 0.2230 0.2413 0.2145 0.1562 0.2044
se (0.014) (0.006) (0.008) (0.005) (0.004) (0.002)
| 0.01657 0.1232 0.1694 0.1930 -0.0089 0.0228
se (0.003) (0.004) (0.008) (0.008) (0.004) (0.001)
HY 0.6168 0.2342 0.1758 0.20865 0.5823 0.4171
se (0.041) (0.016) (0.013) (0.014) (0.070) (0.005)
R2 0.0935h 0.06586 0.0406 0.0537 0.1734 0.0804
N 136 308 h28 478 G2b 2076

This table shows the regression results using the mmplied volatility of the call options from October 1999
through March 2003. 2076 observations of the options with 10, 15, 20, 25, or 30 days to expiration are used.
The regressions are estimated by using the data classified by the moneyness. The standard errors of the slope
coefficients are estimated followimng Hansen (1982) for considering the serial comrelation caused by using the
overlapping data. Each panel shows the coefficients, the standard emrors (se) in parenthesis, R-square

coefficient (R2), and the number of observations (N).
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Table 3. The Regression Results using the Non-overlapping Data by Simulation

Moneyness %/5<0.85 0.85<X/S 0.95C¢%/5 1.06<X%/5 1.154¢/S
<0.95 <1.05 <115 Total
Panel A. No measurement errar
Eq. (1)
constant -0.0050 -0.0038 -0.0005 -0.0004 0.0077 -0.0006
se (0.000) (0.000]) (0.000) [(0.000) (0.000) (0.000)
IV 1.0085 1.0062 0.9945 0.9945 0.9736 0.9956
se (0.000) (0,000} (0.000) (0.000) (0.000) (0.000)
R2 0.8469 0.8898 0.8971 0.8855 0.8232 0.8845
N 2874 4313 L744 4090 3479 21000
Eq. (2)
constant 0.0815 0.0400 0.0408 0.0466 0.0756 0.0481
se (0.000) (0.000]) (0.000) [(0.000) (0.000) (0.000)
HY 0.8183 0.9006 0.8896 0.8793 0.8304 0.8806
se (0.001) (0.000]) (0.000) [(0.000) (0.001) (0.000)
R2 0.7028 0.7873 0.7945 0.7792 0.7019 0.7796
M 2874 4813 5744 4090 3479 21000
Ea.(3)
constant -0.0049 -0.0038 -0.0005 -0.0005 0.0075 -0.0006
se (0.000) (0,000} (0.000) (0.000) (0.000) (0.000)
I 0.9952 1.0087 1.0321 1.0249 0.9083 0.9340
se (0.001) (0.001) (0.007) (0.001) (0.001) (0.000)
HY 0.0140 -0.0025 -0.0378 -0.0304 0.0682 0.0016
se (0.001) (0.001) (0.007) (0.001) (0.001) (0.000)
R2 0.8470 (.8898 0.8972 0.8856 0.8240 0.8845
N 2674 43813 5744 4090 3479 21000
Panel B. measurement error in prices
Ea. (1)
constant 0.1353 0.0270 0.0170 0.0146 0.0272 0.0331
se (0.001) (0.000]) (0.000) [(0.000) (0.000) (0.000)
IV 0.6827 0.9428 0.9688 0.9774 0.9469 0.9241
se (0.001) (0.000]) (0.000) [(0.000) (0.000) (0.000)
R2 0.4666 0.8291 0.8852 0.8768 0.7935 0.8231
N 2440 4678 L744 4090 3364 20336
Eaq. (2)
constant 0.1019 0.0456 0.0429 0.0489 0.0854 0.0623
se (0.000) (0.000]) (0.000) [(0.000) (0.000) (0.000)
HY 0.7798 0.8904 0.8887 0.8794 0.8161 0.8749
se (0.001) (0.000]) (0.000) [(0.000) (0.001) (0.000)
R2 0.6566 0.7662 0.78335 0.7666 0.6758 0.7656
N 2440 4678 L744 4090 3364 20336
Eq.(3)
constant 0.0583 0.0179 0.0164 0.0146 0.0243 0.0232
se (0.000) (0,000} (0.000) (0.000) (0.000) (0.000)
I 0.2456 0.6821 0.9368 0.9743 0.8216 0.6487
se (0.001) (0.0071) (0.007) (0.001) (0.001) (0.000)
HY 0.6130 0.2822 0.0334 0.0032 0.1311 0.2989
se (0.001) (0.001) (0.007) (0.001) (0.001) (0.000)
R2 0.6891 0.8427 0.8854 0.8768 0.7971 0.8393
M 2440 4678 5744 4090 3364 20336
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This table shows the simulation results by OLS. This table shows information contents in an implied
volatilitty when underlying asset price follows the geometric Brownian motion process. We use a non-
overlapping data. 3000 series of index and option prices that have 7 different strikes prices are used. The
regressions are estimated by using the data classified by the moneyness. In panel A, we assume that there 1s
no measurement error in stock mdex and option price. In Panel B, the measurement errors that follow
independent normal distribution exist in the stock index and option price. The data that viclate a no-arbitrage
boundary are eliminated. Each panel shows the coefficients, the standard errors (se) n parenthesis, R-square

coefficient (R2), and the number of observations (N).
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Table 4. The Regression Results using the Overlapping Data by Simulation

Moneyness %/5<0.85 0.85<X/S 0.95C¢%/5 1.06<X%/5 1.154¢/S
<0.95 <1.05 <1.15 Total
Panel A. No measurement errar
Ea. (1)
constant -0.0052 0.0168 -0.0067 -0.0148 0.0764 0.0155
se (0.001) (0.001) (0.007) (0.001) (0.001) (0.000)
IV 1.0427 0.9587 1.0136 1.0302 0.8225 0.9661
se (0.004) (0.002) (0.002) (0.003) (0.003) (0.001)
R2 0.7258 0.7980 0.8369 0.7863 0.6723 0.7709
N h44 618 644 385 g0g9 2800
Eaq. (2)
constant 0.0750 0.0775 0.0572 0.0571 0.1191 0.0728
se (0.002) (0.001) (0.007) (0.002) (0.002) (0.000)
HY 0.8308 0.7937 0.8561 0.8848 0.7718 0.8378
se (0.005) (0.003) (0.002) [0.004) (0.005) (0.001)
R2 0.6063 0.6591 0.7280 0.6689 0.5463 0.6512
M 544 618 644 385 609 2800
Eq.(3)
constant -0.0051 0.0130 -0.0096 -0.0147 0.0792 0.0156
se (0.001) (0.001) (0.007) (0.001) (0.001) (0.000)
I 1.0373 1.2756 1.1639 1.0161 0.9218 1.0164
se (0.012) (0.006) (0.006) (0.011) (0.008) (0.003)
HY 0.0052 -0.3002 -0.1435 0.0143 -0.1122 -0.0513
se (0.011) (0.006) (0.006) (0.010) (0.007) (0.002)
R2 0.7258 0.8083 0.8390 0.7863 0.6740 0.7713
M 544 618 644 385 609 2800
Panel B. measurement error in prices
Ea. (1)
constant 0.3968 0.0901 0.0181 -0.0004 0.3850 0.2377
se (0.002) (0.0071) (0.007) (0.001) (0.002) (0.001)
I 0.0852 0.7450 0.9691 1.0120 0.1570 0.4083
se (0.004) (0.003) (0.002) (0.003) (0.003) (0.002)
R2 0.0128 0.5471 0.7741 0.7397 0.0931 0.2987
M 314 541 643 375 444 2317
Eaq. (2)
constant 0.1016 0.0895 0.0630 0.0709 0.7499 0.0825
se (0.003) (0.0071) (0.007) (0.002) (0.002) (0.000)
HY 0.7589 0.7593 0.8485 0.8602 0.7283 0.68174
se (0.008) (0.003) (0.003) (0.008) (0.005) (0.001)
R2 0.5379 0.6039 0.6774 0.6073 0.4973 0.6083
M 314 541 643 375 444 2317
Ea.(3)
constant 0.1142 0.0677 0.0181 -0.0002 0.1463 0.0720
se (0.003) (0.001) (0.007) (0.001) (0.002) (0.000)
IV -0.0322 0.3307 0.9688 1.0324 0.0174 0.0954
se (0.002) (0.004) (0.006) (0.010) (0.004) (0.001)
HY 0.7720 0.5029 0.0003 -0.0210 0.7146 0.7377
se (0.008) (0.004) (0.006) (0.009) (0.006) (0.001)
R2 0.5408 0.60429 0.7741 0.7398 0.4983 0.6188

M 314 541 543 37h 444 2317




This table shows the simulation result by OLS. This table shows information contents in an implied
volatilitty when underlying asset price follows the geometric Browmian motion process. We use an
overlapping data just as table 2. 80 series of index and option prices which have 7 different strikes prices are
used. 51th, 61th, 71th, 81th, and 91th data are mutually overlapped. The regressions are estimated by using
the data classified by the moneyness. In panel A, we assume that there 13 no measurement error in stock index
and option price. In Panel B, the measurement errors that follow independent normal distribution exist in the
stock index and option price. The data that violate a no-arbitrage boundary are elimmated. Each panel shows
the coefficients, the standard errors (se) in parenthesis, R-square coefficient (R2), and the number of
observations (N). The standard emrors of the slope coefficients are estimated following Hansen (1982) for

considering the serial correlation caused by using the overlapping data.
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Table 5. 25LS Estimation with KOSPI 200 Option Data

moneyness  x%/5<0.85 0.85<x/S 0.95<x/S 1.05<%/S 1.15<%/S

<0.95 <1.05 <1.15 Total
Panel A. first stage regression
constant 0.7046 0.2691 0.0446 0.0295 -0.0206 0.0661
se (0.056) (0.009) (0.001) (0.001) (0.001) (0.001)
past IV 0.2699 0.3553 0.6155 0.7300 0.8494 0.6341
se (0.019) (0.017) (0.003) (0.003) (0.003) (0.002)
HY -0.5705 -0.0749 0.2650 0.1864 0.2071 0.2206
se (0.147) (0.024) (0.003) (0.003) (0.003) (0.003)
R2 0.3744 0.0886 0.5966 0.7156 0.8055 0.5406
M 16 75 139 121 141 4392
Panel B. second stage regression
Eq. (5)
constant 0.4860 0.0925 0.1407 0.1624 0.0659 0.1619
se (0.012) (0.018) (0.008) (0.008) (0.008) (0.003)
Iv_hat -0.0955 0.6654 0.5963 0.5225 0.7648 0.5239
se (0.017) (0.040) (0.020) (0.020) (0.011) (0.008)
R2 0.0740 0.0441 0.0835 0.0731 0.2900 0.1162
N 16 75 139 121 141 492
Eq.(6)
constant -0.3897 0.0960 0.1426 0.1629 0.0302 0.1247
se (0.008) (0.018) (0.008) (0.008) (0.008) (0.003)
Iv_hat 0.2412 0.7091 0.6753 0.6447 0.4034 0.3762
se (0.004) (0.044) (0.031) (0.033) (0.017) (0.009)
HY 1.8193 -0.0550 -0.0845 -0.1268 0.4841 0.2541
se (0.010) (0.022) (0.024) (0.027) (0.017) (0.009)
R2 0.7958 0.0451 0.0846 0.0757 0.3332 0.1335
N 16 75 139 121 141 492

This table shows the 2SL.S estimation result. 2818 method is used for reducing errors in the implied
volatility. The forecasting power of the options with 21 days to expiration are shown As mstruments, the
historical volatility and the implied volatility of the option with 24 days to expiration are used. For the first
stage regression, mmplied volatility with 21 days to expiration 1s regressed on a constant and the mstruments.
And the estimated implied volatility from the first stage regression is used for second stage regression. The
first stage regression results are presented mn panel A, and the second stage results are presented m Panel B.
The data that violate a no-arbitrage boundary are eliminated. Each panel shows the coefticients, the standard

errors(se) in parenthesis, R-square coefficient (R2), and the number of observations (N).
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Table 6. Forecasting Power of the Various Cross-Sectional Estimators

histarical mean median closest to ATM  Vega-weighted Hentschel's Hentschel's
volatilit average estimator 1 estimator 2
Eq. (1)
constant 0.2817 0.3362 0.3170 0.2982 0.3225 0.2833 0.2964
se (0.004) (0.001) (0.002) (0.003) (0.002) (0.003) (0.003)
forecast 0.2241 0.0652 0.1160 0.1763 0.1023 0.2107 0.1710
se (0.011) (0.002) (0.003) (0.007) (0.004) (0.006) (0.008)
R2 0.0748 0.0053 0.0097 0.0141 0.00890 0.0185 0.0174
N 785 735h 735h 785 785 785 735h
Eq.(3)
constant 0.2701 0.2673 0.2670 0.2672 0.2640 0.2635
se (0.004) (0.004) (0.008) (0.008) (0.004) (0.00B)
forecast 0.0411 0.0715 0.1110 0.0661 0.1524 0.1235
se (0.002) (0.003) (0.006) (0.003) (0.006) (0.005)
HY 0.2036 0.1810 0.1489 0.1865 011186 0.1380
se (0.011) (0.011) (0.011) (0.011) (0.013) (0.011)
R2 0.0167 0.0179 0.0187 0.0181 0.0207 0.0217
N 735 735 785 785 735 735

This table reports the regression estimation results using the cross-sectional estimators for the future volatility. For the cross-sectional estimators,
we consider the mean, median, the implied volatility of the option whose moneyness is closest to 1, Vega-weighted average, Hentschel’s estimator,
and Hentschel’s estimator considering a smile with quadratic specification. The data cover from October 1999 through March 2003, and cross-
sectional estimators of every trading day are used for the regressions. The first column of the table 6 presents the result when the historical
volatility over prior 50 trading days is used as a forecast of a future volatility. And the result from the second through the seventh column reports
the forecasting power of the various cross-sectional forecast mentioned above. The standard errors are calculated by Hansen (1982) method. Each

shows the coefficients, the standard errors(se) in parenthesis, R-square coefticient (R2), and the number of observations (N).
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Table 7. Trading Profits with No Transaction Costs

Pre-transaction costs trading profit

moneyness
1999 2000 2001 2002 2003 total
panel A, Using ex-post realized volafility
number of observations 173 515 1003 1673 304 3773
¥/5<0.95 tatal profit 24G6hB5H 533037 2h98h3 4358592 514394 1679542
(T tatal profit/total investment -0,0328 0.0761 0.0176 0.0463 0.0100 0.0544
options) mean of daily profit 1385 20 111063 259,08 262,16 169.39 445,15
t-value 3.95 4.47 b.27 G.46 h.09 5.99
number of observations 174 728 hEe 7he 196 2410
0‘315502/8 tatal profit 42784 B2B463 254937 194571 55621 1174356
(ATM total profit/total investment -0,0020 0.0267 0.0090 -0.,0109 0.0550 0.0877
options) mean of daily profit 24577 862.90 453,62 2h8.74 783.78 487.28
t-value 2.92 7.24 3.67 G.17 4,31 .99
number of observations 220 1799 347 1386 h18 4770
¥/S>1.08 tatal profit 52351 3722679 774169 1043023 118042 720284
(OTM tatal profit/total investment -0,0067 0.0206 0.0027 0.01R2 0.0149 0.0108
options) mean of daily profit 283 41 206930 914,01 752,54 227.88 1199.22
t-value 3.49 7.44 1.42 2.65 5.26 5.80
number of observations hiz 3140 217 3811 1018 10883
tatal profit 351681 h032180 1238959 16761386 225166 3574162
total total profit/total investment -0,0092 0.0236 0.0039 0.0278 0.0160 0.0159
mean of daily profit 6514.83 1602 .61 h34.39 439.83 22117 782.81
t-value 5,21 9.47 2.33 4.18 3.01 3.85
panel B. Using Hentschel's estimator and Historical volafility with (eg.3)
number of observations 178 515 1003 1674 304 3774
*/5<0.95 tatal profit 243982 549146 243578 445432 48073 1630210
[T total profit/total investment -0,0242 -0,0338 0.1377 -0,0652 0.0393 -0.04392
options) mean of daily profit 1370.68 1065, 52 242.85 766.09 158.13 431.96
t-value 3.93 4.48 5,01 G.61 5.16 9.05
number of observations 174 728 hEe 7he 196 2410
O‘?ffoé/s total profit 33836 166696 44471 122518 12548 340339
(ATM total profit/total investment -0,0011 -0,0018 -0,0001 -0.,001h -0.0009 -0.0013
options) mean of daily profit 194 46 22961 7.90 163.32 54,02 141.22
t-value 1.57 2.78 0.17 4.01 1.29 4.49
number of observations 220 1799 347 1386 h18 4770
¥/S>1.06 total profit 79563 237953 -34904 131851 23840 438402
(OTM tatal profit/total investment -0,0089 -0,0058 0.0022 =-0,0041 -0.0040 -0.0042
options) mean of daily profit 361.65 132.27 -41.21 95,13 46,22 91.91
t-value 2.95 3.50 -0,91 3.04 1.84 4.64
number of observations hiz 3140 217 38172 1018 10884
total profit 357380 1063794 213115 700101 84560 2408951
total total profit/total investment -0,0072 -0,0069 -0,0042 -0,0057 -0.0044 -0.0232
mean of daily profit 524,79 335,60 53,36 183.66 53.07 219.92
t-value 4,96 6.11 3.16 8.15 4.68 11.07
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Pre-transaction costs trading profit

maonewness
1999 2000 2001 2002 2003 total
panel C. Using the implied volatility of ATM option and Historical volatility with (eq. 3)
number of observations 173 515 1003 1674 304 3774
*/5<0.95 total profit 2431396 549060 243065 442882 47792 16253996
(1™ total profit/otal investment -0.0270 -0,04038 0.0696 -0.1574 0.0223 -0.0737
options) mean of dally profit 1366.27 1056.38 242 .34 264.57 157,21 430.84
t—value 3.92 4,45 502 5.59 6.17 9.03
number of observations 174 728 hEZ 7he 196 2410
O‘?fﬁgs total profit 31623 144035 11528 106566 10349 304102
(A;FM total profit/otal investment -0.0012 -0,0018 -0.0004 -0.0016 -0.0010 -0.00156
options) mean of daily profit 181.74 198.40 2051 141.71 h2.80 126.18
t—value 1.70 2.83 0.56 4,34 1.41 4,79
number of observations 220 1789 847 1386 "8 4770
*/S5>1.06 total profit 78615 160733 -23383 118160 14143 348267
(0T total profit/total investment -0.0084 -0,0038 0.0015 -0.0035 -0.0024 -0.0033
options) mean of dally profit 357.34 89.35 -27.61 85.25 27.30 73.01
t—value 3.26 2.56 -0.71 3.33 1.48 4.18
number of observations h72 3140 2412 3812 1018 10954
total profit 353434 953829 231210 567608 72285 2278366
total total profit/otal investment -0.0078 -0,0069 -0.0059 -0.0065 -0,0051 -0.0214
mean of dally profit 517.89 303.77 95,86 1765.13 71.01 207.99
t—value 5.05 5.69 3.70 8.34 5,01 10.90
panel D. Using Hentschel's estimator
number of observations 178 515 1003 1674 304 3774
*/5<0.95 total profit 258179 569291 2443R9 439581 46584 1657993
(1T total profit/total investment -0.1027 0.1531 0.0194 0.0272 0.0096 0.0467
options) mean of daily profit 1450.44 1088.28 243.63 262.59 153.24 439.32
t—value 3.97 4.43 h.07 6.53 h.27 8.99
number of observations 174 728 hEZ 7he 196 2410
0‘<915‘<0X5/S total profit 18717 222687 26565 68789 16328 353086
(ATM total profit/total investment -0.0064 -0,0825 0,0031 0.0241 0,0061 0.0417
aptions) mean of dally profit 107.57 306.73 47.27 91.47 83 31 146.51
t—value 1.98 7.10 2.h9 6.17 3.2h 9.60
number of observations 220 17399 547 1386 h18 4770
*¥/S»1.0B total profit 5382 124271 -2280 24030 32756 154879
(0T total profit/total investment -0.0159 -0,1579 0.0018 -0.0051 -0.0460 -0.0217
options) mean of dally profit 24.46 £9.08 -2.64 17.34 B.32 32.43
t—value 1.21 5.43 -0.25 2.47 1.57 6.44
number of observations h72 3140 2412 3812 1018 10954
total profit 282278 1016248 268644 h32400 BE188 2165759
total total profit/otal investment -0.0488 1.1477 0.0135 0.0371 0.00388 -0.3041
mean of daily profit 493.49 323.65 111.38 139.66 65.02 197.71
t—value 4.18 5.54 h.33 7.68 B 26 11.37

a0



This table shows trading profits with no transaction costs. The sample period is from Oct. 1999 to Mar.
2003. The options with 530 days to expiration and the KOSPI 200 mdex are traded and the Delta-neutral
portfolio is composed. The results are classified by the moneyness and the traded year. In the panel A, the ex-
post realized volatilities are used as a forecast. And in the panel B and the panel C, the forecasts by the
"Hentschel's estimator + historical volatility” and "the implied volatility of the ATM option + historical
volatility” with the (eq.3) are used respectively. In panel D, the Hentschel's estimator is used as a forecast.

Each reports the number of observations, the total profit, the total profit over the total mvestment, the mean

of daily profit, and the t-value under null hypothesis "mean=0".
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Table 8. Trading Profits after Deducting Transaction Costs

Post—transaction costs trading profit

maoneyness
1999 2000 2001 2002 2003 total
panel A, Using ex-post realized wolatility
number of observations 178 616 1003 1674 304 3774
¥/S<0.95 total profit 210786 HBE430 170404 3040156 26822 1278456
(1™ total profit/total investment -0.0281 0.0831 0.0115 0.0321 0.0052 0.0414
options) mean of daily profit 1184.19 921.02 169.89 181.61 88.23 338.75
t-value 3.44 3.83 3,66 4.62 2.78 7.07
number of ohservations 174 726 hE2 752 196 2410
0.95¢X/S total profit 27034 527639 162163 131390 41180 909996
?;T?\f total profit/total investment -0.0013 0.0225 0.0064 -0.0074 0.0407 0,0680
options) mean of daily profit 155,37 726.78 32412 175.52 210,10 377.59
t-value 1.86 B.14 2.63 4,29 3.23 7.80
number of ohservations 220 1799 347 1386 h18 4770
*/S5»1.05 total profit 56349 3516470 472812 882091 101526 h029248
[OTM total profit/total investment -0.0060 0.0194 0,0016 0.0128 0.0128 0,0093
aptions) mean of daily profit 256.13 1964, 68 hhg 22 536.43 196.00 10h4.35
t-value 3.17 7.10 0.85 2.58 548 6.12
number of observations S 3140 217 3817 1018 10884
total profit 294168 4610539 825369 1318098 169528 7217700
total total profit/total investment -0.0077 0.0216 0,0025 0.0219 0.0120 0.0134
mean of daily profit h14.28 1468, 32 342,19 345.78 166.53 B58.91
t-value 4,45 878 1.47 3.77 6.92 3.50
panel B, Using Hentschel's estimator and Histarical volatility with (eqg.3)
number of observations 178 616 1003 1674 304 3774
¥/S<0.95 total profit 207140 532091 159975 313882 23408 1236435
(1T total profit/total investment -0.0205 -0.0277 0.0304 -0.0460 0.0191 -0,0373
options) mean of daily profit 1163.71 5656.19 159,50 187.50 77.00 327.64
t-value 3.39 3.79 3.40 4,81 3.19 7.10
number of ohservations 174 726 hE2 752 196 2410
0.95%/8 total profit 15976 86553 -31677 70472 -240 141084
?;T?\f total profit/total investment -0.0005 -0.0004 0,0009 -0.0008 0.0000 -0,0005
aptions) mean of daily profit 91.82 119.22 -h6.36 93.71 -1.23 h3.54
t-value 0.75 1.46 -1.23 2.31 -0.02 1.87
number of observations 270 1799 847 1386 "8 A770
¥/S>1.08 total profit 74766 2100186 -47718 112718 175856 3673686
(OTM total profit/total investment -0,0084 -0.0052 0,0031 -0,0036 -0.0030 -0,0035
options) mean of daily profit 339.84 116.74 -56.34 81.33 33.95 77.02
t-value 2.79 3.09 -1.24 2.60 1.35 3.89
number of observations S 3140 217 3817 1018 10884
total profit 297882 8286549 80580 497072 40752 1744345
total total profit/total investment -0.0060 -0.0054 -0.0018 -0.0041 -0.0021 -0.0168
mean of daily profit B20.77 263.90 3341 130.40 40,03 159,30
t-value 4,21 4,94 1,22 5.91 2.28 8.22

52



Post—transaction costs trading profit

moneyness
19399 2000 2001 2002 2003 total
panel C. Using the implied volatility of ATM option and Historical volatility with (2g.3)
number of ohservations 178 515 1003 1674 304 3774
*/5<0.95 total profit 207108 h35294 161075 313637 23880 1240993
(1™ total profit/total investm ent -0,0230 -0,0337 0.04B61 -0,1115 0.0111 -0.0563
options) mean of daily profit 1163.53 870,40 160.59 187.36 78.55 328.83
t-value 3.40 3.81 3.44 4,32 3.29 7.13
number of ohservations 174 726 hE2 752 196 2410
085005 total profit 14959 71884 -20319 62797 -167 129154
?;T?\AB tatal profit/total investment -0,0006 -0,0009 0.0007 -0,0010 0. 0000 -0.0006
aptians) mean of daily profit 55,97 93.01 -36.15 53,51 -0.85 h3.59
t-value 0.81 1.42 -0,97 2.57 -0.02 2.05
number of observations 220 1789 847 1386 "8 4770
¥/ 1,05 total profit 73476 131597 -36831 97930 7338 273510
[OTM total profit/total investm ent -0,0078 -0,0032 0.0024 -0,0029 -0,0012 -0.0026
options) mean of daily profit 333.98 73.15 -43.48 70,66 14,17 h7.34
t-value 3.08 2.09 =111 2.76 0.76 3.27
number of observations 77 3140 2417 3817 1018 10964
total profit 295h42 738775 103925 474363 31051 1643657
total tatal profit/total investment -0,0065 -0,0054 -0,0026 -0,0047 -0,0022 -0.0155
mean of daily profit h16.58 23528 43,09 124.44 30,50 160,05
t-value 4,30 4,54 1.70 6.07 2.20 8.08
panel D. Using Hentschel's estimator
number of ohservations 178 515 1003 1674 304 3774
*/5<0.95 total profit 221004 hBOZ20 164663 309198 23061 1278146
(1™ total profit/total investm ent -0,0879 0.1281 0.0131 0.0191 0.0047 0.0360
options) mean of daily profit 1241.80 910.93 164.17 184.71 75,86 338.67
t-value 3.47 3.88 3.53 4.74 277 7.16
number of ohservations 174 726 hE2 752 196 2410
085045 total profit 4082 164622 09 26553 6537 205233
?;T?\AB tatal profit/total investment -0,0014 -0,0610 0.0001 0.0101 0.0024 0.0242
aptians) mean of daily profit 23,46 227.03 1.62 33, 41 33.35 8516
t-value 0.45 h.42 0.09 2.66 1.34 h.75
number of observations 220 1789 847 1386 "8 4770
®/S>1.05 total profit -1341 53593 -18045 -3h07 -h017 hhBE83
(OTM tatal profit/total investment 0.0040 -0, 1062 0.0145 0.0007 0.0704 -0.0078
aptions) mean of daily profit -6.10 48,47 -21.30 -2.53 -9.69 11.67
t-value -0,30 4.40 -1.95 -0.36 -2.37 2.34
number of observations 77 3140 2417 3817 1018 10964
total profit 223745 508635 147528 334574 24551 1539062
total tatal profit/total investment -0,0386 0.9132 0.0074 0.0233 0.0033 -0.2161
mean of daily profit 391.18 257.53 1,16 5777 24,15 140,50
t-value 3.40 h.39 3.02 4,99 2.47 8.36
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This table shows the trading profits after deducting the transaction costs. The sample period 1s from Oect.
1999 to Mar. 2003. The options with 5~30 days to expiration and the KOSPT 200 index are traded and the
Delta-neutral portfolio i1s composed. The results are classified by the moneyness and the traded year.
Transaction costs are assumed as follows. 0.005 (C<3), 0.025 (3<C<5), 0.05 (5<C=<10), and 0.13 (10<C) for a
contract of one call option and 0.1 for index. In the panel A , the ex-post realized volatilities are used as a
forecast. And m the panel B and the panel C, the forecasts by the "Hentschel's estimator + historical
volatility” and "the implied volatility of the ATM option + historical volatility" with the (eq.3) are used
respectively. In panel D, the Hentschel's estimator is used as a forecast. Each reports the number of
observations, the total profit, the total profit over the total mvestment, the mean of daily profit, and the t-value

under null hypothesis "mean=0".
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Figure 1. Volatility smile of KOSPI 200 index option
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This figure shows the relation between the moneyness and Black-Scholes implied volatility. 10371 pairs of
moneyness and implied volatility are dotted and the mean of the implied volatilities classified by moneyness

is marked with square.
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Figure 2. The confidence interval of call option price with errors
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This figure shows the Black-Scholes option prices and their 95% confidential interval when the
measurement errors n stock mdex and option price follow nommal distributions and are independent. In the
upper figure, dotted lines indicate the upper and lower confidential interval and lower line is a no-arbitrage
boundary. In the lower figure, standard deviations of call option price are represented. The standard deviation
is calculated by following equation.

f

oC aoC
Var(Cy=Var(e )+ | — | Var(e;)| —
oS oS
We assume that the strike price of the option is 100, its volatility is 0.3, its time to expiration is 1 month,

and riskless interest rate 1s 0.05.
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Figure 3. Volatility smile of the simulation
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This figure shows the relation between the moneyness and the Black-Scholes implied volatility made by
simulation. The theoretical option prices are computed by the Black-Scholes formula with real data and ex-
post realized volatilities. Errors are added to the option prices and implied volatilities are obtained from the
option prices with errors. Tmplied volatilities are dotted and the mean of the implied volatilities classified by

moneyness 1s marked with square.
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Figure 4. The forecast of a realized volatility using various cross-sectional estimators
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These figures show the relation between the cross-sectional estimators and the ex-post realized volatility.
For the cross-sectional estimators, we consider the mean, median, the implied volatility of the option whose
moneyness 15 closest to 1, Vega-weighted average, Hentschel’s estimator, and Hentschel’s estimator
considering a smile with quadratic specification. The data cover from October 1999 through March 2003, and
cross-sectional estimators of every trading day are dotted. The pairs of the cross-sectional estimators
mentioned above and the ex-post realized volatilities are dotted. And the regression line 1s drawn by a solid

line. The dashed line shows the points where the value of estimator equals to the ex-post realized volatility.
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Figure 5. The serial-correlation property of the errors in option prices
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These figures show the serial-correlation property of the time-series of mdicators which 13 1 for an

overvalued or -1 for an undervalued. The overvalued is the option whose implied volatility 15 greater than the

ex-post realized volatility and the undervalued is the option whose implied volatility is less than the ex-post

realized volatility. The left figure shows the lustogram for the first-order autocorrelation of the series and the

right figure shows the histogram for the z-statistics obtained by run-test.
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