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A . We show that the market price of risk has an important role
of keeping the consistency in several well-known interest rate models.

1. I
The empirical behaviour of interest rates has been widely studied (see for instance
Fama and French (89), (91)) and various empirical regularities have been observed.
Empirical distributions of bond yields are highly volatile but not highly skewed and
expected excess returns are close to zero, however the slope of the term structure
predicts a relatively large amount of the variation in excess returns. In particular,
there is a strong negative correlation between the slope of the yield curve and excess
returns to long bonds: long rates tend to fall when the slope becomes steeper.

Interest rate models driven by standard Brownian motions seem unable to account
for these stylised facts. This has been blamed on the form of the market price of risk
used to transform between the physical pricing measure and the risk-neutral pricing
measure. In the case of affine term structure models, Dai and Singleton (2002) found
problems in using the standard form of the market price of risk traditionally used in
these models, described by Dai and Singleton (2000) and Duffie and Kan (1996)), to
explain empirical behaviour.

We study the problem from a different perspective. Lévy processes have been
widely used to fit both to returns distributions under the physical measure and in
derivative pricing models under the risk-neutral measure. Time series properties of
empirical returns processes have investigated by modelling them as time-changed
Brownian motions (Sato (2001) and Carr and Wu (2000)), which also reduce to
modelling by Lévy processes. Lévy processes are suitable for these applications since
they can capture the heavy tailed behaviour displayed by asset returns processes,
fitting both to returns distributions and to implied volatility smiles implied from
options prices.

Popular models use the generalised hyperbolic process (Eberlein (2000)) based on
the hyperbolic distribution of Barndorff-Nielsen (1978), the normal inverse Gaussian
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process (Barndorff-Nielsen (1995)) and the variance-gamma process (Madan, Carr
and Chang (1998)).

Models which attempt to relate the physical measure to the risk neutral measure
must specify the market prices of risk that determine the relationship between the
two measures. Although the general form of the change of measure is well known,
few papers have investigated the change of measure for interest rate models and their
implications for the way a model can fit to empirical facts about the behaviour of
rates. Unlike models based on Wiener processes, where there may be a unique mar-
tingale measure, the jump component of a Lévy process allows different in-equivalent
specifications of Lévy-Sheffer changes of measure.

In the context of a Vasicek type Lévy interest rate model, we investigate changes
of measure of various types of Lévy-Sheffer type, which generalises the Esscher trans-
form. Depending on the choice of Lévy-Sheffer type, we find that some Lévy models
are quite tractable for financial modelling and some other types of models produce
the same effects of the multi-factor model. Furthermore, we find that if the true data
generating process of interest rates have jumps with stochastic market price risk, the
short rate process is equivalent to the polynomials of some state variable.

2. C M
2.1. Changes of Measure of Exponential Type. Consider a class

P = {Pz | z ∈ Θ} , Θ ⊆ Rk

of probability measures on (Ω,F). The class P is called an exponential family on
(Ω,F) if there exists a probability measure P on (Ω,F) such that for all z ∈ Θ there
is a measure Pz ∈ R such that Ptz Pt for all t ≥ 0 and

dPtz
dPt

= ft (z) qt exp ut (z)Lt , (1)

where ft (z) and ut (z) are deterministic functions and qt and Lt are stochastic
processes (Küchler and Sørensen(1994)). Lévy-Sheffer changes of measures are of
this general exponential form.

2.2. Time Inhomogeneous Lévy-Sheffer Changes of Measure. For a Lévy
process L we can define a change of measure by

dPtz
dPt

= exp(zLt − tϕ (z)), (2)

the natural exponential family generated by L. This defines the Esscher transform,
discussed below.

The definition can be generalised (Schoutens and Teugels (1998)). We define a
Lévy-Sheffer change of measure to be of the form

dPtz
dPt

= f (z)t exp (u (z)Lt) (3)
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where L is 1-dimensional and f (z) = 1
Ψ(−iu(z)) is obtained from the characteristic

function Ψ of L. Note that

f (z)t exp (u (z)Lt) = exp(u (z)Lt − tϕ (u (z))) (4)

so that when u (z) = z we recover the natural exponential family.
A Lévy-Sheffer change of measure is strongly related to Lévy-Sheffer polynomial

systems (Schoutens and Teugels (1998)).
Define Kt =

t
0 us (z) dLs then,

E [exp (hKt)] = E exp
t

0
hus (z) dLs = exp

t

0
ϕL (hus (z)) ds (5)

where ϕL is the log-moment generating function of L. So the log-moment generating
function ϕK (h) of KKt is ϕK (h) =

t
0 ϕ

L (hus (z)) ds. Hence we can define a change
of measure by

dPtz
dPt

= exp Kt − ϕK (1) (6)

= exp
t

0
us (z) dLs −

t

0
ϕL (us (z)) ds (7)

We call this a time inhomogeneous Lévy-Sheffer change of measure. We have also
assumed that the Lévy process L always satisfies the integrability condition.

3. M
We start Vasicek type Levy model. Under P, we assume that short rate follows

dr(t) = a(r − r(t))dt+ σdLt (8)

where we denote by L = (Ls)s≥0 a Levy process, a stochastic process with stationary
and independent increments which is continuous in probability and satisfies L0 = 0
a.s. The strong solution of (8) is

r(t) = (1− e−at)r + e−atr(0) + σe−at
t

0
eavdLv (9)

The price of the pure discount is

P (t, T ) = EQ exp −
T

t
r(u)du |Ft

= EP exp −
T

t
r(u)du

dQ

dP
|Ft

where the Radon-Nikodym derivative is not unique. In next section, we provide a
bond pricing formula using the time inhomogeneous Lévy-Sheffer changes of measure
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4. B P
Theorem 1. When the interest rate follows (8) and the Radon-Nikodym derivative
has a form of time inhomogeneous Lévy-Sheffer changes of measure, then time t price
of a discount bond that promises to pay one unit currency at maturity T is

P (t, T ) = exp (A(t, T ) +B(t, T )r(t))

where

A(t, T ) = exp (−r(T − t))

× exp e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
ϕL (f(v) + uv (z)) dv−

T

t
ϕL (uv (z)) dv

and

B(t, T ) =
(e−a(T−t) − 1)

a

5. S L -S C M : α− L
P

Time inhomogeneous Lévy-Sheffer changes of measures are of the general exponen-
tial form. This section focuses on the stochastic version of .Lévy-Sheffer changes of
measures. This gives the stochastic feature of the market price of risk. To do this
we need some preliminaries.. We use notations from Jacod and Shiryaev (1986). We
modify the theorem of Kallsen and Shiyaev (2001).

Theorem 2. Let L be an α−stable Levy motion. Moreover let M ≡ H · L for
some nonnegative process H such that t

0 H
α
s ds→ ∞ as t→ ∞. Then there ex-

ists a filtration (Fθ)θ∈R+ on (Ω,F) , a process (Lθ)θ∈R+ , and a finite time change
(Tt)t∈R+ such that (1) L is a (Tt)t∈R+ adapted Lévy-process on Ω,F , (Fθ)θ∈R+ ,P

with Law(L)=Law(L) and (2) M = (L
Tt
)t∈R+ .If we define the Ω,F , (Fθ)θ∈R+ ,P -

time change (Tθ)θ∈R+ by Tθ ≡ inf{t ∈ R+ : t
0 H

α
s ds>θ}, we may choose Fθ = FTθ ,

and T as the inverse time change of T. In particular, Tt =
t
0 H

α
s ds.Then the following

equalities hold:

dPtz
dPt

= exp z
T

t
HvdLs −

T

t
ϕL (zH)s ds

= exp z
T

t
dL

L
Ts

−
T

t
ϕLTs (z) ds

= exp z
T

t
HvdLs −

T

t
LQ(z)
Ts

ϕL (z) ds (10)
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The new class of measure Q(z) are absolutely continuous with respective to P and
is defined by

dQ(z)t
dPt

= exp zL
Tt
+ Ttϕ

L (z)

We apply this result to bond pricing.

Theorem 3. When the interest rate follows (8) with L α−stable Levy Process and
the Radon-Nikodym derivative has a form of stochastic Lévy-Sheffer changes of mea-
sure, then time t price of a discount bond that promises to pay one unit currency at
maturity T is

P (t, T ) = exp (A(t, T ) +B(t, T )r(t))

where

A(t, T ) = exp (−r(T − t))

× exp e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
LQ(z)
Tv

ϕL (1) dv −
T

t
LQ(z)
Tv

ϕL (z) dv

,

B(t, T ) =
(e−a(T−t) − 1)

a

and LQ(z)
Tv

is the Laplace cumulant of Tv under the measure Q(z), where the new class

of measure Q are absolutely continuous with respective to P and is defined by

dQt
dPt

= exp Ltt − TtϕL (1)

= exp
T

t
GvLv −

T

t
ϕL (G)s ds

and

Tt =
t

0
Gα
s ds, Gv = f(v) + zHv

Although α−stable Levy Process has some advantage of the representation of the
bond pricing formula, there is still a problem of the computation Tv. This means that
it is quite restrictive to choose the process H for obtaining tractable pricing formula.
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6. S T V V M
In this section, we incorporate stochastic or time varying volatility into the single
factor model. Under P, short rate is

dr(t) = a(r − r(t))dt+ σdYt (11)

where
Yt ≡ LTt

and Tt is an increasing right-continuous process with left limit such that for each
fixed t, the random variable Tt is a stopping time with respect to (Fθ)θ∈R+ . Suppose
that Tt is finite P a.s. for all t 0 and that Tt → ∞ as t→ ∞. Then the family of
stopping time {Tt} defines a stochastic time change.
6.1. Time Varying Market Price of Risk.

Theorem 4. When the interest rate follows (11) and the Radon-Nikodym derivative
has a form of time inhomogeneous Lévy-Sheffer changes of measure, then time t price
of a discount bond that promises to pay one unit currency at maturity T is

P (t, T ) = exp (A(t, T ) +B(t, T )r(t))

where

A(t, T ) = exp (−r(T − t))

× exp e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
LQ(z)Ts

ϕL (f(v) + uv (z)) dv −
T

t
LQ(z)Ts

ϕL (u(z)) dv

and

B(t, T ) =
(e−a(T−t) − 1)

a

6.2. Stochastic Market Price of Risk.

Theorem 5. When the interest rate follows (11) with L α−stable Levy Process
and the Radon-Nikodym derivative has a form of stochastic Lévy-Sheffer changes of
measure, then time t price of a discount bond that promises to pay one unit currency
at maturity T is

P (t, T ) = exp (A(t, T ) +B(t, T )r(t))
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where

A(t, T ) = exp (−r(T − t))

× exp e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
LQ(z)
Tv

LQ(z)Ts
ϕL (1) dv −

T

t
LQ(z)
Tv

LQ(z)Ts
ϕL (z) dv

,

B(t, T ) =
(e−a(T−t) − 1)

a

and LQ(z)
Tv

is the Laplace cumulant of Tv under the measure Q(z), where the new class

of measure Q are absolutely continuous with respective to P and is defined by

dQt
dPt

= exp Ltt − TtϕL (1)

= exp
T

t
GvLv −

T

t
ϕL (G)s ds

and

Tt =
t

0
Gα
s ds, Gv = f(v) + zHv

7. S L -S C M :

Q -L -C S

In this section, we provide a more general approach of producing multi-factor bond
pricing formula in the single factor setting. To do this, we choose a general process
of Radon-Nikodym in semimartingale process. Among the semimartingale process,
Levy process is quasi-left-continuous. It means that the process has no fixed time
discontinuity. Quasi-left-continuous semimartingales simplify the type of the Radon-
Nikodym. The following theorem can be seen in Kallsen and Shiyaev (2001).

Theorem 6. Let H be the predictable process such that H · L is exponentially
special, where L is the quasi-left-continuous Levy process. Then KL(H) is the expo-
nential compensator of H · L. Then, we can define a change of measure by

dPtz
dPt

= exp H · L− ΦL(H) (12)

where
ΦL(H) = ϕL(H) · t
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,

ϕL(H)t = Htb+
1

2
H2
t c+

R
(eHtx − 1− h(x)x)v(dx)

and h : R→ R is some truncated function.

In this case, the bond price is

P (t, T ) = exp −r(T − t) + (e
−aT − e−at)(r − r(0))

a

× exp (e−a(T−t) − 1) r(t)− (1− e−at)r − e−atr(0)
a

×EP exp
T

t
f(s)dLsv exp

T

t
HdLsv −

T

t
ϕL(Hs)ds |Ft

Note that the following relationship holds:

EP exp
T

t
f(s)dLsv exp

T

t
HdLsv −

T

t
ϕL(Hs)ds |Ft

= EQ exp
T

t
Hsf(s)c+ ef(s) − 1

R
eHsx v(dx) ds |Ft (13)

× exp
T

t
f(s)b+

f(s)2c

2
−

R
((g(x)− h(x))x) v(dx) ds

where E [·] and EQ [·] denote expectations under measure P and Q, respectively. The
new class of measure Q are absolutely continuous with respective to P and is defined
by

dQt
dPt

= exp
T

t
(f(s) +Hs) dLsv −

T

t
ϕL(f(s) +Hs)ds

Note that unless the Levy measure is simple, the analytic solution of the expectation
is not easy. We provide an example of a tractable case in the following proposition.

Proposition 7. When L is Brownian motion and Z follows as

dZt = µ(Zt)dt+ σ(Zt)dLt

where Z is k-dimensional Markov process, µ(Zt) is k × 1 vector and σ(Zt) is k × k
matrix. Then define

Ht = b Zt + c

,
µ(Zt) = a− κZt
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and
σ(Zt)σ(Zt) ii

= αi + βiZt

σ(Zt)σ(Zt) ij
= 0, i = j

, then time t price of a discount bond that promises to pay one unit currency at
maturity T is

P (t, T ) = exp A(t, T ) +B(t, T )r(t)− b(t, T ) Zt + c(t, T )

where

A(t, T ) = exp (−r(T − t))

× exp e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
f(s)b+

f(s)2c

2
ds

,

B(t, T ) =
(e−a(T−t) − 1)

a

and b(t, T ) and c(t, T ) are determined by the following ordinary differential equations:

∂b(t, T )

∂t
= f(t)cb− κ b(t, T )− βb(t, T ) b(t, T )

2

∂c(t, T )

∂t
= f(t)cc−b(t, T ) a− ab(t, T ) b(t, T )

2

with boundary conditions b(T, T ) = 0, and C(T, T ) = 0.

Note that the analytic forms of b(t, T ) and c(t, T ) can be obtained only under

the special assumption. As seen in above proposition, when interest rates follow
the affine type of continuous semimartingales with stochastic market price risk, the
affine framework hold only under the affine type of market price of risk. As we expect
naturally, when the market price has a form of quadratic processes as in Leippold and
Wu (1998) and Ahn, Dittmar, and Gallant (2001), analytic forms of the bond pricing
formula can be obtained. The affine framework, however, collapses in this case.
Therefore, the affine model of Duffie and Kan (1996) is quite restrict in choosing the
market price risk.
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8. P I R M
In this section, we provide a new class of interest rate model in which positive interest
rates are generated. It is well-known that CIR process or Bessel process produce
positive interest rate. This, however, is only for the model tractability.. We perform
the same purpose in the some Levy settings. Let L be a subordinator and τ = τ(q)
independent exponential time with parameters q > 0 Then the process L(q) takes
values in [0,∞] and is given by

L
(q)
t = Lt if t ∈ [0, τ), L(q)t =∞ if t ∈ [τ ,∞)

which is called a subordinator killed at rate q. When the subordinator has zero killing
rate,it is called a strict subordinator. Under P, we model short rate as

dr(t) = a(b− r(t))dt+ σdLt (14)

where we denote by L = (Ls)s≥0 a strict subordinator and a > 0.In addition, we
assume that b = r − c > 0, c > 0 for forcing the interest rates to fluctuate around
mean reversion parameter r. Then the short rate has always positive value and does
not explode. Note that the killing rate zero subordinator satisfies P (Lt <∞)=1 for
all t and

E [exp (zLt)] = exp (tϕ(z))

where

ϕ(z) =
]0,∞[

1− e−zx v(dx)

As before, the strong solution of (8) is

r(t) = (1− e−at)r + e−atr(0) + σe−at
t

0
eavdLv (15)

The price of the pure discount is

P (t, T ) = EQ[exp −
T

t
r(u)du |ξt]

= EP[exp −
T

t
r(u)du

dQ

dP
|ξt]

where the Radon-Nikodym derivative is not unique, as before. We use time change
process for modelling stochastic volatility.

Proposition 8. Assume the measure change is of the form of time Inhomogeneous
Lévy-Sheffer changes of measure. When interest rate follows:

dr(t) = a(b− r(t))dt+ σdLTt (16)
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where Lt is the strict subordinator and the economic time elapsed in t is given by
the integrated CIR process, T = {Tt, t ≥ 0}, where

Tt =
t

0
ysds

where
dyt = κ(η − yt)dt+ λ

√
ytdwt

then the time t price of a discount bond that promises to pay one unit currency at
maturity T is

P (t, T ) = exp (A(t, T ) +B(t, T )r(t))

where

A(t, T ) = exp −r(T − t) + e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

× exp
T

t
LQ(z)Ts

ϕL (f(v) + uv (z)) dv −
T

t
LQ(z)Ts

ϕL (u(z)) dv

and

B(t, T ) =
(e−a(T−t) − 1)

a

and where

LQ(z)Ts
(z) =

exp(κ
2ηt
λ ) exp − 2y0z

κ+γ cosh( γt2 )

cosh γt
2 +

κ sinh( γt2 )
γ

2κη

λ2

and where
γ = κ2 + 2λ2z

In next proposition, we provide an important example for modelling interest rates.

Proposition 9. Assume the measure change is of the form of stochastic Lévy-Sheffer
changes of measure as in Theorem 6 and jumps consist of only small size. When
interest rate follows:

dr(t) = a(b− r(t))dt+ σdLt (17)

where Lt is the strict subordinator and

dHt = −κHtdt+ dwt
then the time t price of a discount bond that promises to pay one unit currency at
maturity T is

P (t, T ) = exp A(t, T ) +B(t, T )r(t) +D(t, T )H2
t +G (t, T )Ht + F (t, T )
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where

A(t, T ) = exp −r(T − t) + e−aT − e−at (r − r(0))− e−a(T−t) − 1 (1− e−at)r + e−atr(0)
a

B(t, T ) =
(e−a(T−t) − 1)

a

and where D (t, T ) , G(t, T ) and F (t, T ) are obtained by solving following differential
equation:

∂D(t, T )

∂t
= α2−D(t, T )κ− 2D2(t, T ) = 0

∂G(t, T )

∂t
= α1−G(t, T )κ− 2D(t, T )G(t, T ) = 0

∂F (t, T )

∂t
= α0 +D(t, T )− G

2(t, T )

2
= 0

with the boundary conditions D(T, T ) = 0, G(T, T ) = 0, and F (T, T ) = 0, and where

α0 = ef(s) − 1
R
v(dx)

α1 = ef(s) − 1
R
xv(dx)

α2 = ef(s) − 1
R
x2v(dx)

9. C
As seen in proposition 9, if true data generating processes of interest rates have jumps
with stochastic market price of risk, the short rate process is equivalent to the poly-
nomial type of some state variable. In this setting, the quadratic model of Leippold
and Wu (1998) and Ahn, Dittmar, and Gallant (2001) is a special case of the general
Levy model where R x

kv(dx) = 0, k 3. Furthermore, affine models with jumps
does not preserve affinity of the model under P in the case of the stochastic market
price of risk. When true data generating process of interest rate has jumps with
stochastic market price of risk, the quadratic models fit market data well compared
with the affine model.. However, this is not because the quadratic models are better
than the affine model, but because the approximation of jumps is more accurate in
the quadratic models.
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