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Abstract 

This paper provides a multi-factor closed form binomial interest rate model. Ho-Lee, 

Black-Derman-Toy, Hull-White, are some of the binomial interest rate models that have 

found broad applications in valuing interest rate contingent claims. Recently, much 

research is seeking to extend the one factor model to multifactor models. However, to 

date, all multi-factor models are non-recombining interest rate models. These models 

are less accurate in valuing securities and calibrating to the market prices. This paper 

proposes a multi-factor closed form binomial interest rate model that is simple to 

implement and can capture a broad range of interest rate movements that are arbitrage-

free. Empirical evidence supports the robustness of the model, which can be calibrated 

to 70 at-the-money swaptions with less than 1.3% average error.  
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I. Introduction 

 

Tremendous progress has been made in the past 20 years in developing interest rate 

models that exhibit arbitrage-free movements. Many interest rate models have been 

proposed to value interest rate contingent claims. And these models are widely used in 

practice, for example, in portfolio management, trading, and risk management.  

 

A closed-form binomial model is one popular class of interest rate models. The Ho–Lee 

and Hull-White models are examples of such a model class. These models are simple to 

implement and can be used for a broad range of applications. And these models provide 

a closed form solution to the entire discount function at each node point of the binomial 

lattice. Such close form solution enables us to value interest rate contingent claims at 

any future time and state of the binomial lattice and to value securities whose payoffs 

depends on the prevailing term structure of interest rates with significant computational 

efficiency.  

 

However, to date, the closed form binomial models are confined to be one-factor models. 

They assume that all interest rates are instantaneously perfectly correlated, allowing the 
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yield curve only one degree of freedom of movement, moving up or down. Such an 

assumption is inconsistent with empirical observations, which have shown that most 

yield curve movements are explained by three principal movements: parallel, steepening 

and curvature. See Litterman and Scheinkman (1991) for the description of these 

movements.  

  

The use of multi-factor interest rate model is important because one factor model may 

erroneously misstate value of many interest rate contingent claims. For example, 

consider a callable bond. Suppose that the time to expiration of the call provision is 

short relative to the underlying bond. A one-factor model would overstate the 

correlation between the stochastic bond price at the expiration of the option to the short 

term interest rates used to determine the present value of option payoff. As a result, the 

one factor model would tend to discount the payment when the bond is called at a rate 

lower than is appropriate and overstate the option value. Similarly, constant maturity 

swap pays a T period bond rate in exchange for a short-term rate. The erroneous 

assumption of perfect correlation between the T period bond rate and the short-term rate 

would affect the convexity value of the swap. A spread option is an option on the spread 

between the two interest rates. One factor model would significantly understate the 
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spread option value.  Multi-factor models are also important to valuing many non 

marketable balance sheet items. For example, demand deposits, where the bank rate 

depends on the stochastic yield curve shape and the single premium deferred annuities 

whose interest payments depend on the insurers’ investment returns. Detail descriptions 

of these balance sheet items can be found in Ho and Lee (2004).   

 

Further, a multi-factor closed form interest rate model can improve the calibration 

procedure of the interest rate model. Specifically, the interest rate model can be 

calibrated to a broader set of benchmark securities, beyond the caps and floors but 

include also swaptions of different tenors and option expirations. Using a broader set of 

benchmark securities for calibration, the interest rate model can better determine the 

relative value of any contingent claims. More generally, when the interest rate model 

can be effectively calibrated to options with early exercises, then any contingent claim 

can be valued relative to a broad range of possible hedging instruments. This is 

something that the propose model can effectively perform. 

 

This paper provides a multi-factor closed form binomial interest rate model. The model 

extends the Ho-Lee model (1986, 2004). The yield curve movements are based on the 
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yield curve movements implied by the benchmark securities market prices. The mean 

reversion process of the interest rates is induced from the term structure of volatilities, 

which is calibrated from the benchmark securities. This approach differs from the 

Brennan and Schwartz model (1982) whose factors are based on the short rates and long 

rates, where the short rate is assumed to mean revert to the long rate. 

 

This paper also describes the relationships between the term structure of volatilities and 

the yield curve movements. Finally, the paper describes a procedure in calibrating the 

interest rate model to a set of 70 at the money swaptions. We show that the average 

error is only 1.3%. And the results are stable over monthly observations of two years. 

  

The paper is organized as follows. Section B provides the multi-factor binomial model. 

Section C analyses the term structure of volatilities in the two-factor binomial model, 

and it shows the relationship between yield curve movements and the term structure 

volatility. Section D describes a method to calibrate the model to fit the current yield 

curve and a set of benchmark securities, and provide the empirical results. Section E 

summarizes the characteristics of the interest rate model. Finally, Section F contains the 

conclusion. 
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II.  Arbitrage-free Term Structure Movements 

The model is a multi-factor recombining binomial model. The model specifies the 

discount function at each node of the binomial lattice such that these discount function 

movements are arbitrage-free. For clarity of exposition, we begin with a two factor 

model. The generalization from a two factor model to a multi-factor model is 

straightforward. 

 

First we introduce some notations. The model is a 2 factor binomial model so there are 

 nodes, denoted by 2)1( +n njiji ,1,0,),,( = , at time .  is the price of a 

discount bond with time-to maturity 

n )(, TPn
ji

T  in state  at time .  is the initial 

discount function with maturity 

),( ji n )(TP

T , which is observed in the market and is an input to 

the model. We assume that 

 (1).  for all n  and all 1)0(, =n
jiP ji, ,  

(2).  for all n  and all 0)(lim , =
∞→

TPn
jiT

ji, . 

 

The term structure movement is arbitrage-free if there is no arbitrage opportunity by 

holding a particular portfolio of the discount bonds at each node point of the binomial 

lattice. Such is the case, if the expected return of holding a discount bond of any 
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maturity T over any one period is the one period return. Specifically, according to 

Harrison and Kreps (1979), we require that: 

{ }1)(TP1)(TP1)(TP1)(TP(1)P
4
1(T)P 1n

ji,
1n
1ji,

1n
j1,i

1n
1j1,i

n
ji,

n
ji, −+−+−+−= ++

+
+
+

+
++         (1) 

 
Equation (1) should be satisfied for any ,2,1,0=n , ,2,1=T  and . nji ,,1,0, =

 

The volatility structure of the model is generated by defining 

jinn
ji TnTnTPTP ),(),()()( 210,0, αα⋅=  

for all , , and all . The original Ho-Lee model assumed 1-factor  0>n 0>T 0, ≥ji
 
model with factor α depending only on T . 
 
By considering the nodes )1,1(),,1(),1,(),,( ++++ jijijiji  at time  and the nodes  n
 

)2,2(),1,2(),,2(),2,1(),1,1(),,1(2),j(i, ),1,(),,( ++++++++++++ jijijijijijijiji  
 
at time  in the equation (1), we deduce the following consistency condition  )1( +n
 
which guarantees that the tree is well defined as a recombining tree :  
 

                 )1,1(
)1,(
),(

1
1

1 −+= Tn
n

Tn α
α
α

, 

                 )1,1(
)1,(
),(

2
2

2 −+= Tn
n

Tn α
α
α

. 

for all . 1, ≥Tn
 
Note that the above equations can be solved with the input data 

 for 1 2
1 2: ( ,1), : ( ,1)n nn nδ α δ α= = ,2,1=n . The solution is given explicitly by 

               1 1 1 11
1 1

1

(1, 1)( , ) ... :
(1, 1) n n T n T n n
T nn T d

n 1 1,
αα δ δ δ
α + + − + −

+ −
= = =

−
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2 2 2 22
2 1

2

(1, 1)( , ) ... :
(1, 1) n n T n T n n
T nn T d

n 1 1,
αα δ δ δ
α + + − + −

+ −
= = =

−
, 

where we define for   ,mn >

1 1 1 1
n,m n n 1 m 1 md δ δ ...δ δ− += 1 2 and . 2 2 2 2

n,m n n 1 m 1 md δ δ ...δ δ− +=

Figure1. Basic building block of 2-factor binomial tree 

)1(1
1,1 −+
++ TPn

ji  

)1(1
,1 −+

+ TPn
ji  

   )(, TPn
ji

)1(1
1, −+
+ TPn

ji  

)1(1
, −+ TPn
ji  

Figure 1 shows the 2-factor binomial tree. Each move has the same risk-neutral 

probability which is 0.25. The proposition below provides the closed form solution of 

any zero coupon bond at each node point of the arbitrage-free binomial interest rate 

lattice. 

 

Proposition 1.  The Closed Form Solution for Bond Prices 

Let  be the initial discount function. Then the arbitrage-free movement of the 

discount function is given by: 

)(TP

( ) ( j
nnT

i
nnT

n

k knT

kn
n

k knT

kn dd
d
d

d
d

nP
nTP 2

,1
1

,1
1

2
,1

2
,1

1
1

,1

1
,1n

ji, 1
1

1
1

)(
)(4 (T)P −+−+

= −+

−

= −+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
++

= ∏∏ )        (2) 

where we set . 02
,1

1
,1 == −− nnnn dd
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Alternatively, it can be expressed as 

( ) ( ) 0.5nj2
n1,-nT

1

12
Tn

0.5ni1
n1,-nT

1

11
Tnk

n
ji, )(dG)(dG

P(n)
n)P(T(T)P −

+
=

−−
+

=

−

⎥
⎦

⎤
⎢
⎣

⎡
×⎥

⎦

⎤
⎢
⎣

⎡
×

+
= ∏∏

n

l
l

n

k
   (2a) 

                                                                      

where 

( ) ( )[ ]

( ) ( )[ ] )d(1dddG

)d(1dddG

2
1,n

2
1,n

0.52
n1,nT

0.52
n1,nT

2
Tn

1
k1,n

1
k1,n

0.51
n1,nT

0.51
n1,nT

1
Tnk

lll −−−+

−

−+

−−−+

−

−+

+×+=

+×+=
 

 

, ( )n
i jP T is the discount bond with $1 principal and maturity T, at a future time n, in state 

(i, j).  The term structure of volatilities are specified by 1
kδ  and 2

kδ  for k = 1,… 

(n+T).  
 

Proof:  

From the construction we have 

j
nnT

i
nnT

njinn
ji ddTPTnTnTPTP )()()(),(),()()( 2

,1
1

,10,0210,0, −+−+⋅=⋅= αα . 

 
So it suffices to check that  

1 2
1, 1,n

0,0 1
1 11, 1,

1 1( )P (T)  4
( ) 1 1

n n
n k n k

k kT n k T n k

d dP T n
P n d d

−

= =+ − + −

⎛ ⎞⎛ ⎞+ ++
= ⎜ ⎟⎜⎜ ⎟⎜+ +⎝ ⎠⎝ ⎠

∏ ∏ 2
− ⎟⎟ .                         (2b) 

We use mathematical induction. For n=1 in Equation (2b), we have from equation (1) 

with n=i=j=0 that 
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[ ]),1(),1(),1(),1(1)(
4
1

)1(
)1(

2121
1

0,0 TTTTTP
P
TP αααα +++=
+  

1 1
0,0 ,1 ,1

1 ( ) 1  1
4 T TP T d d 2⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ . 

Hence we get 

1
0,0 1 2

,1 ,1

( 1) 1( ) 4
(1) 1  1T T

P TP T
P d d
+

=
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

. 

Therefore the formula for n=1 is valid. Now we suppose that the formula is satisfied for 

n and we will check the formula for n+1. From the equation (1) we have 

{ }(T)P(T)P(T)P(T)P
4
1(1)1)/P(TP 1n

ji,
1n
1ji,

1n
j1,i

1n
1j1,i

n
ji,

n
ji,

++
+

+
+

+
++ +++=+  

                ( ) ( ) ( )( )2
1,

1
1,

2
1,

1
1,

1
0,0 11)(

4
1

++++++++
+ ++= nnTnnT

j
nnT

i
nnT

n ddddTP . 

 
By the induction hypothesis, we get 

( ) ( ) j
nnT

i
nnT

n

k knT

kn
n

k knT

kn dd
d
d

d
d 2

1,
1

1,
1

2
,

2
,

1
1

,

1
,n

ji,
n
ji, 1

1
1
1

1)P(n
1)nP(T(1)1)/P(TP ++++

= += +
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
++

=+ ∏∏ , 

 

where we have used the fact 1,,, / +++ = nnTnnnnT ddd . Substituting this into above equation 

we get 
 

( )( )2
1,

1
1,1

2
,

2
,

1
1

,

1
,1

0,0 11
1

1
1

1
1

1)P(n
1)nP(T4)(

++++= += +

+

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
++

= ∏∏
nnTnnT

n

k knT

kn
n

k knT

knn

ddd
d

d
d

TP  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
++

= ∏∏
+

= +

+

= +

1

1
2

,

2
,

1

1
1

,

1
,

1
1

1
1

1)P(n
1)nP(T4

n

k knT

kn
n

k knT

kn

d
d

d
d

, 

because  (by definition ! ). This is the required formula for n+1 and so the 

proof is complete. 

01, =+nnd
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Q.E.D. 
 

Equation (2) provides the specification of the discount function at each node point of a 2 

factor binomial model. The extension of the model to any number of factors is 

straightforward. For an m factor model, we would have the term structure of volatilities 

be specified by m sets of movements 1 2( , ,..., )m
k k kδ δ δ . 

( ) ( ) ( )

1 2 m

1 2

1 2
1, 1, 1,n m

i ,i ,...i 1 2
1 1 11, 1, 1,

1 2
1, 1, 1,

1 1 1( )P (T)  2 ...
( ) 1 1 1

              ... m

mn n n
n k n k n k

m
k k kT n k T n k T n k

i i im
T n n T n n T n n

d d dP T n
P n d d d

d d d

− −

= = =+ − + − + −

+ − + − + −

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + ++
= ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

∏ ∏ ∏ −

 

 

It is straightforward to show that the above interest rate model is a direct extension of 

the Ho-Lee model where the instantaneous volatility of the interest rate movements are 

constant.  Specifically, when  is constant for all  and  is equal to 1 for all1
iδ i 2

jδ j , 

( )n m 11 1 2
n,m n,md δ ,      d 1

− +
= =                                               (3) 

If we substitute Equation(3) to Equation(2), we have 

[ ]
T11nT1

iT112n11n1
n
ji, )δ(1))(δ(1

)(δ)δ(1))(δ)(1)(δ(1
P(n)

n)P(T2(T)P
++

++++
= −+

−−                    (4) 

Equation (4) is the Ho-Lee model. 

 

III.  Analysis of the Term Structure of Volatilities 

 

In this section, we will use the model and analyze the interest rate movements in 
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relation to the term structure of volatilities.  Specifically, we first express the interest 

rates into terms of the bond prices. We then study how the yield curve would move 

given the term structure of volatilities. 

 

At the initial date, we have the discounted function . We define the yield of a 

discount bond with maturity 

)(TP

T  initially to be: 

T
TPTr )(ln)( −=  

More generally, we can define the yield curve at each node point to be: 

T(T)lnP(T)r n
ji,

n
ji, −=     

)5.0(
ln

)5.0(
ln

lnln
)(

)(ln1

2
,1

1
,1

1
2

1
1

nj
T

d
ni

T
d

T
G

T
G

nP
nTP

T

nnTnnT

n

l Tnl
n

k Tnk

−−−−

++
+

−=

−+−+

== ∏∏
                           (5) 

                                     
We define spot volatility of term T  is the variance of the shifts of the yields for a two-
factor binomial model.1)

Equation (5) provides a clear depiction of the yield curve movements. The equation 

shows that the T period interest rate in time n and state (i, j) is specified by three terms. 

The first term 1 (ln
( )

P T n
T P n

+
−

)  is the T period forward rate at the horizon date n. The 

second term
1 2

1
ln lnn n

Tnk Tnlk
G G

T T
= +∏ ∏ 1l=

                                           

 is called the convexity drift, that we will 

 

)

1. The variance of a two-factor binomial model has six terms(4C2), each of which represents the spread 
between the two-factor binomial outcomes. If we replace ,  by  and ,  by  

respectively, we will have 

1
11r 1

10r 1
1r

1
01r 1

00r 1
0r

( 4)()( 21
0

1
1 TrTr −  which is spot volatility of a one-factor binomial model. 
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discuss later. The third term 
1 2

1, 1,ln ln
( 0.5 ) ( 0.5T n n T n nd d
i n j

T T
+ − + −− − − − )n describes the 

movements of the yield curve. The third term shows that state (i, j) represents the yield 

curve taking i and j steps with step sizes 
1

1,ln T n nd
T
+ −−  and 

2
1,ln T n nd

T
+ −−  respectively. 

Therefore, the standard deviation of each of these two binomial movement is half that 

step size. It follows that the variance of the yield curve movement over each step is the 

sum of the variances of the two independent binomial movements. Specifically, we have               

the forward volatility of term T  given by 

 

( ) ( )
0.52 2nf 1 2

T n 1,n T n 1,n
1(T) lnd lnd

2T
σ + − + −

⎡ ⎤= +⎢ ⎥⎣ ⎦
 

 
Now we note that the spot volatility of term T  is the forward volatility where n =1, 
and therefore, the spot volatility is given by 
 

( ) ( )
0.52 21 2

T,1 T,1
1(T) lnd lnd

2T
σ ⎡ ⎤= +⎢ ⎥⎣ ⎦

    

 

Note that since the movement is binomial for each of the factors, when we take the 

expectation over the possible states of the world based on the risk neutral probabilities, 

the third term is zero.  

 

Now, we proceed to explain the term convexity drift. Consider taking the expectation 

across all both sides of the equation (5), we can now conclude that the expected yield of 

a T -period bond over an -period horizon is the forward rate (for the n T  periods 
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starting from time  viewed from today) with a drift. The drift  is given by: n D

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= ∏∏

==

n

l
l

n

k 1

2
Tn

1

1
Tnk Gln

T
1Gln

T
1D                                    (6) 

where  

( ) ( )[ ]

( ) ( )[ ] )d(1dddG

)d(1dddG

2
1,n

2
1,n

0.52
n1,nT

0.52
n1,nT

2
Tn

1
k1,n

1
k1,n

0.51
n1,nT

0.51
n1,nT

1
Tnk

lll −−−+

−

−+

−−−+

−

−+

+×+=

+×+=
                       (7) 

 

But note that this drift is always positive and increases with volatilities. That is, the 

expected forward rate of any time period of delivery T and future date n is higher than 

the forward rate implied by the initial yield curve. And this spread increases with 

volatilities. 

 

This result is shown by noting 0 < D, by showing that  and  are greater 

than 1 for all  and l . Note that 

1
TnkG 2

TnG l

k ( ) ( ) 2
1,-n

0.52
1,nT

1
k1,-n

0.51
k1,nT d0  1,d  ,d0  1,d ll <<<< −+−+  . 

Therefore, it follows that 

( )[ ] ( )[
( )[ ] ( )[ ] 0d1 dd1

0d1 dd1
0.52

1,nT
0.52

1,nT
2

1,n

0.51
k1,nT

0.51
k1,nT

1
k1,n

>−−

>−−

−+−+−

−+−+−

lll

]                                   (8) 

 
In expanding Equation (14) and simplify, we get 

( ) ( ) ( )
( ) ( ) (

0.51 1 1
n 1,k T n 1,k T n 1,k n 1,k

0.52 2 2 2
n 1,k T n 1, T n 1, n 1,l

1 d d d 1 d

1 d d d 1 dl l

− + − + − −

− + − + − −

+ > +

− > + )
 

 
Then it follows that 
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1<  and 1<   1
TnkG 2

TnG l

The results show that expected yield must rise above the forward rate because the 

expected returns of the bond increases with the volatility of interest rates as a result of 

the bond convexity. To ensure that the expected returns of the bond to be the same as the 

one period interest rate for any interest rate volatility, the convexity drift is needed to 

balance this convexity effect on the bond returns. 

 

IV.  Implementation of a multi-factor model: Calibrating the model to the prices 
of Benchmark Securities. 

 

In this section we describe a method in implementing the n factor interest rate model. 

Specifically, we describe the procedure in calibrating the interest rate model to a set of 

benchmark securities. We also present empirical evidence to support that the two factor 

model can fit the market data better than the some of the standard one factor models.  

 

Calibrating the model entails several steps. 

 

1. Benchmark securities. The main advantage of using an arbitrage-free interest 

rate model is to be able to fit the model to the observed term structure of interest 

rates and a set of interest rate options, called benchmark securities. This 
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calibration approach enables us to value an interest rate contingent claim relative 

to the spot curve and the benchmark securities. The spot curve represents the 

market determined time value of money. The benchmark securities represent the 

market pricing of interest rate volatilities. Therefore, if we can calibrate the 

model to the market time value of money and market price of interest rate risks, 

then we have a consistent valuation framework.  

 

Since the multi-factor model allows for flexible movements of the yield curve, 

and the recombining binomial lattice allows for efficient computation, we can 

use a portfolio of caplets, floorlets and both American and European swaptions 

as the benchmark securities.  

 

2. Specification of the term structure of interest rate. Any arbitrage-free interest 

rate model takes the observed spot yield curve as given. To calibrate the model, 

one methodology is to use the spot swap curve as the input to the model. 

  

3. Pricing of caplets, floorlets and European swaptions. We observe that a caplet is 

equivalent to a put option written on a zero coupon bond and a swaption is 
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equivalent to an option (call or put) on a coupon bond. Hence we have a series 

of zero bond put option prices or coupon bond option prices. We use the closed 

form formula for bond option prices, which are completely determined by initial 

discount function (which is a model input) and model volatility factors, which 

are 1   n and 2
nδ δ , where n = 1, 2, 3…N, Determination of the volatility 

factors 1   n and 2
nδ δ . We need to determine the volatility factors of the two factor 

interest rate model using the market observed benchmark securities’ prices. This 

two-factor interest rate model assumes that at each instant the yield curve makes 

two independent movements. Following the empirical results on the yield curve 

movements, we can assume that the movements can be specified by  

 and  )()(2)(ln 11 nnfn σδ −= )()(2)(ln 22 nnfn σδ −=

 

4. For the calibration procedure we choose a functional form of the term structure 

of volatilities. The specific functional form is assumed to 

be dctbta +−+= )exp()(σ . . We choose the function 

( ) ( ) exp( )t a bt ct dσ = + − +  where t is a time-to-maturity to represent the 

volatility curve because this function decays exponentially and, when t is 

relatively small, the curve may exhibit a hump, depending on the parameters a 

and b. This configuration of the volatility curve is observed in the 

 18



market.  and 1
1 1 1( ) ( ) exp( )n a b n c n dσ = + − + 1 2

2
2 2 2( ) ( ) exp( )n a b n c n dσ = + − +

j

. 

The constants  for j = 1, 2 are estimated from the benchmark 

securities market prices.  

,, ,j j ja b c d

 

5. Calibration. The caplets’, floorlets’ and swaptions’ observed market prices give 

us a set of equations to be satisfied by fitting the model volatility factors  

to the closed form pricing models of these benchmark securities. Such volatility 

factors are determined by non-linear search procedure in determining the 

parameters  j=1,2, such that the sum of squares of the errors 

between the observed and model prices of the benchmark securities is 

minimized. We use the following object function                                        

21 , nn δδ

,, ,j j j ja b c d

  
2

i i

1 i

MarketPrice ModelPrice
MarketPrice

N

i=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑  

 

where N is the number of benchmark securities. 
 
Market Swaption Data:  
 

The term structure of interest rates is the USD zero swap curve on July 31, 2002. The 

market swaption volatility surface is given by the Black volatilities quoted (in %). 
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  Swap Tenor (years) 

Option 
Term 

(years) 
1yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr 9yr 10yr 

1yr 44.40 36.50 32.90 29.70 27.60 25.70 25.40 24.00 23.40 23.30
2yr 31.20 28.80 27.10 25.30 24.20 22.90 23.00 21.80 21.30 21.10
3yr 27.00 25.30 24.30 23.10 22.20 21.30 21.10 20.40 20.00 19.90
4yr 24.00 22.80 21.90 21.20 20.70 19.90 19.70 19.10 18.70 18.60
5yr 22.30 21.30 20.80 19.90 19.40 18.70 18.50 18.00 17.70 17.40
7yr 19.80 19.10 18.50 18.10 17.60 16.90 16.70 16.30 16.00 15.80
10yr 17.40 16.40 15.90 15.60 15.10 14.50 14.50 14.10 13.90 13.70

 

The calibrated two yield curve movements are given by the estimated volatility 

parameters:  

 

1σ :  1 1 1 10.772079, b -0.168097, c 0.498474, 0.113347a d= = = =

2σ :  2 2 2 20.023701, b -0.014509, c 0.003260, 0.245125a d= = = =

 
The first term 1σ (n) is a curve that falls from 0.8 to and level on 0.1. The second term 

2σ (n) falls steadily and reaches zero in year 10. The results are consistent with the 
observed data that the term structure of volatilities declines with the term. 
  
And the valuation error derived from the estimated swaption prices are given by the 
table below. 
 
Swaption Matrix: 2-Factor Model percentage errors: 
 
 
  Swap Tenor (years) 

Option 
Term 

(years) 
1yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr 9yr 10yr

1yr 0.55 -1.67 1.35 0.35 -0.11 -1.60 1.97 0.46 1.62 4.47 
2yr -2.91 -1.05 0.29 -0.83 -0.55 -2.01 2.08 0.09 0.84 2.68 
3yr 1.00 0.45 1.13 0.11 -0.30 -1.14 0.98 0.46 1.18 3.19 
4yr 0.36 -0.77 -1.23 -1.21 -0.55 -1.59 0.18 -0.23 0.13 1.95 
5yr 0.61 -0.72 -0.01 -1.54 -1.27 -2.27 -0.70 -0.95 -0.27 0.27 
7yr 0.54 -0.35 -0.77 -0.29 -0.47 -2.03 -0.78 -0.92 -0.63 0.12 
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10yr 3.63 0.61 0.19 0.81 0.00 -1.77 0.41 -0.40 0.00 0.24 
 
 

The result shows that the model fits the observed data quite well. Previous work using 

the Brace, Gatarek and Musiela (1997) calibrates to only counter-diagonal of the swap 

volatility surface, confining only to those swaptions where the option term plus the 

swap tenor to be 31 years. When the 2 factor model is confined to one factor, the 

average error exceeds 3%. The above model has been tested over 24 monthly data over 

two year and the results are similar in all period as shown in the table below.   

 

January 2002 are given in the table below. (Average percentage pricing error of 70 swaptions each month 

from January 2000-The average percentage pricing error is defined as the square root of the mean squared 

percentage errors.) 

Average Error Date Average Error Date 
1.76 1/30/2004 1.58 12/31/2003 
1.51 11/28/2003 1.75 10/30/2003 
1.57 9/30/2003 1.75 8/29/2003 
1.22 7/30/2003 1.46 6/30/2003 
1.55 5/30/2003 1.73 4/30/2003 
1.23 3/31/2003 1.61 2/28/2003 
1.61 1/30/2003 1.70 12/30/2002 
1.56 11/29/2002 1.69 10/30/2002 
1.37 9/30/2002 1.63 8/30/2002 
1.12 7/30/2002 1.55 6/28/2002 
1.40 5/30/2002 1.49 4/30/2002 
1.50 3/29/2002 1.51 2/28/2002 

 

 

The results show that the average errors are less approximately 1.5%. This error is reasonably small, 
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especially when the market is quite volatile in this time period. In this period, the 5 year swap rate 

reached the high of 5.6% and the low of 2.8%.  The one year Black volatility reached a high of 60.8% 

and a low of 26.1%. The average error remains quite stable despite the large changes in both the level and 

the volatility of the rates. 

 

V.  The characteristics and the applications of the model 
 
The propose interest rate model has a number of useful characteristics for practical 
applications.  
 

First, the model provides us with a closed form solution of term structures of interest 

rates at each node. Therefore, we can determine the interest rate yield curve at each 

node point, and thus, the model is computational efficient and minimizes errors in 

numerical approximation. By way of contract, the Black Derman and Toy model 

requires numerical construction of the spot rate for each node point on the lattice. And 

therefore, the yield curve at each node point has to be numerically calculated from the 

binomial lattice of the spot rates, a procedure that requires significant computation and 

can have significant numerical estimation errors. 

 

Second, the two-factor binomial model takes the initial spot yield curve and initial term 

structure of volatilities as input data. The model does not specify the precise nature of 
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the mean reversion process of the interest rate. Instead, the mean reversion process is 

indirectly specified via the term structure of volatilities. As a result, the model is more 

flexible in calibrating to the observe benchmark securities prices. By way of contrast,  

Vasicek, Cox-Ingersoll-Ross and Hull-White assume that the short term interest rates  

follow a certain process. These models may not fit the observed benchmark securities 

prices satisfactorily. 

 

Third, the two-factor binomial model is a discrete time and combining model and not a 

continuous time and non-combining model. Recently, Grant and Vora (1999) and Das 

and Sundaram (1999) have pointed out that discrete time models provide computational 

efficiency for practical implementation. Since we have to convert continuous time 

models into discrete time versions when we implement them for empirical testing or 

practical purposes, discrete time models can be used directly. Since the model is 

recombining, the model is more effective to price options (European and American) 

without using Monte-Carlo simulations. This model can be used to calculate the interest 

rate sensitivities of a large portfolio. By way of comparison, Brace, Gatarek, Musiela 

(BGM)(1997) and string model while provide flexibility in modeling the yield curve 

movements, the valuation of the securities require Monte-Carlo simulation method that 
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often lacks the pricing accuracy that recombining binomial model has.  

 

Fourth, since the model can be calibrated to a large sample of benchmark securities of a 

broad range of interest rate options, the model can provide relative valuation of any 

contingent claims relative to its hedging instruments or an appropriate spectrum of 

liquid securities. Therefore, the model can provide more accurate pricing of the 

securities and the ratios to its hedging strategies. 

 

Fifth, the model is closed form without any numerical procedure, like that of the Black 

Derman and Toy model, or any Monte-Carlo simulation to estimate the security prices. 

The model is similar to a Black model, where the closed form solution provides a direct 

mapping from the price to the volatilities. Therefore, the model can be used effectively 

as a standard model in an interest rate contingent claims management. The model’s two 

factor movements can be used as inputs to value securities that are affected by the 

multi-factor movement as Black volatilities are used for the one factor models.  
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VI. Conclusions 

 

This paper proposes a multi-factor binomial interest rate model. The model is a discrete 

time recombining lattice model that provides a closed form solution to the discount 

function at each node point. The interest rate movement has the Markovian property that 

exhibits a mean reversion derived by the term structure of volatilities. The multi-factor 

property enables the model to fit both the current yield curve and the volatility surface 

at the same time.  

 

We have shown that such a model can have a broad range of applications in valuation 

interest rate contingent claims. The model can be calibrated to a large set of benchmark 

securities of different security types. Therefore the model offers a robust methodology 

to value interest rate contingent claims.  

 

In this paper, we have discussed the implementation of the model for two factors. 

The research can be extended to the appropriateness of using higher order models. 

Such research will be left for future. 
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