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Summary. The CreditRisk+ [CSFP, 1997] methodology, attractive in its analytic
tractability and small data requirement, has limited application because of its sector
independency assumption. Attempts have been dedicated to relax this impractical
assumption but none of them seems to have reached the goal. This paper proposes a
simple way of extending the original model so as to accomodate sector correlation.
Our model is flexible enough to cover various covariance structures. One advan-
tage of the approach is that existing numerical algorithms designed for the classical
CreditRisk+ model can be reused with little modification.

A simulation technique for the CreditRisk+ model, introduced in [Glasserman, 2003],
is also applicable to our model. Then, using the simulated losses as input, we can
find an optimal portfolio allocation by minimizing conditional Value-at-Risk (CVaR)
as proposed in [Andersson et al., 2001].

Case study shows that our model outperforms other CreditRisk+ variants which
allows sector dependency. Simulation error is very small compared to analytic re-
sults and the optimization significantly reduces portfolio credit risk.

Keywords: CreditRisk+, Sector correlation, Simulation, Importance Sampling,
Conditional Value-at-Risk, Optimization.

1 CreditRisk+ for Correlated Sectors

CreditRisk+ model, since its debut in 1997 [CSFP, 1997], has received great
attention from the financial industry and improvements have been proposed
in the literature. [Gundlach and Lehrbass, 2003] is a good reference to review
recent issues.

CreditRisk+ models probability of default as a linear combination of
gamma-distributed risk factors, referred to as sectors. So the probability of
default, ps

i , conditional on sectors has the form

ps
i = pi

(
w0i +

K∑
k=1

wkiSk

)
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where pi is the expected probability of default, wki are weights on sectors,
and Sk, k = 1, . . . ,K are sector values, which are gamma distributed with

E[Sk] = 1 and V [Sk] = σ2
k. (1)

One major pitfall of the original model is that it assumes Sk are indepen-
dently distributed, which is unreal and impractical: Sectors, being normally
defined as industry sectors, are in general highly correlated, so defining sctors
as industries and assuming they are independent underestimates credit risk.
Though, in theory, correlation between obligors can be incorporated through
sector weights, there is no intuitive way to determine them.

Various approaches to address this issue have been introduced in the liter-
ature; [Bürgisser et al., 1999], [Giese, 2003], [Lesko et al., 2003] to list a few.
However, their ability to incorporate sector correlation is limited to a narrow
range of covariance structure and sector correlation still remains as a critical
implementing issue for the CreditRisk+ model.

Among the models taking sector dependency into account, the hidden
gamma model [Giese, 2003] is of particular interest. While other models at-
tempt to incorporate sector dependency with a reduced number of sectors, one
sector in [Akkaya et al., 2003], for example, the hidden gamma model adds a
common risk factor which affects all sectors and so determines covariance
structure of sectors. This is consistent with the economic intuition for sector
correlation: a macro economic factor affects all industry sectors and results in
correlation. The hidden gamma model has the form

Sk = σ2
k(Yk + Ŷ ) (2)

where Ŷ ∼ Gamma(θ̂, 1) is the common risk factor, and Yk ∼ Gamma(θk, 1)
are sector specific risk factors, which is independent of Ŷ . Equation (1) and
σ2

k ≥ 0 define the bounds on θ̂:

0 ≤ θ̂ ≤ min
k

{
1
σ2

k

}
(3)

This condition, which might be overlooked at the first glance, in fact, con-
siderably restricts the covariance structure the model is able to depict. The
correlation coefficient between sector k and l is given by

ρkl = θ̂σkσl (4)

Suppose that sector k has the largest variance and sector l has the smallest
variance and σk/σl = 5, then

ρkl ≤ σl

σk
= 0.2.

Thus, if sector variances vary in a wide range, the hidden gamma model
becomes valid only when correlations are low.
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Note that the hidden gamma model can be restated in the form of the
classical CreditRisk+ model, now with K + 1 sectors:

ps
i = pi

(
w0i +

K+1∑
k=1

wkiŜk

)
(5)

where 1

Ŝk ∼ Gamma

(
1
σ2

k

− θ̂, σ2
k

)
, k = 1, . . . ,K,

ŜK+1 ∼ Gamma
(
θ̂, 1
)
, and

w(K+1)i =
K∑

k=1

wkiσ
2
k

1.1 Generalization of the Hidden Gamma Model

In the hidden gamma model, It is not a necessary requirement that the coef-
ficients of Yk and Ŷ be the same as σ2

k. We can generalize the hidden gamma
model as follows.

Sk = δkYk + γkŶ , k = 1, . . . ,K (6)

where

Yk ∼ Gamma (θk, 1) (7)

Ŷ ∼ Gamma (θ̂, 1) (8)

In this generalized model, Sk is no longer gamma distributed as long as δk �=
γk, which is a deviation from a key assumption of the CreditRisk+. However,
newly defining K+1 gamma distributed sectors, ps

i can be written as a linear
combination of those sectors and the model still lies within the framework of
the CreditRisk+:

ps
i = pi

(
w0i +

K+1∑
k=1

wkiŜk

)
(9)

where

1One might argue that
∑K+1

k=0 wki �= 1 is a violation of the model. A gamma
distributed random variable has the following property:

gk ∼ Gamma (θk, 1) → βkgk ∼ Gamma (θk, βk),

which is why βk is called a scale parameter. Thus, sum of weights being 1 is not a
hard constraint.
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Ŝk ∼ Gamma (θk, δk) , k = 1, . . . ,K, (10)

ŜK+1 ∼ Gamma
(
θ̂, 1
)
, and (11)

w(K+1)i =
K∑

k=1

wkiγk (12)

Ŝk, k = 1, . . . ,K can be interpreted as sector specific risk factors and
ŜK+1 as a macro economic risk factor, and the degree by which a sector is
affected by the macro economic risk factor is determined by δk and γk. From
this point of view, we refer to the model as CreditRisk+ with a common risk
factor or simply as a common factor model, for convenience.

The main advantage of the common factor model is that it enables us
to incorporate sector correlation in a intuitive way and still retains the form
of the original CreditRisk+. This allows us to faciliate numerical algorithms
developed for the CreditRisk+ model with minor change. Among them, a
generalized version of the numerical procedure in [Haaf et al., 2003], suited
for the common factor model, is presented in Appendix A.

The common factor model has the forms of expectation and covariance
matrix

E[Sk] = δkθk + γkθ̂, (13)

V [Sk] = δ2kθk + γ2
k θ̂, (14)

Cov[Sk, Sl] = γkγkθ̂. (15)

Therefore, appropriately choosing the parameters, various covaraince struc-
tures can be described by the model.

1.2 Calibration of the Common Factor Model

Now it remains to identify the parameters of the common factor model. The
sector covariance matrix consists of K(K + 1)/2 elements and the common
factor model has 3K+1 parameters. Combined with the constraint E[Sk] = 1,
we have 2K + 1 degrees of freedom to specify the covariance matrix.

Define the distance between an observed covariance matrix and the esti-
mated covariance matrix as the residual sum of squares:

f(θk, δk, γk, θ̂) =
K∑

k=1

(
σ2

k − δ2kθk − γ2
k θ̂
)2

+
K∑

k=1

k−1∑
l=1

(
σkl − γkγlθ̂

)2

. (16)

The parameters can be estimated by minimizing this distance under con-
straints:

min
θk,δk,γk,θ̂

f(θk, δk, γk, θ̂)

such that
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δkθk + γkθ̂ = 1, k = 1, . . . ,K,

θk ≥ 0, θ̂ ≥ 0, k = 1, . . . ,K,
δk ≥ 0, k = 1, . . . ,K,

K∑
k=1

wkiγk ≥ 0, for each obligor i.

The first constraint is fromE[Sk] = 1 and the last constraint is fromw(K+1)i ≥
0.

If variances can be more accurately measured than covariances, an alter-
native would be to exactly match the variances and then estimate parameters
by minimizing the second term of f(·).

2 Minimizing CVaR within the CreditRisk+ Framework

CVaR as an optimization criterion for credit portfolios, first proposed in
[Andersson et al., 2001], has also been studied in [Jobst, 2001]. The results in-
dicate that this criterion is well-justified and leads to meaningful results. The
main advantage of the methodology is, for a simulation-based risk model, the
optimization problem is formulated as a linear programming and easily solved.
The formulation of CVaR minimization with various practical constraints can
be found in [Han and Park, 2006].

To take advantage of the methodology in [Andersson et al., 2001], we need
to draw random samples from the loss distribution defined by the common
factor model. In the CreditRisk+, loss from an obligor is given by

Xi = νi ·Di,

where νi is the net exposure of obligor i and Di is a conditional Poisson
random variable with E[Di] = ps

i . So the (conditional) loss function of the
portfolio under scenario j is given in terms of Poisson random sample, Dj =
{Dj1, . . . , DjN} by

f(x,Dj) =
N∑

i=1

(νi ·Dji) xi, (17)

where xi is the portfolio weight of obligor i in terms of a multiple of the cur-
rent net exposure.Di can be efficiently simulated by deploying the importance
sampling technique proposed in [Glasserman, 2003]. The basic idea is to ad-
just the gamma and Poisson distributions so that the expectation of the loss
becomes a desired extreme loss such as VaR. Importance sampling is especially
well suited for the CreditRisk+ framework in which the desired loss can be
found analytically. Otherwise, an approximation method, such as quadratic
approximation, whould be employed. Importance sampling procedure for the
common factor model is summarized in Appendix B.
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3 Case Studies

In this section, the common factor model is compared to the classical Cred-
itRisk+ model, the hidden gamma model, and the compound gamma model.
For details of the last two models, refer to [Giese, 2003]. Obligor data of Korea
Credit Gurantee Fund (KCGF) was collected for the test. KCGF is a public
financial institution, whose objective is to lead the balanced development of
the national economy by extending credit guarantee services for the liabili-
ties of promising enterprises which lack tangible collateral. The CreditRisk+
methodology, which models only default events, is particularly well suited
for the fund since most obligors are small to mid-size businesses, for which
market-to-market approach is inappropriate. As the instruments are purely
based on obligor’s credit, they are characterized by high default probability
and low recovery rate; about 7% of default rate and 25% of recovery rate in
average.

The fund, as of the end of 2006, has 213,000 obligors. The size of loans
varies from tens of millions to billions summing up to 24,999,480 million in
the local currency (won). The fund classifies their obligors into six indus-
try sectors; light industry (LIGHT), heavy industry (HEAVY), construction,
wholesale and retail (RETAIL), service (SERVICE), and others (OTHERS),
and we defined the sectors as such.

The probability of default and the net exposure were provided by the fund,
and the covariance matrix of the sectors was estimated from 60 monthly ob-
servations drawn from January 2001 to December 2005 (Figure 1). Default
rates are calculated based on the default events occured for one year to each
observation date, so the montly drawn samples were overlapped. This gives
rise to autocorrelation and underestimation of variance. It, however, turned
out that, in our sample, increasing the sampling interval to a quarter or a half-
year did not alter the result in a notable way. So, we chose to stay with the
montly observations to maximize the sample size. The estimated covariance
matrix is shown in Table 1. In the table, the upper triangular part contains
covariances normalized by the sample mean, and the lower triangular part
contains corresponding correlation coefficients. Sectors are very highly corre-
lated, from which we imply that survival of small and mid-size firms are very
sensitive to the macro economic trend.

3.1 Comparison of CreditRisk+ models

The covariance matrix in Table 1 was calibrated by the hidden gamma model
(HG), the compound gamma model (CG), and the common factor model
(CF) and the results are shown in Table 2. The estimates of parameters of
the hidden gamma model and the compound gamma model were bounded,
respectively by the largest and the smallest sector variances. Comparing Ta-
ble 2 to Table 1, you see that the common factor model well calibrates a
rather heterogeneous covariance matrix, significantly outperforming the other
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Fig. 1. Sector default rate time series. Dafault rates were monthly observed for five
years from January 2001 to December 2005.

LIGHT HEAVY CONST RETAIL SERVICE OTHERS
LIGHT 0.0489 0.0350 0.0232 0.0542 0.0729 0.0424
HEAVY 0.9282 0.0291 0.0213 0.0373 0.0504 0.0265
CONST 0.7038 0.8371 0.0222 0.0257 0.0347 0.0127
RETAIL 0.9870 0.8806 0.6936 0.0617 0.0827 0.0489
SERVICE 0.9867 0.8858 0.6959 0.9966 0.1116 0.0643
OTHERS 0.8183 0.6644 0.3627 0.8401 0.8221 0.0549

Table 1. Sector covariance matrix estimated from 60 default rate time series ob-
served for five years from January 2001 to December 2005. Default rates of each
sector were normalized by their sample mean. The upper triangular part of the table
contains covariances and the lower triangular part contains correlation coefficients.

two models. Calculated residual sum of squares were 0.0000951, 0.00484, and
0.0116, respectively.

With the estimates of each model’s parameters, we computed the loss
distribution of the portfolio (Table 3). As expected, the classical model with
independency assumption returns the smallest estimate of the unexpected
loss and the other two models also more or less underestimate the unexpected
loss compared with the common factor model: The hidden gamma model
with the second largest loss estimates, still underestimates the 99% loss by
222,611 million won (about 8% of the loss) compared to the common factor
model. This result reflects how using the CreditRisk+ methodology without
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LIGHT HEAVY CONST RETAIL SERVICE OTHERS
LIGHT 0.0489 0.0127 0.0098 0.0270 0.0489 0.0241
HEAVY 0.3377 0.0291 0.0058 0.0161 0.0291 0.0143
CONST 0.2956 0.2278 0.0222 0.0123 0.0222 0.0109
RETAIL 0.4922 0.3794 0.3320 0.0617 0.0617 0.0304
SERVICE 0.6620 0.5102 0.4465 0.7436 0.1116 0.0549
OTHERS 0.4643 0.3578 0.3131 0.5215 0.7013 0.0549

(a) Hidden gamma model

LIGHT HEAVY CONST RETAIL SERVICE OTHERS
LIGHT 0.0489 0.0222 0.0222 0.0222 0.0222 0.0222
HEAVY 0.5902 0.0291 0.0222 0.0222 0.0222 0.0222
CONST 0.6745 0.8751 0.0222 0.0222 0.0222 0.0222
RETAIL 0.4050 0.5255 0.6005 0.0617 0.0222 0.0222
SERVICE 0.3011 0.3907 0.4465 0.2681 0.1116 0.0222
OTHERS 0.4294 0.5571 0.6366 0.3823 0.2842 0.0549

(b) Compound gamma model

LIGHT HEAVY CONST RETAIL SERVICE OTHERS
LIGHT 0.0490 0.0341 0.0227 0.0552 0.0730 0.0419
HEAVY 0.9057 0.0289 0.0158 0.0384 0.0508 0.0291
CONST 0.6814 0.6176 0.0226 0.0255 0.0338 0.0194
RETAIL 0.9995 0.9058 0.6815 0.0621 0.0821 0.0472
SERVICE 0.9909 0.8981 0.6757 0.9911 0.1106 0.0624
OTHERS 0.8064 0.7309 0.5499 0.8065 0.7997 0.0550

(c) Common factor model

Table 2. Calibrated covariance matrices. The upper triangular part of the table
contains covariances and the lower triangular part contains correlation coefficients.

the knowledge of sector correlation can be dangerous underestimating the
credit risk.

3.2 Performance of the Simulation based approach

Table 4 compares percentile losses obtained from the simulation to those from
the analytical procedure. 10000 samples were drawn for the simulation. As
shown in the last column, simulation error is very small around the region
of interest, less than 0.1%. Though not presented here, simulation with only
2000 iterations increased the error in a trivial way; less than 1% for a wide
percentile range. This is very impressive result for the number of obligors.
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INDEP HG CG CF
EL 1,757,152 1,757,152 1,757,152 1,757,152

50.00% 1,747,171 1,731,366 1,740,626 1,716,367
75.00% 1,888,368 1,947,578 1,952,889 1,984,383
90.00% 2,023,641 2,163,954 2,157,046 2,259,301
95.00% 2,108,487 2,303,922 2,285,262 2,439,720
99.00% 2,275,860 2,588,760 2,538,149 2,811,371
99.90% 2,476,821 2,944,298 2,841,059 3,281,133

Table 3. Percentile losses of different CreditRisk+ models. Losses are in millions.
INDEP, HG, CG, and CF respectively stand for the classical model, the hidden
gamma model, the compound gamma model, and the common factor model.

Anlytic Simulation Error(%)
EL 1,757,152 1,752,533 -0.263

50.00% 1,716,367 1,733,579 1.003
75.00% 1,984,383 1,990,321 0.299
90.00% 2,259,301 2,253,257 -0.268
95.00% 2,439,720 2,439,275 -0.018
99.00% 2,811,371 2,813,805 0.087
99.90% 3,281,133 3,279,864 -0.039

Table 4. Analytic vs. simulation results of the common factor model. The pre-
specified loss x in Equation (37) was set to 99% percentile loss computed analytically.
Simulation consisted of 10000 iterations. Losses are in millions.

3.3 Minimum CVaR Portfolio

The objective of KCGF, as a public institution, is not to maximize its profit.
It rather aims to control the expected loss to a level determined by the policy.
So the usual practice of portfolio optimization; minimize risk given a required
expected return, is not appropriate to the fund. The main source of profit is
the gurantee fee which is received at the time of gurantee, but it does not
correctly reflect the risk associated with the contract. So we minimized CVaR
equating the expected loss to a pre-determined expected loss.

The obligors were grouped by six sectors and the rebalancing of each sector
was constrained by the bound [70%, 130%]. Instead of specifying an expected
loss level, we found the minimum and maximum values of the expected loss
achievable by the portfolio subject to the rebalancing bounds, and uniformly
chose five EL points in the range. For each of these five expected losses,
we obtained the minimum CVaR portfolio allocation. Connecting the five
(EL,CV aR) points, we constructed a efficient frontier-like curve as shown in
panel (b) of Figure 2. The current portfolio lies well above the efficient line,
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providing room for improvement of the portfolio’s risk profile. Even though
we minimized CVaR, EL-VaR curve in panel (a) also has very similar pattern.

Table 5 and Figure 3 show the optimal portfolio weights. It is expected
that a sector with high default rate volatility relative to the expectation will
be weighted less since it will increase the CVaR for the same level of EL. As
expected, SERVICE sector whose VOL/PD ratio is the greatest, is bounded by
the lower bound in most EL values. Similarly, the optimal weights of RETAIL
sector whose VOL/PD ratio is the second greatest, are also smaller than the
current weight. Many sectors were bounded by the rebalancing constraints.

We grouped assets into only six sectors for simplicity. Adding more classifi-
cation criteria such as ratings will give more control for asset rebalancing and
the resulting portfolio allocation would improve the risk profile even more.
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Fig. 2. Minimum CVaR given a required expected loss level. The point above curve
in each panel represents the current portfolio.

4 Concluding Remarks

In this paper, we proposed a simple and intuitive way of incorporating sec-
tor correlation in the CreditRisk+ framework. Our model, referred to as the
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VOL/PD W0 W1 W2 W3 W4 W5
LIGHT 0.746 14.660 10.262 13.128 15.994 18.519 19.058
HEAVY 0.507 26.783 34.818 34.818 34.818 34.818 34.818
CONST 0.429 10.948 14.233 14.233 14.233 13.320 7.664
RETAIL 1.120 37.381 33.528 30.661 27.795 26.167 26.167
SERVICE 1.983 10.198 7.139 7.139 7.139 7.139 12.256
OTHERS 0.596 0.029 0.020 0.020 0.020 0.038 0.038

Table 5. Optimal portfolio weights. Values in column VOL/PD are the volatilities
of default probability divided by its expectation. W0 is the current portfolio weights
and W1 to W5 are optimal portfolio weights for five EL points in ascending order.
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Fig. 3. Optimal portfolio weights. W0 is the current portfolio weights and W1 to
W5 are optimal portfolio weights for five EL points in ascending order.

common factor model, is very flexible in that it can accomodate various types
of heterogeneous covariance structures. Case studies show that ignoring or
falsely estimating sector correlation can significantly underestimate the credit
risk.

Measuring risk is not everything of risk management. Once risk is mea-
sured, the results have to be reflected to portfolio management. We found op-
timal portfolio allocations by using the methods in [Andersson et al., 2001].
For this we had to draw random samples based on the model assumptions.
Importance sampling deployed in the simulation procedure notably reduces
the simulation error. The results suggest that rebalancing the current portfolio
by minimizing the CVaR significantly improves the portfolio’s risk profile.

We, by simulating losses, relied on a linear programming approach for the
portfolio optimization. if we could minimize an analytic form of the CVaR di-
rectly, a more accurate result would be expected. In [Kurth and Tasche, 2002],
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analytical forms of the CVaR and its contribution under the CreditRisk+
framework are derived. These formulas provide a basis for nonlinear opti-
mization: they can be used as the objective function and its first derivatives.
One difficulty of applying nonlinear programming is that the losses in the
CreditRisk+ model have only integer values. We hope to find a nonlinear
programming algorithm for minimizing the CVaR within the CreditRisk+
framework.
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A Numerical Procedure for Loss Distribution

Consider the generalized form of the CreditRisk+ model

ps
i = pi

(
w0i +

K∑
k=1

wkiSk

)
(18)

where
Sk ∼ Gamma (αk, βk) , k = 1, . . . ,K. (19)

The probability generating function for loss distribution has the form

GX(z)

= exp

(
N∑

i=1

w0ipi(zνi − 1) −
K∑

k=1

αk ln

[
1 − βk

N∑
i=1

wkipi (zνi − 1)

)]
(20)

= exp

[
−Q0(1) +Q0(z) −

K∑
k=1

αk ln (1 + βkQk(1) − βkQk(z))

]
(21)

where

Qk(z) =
N∑

i=1

wkipiz
νi

and νi is the net exposure of obligor i, i = 1, . . . , N . Then the numerical
procedure in [Haaf et al., 2003] can be rewritten as follows:

• First, define δij as follows

δij =
{

1, νi = j
0, otherwise . (22)

and determine the order of polynomial M sufficiently large,

M =
N∑

i=1

νj ,

for example.
• Define a(k)

j such that

a
(k)
0 = 1 + βkQk(1) (23)

a
(k)
j = βk

N∑
i=1

wkipiδij , j = 1, . . . ,M (24)
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• Define b(k)
j such that

b
(k)
0 = − log(a(k)

0 ) (25)

b
(k)
j =

1

a
(k)
0

[
a
(k)
j +

1
j

j−1∑
q=1

qb(k)
q a

(k)
j−q

]
, j = 1, . . . ,M (26)

• Next, define

c0 = −Q0(1) +
K∑

k=1

αkb
(k)
0 (27)

cj =
N∑

i=1

w0ipiδij +
K∑

k=1

αkb
(k)
j (28)

• Finally, define

d0 = exp(c0) (29)

dj =
j∑

q=1

q

j
dj−qcq for j ≥ 1. (30)

dj is the probability of loss j, Pr[X = j].

For the common factor model, specify the parameters as follows:

• Let
K = K + 1,

i.e., increase the number of sectors by one to include the common sector.
• Let, for k = 1, . . . ,K

αk = θk

βk = δk

• And let, for k = K + 1,

αK+1 = θ̂

βK+1 = 1

w(K+1)i =
K∑

k=1

wkiγk

In the above, the right hand side parameters are as defined in the main text
of the paper.
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B Importance Sampling for Loss Simulation

In this section, we summarize the importance sampling procedure in [Glasserman, 2003].
Define θ as the exponential twisting parameter for importance sampling.

Given the conditional probability of default as in Equation (18), the cumulant
generating function of the portfolio loss, X =

∑
Xi is given by

ψ(θ) = ψ(1)(θ) + ψ(2)(θ) (31)

where

ψ(1)(θ) =
N∑

i=1

piw0i

(
eνiθ − 1

)
, (32)

ψ(2)(θ) = −
K∑

k=1

αk log

(
1 − βk

N∑
i=1

piwki

(
eνiθ − 1

))
. (33)

And its first order derivative with respect to θ is

ψ′(θ) = ψ(1)′(θ) + ψ(2)′(θ) (34)

where

ψ(1)′(θ) =
N∑

i=1

piw0iνi e
νiθ, (35)

ψ(2)′(θ) =
K∑

k=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αkβk

N∑
i=1

piwkiνi e
νiθ

1 − βk

N∑
i=1

piwki

(
eνiθ − 1

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (36)

Portfolio loss simulation is performed by following the steps below.

• Solve

ψ′(θ) = x (37)
θ = max(0, θ) (38)

for θ. x is a pre-determined portfolio loss, e.g., VaR, around which samples
are drawn. For the CreditRisk+, x can be obtained analytically.

• Compute τk, k = 1, . . . ,K from

τk =
N∑

i=1

piwki

(
eνiθ − 1

)
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• Draw samples

Sk ∼ Gamma

(
αk,

βk

1 − βkτk

)
, k = 1, . . . ,K.

• Compute the conditional default probabilities, ps
i , i = 1, . . . , N .

ps
i = pi

(
wi0 +

K∑
k=1

wkiSk

)

• Draw samples

Di ∼ Poisson
(
ps

i e
νiθ
)
, i = 1, . . . , N.

• Portfolio loss is given by

X =
N∑

i=1

Xi =
N∑

i=1

νi ·Di

• Repeat from the third step until you reach the desired number of iterations.

For the common factor model, αk, βk, and w(K+1)i shoud be defined as
described in Appendix A.


