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I examine how investors’ preference for skewness impacts the price of limited liability
equity. Using the actual probability density function of equity payouts, I obtain equity
pricing relations that directly link investors’ risk preferences to the skewness induced
by the limited liability feature of equity. This approach differs from standard valuation
techniques, which arrive at equity pricing relations using the risk-neutral density function
of equity payouts.

I show expected equity returns may decline as leverage increases for firms with high asset
systematic risk and low asset idiosyncratic risk. For these firms, as leverage increases,
the value of the positive skewness induced by limited liability dominates compensation
for systematic risk.

The results help explain the puzzling empirical relation between equity returns and finan-
cial distress. Equity returns for low book-to-market firms decline as financial distress and
leverage increase (Dichev (Journal of Finance, 1998), Griffin and Lemmon (Journal of
Finance, 2002), Vassalou and Xing (Journal of Finance, 2004)). Both Dichev (1998) and
Griffin and Lemmon (2002) attribute the decline in average returns as leverage increases
to investors’ misperceptions of risk. In contrast, I show that when book-to-market ratios
are negatively related to systematic risk, the declines are driven by value of the skewness
induced by limited liability.
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1. Introduction

Equity investments produce cash-flows that are asymmetrically distributed, or skewed.
When a firms’ assets are above its fixed obligations, equity holders own a proportion of the
assets, and the firm remains a going concern. In the event that the firm’s assets fall below
the level, equity holders default, and receive nothing. These asymmetries may matter for
investors.

This paper uses truncated distributions to derive equity pricing models that accommodate
the skewness induced by limited liability and hold for general concave utility functions. I find
that equity claim prices depend on how investors value limited losses. The value of limited
liability increases with covariance risk and risk aversion. To obtain the equilibrium pricing
relations, I derive decompositions of the covariance between marginal utility of wealth and
equity payouts. The decompositions are generalizations of Stein’s (1973) and Rubinstein’s
(1973) decomposition for normal random variables.

This approach is in contrast to much of the extant literature on asset pricing for skewed
payouts. Two approaches are commonly used. The first relies on restricting preferences.
This approach typically specifies the stochastic discount factor as a quadratic function. For
example, Rubinstein (1973) and Kraus and Litzenberger (1976) use a Taylor’s series expan-

I My approach also differs from

sion of the utility function, stopping with the cubic form.
many pricing models that treat equity claims as a call option (Black and Scholes (1973) and
Geske (1979)). Under certain restrictions, the claim may be valued under the risk-neutral
payout density. My approach uses the actual payout density, and produces closed-form
pricing relations without placing restrictions on utility.

The model has two important implications for expected equity returns. At the firm level,

limited liability may cause expected equity returns to decline as leverage or the likelihood

LA quadratic approximation to the stochastic discount factor is only exact if investors have cubic utility
over wealth (Levy (1969)).



of financial distress increases. As idiosyncratic cash-flow risk increases, investors are more
likely to get a large positive payout, while having limited losses. When leverage is high, the
benefits of having limited losses may offset the compensation for bearing the systematic risk
of the firm’s assets. This result is counter to pricing relations like the CAPM, where the
expected equity returns increase monotonically with leverage.

This result helps explain the puzzling empirical relation between equity returns and
financial distress. Equity returns for low book-to-market firms decline as financial distress
and leverage increase, while the opposite occurs for high book-to-market firms (Vassalou
and Xing (2001), Griffin and Lemmon (2002)). I show that when investors are risk averse
and book-to-market ratios are positively related to systematic risk, expected equity returns
decline as leverage and the likelihood of financial distress increase.

At the market level, relative risk aversion inferred from limited liability equity returns
will decline. Limited liability induces a lower bound to realized wealth, so investors are able
to bear greater risk. As a result, risk aversion estimated from equity prices under-estimates
the risk aversion embedded in the underlying asset prices.  This may explain why some
empirical studies have difficulties finding a positive premium for bearing market-wide risk.

The paper proceeds with a derivation of the basic asset pricing relation, along with an
application to the expected return of an equity claim on the market portfolio (Section 2).
I then examine prices and returns for an equity claim to a single firm, when investors hold
positions in many risky assets (Section 3). The first appendix presents a brief discussion
of the statistical distribution theory and collects all relevant proofs, while proofs related to

the economic model are in the second appendix.



2. The Price of Limited Liability Equity Claims
2.1. The Economy

Most modern asset pricing theories start with specifying a stochastic discount factor.
When agents maximize expected utility of lifetime consumption, and no-arbitrage conditions

hold, a non-negative stochastic discount factor exists that prices all traded assets (Harrison

and Kreps (1979))
E(my1 K (Ti041) [O0) = Praa Vi J (1)

myeyq1 18 the stochastic discount factor, while ©; is the information set of the economy.
K; (%it+1) is the j-th claim to cash-flow ;1. Pj, is the claim’s corresponding price.
This holds for any asset i, and any claim j. If we assume a one-period exchange economy,
where a representative investor maximizes expected utility of next period wealth, m;, is
proportional to the marginal utility of the aggregate wealth portfolio (Beja (1971)). Within
a multiperiod setting, m;,; isthe intertemporal marginal rate of substitution of consumption
(Rubenstein (1976)).

Using the properties of the covariance operator, and assuming the existence of a risk-free

bond with return Ry, the fundamental pricing equation may also be expressed as

Ey(K; (ig41)) N Covy(myy1, K (Ti441))
Revpq Ryi1Ey(migq) '

(2)
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E; (o) and Covy(myy1, X, ¢41) are the expectation and covariance given the public information
set at time t. The price of a claim depends on it’s expected cashflow and a risk adjust-
ment that decreases prices for payouts that do poorly when future consumption or wealth
innovations are low.

In order to focus on the empirical implications of the limited liability feature of equity, I



restrict investors to maximize over next period wealth. In this case, the stochastic discount

factor is

u' (W)
My = . 3
B (W (W) Ry 3)

I assume that firm investment policy is independent of financing policy. I also abstract from
managerial use of capital structure to signal future firm prospects. Firms can costlessly
default, and have free access to external funds. The empirical content of Equation 2.2
comes from either specifying functional form of stochastic discount factor, or specifying the
distribution of payouts. I specify the distribution of equity payouts in order to develop
testable models that hold under weak restrictions on utility.
2.2. A Decomposition of Marginal Utility and Payouts

One way to give empirical content to Equation 2 is to assume that investment payouts are
normally distributed. The covariance term may then be decomposed with Stein’s lemma.
As first discovered by Stein (1973) and Rubinstein (1973), Stein’s lemma says that if the
wealth portfolio, W, and a payout, x, have a joint normal distribution, and « (W) is a

differentiable, lebegsue measurable function with |FE (v’ (W))| < oo, then

ow
Cov(u (W), z) = owa B (u" (W) 55—, (4)
0Xm
where (,?X—Wm = N, 1s the investor’s demand for the portfolio of risky assets.

Stein’s Lemma decomposes the covariance into the average change in marginal utility
over all future wealth outcomes, and the covariance of payouts with wealth. The greater
the average change in marginal utility, the more averse investors are to risk. The larger the
covariance between payouts and wealth, the more negative asset payouts are when overall

wealth declines. A similar decomposition holds for the covariance between marginal utility



of wealth and an equity claim, K(x).

Lemma 1. If a payout, x, and the investor’s final wealth portfolio, W, are normally dis-
tributed, the covariance between marginal utility of wealth and an equity claim that pays
K(x)=x—Xif 2> X X &€ R" and zero otherwise, is

Con (! (W) K (0) = vl o (V) g+ 0 (222 ) (ol (W) = B ).

0 </”L“"’J; A> - \/;Tj%Ea:p (—% </~ng; A>2> P(A>N"". (5)

The expectation E(e) is formed under the conditional density Wz > A (Appendix A.1.2

derives the density). FE,(e) is formed under a normal distribution with mean gy, — ";ggf (g, —

A) and variance 0%, (1 — p?,,) , where is py, is the correlation coefficient between W and .
Proof. See Appendix A.1.2.°

The first term is similar to the decomposition for normally distributed payouts The
second term captures the benefits of limited liability. It consists of a weighted difference
in expected marginal utilities. The first expectation is under a measure related to the
wealth lost when the equity claim produces a zero payout. This marginal utility decreases
as financial leverage, A, increases or the covariance between payouts and wealth decreases.
The second marginal utility has an expectation formed under the distribution of wealth
conditional on equity claim producing a non-zero payout. The difference between the two
captures how marginal utility differs between the worst outcome under limited liability (zero
payout), and outcomes when the equity claim produces a positive payout. The convexity
of marginal utility means that the difference between the two is positive and increases with

investor risk aversion.

2The appendix derives the more general case where, essentially, \ is a random variable.



The truncated loss weight, 1 (“ i;ﬂ:A) . is a ratio of two functions.> The numerator is
the a function the squared market payout, scaled by the inverse of the market variance. It
reaches its maximum when the market payout net of A is zero, and decreases as expected
asset growth or financial leverage decreases. Assets with higher growth rates or lower debt
levels have a diminished chance of producing a negative payout, so their impact on the
covariance is smaller. The numerator also increases as the variance of the asset payout
increases. Higher asset variance leads to a greater chance of gaining the benefits of limited
liability. The denominator of the weight is the probability that the firm avoids bankruptcy.
A lower probability of avoiding default is equivalent to an increased chance of gaining with
limited liability, so it increases the covariance.
2.3 The Market Portfolio with Limited Liability

To see how limited liability will impact prices and expected returns, consider a repre-
sentative investor who maximizes the expected utility of next period’s wealth, Wy, 1, by
allocating between two claims to a single risky asset (the market) and a risk-free asset that
pays unity, with price Pr; and return Ry.1;. The first is an equity claim, with price Pg,
and demand Ng ;. There is also a debt claim with price Pp; and demand Np ;. The market
cash-flow, Z,, 11, is normally distributed with mean g y,, and variance 0%,,. The investor
is assumed to have a time-separable utility function with a strictly positive first derivative
and strictly negative second derivative. Since no arbitrage is also assumed, there exists
a possibly non-unique state price density function that prices the market asset. I assume
that all agents use the same state price density function to price the market asset. The

representative investor then reflects the aggregate preferences of the individual investors.

Applying Lemma 1 to the covariance term in Equation 2 gives the price of the equity

3The function (x) is the inverse Mill’s ratio.



claim:

Fi (37E,t+1) o2 by (UQ/H (Wt+1)>
Ryy M Bi(uy (Wega)) Ry

Pry = Nt + Ume <MXm —~ )\> (n,—1). (6)

R fit OXm

Again, Ny, is the demand for the risky asset. The expectation Fy (e) is under the distri-
bution of wealth conditional on the equity claim producing a non-zero payout. The value
of the equity claim is truncated at zero, so the total wealth of the investor, conditional on
no default, is Ng¢(Zmey1 — A) + Nyt + Npy.  Under the equity payout distribution, the
investor’s wealth is truncated at Ny, + Np ;.

The pricing relation is similar to what is obtained when payouts are normally distributed.
Price equals expected cashflow minus a covariance risk adjustment. In addition, there will
be a truncated loss adjustment that reflects the benefits of limited liability. This adjustment
consists of the maximum loss ratio, n,, and the truncated loss weight ¢ (e). The maximum
loss ratio is

LAY
" T R v

and captures how investors value the benefits of limited liability; o*

is the optimal amount
invested in the equity claim. The numerator is the marginal utility of wealth when the
investor looses everything in the equity claim. At this point, the equity investor’s marginal
utility is highest. The marginal utility in the denominator is the expected marginal utility
of the wealth portfolio conditional on no default. The ratio is greater than one for concave

utility functions and increases as — FEy(u” (Wi 1)) increases.

We can re-express the price as an expected excess return, rf .., to investing in the



market equity claim,

- A
Et(r%,tﬂ) = Ugn% + o <Mm0 > (1—=n), (8)

m
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where 7, is Rubinstein’s (1973) coefficient of risk aversion, and o2, = 0%, /P2
The positive skewness of the equity claim payout leads to a decrease in expected returns
relative to an unlimited liability equity claim. The difference between the expected returns

for the limited liability claim and an asset that pays x,, — A for all levels of z,, is

e e My — A
Et(TE,tJrl) - EN,t<7"UN,t+1) = Ugn% - Ugn,UN’YUN,t + < > Om (1 =1y, (9)

m

where an’UN is 0% /P2y, and Pyy is the price for the equity claim with unlimited liability.

The difference in expected returns is positive. People are willing to pay to do better
in bad times, so asset claims with limited liability protection command higher prices. If
the investor has decreasing absolute risk aversion, the equity implied risk aversion is smaller
than when the equity claim has unlimited liability. Compared with an unlimited liability
claim, wealth is larger in some future states of the world. If investors become less risk averse
as wealth increases, risk aversion measures implied by equity prices will also decrease.

The expected return relation generalizes Merton’s (1973, 1980) dynamic CAPM, when
investors have no intertemporal hedging demands. If trading occurs in continuous time,
and assets values are log-normally distributed, expected returns are proportional to risk.
Instantaneous returns are normally distributed, so there is no utility gained from having

limited liability. The intertemporal CAPM model has met mixed empirical success. Some



estimates of risk aversion using market level equity returns are positive (French et al (1987),
Schwert (1989), Scruggs (1996)), while others are negative (Glosten et al (1993), Whitelaw
(1994), Boudoukh, Richardson and Whitelaw (1997)). The impact of limited liability on
the equity-implied risk aversion will lead to risk aversion coefficients are smaller than the

risk aversion embedded in the price of the underlying market payout.
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3 Expected Equity Returns With Multiple Risky Assets
3.1 Firms and Investors

Similar results hold when investors allocate between claims to many risky assets. Now
the economy consists of a finite collection of firms, I; the terminal value of firm 7 is 4; ¢ 11
(i € I). At time ¢, firm value may be expressed as the sum the conditional expected value
of the firm F} (A; ;1) and a random cash-flow, €4 ;. The random component is assumed
to be normally distributed with mean zero. Firms are subject to systematic shocks; the
covariance matrix of cash-flows is X 4, the covariance between two assets 4, A

The investor maximizes expected utility of wealth at £ + 1 by allocating initial wealth
between equity and debt claims to the firm’s cash-flows and a risk-free asset that pays unity
next period.? The Ix1 equity and debt price vectors Pgr; and Pp; and demand vectors,
Ngi and Np, are constrained so that Wy, = Ny P, + N, Ppy + Ny Pry.  Wealth next
period is Wiy = Nm’tAm,tH + Ny = N/E’ta’;t+1 + Nb’tDt + N¢y, where x4y, is the equity
payout vector, and D, is the vector of fixed claims. The equity claim to firm i’s assets is
Zitr1 = Ajpp1—D;ry1, conditional on the firm being able to meet it’s debt payments, D; ¢44.

I restrict the analysis to the case of an investor with constant absolute risk aversion
utility; the absolute risk aversion coefficient is a. I re-normalize prices in terms of the risk-
free asset. Since cash-flows are normally distributed, the expected return of the firm’s assets

and the wealth portfolio are

Oi,m,
ge = 1+ 2 ! (Gms — 1), (10)

m,t

gmy = 1402 RRAQY, .

Ojm,t and Ufm are growth covariance and volatility, o, is the proportion of wealth invested

4As with the previous model, T assume a representative investor. T have also derived a similar model
assuming a competitive equillibrium, and get analytically similar results.
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in the risky wealth portfolio, and RRA is the relative risk aversion of the representative
investor. The value of the firm is Pa;, = E; (A;441) /Gy

The price of the equity claim is:®

1 1 2 _
Pi,t = PZ[’JtN —I— EEQTP <—§ <PZ[’JtN/O'AZ> > PI‘ (At+1 > Dt ‘I‘ O_Ai’AmNm’ta) ! s (]_]_>

UN
PN = Puy,—D.

The first term, PgtN , 18 the price of equity with unlimited liability. Growth in the wealth
portfolio is determined by the expected volatility of the market and the investor’s risk aver-
sion, while unlimited liability prices depend on covariance risk and firm cash-flows net of
payouts to debt holders. The truncated loss adjustment is a ratio of the exponential of the
squared Sharpe (1966) ratio and the probability that the firm’s assets are bigger than debt
and compensation for bearing covariance risk.

The value of limited liability increases as the covariance between firm assets and the
wealth portfolio increases. Assets with higher covariance risk produce payouts that are
worse when overall wealth falls. The decline in wealth is smaller with equity claims on these
assets, so equity prices are higher. The value of limited liability also increases as overall
economic uncertainty increases. FEquity claims reduce the uncertainty about future wealth
levels.

Table 1 presents the ratio of the truncated loss adjustment to equity price when risk
and leverage vary. I use the asset’s beta, along with market variance, to calculate asset
covariance risk. The market variance is estimated using Federal Reserve Flow of Funds

data. I calculate quarterly returns to a market portfolio consisting the value of non-farm,

non-financial liabilities and the market value of outstanding equity.® The series spans 50

®See Appendix 2 for a derivation of the pricing function.
5The market value of equity series, FL103164003, includes corporate farm equity. For debt, T use non-

12



years, from Q1:1952 to Q4:2001. Wealth portfolio growth is determined by investor risk
aversion; 1 fix absolute risk aversion to be consistent with relative risk aversion of 10,
and assume that the investor places all funds in the risky market portfolio. The estimated
market standard deviation, 4.80 percent, along with risk aversion of 10 produces an expected
quarterly market return of 2.38 percent, which is close to the sample average of the market
return (2.27 percent). I also calculate a five year rolling average of the market standard
deviation. I use this to define high market volatility, which is two times the rolling standard
deviation added to the average market standard deviation over the entire sample.

Total firm variance is fixed and equals that of an asset with no idiosyncratic risk and
a beta of 2. Idiosyncratic risk decreases as beta increases from zero to two. I also vary
leverage, which I define as the ratio of the outstanding debt and next period’s expected
asset level. When leverage is high, the truncated loss adjustment is a sizable component
of equity price. As market volatility increases, the adjustment component increases. Even
for relatively moderate leverage ratios, the value of limited liability contributes materially
to the overall equity value. Figure 1 graphs the adjustment/price ratio for average and
high market volatility and asset betas of 0.8 and 1.6. Again, when leverage is small, the
adjustment term is a negligible component of the price. As leverage increases, the adjustment
becomes a sizable component of the price of equity, especially for assets that have higher
asset covariance.

Risk averse individuals prize investments that limit declines in their wealth. As risk
aversion increases, the proportion of the truncated loss adjustment relative to total equity
value increases. Figure 1 also shows the ratio of the adjustment term to equity price, but
for different relative risk aversion coefficients. Asset beta is fixed at 1.2. For low levels of

risk aversion, the value of the limited liability component is negligible, so I start the graphs

farm, non-financial liabilities (series F1.104190005).
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start at leverage of 0.5. As leverage increases, the limited liability value increases for all
levels of risk aversion. Although it is larger for high risk aversion, from the lowest to highest
risk aversion, the coefficient increases by an order of magnitude (2 to 20), while the value
of the truncated loss adjustment merely doubles. Although more risk averse investors like
limited liability, they also dislike cash flow risk. The aversion to uncertainty may dominate
the value of limited liability.

3.2 Default Risk and Expected Returns

The value of the limited liability component may be used to help understand some of the
puzzling empirical regularities on the relationship between leverage and debt.

1. FExpected equity returns may decrease as leverage increases. The empirical relationship
between average equity returns and financial leverage is complex. Portfolios returns for
formed by degree of leverage may increase as leverage increases (Bhandari (1988), Fama and
Irench (1992), Charoenrook (2001)). In addition, average returns for some equity portfolios
may decline for very high leverage ratios, (Griffin and Lemmon (2002)). Individual equity
returns also may decline as leverage increases (Rolph (2002)) or after the issuance of straight
bonds (Affleck-Graves and Speiss (1999)).

Pronounced idiosyncratic cash-flow risk may lead to expected equity returns dropping as
leverage increases. The risk of the equity cash-flow is positively related to leverage. The
likelihood of getting a large positive payout, but having limited losses also increases. When
idiosyncratic risk is large relative to systematic risk, the price impact of the limited loss
component may dominate the impact of the higher equity cashflow risk.

Figure 2 graphs expected equity returns when idiosyncratic risk differs. Again, I fix
absolute risk aversion to be consistent with relative risk aversion coefficient of 10. Firm
systematic risk is held constant, under the assumption that asset beta is 1.5. Total asset

volatility is determined by the correlation between firm and market payouts; a decline in
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asset correlation leads to an increase in idiosyncratic and total volatility. Low idiosyncratic
risk corresponds to an asset correlation of 0.9, while high idiosyncratic risk corresponds to
an asset correlation of 0.2. Equity returns for assets with little idiosyncratic risk increase
as leverage increases. Assets with pronounced idiosyncratic volatility (and total volatility)
have equity returns that increase over lower levels of leverage, but decline as leverage reaches
higher levels.

There is empirical evidence that cash-flow covariance and idiosyncratic risk of firms par-
titioned by book-to-market ratios differ. Average firm returns are larger for high book-
to-market firms than for low book-to-market firms when measured using either accounting
values (Fama and French (1995)) or market equity and debt prices (Hecht (2000)). If under-
lying asset returns are well approximated by a linear function of the wealth portfolio, high
book-to-market firms should have higher asset betas. In addition, Hecht (2000) reports that
lower book-to-market firms also have higher total firm return variance. With a linear asset
return model, higher firm variance and lower asset betas implies higher idiosyncratic risk.

Equity returns for low book-to-market firms decline after some leverage increasing trans-
actions, while returns for high book-to-market firms increase. Speiss and Affleck-Graves
(1999) report a significant negative equity return for low book-to-market firms, and negative,
but smaller and statistically insignificant, returns for high book-to-market firms. Ikenberry,
Lakonishok and Vermaclen (1991) also find average returns differ following leverage increas-
ing transactions. They report that low book-to-market firms have negative stock price
reactions after equity share repurchases; they also show positive, statistically significant
equity returns for high book-to-market firms.

If higher book-to-market firms have higher asset betas, and lower book-to-market firms
have lower asset betas and higher idiosyncratic risk, then the decline in expected returns for

leverage increasing transactions have a risk-based explanation.
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2. Frpected return may decline for firms with high financial distress. Dichev (1998)
and Griffin and Lemmon (2002) show that equity returns of firms likely to experience finan-
cial distress are sometimes smaller than returns of firms with greater likelihood of financial
distress. Both studies estimate the likelihood of financial distress using accounting-based
measures, such as Altman’s (1968) Z-score or Olsen’s (1980) O-score. These measures as-
sociate higher leverage and lower earnings with higher likelihood of default (Dichev (1998),
Shumway (2001), Olsen (1968), Altman (1980)).

Again, we can likely properties of low and high book-to-market firms to evaluate the
empirical evidence. Dichev (1998) reports that the likelihood of financial distress is positively
associated with higher book-to-market ratios; these firms also have lower average monthly
returns than firms with low likelihood of distress.  Griffin and Lemmon (2002) find high
book-to-market firms that are likely to enter into financial distress have greater one-year
equity returns than firms with low likelihood of distress. The difference is statistically
significant. They also report the converse occurs for low book-to-market firms.

The decrease in equity returns also occurs when the probability of default is inferred
equity prices {rom risk-neutral valuation relations, such as Black and Scholes (1973) and
Merton (1974). Vassalou and Xing (2001) estimate the risk-neutral probability of default.
They find low book-to-market firms with high likelihood of default have lower one month
returns than similar firms that have a low probability of default. The opposite occurs for
high book-to-market firms.

As previously discussed, firms with pronounced idiosyncratic risk may have high proba-
bilities of default, but low expected returns. Expected returns will also decline as asset beta
increases. If low book-to-market firms have higher idiosyncratic risk and lower asset betas,
then the empirical results have a risk-based explanation. The results reflect the interaction

between the risk characteristics of the firm and limited liability.
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4. Conclusion

This paper discusses how limited liability and risk aversion jointly impact expected equity
returns. I derive covariance decompositions for truncated normal distributions. I use the
decompositions to find explicit an pricing relation for an equity claim to investors’ wealth
portfolio that holds general concave utility functions. I discuss the impact of limited liability
for firm-level equity returns when investors have CARA utility.

A key empirical prediction is that expected equity returns may decline as leverage in-
creases. Compensation for systematic risk and limited liability jointly determine expected
equity returns. When systematic asset risk is low, and total asset volatility is high, the lim-
ited liability component may dominate the systematic risk component, and expected equity
returns decline as leverage.

The results may give insight into the risk characteristics of firms with high or low book-
to-market ratios. One direction for future research is to use the model to estimate asset
covariance and idiosyncratic risk for firms with differing book-to-market ratios. Existing
empirical evidence suggests that low book-to-market firms have low systematic risk relative to
idiosyncratic risk. To my knowledge, no study directly examines the asset risk characteristics
of these firms. Griffin and Lemmon (2002) suggest that investors misperception of risk leads
to the decline in average equity returns for low book-to-market firms. This paper indicates
that investors preference for skewness, not mispricing, may explain Griffin and Lemmon’s

results.
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Appendix 1

This appendix gives a brief discussion of the conditionally truncated normal distribution,
in addition to providing relevant proofs. Appendix 1.1 provides some discussion of the
distribution theory. Appendix 1.2 presents derivations of the distributions and lemmas
used in the text. Appendix 1.3 derives conditional distributions, and moment generating
functions, related to the conditionally truncated normal distribution.

Appendix 1.1

A.1.1 The Conditionally Truncated Normal Distribution

Consider a random cash flow x;; adapted to the public information set ©; at time t. When
a claim K(x441) to the cash flow x;1; is nonzero only is the random variable z;y1 is above
the threshold A € R", the distribution of K (z;;;) will be skewed.”

Theorem A.1.1. Assume that x and z are jointly normally distributed with arbitrary location
parameters p, and u,, dispersion parameters o2 and 02 and correlation coefficient p. When

A > 0, the conditional distribution of K () = x| 2 > A is

N = ol E T Fay g PAT — Ha) (1, = M)
HK () = Cop (- )@(% 5 o (1_p2)), (12)

where ¢ = P(z > A)~! is probability that z > X, ¢(x) represents the standard normal
probability function and ®(z) is the standard normal cumulative density function.

Proof. See Appendix 1.2.

The conditionally truncated normal distribution is skewed. When A = p,, and p, = 0,
the probability that z > p, is 0.5, and the skewness of the distribution of x depends only
on p. For example, if p = 0, z and 2 are independent and K (z) is not skewed. At the

other extreme, if p =1, 2 > pu, is equivalent to z > p,. In this case, the distribution of

"The distribution is a generalization of the skew-normal distribution (Azzalini (1985) and Azzalini and
Della Valle (1996)). The skew-normal occurs when A = g, .
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K (z) is the half-normal distribution. In general, as the correlation coefficient between the
x and z goes from zero to one, the distribution of K (z) becomes more positively skewed.
As the correlation coefficient goes from zero to negative one, the distribution becomes more
negatively skewed.

In general, p, will not be equal to A, so the skewness of K (x) will be partially determined
by the difference between p, and A\.  As the difference becomes more positive, the probability
that K (z) = 0 decreases, and the distribution of K (z) becomes less skewed. The truncated
normal distribution is a special case of Theorem A.1.1. Setting z equal to x produces the
distribution of K (z) = z|z > .

The conditionally truncated normal distribution also extends to the bivariate case:
Theorem A.1.2.  Suppose that the vector = (x1,75)" and scalar z are jointly normally
distributed. z has a positive definite covariance matrix ¥, and a 2x1 vector of means p,.
The variance and mean of z are 62 and p,. The 1x2 vector of covariances between x and z

is X,,. K (z)=z|z > A, A € R" is a mapping from R? to R?. The distribution of K (z) is

K @) = Cem) Sl 4B (= (0= ) 22 (0= ) )

Oz

where 0, = 0, \/1 — 2,013 and ¢ = P(z > A)~! is probability that z > A.
Proof. See Appendix 1.2.

The bivariate conditionally truncated normal distribution retains many of the same prop-
erties of the univariate distribution. Two factors influence the degree of skewness of the
joint distribution. First are the covariances between z; and z, i = 1,2. As the covariance

between z; and z becomes more positive, the joint distribution becomes more skewed. In

addition, when the covariances are positive, a greater positive difference between p, and
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A will lead to less skewed payouts. If 2 = z7, we recover the bivariate truncated normal

distribution of x; and x5 given that x; is greater than zero.
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Appendix 1.2
Proof of Theorem A.1.1.

Suppose that z and z are normally distributed with means p, and p,, variances o2 and
0?2 and correlation p. x is zero if z > A € RT. The joint distribution of z given 2z > X may

be expressed using Bayes theorem

1 1
x,zlz > A) = Exp | —= ((€ + & — 2peye,) / (1 — p? >, 14
W2l > N =G p< 5 ( pecez) /(1= 77)) (14)
where ( = P(z > A\) 71 ¢, = m;—:“ and ¢, = % The marginal distribution of x is obtained

by integrating z out of the joint distribution,

Hlxlz > AN) = \/%UmEﬂUP <—% (/- p2))>

15)

j m&?p <—%<<e§—2pemez>/<1— p2))> dz.

After a change in the variable z = u + A, and algebraic manipulation, the integral may be

written as

dlxlz > A= \/2—%%E$P <_% (e2/ (- p2>>>

Eaxp (— (az® + 2bz + ¢)) dz, (16)

2021 = )
_ _1 (/J“z — )‘) € p
"= <0§(1 R g p2)> ’
(1 =N (= Neap
21— %) T (1= p) )
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The resulting integral may be evaluated using the identity (Equation 7.4.2, Abramowitz and
Stegun (1965))

o0

1 2 ae b
/e(a22+2bz+c)dz — Q\Ee(bT)ETfC(T) (18>

a
0

Erf(x) is the error function, and Erfe(x) = 1— Erf(z) is the complementary error function.

Further algebraic manipulation yields the density

dlzlz > A) = ﬁmp <—% (e2/(1—p") —ep’/ (1 - p2)>>

(=N + 0
s 2(1—p?) )

Erfe (19)

Erf(z) is an odd function, so Erf(—xz) = —FErf(z). In addition, it has been shown
(Equation 26.2.29, Abromowitz and Steigum (1965)) that the cumulative density function

for a standard normal random variable may be written as ®(x) = %(1 + Erf( \/5)) Making

the appropriate substitutions produces the density

ol _ oy T Hay g PE— ) (1, = A)
dlrlz > A) = oy To(— - )@(% (1_p2)+02 (1_p2))- (20)

QED.
Theorem A.1.2.  Suppose that the vector = (x1,75)" and scalar z are jointly normally
distributed. =z has a positive definite covariance matrix ¥, and vector of means p,. The

variance and mean of z are 02 and p,. The 2X1 vector of covariances between z and z is

22



Yz.. The conditional distribution of x given that z > A is

plor,molz > N) = ((27) N |Sg| 2 Bap <—% (@ = 1) Ty (2 — um))> (21)

where 0, = 0,4/1 — 2,5, 1%,

€T
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Proof of Theorem A.1.2

The unconditional distribution of (z/, 2)" is

o2y = n) 215t b (=5 (0 = o) ) = (6000 = (o) ))

(22)
The covariance matrix may be partitioned as
Yl=A= (23)
A:cz AZZ
Using Bayes theorem, the conditional distribution of x|z > A is
31 1
$(z1,mlz > A) =¢(2m) 2[5 5Eaﬁp(—§ (@ — 1t2) Do (2 = 125))
[ 1
[ B = ) A 2 ) B -z (20)
A

where ¢ = P(z > A)"!'. Asin the proof of Theorem A.1.1, the density may be simplified by

making a change in variable for z = u + A, and applying Equation (18),

onmle > N =) Sl ey (3 (0= ) 5, - ) )

Erfe < (25)

The density in Theorem A.1.2 is obtained taking the inverse of the partitioned matrix, ¥ !,
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and the using the properties of the error function

vl > N =) Bl 2Bap (3 (0= ) 32 - ) )

@(zma;@—ua—u@—»>, (26)

g
z|z

where 0, = 0,/1 — 5., 5,12 .
QED.
Proof of Lemma 1
To prove Lemma 1, consider a random variable that with the density function derived in

Theorem A.1.1. Let g(x) be a differentiable, lebesgue measurable function with F |¢'(z)| <

00. Lemma 1 states that if x= x|z > A, then

Conlg(8). ) = 28 (6 Q) + ot (2 ) (Bala0) - ), 21

where 1) (“;—:)‘) is the inverse Mill’s ratio. F,(g(x)) is the expectation of g(x) formed under

a normal distribution with mean p, — 2% (g, — A) and variance 024/1 — p2. E (g(x)) is the

o3
expectation taken under the distribution in theorem A.1.1.

The covariance between x and ¢(x) is

Conlg(%).%) = B (9 () (% — B (X)), (28)

while the first moment of x is F(x) = p, + ¢ (“;—j‘) po, (see Appendix A.2, Eqn. A.2.2.2).

25



Substituting F(x) back into the covariance function leads to

o)) = [ oto) (o= )i rran (<5 Lo
-l (=2 o 29)
where ¢, = £ Since
~atitiap (<5 ) = o= ) Bep (5 ) (30

the expression for the covariance is equivelent to

o0

~ B(g(R) <“U—‘A> oo, (31)

The first integral may be evaluated using integration by parts.®

8(x) >

2 B
Vo g(x) mef7dt e

W L.{“M

Cov(g(x),x) = —

— 00

+j‘;_ﬂé ()Eaﬁp< >q>< p@l—_%) %: )

< p RN B B G (1 = A)
*%4 VM ( - m)
Eap (—M> dz — B(g(%))e <”ZU_ A> o (32)

2
207 2

8Integration by parts allows the following decomposition: f pudv = w|p — f pvdu

26



where 6 () = po_ity) (“fA)Q). Since F |¢'(x)| < oo, the first term is zero. The second

gay/(1=p2)  02y/(1—p

term is just 02F(g'(z)). After completing the square, the third term may be rewritten

as (“Zﬁ)‘) posFn (9(x)), where E, (g(x)) is the expectation of g(z) taken under a normal

Tz

density with expected value 1, — %5 (11, — A) and variance 024/1 — p?. Combining the three
terms gives the result in Lemma 1:

Contg(8), ) = 28 () + 0 (2 ) oo (B 00) ~ BN . (39

z

QED.
Proof of Lemma 2.
Lemma 2 states that if the random 2X1 vector (x1,%9)=(x1, Z2)|2>A has the joint distribution

function defined in Theorem A.1.2, then

%‘A>“2wmw%»—E@&m» (34)

Conly () ) = ol 5 (o)) 40 (22 )

0z

En (g (X2)) is the expectation of x5 taken under a normal density with mean p1, — %% (1, — A)
and variance U;‘Z, the conditional variance of xy given z.

The bivariate version of Lemma 1 may be derived by expressing Cov(g(xs), 1) as

o0

Cov(g(zy),x1) = /g(a:Q)(E(a:ﬂa:Q) — B(x1))d(x2|2 > N)dxs. (35)

— 00

Appendix 1.3 establishes the following results. The marginal density function of xs is

_ 1 1 (2 — py)° L (z]ws) — A
P(w2]z > A) = C\/TW—U%EJUP <—§ 2 ) D( o ) (36)
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while the conditional expectation of x; is

Baffo) = pu + 02 (2 = o) + <w<E*m@‘A> 3"

2 O_z\:cg 0_2\132

— #2312 The unconditional expectation of x; is

with ¢ = oy,
2

e — A> o1 (38)

0z 0%

E&o=m+w<

where 1) (y) is the inverse Mill’s ratio. The covariance may then be expressed as

(% (2 = p1y) + ——1 (E”i’“) - A) — <“ZU_ A) ‘;1> dk39)

2 z|xa z|xo

The expression may be evaluated as three separate integrals. The first is

p, — A\ 01, I 1 1 (@ — g\ E(z|ze) — A
—¢< o, > o / g(an)C\/QWU%Exp <_§< P’ > ><I>( T2l 2

- <MT_A> T2 1 (u(s)) (40)

0%
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The second integral is

% 7 (52— 1) g(22)C ﬁ%;mp (—1 <u>> TR P,

_ 7156 g(a:Q)(I)(E(Z’an)_)\)dEa:p (_% <$2_M2> ) ‘

a \/ 2%0% 02‘132 09
¢ 71 1 *(B(lw) -2\
91292- Ty — Ho z|Tg) —
g(xo)Exp | —= <7> + | ——— dxy
UZ‘$QU%\/27TU%700 Vam 2 Ty T 2|2
+oyo B (u'(%2)) (41)

The last line follows from integration by parts. The final integral is

E(z|z2) — A

< 1 1 <as - u2>2
S E— 2o)——Fap | —= | [ 2222 2222 2 dxs. 49
0_2\132 \/FO’%ioo g( 2)\/% p 2 0_2 0_2‘552 ’ ( >

Further algebraic simplification gives the result in Lemma 2

Cov(g(%s), %1) = 01,55 (¢ (%2)) + 9 <NT_A>

0z

where the expectation F, (g (x2)) is formed under a normal density with mean ju,+%2% (X — p, )“

. 2 9 22
and variance 03, =0 (1 ng,z> .

o2

QED.
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Appendix 1.3 Statistical Results Related to the Conditionally Truncated Normal.
Appendix 1.3.1 Univariate Moments of Conditionally Truncated Normal
Suppose that x is a random variable with a probability density function described in

Theorem A.1.1. The moment generating function for x is

M(t) = B(Dap(at))

T 1 — () tlx—p)- - A
= ¢ / (et “‘>c1>( T =Sk N VA O
V2o, (1=p*)  o/(1=p?)

Completing the square of the argument of the exponential gives, and simplifying the moment

generating function produces

p
e ey

to,0, )\
M(t) = Cett3toi g ( 4 L0e0eP T 1 )) , (45)

where y is a standard normal random variable. IFrom Zacks (1981, Eq. 2.9.18), the expec-

tation evaluates to

to,0.p+ ph, — A
O_Z

M(t) = Cetrrat’or | ). (46)

Evaluating %t(t) at ¢ = 0 produces the first moment of x

QED.
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Appendix 1.3.2 Results Related To the Conditionally Truncated Normal
The results for Lemma 2 rely on certain results for the conditionally truncated normal

distribution. Suppose that the random vector (xy,z5) follows the distribution in Theorem

Al1.2.

1. The marginal distribution of x5 is

d(za]z > A) =

1
\/ 2710} o3 o

z|xa

. (_% (2= 1) ) g Bl =2

Proof. 'The marginal distribution for x4 is found by integrating the density function in

Theorem A.1.2 with respect to z;. The joint density function may be rewritten as

C(2m) S, 2
7Ea? ! (ajl_ﬂl)Q—Z T2 (11— ) (w9 — i) + 5 (w9 — 1)
J D 5 0%‘2 0%0%‘2 1~ M 2~ Mo 2~ Mo
)‘_/J“z
Ba () — ) + b s — pa) =~y (48)
z|z
2
o
‘7%\2 = %_ﬁ
2
N o= ) )
03 0507
1 < 022012>
a = 01z B}
T11292(2 2

Further algebraic simplification, along with the application of the fact that if y is standard
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normal, then F(®(ay + 3)) = CI)(miT) produces

_ 1 1(zy — M2>2 En(z|z2) — A

where F,(z|zy) is the conditional expectation of z given x5 given under the untruncated

normal distribution, and Uz‘ s, 15 1ts conditional variance.

2. The conditional expectation of x; given xy is

- o 'S E,(z|lze) — A
Bil%) = i+ —2 (@2 — pty) + —1 (zz2) :
o5 T2 T s
¢ = o - R (50)
2

This may be established by using the conditional density of 1 given x5 to derive the moment-

generating function of xq given x9. The conditional density function is

d(x1|z0, 2 > A) = (51)
Sos Vs (B g )= Mg, )

—— Bap T =y — —5 (T2 — [ o
et T\ 2 BB

g
z|xg

The moment-generating function for x1 given x2 is

1 o 2
/ ——=Fup o2 <a:1 — M~ —122 (22 — M2>> - 20%\275371
1/2%01‘2 )2 03

Q)( Ezzzzz (z— Nz) A)

Uz\z
(I)(En(z\:cg)—A) dxy. (52)

g

z|eg

The evaluation of the integral is quite similar to that described in A.1.3.1, and is omitted.
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The moment generating function, after simplification, is

(Ealelz)a 4 ac), "

Ti9 Ly o i 1Haod),
M(t) = Exp M+ J—% (w9 — o) | £+ 5‘71\27j (I)(En(z‘m),,\) (53>

g

z|eg

The first moment is obtained by differentiating M (1), and evaluating the derivative at ¢t = 0.

') > A) = o4
(z1|22, 2 )=~ o (54)
2
Bap (_; <En(zm2)x> )
2 o
= 22 () + i —
- A2 (g — .
z|@g
To further simplification produces
g < En(Z’,IQ) — A
E = —2 (75 — 55
(@1]22) Pt 2 (@2 M2>+022¢< 0 (55)
02,012
S = 01 — 9
b

3. The first moment of x is derived for (z; z,) via the moment-generating function. The

moment-generating function is

M) = B(Bapa't) (56)
rr -1 1 1 /1 ,
= / / ¢(2m) H3,,| 2 Exp <—§ (& = pp) S (@ — pp) — 2 t)>
@(Emzz&i (. —py) = A+ p, Vd1ds
O_z\:c
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To evaluate the integral, complete the square in the exponential function using the rule that

' Ar+20'b = (x + A '0) A(x + A ') — V' A~'b. The moment-generating function becomes

1

M) = (Exp <t’u$ + §t’zm}t> (57)
1 _1 1 I v—1

g

@( )da:lda:Q

z|z

1
Let y = ¥d (x — p, — X,,t), and use the following rule for the expectation of the multi-

variate cumulative normal probability integral: E(P(ay+3)) = (ID(\/%) (Azzilani and De

Valle (1993)). Moment generating function, after algebraic simplification, is

Yot — A+,
el T A by (58)

z

1
M (t) = CExp <t’u$ + §t’zm}t> P(

g

Differentiating the moment generating function, and evaluating at ¢ = 0, produces

OF(FExp(z't))
ot

z O_Z

o= (o) =+ () 2= (59
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Appendix 2: The pricing relation when investors have negative exponential
utility
There is an explicit closed form solution to the pricing relation in Section 2.6 when the

representative investor has exponential utility. In this case, the investor’s utility function is
u(Wipr) = —Exp (—aWiiq) (60)

where a is the coefficient of absolute risk aversion. The pricing equation is

Py=E < o (W)
By (u (Wita)) Rrpa

K (a%',t+1)> : (61)

After expanding the correlation using the properties of the covariance matrix, and applying

Lemma 2 with the restriction that z = x; ., the equation may be also expressed as

K (z t+1)> Ey (0" (Wiyr)) </~L ; — )‘i> Ty,
Py=F : + Ny, Ojom T = - —1 )
! ' < Ryiia B (w (Werh) Ry 0™ 4 wi (.= 1)

where Ny, Pt = N'P. Npt is the number of shares of the portfolio of equity claims held
by the investor, and is defined relative to the percent of wealth invested in the risky asset
* Nm,t Pm,t

oFf = Furthermore, I re-normalize the price of the risky asset in terms of the

risk-free asset. The first and second derivative for the negative exponential function are

u (We1) = aBap(—aWi) (63)

u' (W) = —a’Exp(—aWi).
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Substituting the derivatives into the pricing relation gives

Y
Py =E (K (25041)) — aNm 0, 0, + U <M"“7> O (n,— 1)

O3

To evaluate 7,, the maximum loss ratio, recall that

0, = By (' (Wigq))
¢ Ey(u/ (Wii1))

The expectation in the numerator is

En (W (Wiph)) = / aExp(—aWy, 1) EEa;p <—§y2> dy

Lo = g, + =52 (fs — As)

Vot (0= r.0)

— 00

The investors budget constraint may be expressed as

*
Qly

Wt+1 :Wt(l—af)—l—WtP

m,t

Lo

After some algebraic simplification, expected marginal utility may be expressed as

. T 1
By (' (Wiy1)) = allop (_aWtJrl) / EEQUP <—52’2> dy

o4 O zm,xs
Wi =W, — Nm,th,t + Nm,t <Mm - 5 </’l’mi - )‘z>> - _a’an,to_gn\:c

O 2
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*
(8%
t0_2

m|z
Pm,t |

z=vy+aW,;

2
ml|x

is the conditional variance of the market payout given the asset payout o2 =

where o mls =

a2 (1 — pmmm> The argument under the integral is that of a standard normal random

variable, so the integral evaluates to one. The expected marginal utility is then
En: (v (Wiy1)) = aExp (aVNVtH) (69)

The marginal utility in the denominator of the maximum loss ratio is

E W (W) = 7@Ea¢p(—aWt+1) %Ea:p (—% <%>2> o <E" %f”;zn_ Ai) dy
h (70)

E,, (z;|%ym) is the linear projection of x; onto z,,, while O 4;|zm 15 the square root of the con-
ditional variance of x; given x,,. We may combine the budget constraint and the argument

in the exponential of the density. Algebraic manipulation yields

! * & 1 Oé* ?
E (v (W) = paBxp (— (1 + <]/imt — 1> b <aWtP—ttom> )) (71)

00 a* 2
1 1 [ %m = p + Wepom, B (%3]2m) — A
/ Ea?p - ( th,t ) q) < (a’; ’a’; ) > dy (72>

o102, 2 Tm | T,

The integral may be evaluated using the fact that if y is normally distributed,

E@(by+c) =2 (\/ﬁT) (Zachs (1981)).  Subsituting the evaluated marginal utility
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into the pricing relation, and simplifying gives the price of the equity claim

1 1 2 _
o= POV (— 2 (PUY o, - '
, 2,t 7 , ,
Py P+ /9 Exp< 2 (P /o a) >Pr (Aey1 > Dy + 0 amNnsa) —, (73)
T

UN
PN = Pay—D.
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Table 1 Pricing Implications of Limited Liability

This table presents numerical results from the pricing relation described in Section 3.1,
Equation 11. Market standard deviation is calculated using the returns to a quarterly index
of aggregate US equity and debt. The index is constructed with Federal Reserve Flow of
Funds data; the equity index is series F1.103164003, and includes corporate farm equity. The
debt index is series F1.104190005, and includes nonfarm, non-financial liabilities. Market
return is ARA*(Market Variance). ARA is the absolute risk aversion coeflicient implied by
a relative risk aversion coefficient of 10, when wealth equals one. High market volatility
is the market standard deviation plus two times the five-year rolling average of the market
standard deviation. Total asset volatility equals the volatility for a firm with an asset

04 m,t

systematic risk, , of two, and no idiosyncratic risk. F(r) is the expected equity return,

Tinst
and is calculated ﬂsing the pricing relation (Equation 11). The expected equity payout
is calculated using the mean of a truncated normal (Appendix 1.3 provides the equation.)
Firm Beta is systematic risk. TLA/Price is the ratio of the truncated loss adjustment to the
price of the equity claim. D/E is the debt/equity ratio. Debt is calculated by subtracting

the equity price from the asset price, assuming the expected asset cash flow is one.

Firm Beta FE(r) TLA/Price D/E

Panel A: Average Market Volatility, High Leverage

Market Standard Dev. 0.048 0.4 0.048 0.246 7.23
Market Return 0.023 0.8 0.097 0.289 7.53
RRA Coef. 10 1.2 0.147 0.336 7.84
Debt/E(Asset) 0.9 1.6 0.119 0.388 8.16
Pr(A<D) 0.149 2 0.251 0.446 8.48
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Table 1 continued

Firm Beta FE(r) TLA/Price D/E
Panel B: High Market Volatility, Moderate Leverage
Market Standard Dev. 0.078 0.4 0.049 0.001 1.05
Market Return 0.061 0.8 0.101 0.002 1.10
RRA Coef. 10 1.2 0.155 0.003 1.15
Debt/E(Asset) 0.5 1.6 0.211 0.005 1.21
Pr(A<D) 0.001 2 0.270 0.007 1.26
Panel C: High Market Volatility, High Leverage

Market Standard Dev ~ 0.078 0.4 0.077 0.513 5.23
Market Return 0.061 0.8 0.154 0.634 5.53
RRA Coef. 10 1.2 0.232 0.767 5.81
Debt/E(Asset) 0.9 1.6 0.310 0.913 6.08
Pr(A<D) 0.261 2 0.388 1.071 6.34
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Figure 1 Truncated L oss Adjustment

Thisfigure graphsthe ratio of the truncated |oss adjustment to the equity price using the pricing
relation described in Section 3.1, Equation 11. TLA/Priceistheratio of the truncated loss
adjustment to the price of the equity claim. The notes for Table 1 describe the method of
calculating the ratio, and the definition of high market volatility.
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Figure 2 Expected Equity Returnsand Financial L everage

Thisfigure graphs the expected equity returns using the pricing relation described in Section
3.1, Equation 11. Thefirm asset systematic risk equals 1.5. Firmidiosyncraticrisk is
calculated using the correlation between firm asset payouts and the market. High idiosyncratic
risk corresponds to an asset correlation of 0.2, while low idiosyncratic risk corresponds to an
asset correlation of 0.9. E(r) isthe expected equity return; Pr(Default) is the probability of

default.
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