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Abstract 

The dynamic hedging strategy has evolved as a favored approach in managing 
convertible bond portfolios. Moreover, more recent bond valuation studies have 
clearly demonstrated that credit risk is an important factor related to the profitability 
of a convertible bond portfolio. The objective of this study is to formulate an 
option-based dynamic hedging model which accounts for credit risk for practitioners 
in managing convertible bond portfolio. This paper adopts four option-based dynamic 
delta-hedging models to account for the transaction costs and credit risk for 
convertible bond portfolio management. Departing from the traditional dynamic 
hedging strategy, this study incorporates the KD technical index to formulate a 
selective hedging strategy to account for asymmetric behavior of investors under bull 
and bear market conditions. Empirical investigations of five TSE-listed convertible 
bonds are provided to validate our proposed method. Consistent with the hedging 
literature, the valuation model with minimum tracking errors outperforms the others. 
In line with our expectation, transaction cost is an important issue. Moreover, the 
model takes into account the credit risk which generates the highest profitability. 
Finally, an incorporation of the KD index as threshold hedging scenario considerably 
improves the profitability of the underlying CB portfolio. 
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I. Introduction 
Convertible bonds (CBs) are sophisticated financial instruments and widely 

traded in the Taiwan’s capital market. The static hedging of CB was a standard trading 
strategy of more sophisticated Taiwanese investors in the past few years. However, 
the profitability of such a strategy has been eroded resulting from price change in 
underlying stock due to recent regulatory change on the conversion practice of CBs in 
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2003. In contrast to the static hedging strategy which is subject to the risk exposure of 
price change in the underlying stocks, the dynamic hedging strategy could eliminate 
the risk of price changes in the underlying stocks. Thus, the latter is evolving as a 
preferred trading strategy in Taiwan’s capital market. 

Yet, valuation literature presents a variety of model specifications for CBs with 
no conclusive finding on the best model. Moreover, the traditional approach failed to 
account for default risks of CB issuers. More recent studies of bonds have clearly 
demonstrated that credit risk indeed affects the profitability of a convertible bond 
portfolio (Tong, 1995; Krueger, 1999; Hung et al., 2002; Meyer, 2003; Beltratti, 2004). 
The objectives of this study are two-fold: first, to investigate which model is more 
appropriate for convertible bond valuation; second, to formulate a dynamic hedging 
strategy for convertible bond practitioners. This paper adopts four option-based 
dynamic delta-hedging models that account for the transaction costs and credit risk for 
convertible bond portfolio management. Departing from the traditional dynamic 
hedging strategy, this study extends the previous study by incorporating the KD 
technical index to formulate a selective hedging strategy to account for asymmetric 
behavior of investors under bull and bear market conditions. Empirical investigations 
of five TSE-listed convertible bonds are provided to demonstrate the feasibility of our 
proposed method. Consistent with the hedging literature, the valuation model with 
minimum tracking errors outperforms the others. In line with our expectation, 
transaction cost is an important issue. Moreover, the model takes into account the 
credit risk which generates the most attractive profitability. Finally, application of the 
KD index enhances the profitability of the underlying portfolio.  

The remainder of this paper is organized as follows. Section 2 presents a review 
of the relevant literature on bond valuations. Section 3 provides a discussion of the 
experiment design in the study, which is followed in section 4 by an evaluation of the 
model via numerical examples. The paper concludes with a summary analysis of the 
findings in section 5.   
 
II. Brief review of the literature 
 
    The value and hedge of a CB is sophisticated because of the nature of having 
many embed options. Traditional methods of pricing a convertible bond decompose 
value of a CB into the value of a straight bond and the conversion value. The optimal 
value of a convertible bond at any time before its maturity can be obtained by the 
discounted value of the straight bond and the conversion value that is higher. It can be 
formulated as: 
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( )max straight value, conversion value
Value of CB=

discount rate
 

The optimal time for the holder to exercise the conversion option is when the 
conversion value exceeds its market value. This method has been widely used by 
Poensgen (1965), Baumol et al. (1966), Weil et al. (1968) Walter et al. (1973) and 
Jennings (1974). The traditional method has serious shortcomings and tends to 
under-estimate the intrinsic value of a CB (Ingersoll, 1977; Cheung and Nelken, 
1994). 

There are two other distinctive approaches to value a CB. The first type is the 
contingent-claim approach. This more sophisticated approach values the convertible 
bond as a sum of a straight bond and a call option on the underlying stock. The 
pioneer of this approach can be traced back to the work of Black and Scholes (1973). 
They established the price of a European call option through a well known formula, 
which is the solution to a second order partial differential equation. This closed 
analytical solution conferred elegance to the proposed formulation and multiplied in 
extensive and complementary studies. However, Ingersoll (1977) indicated that the 
embed option of a convertible bond is of the American type. Thus, the risk discount 
rate can not be determined easily. Ingersoll (1977), who assumes the specific 
stochastic process of interest rate and underlying equity price and then applied Ito’s 
lemma to derive a partial differential? equation and priced the CB with closed-form 
solution. Among the others, Brennan and Schwartz (1977, 1980) extend the previous 
work by incorporating arbitrage-free argument and exploiting the appropriate 
boundary conditions. Then, they price CB by solving the partial differential equation. 
Since the work by Ingersoll (1977) and Brennan et al. (1977), the contingent-claims 
approach to pricing CBs is the norm. However, the presence of senior debts and 
multiple classes of common stocks in a capital structure of a firm makes this approach 
difficult to capture the value of a CB (Brrone-Adesi et al. 2003). In addition, this 
method is not exact, since the exercise price on the equity option is not fixed. 
Recently, Gong et al. (2006) adopted the finite difference method to solve the Black 
and Scholes equation through a multi-stage compound-option model and provide 
evidence to support the assertion that finite difference method generates higher 
accuracy and efficiency.  

The second type is the traditional binomial (or tree) approach. To price a CB 
under this approach, the first step is to determine the payoff at the terminal nodes of 
the stock price tree, and subsequently roll back to the initial node to obtain the price of 
the underlying CB. This approach has been widely used in practice (Hung 2002, Hull 
2003, Jaimungal and Wang 2006). 

The recent CB valuation literature has focused on the price effect of a default 
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risk or, more specifically, the potential price change resulting from default of an 
issuing firm (Tong, 1995; Krueger, 1999; Hung et al., 2002; Meyer, 2003; Ayache et 
al., 2003; Beltratti, 2004). The valuation of CB with default risk falls into two 
approaches, the structural approach and the reduced-form approach. The structural 
approach treats default as an endogenous event and values the lower boundary on firm 
value that triggers reorganization of a firm (Merton, 1974; Leland, 1994). The 
reduced-form approach characterizes default event exogenously by the jump process, 
and focuses on modeling the likelihood of default (Jarrow and Turnbull, 1995). Most 
research utilizes the structure form approach to pricing CBs with default risk 
(Takahashi et al. 2001). For details, it can be referred to the works of Nyborg (1996) 
and Overbeck et al. (2005). 

Credit risk is typically incorporated in a CB valuation model by adding a constant 
option-adjusted spread or market-observed spread (Takahashi et al., 2001; Hung 2002; 
Barone-Adesi et al., 2003; Overbeck et al., 2005). However, Barone-Adesi et al. 
(2003) suggest that the later is a preferred approach because the former unnecessarily 
penalizes the credit riskless stock upside of the CB. 

In sum, the literature on CB valuation clearly indicates the important of 
incorporating credit risk for pricing CBs. 
 
III. Experimental Design 

 
Our empirical implementation proceeded in two stages. First of all, four 

option-based models are formulated to estimate the Delta value. Second, appropriate 
hedge ratios are calculated to dynamically rebalance bond portfolio to circumvent the 
risk of price change in the underlying securities.  

We first convert the stock prices to their return series, and then calculate their 
volatilities by four kinds of moving averages as follows: 
(1) Simple moving average 

∑
=

−=
N

t
t RRN 1

2)(1σ ,                                              (1) 

where N is the sample size, Rt is the return at time t, R  is the average of Rt . 
 
(2) Exponential weighted moving average 
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λ  is a parameter to determine the weighting over time. 
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(3) Implied volatility 
The implied volatility is inferred from the Black-Scholes Model (1974). 
Black and Scholes (1973) assumed that the underlying stock price follows a 

geometric Brownian motion with constant volatility, 

         dS dt dz
S

μ σ= + ,                                          (3) 

where μ  is the expected return, σ is the volatility, and z  is the Brownian 
motion. 
(4) GARCH-model implied Volatility: 
   Vtzal (1997) suggests that implied volatility derived from observed option prices 
utilizing a constant volatility models tends to understate historical volatilities. 
Moreover, an extensive literature has documented that the use of a single factor model 
should incorporate time varying volatility in the valuation framework (Hull and White, 
1990, 1993; Longstaff and Schwartz, 1992; Vetzal, 1997; Beltratti, 2004; Bollerslev 
and Zhou, 2006). Following the pioneer work of Bollerslev (1986, 1992), the GARCH 
class has become a superior model in assessing the stochastic volatility of financial 
instruments (Gerlach et al., 2006). The literature on the valuation of CB has 
documented that the exponential GARCH models have some advantages over the 
GARCH class of models (Nelson (1991), Vetzal (1997)). For simplicity, we adopt 
standard GARCH(1,1) model to capture the stochastic return volatility of the 
underlying assets. The GARCH model can be formulated as follows:  
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Furthermore, the proxy of credit risk needs to be addressed before we enter the 
main body of our proposed modeling. Following Tsiveriotis et al. (1998), we use 
market-observed credit spread of straight bond in the valuation of CBs. We use the 
one-year deposit rate as the riskless interest rate. The risk premium is determined 
from TCRI (Taiwan Corporate Risk Index). TCRI ranks each individual enterprise by 
nine risk levels. We assigned every level according to its risk by a premium. These 
premiums are listed below: 
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Table1. Market-observed credit spread in Taiwan  

TCRI Risk Premium TWRI Risk Premium
1 0.25% twAAA+ 0.125%

2 0.50% twAAA 0.250%

3 0.75% twAAA- 0.375%

4 1.00% twAA+ 0.625%

5 1.50% twAA 0.875%

6 2.00% twAA- 1.125%

7 3.00% twA+ 1.500%

8 4.00% twA 1.875%

9 5.00% twA- 2.250%

twBBB+ 2.750%

twBBB 3.250%

twBBB- 3.750%  
 

Then, we compare the performance of four pricing models for the CBs, and 
choose the best models to perform the dynamic hedging strategy. In the first stage, 
four pricing models are compared according to their tracking errors. The four models 
in our study are as follows: 

 
(1) Model 1:  
    Although the pioneered model of contingent claim approach, Black and Scholes 
(1973) option pricing formula, is subject to several weaknesses in the valuation of 
CBs, the model is widely used by practitioners and its proponents because of the 
advantage on the ease of implementation and it entails low computational cost 
(Ammann, 2003; Gong et al., 2006;). Following Black and Scholes (1973), we take 
value of a CB as the straight bond plus a call option, or 

max( ,0)TCB K V Kγ= + − ,                              (6) 
where K is the straight bond value, and a simple European call option is specified to 
calculate the option value.  
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where S is the price of underlying security, K is the strike price, r  is the risk free 
interest rate or discount rate, N is the distribution function of a normal random 
variable, and T represents the maturity.  
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(2) Model 2:  
The most important drawback of the model, B-S model, is that the model refers 

to as European-style option where the CB can only be converted into a common 
stock at maturity. Nevertheless, most of the CBs can be exercised prior to maturity. 
The Binomial-tree approach is often utilized to circumvent this drawback (Ammann, 
2003). Thus, we also adopt the standard binomial-tree model in the study. In practice, 
a binomial tree is employed to model the possibility of early exercise accounting for 
the feature of an American style option. The tree model can be formulated as 
follows: 
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where tΔ is the time interval used in the tree model. 
 

(3) Model 3 
To further account for the important state variable, credit risk, we apply the one 

factor multiple tree model of Connolly (1998) to valuate the underlying CBs. To fully 
reflect the nature of differential discount rates in payoff of a CB, we revised the model 
of Connolly in that the cash flow is discount at a risk free rate, rfa, at period t whenever 
the value of its underlying stock exceeds the value of the straight bond at time t+1 (if 
the bonds are converted, the holder of equity is not subject to default risk as cited in 
Tsiveriotis, 1998). Otherwise, a risky discount rate, ra, should be introduced.  
    Although the maximum number of trees in our empirical implementation is 50, we 

take a two-period discrete time model, for example, to elaborate the process for simplicity. 
We assume the conversion ratio is 1:1; in other words, one CB can be converted to one 
share of the stock. 
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where the hedge ratio (or delta) is  

  Cu CdH
Su Sd

−
=

−
,                                     (12) 

and other parameters are listed below: 

S: stock price , C: CB price , B: bond value at maturity , : volatilityσ , 

rate freerisk :far , spreadcredit += faa rr ,  
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(4) Model 4 
For simplicity, the riskless yield and risky yield are often assumed to be constant. 

When rolling back through the tree, two optimal conditions on each node of the tree 
must be checked. The optimal time for the holder to exercise the conversion option is 
when the conversion value exceeds its market value. On the other hand, the optimal 
time for the issuer to call back the convertible bond is when the convertible bond’s 
market value exceeds its call price. When the issuer exercises the call option, it often 
forces the holders to convert earlier.  

Model 4 adopts the most popular option pricing model with credit risk by 
Tsiveriotis & Fernandes(1998). Tsiveriotis and Fernandes suggest that the value of a 
CB has components involving different default risks. A new hypothetical security, the 
“cash-only part of the CB” or the “COCB” is defined; the holder of the COCB is 
entitled to all cash flows, but no equity flows. A single-factor model is built in which 
the CB is viewed as an equity-only derivative. A numerical solution is given for the 
model. The model is described using two parabolic partial differential equations. The 
value of CB, � , follows the Black-Schole’s equation  
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where 
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stock underlying  theof price  the:S   
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where  
COCB  theof  value the:v  

These two equations differ only in the discounting terms, which reveal the different 
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credit treatment of cash payments and equity upside. For these two equations, the 
authors discuss in detail the final, boundary and other conditions that the solutions 
have to satisfy due to conversion, callability, and puttability. The boundary conditions 
are as follows: 
Maturity condition： 

⎩
⎨
⎧ ≥

=
elsewhere       B

 B/S        
),(

ααS
TSu

                                           (15) 

⎩
⎨
⎧ ≥

=
elsewhere   B

 B/S       0 
),(

α
TSv

                                            (16) 

maturityat  pricePut  B  
ratio conversion :α  

Upside constraints due to conversion 

[ ] ,0for      TtSu ∈≥α                                                (17) 

[ ] ,0for    Su if        0 Ttv ∈≤= α                                        (18) 

Callability constraints： 

[ ] ,for      ),max( TTtSBu cc ∈< α                                        (19) 

[ ] ,for        Bu if  0 c TTtv c∈≥=                                        (20) 

Putability constraint： 

[ ] ,for      TTtBu pp ∈≥         putability unoccur                       (21) 

[ ] ,for     BB if   P TTtBv pp ∈<=  putability occur                    (22) 

 
To compare the effectiveness of these four models, we utilize the approach of 

Takahashi et al. (2001) using absolute error ratio (AER) as the proxy of tracking 
errors. The absolute error ratio (AER) is defined as follows: 
 

price Model
epric Model -Market 

=AER                                (23) 

 
For static or dynamic hedges, we calculate the Delta coefficients of these models. 
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We construct a portfolio by long one share of CB and short Delta unit of its stock, 
namely, the value of the portfolio is obtained as  
 
     0000 SCRCB Δ− .                                               (24) 
 

For every day trading, we adjust the position of the stock according to the Delta 
if its price change exceeds some upper or lower limits. The trading strategy can be 
formulated as follows: 
 

01010000 SS and  S if                                     dSuSCRCB ><Δ−
otherwise.  , )( 100110000 SCRCRSCRCB Δ−Δ−Δ−                  (25) 

 
where the upper and lower limits are set as below: 

m)(100 += SSu  upper limit,  

m)-(100 SSd =  lower limit. 

The payoff of the portfolio at every time interval without taking account of the 
transaction cost is as follows: 
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where 
:  the payoff at the n-th periodnP  
:  stock price at the n-th periodnS  

:  CB market value at the n-th periodnCB  
:  the conversion ration at the n-th periodnCR  

Parity = spot price
conversion price

 

:  the Delta at the n-th period nΔ  
 

On the other hand, when the transaction cost is included, the payoff of the 
portfolio is 
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  Unlike the findings of the early literature on the equity market anomalies, numerous 
researchers suggest that the technical trading strategy may be profitable in many 
Asian equity markets in general, and Taiwan’s equity market in particular (Ratner et 
al.,1999; Ito, 1999; Lai et al., 2006). These findings lend support to our final 
empirical design. The study employs the most popular technical trading rule, 5 day 
KD index, on short-term market movement for practitioners in the equity market in 
Taiwan as trigger scenario in hedging the arbitrage of CBs. The KD index is 
calculated as follow: 

RSVKK tt 3
1)5(

3
2)5( 1 += −                                     (28) 

ttt KDD )5(
3
1)5(

3
2)5( 1 += −                                       
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Where C, L5 and H5 are the closing price of the previous transaction day, the 
lowest price and highest price in the latest 5 transaction days, respectively. The value 
of K and D assumes to be 50 If there is no K and D in the previous transaction day.  

The hedge ratio of our strategy at time t, tadjusted _Δ , is defined as follows： 

1t11_  if  )( −−− Δ≥ΔΔ−Δ+Δ=Δ tttttadjusted α               
1t11_  if  )( −−− Δ<ΔΔ−Δ+Δ=Δ tttttadjusted β                  

otherwise     1
)5(K(5) and )5(K(5) if  5.1
)5(K(5) and )5(K(5) if  5.0

t11-t

t11-t

=
<>=
><=

−

−

α
α
α

tt

tt

DD
DD

 

otherwise,     1
)5(K(5) and )5(K(5) if  5.0
)5(K(5) and )5(K(5) if  5.1

t11-t

t11-t

=
<>=
><=

−

−

α
β
β

tt

tt

DD
DD

                    (32) 

where α and β are stated adjustment multipliers. 
 

  
IV. Numerical examples 
 
    Due to the low liquidity of convertible bonds in Taiwan’s equity market, we 
selected those bonds with larger trading volumes. The data-sampling period is from 
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April 1, 2002 to June 30, 2004. We chose five convertible bonds: Yuanta 2nd CB 
(60042), Compeq 2nd CB (23132), OPTP CB(23401), Shin Kong CB 1A(28881), 
Yang Ming CB 2A(26092). These data are sampled from TEJ (Taiwan Economic 
Journal). 

In the first stage, we compare the tracking errors of these four models. The 
model with minimal tracking error will be used in the second stage to perform 
dynamic hedge and arbitrage. In the second stage, we also compare the hedging 
performance based on the frequency of rebalance and the influence of transaction 
costs. 

 
Figures 1 to 5 and table 1 present the empirical results of the first stage process, 

respectively. For Yuanta 2nd CB (60042), Compeq 2nd CB (23132), OPTP CB (23401), 
Shin Kong CB 1A (28881), Yang Ming CB 2A (26092), the predicted prices and 
actual prices of the observed CBs are plotted in Figures 1 to 5. Table 1 indicates 
tracking errors of all observed CBs. Complying with the literature in the valuation of 
CBs, all four models are consistently overstating the actual prices of CBs. 
Nevertheless, Model 4, where the credit risks of CBs are accounted for, has the 
smaller tracking error, and hence is the most effective underlying model. 
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Figure 1. Predicted prices and actual prices of Yuanta 2nd CB 
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Figure 2. Predicted prices and actual prices of Compeq 2nd CB 
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Figure 3. Predicted prices and actual prices of OPTP CB 
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Figure 4. Predicted prices and actual prices of Shin Kong CB 1A 
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Model 1 Model 2 Model 3 Model 4

60012 0.058826 0.058898 0.053393 0.050456

23132 0.147159 0.147302 0.138204 0.087045

23401 0.131965 0.13204 0.123235 0.17274

28881 0.108604 0.108596 0.09226 0.045087

26092 0.124061 0.124107 0.12035 0.104998

Average 0.116284 0.116353 0.108175 0.106717

CB
Tracing Error

 
 
 
To make the comparison more thoughtful, we consider the arbitrage performance 

of each model with or without transaction costs, and with and without the constraints 
on margin trading including long or short. The performances of the dynamic hedging 
and arbitrages are reported in table 2 to 6.   

Interestingly, all of our four models produce positive profits. Under the constraint 
of no long margin trade, model 1 outperforms the others. Under the constraint of no 
short margin trading, model 4 out performs the others. However, on average, model 4 
has the highest return.     

 
Table 2. The performance of dynamic arbitrage of Yuanta 2nd CB 

Model 1 Model 2 Model 3 Model 4
With Transaction costs 13.954% 13.992% 12.371% 14.575%

Without Transaction costs 14.513% 14.551% 13.109% 15.559%
Ratio of Transaction costs 4.053% 4.040% 6.144% 7.105%

With Transaction costs 13.693% 13.730% 12.253% 15.022%
Without Transaction costs 15.009% 15.046% 13.741% 16.792%
Ratio of Transaction costs 9.664% 9.635% 12.358% 12.182%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 13.864% 13.900% 12.495% 15.762%

CB Performance
Average

60042

Without consider constraint of short sale

Consider constraint of short sale

    
Table 3. The performance of dynamic Arbitrages of Compeq 2nd CB 

Model 1 Model 2 Model 3 Model 4
With Transaction costs 20.553% 20.550% 20.430% 14.581%

Without Transaction costs 21.374% 21.366% 21.224% 15.665%
Ratio of Transaction costs 4.016% 3.990% 3.914% 7.690%

With Transaction costs 5.139% 5.136% 5.247% 4.279%
Without Transaction costs 6.354% 6.346% 6.438% 5.609%
Ratio of Transaction costs 24.529% 24.471% 23.508% 34.598%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 5.205% 5.202% 5.248% 4.998%

CB Performance
Average

23132

Without consider constraint of short sale

Consider constraint of short sale
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Table 4. The performance of dynamic Arbitrages of OPTP CB 
Model 1 Model 2 Model 3 Model 4

With Transaction costs 14.819% 14.750% 14.480% 9.165%
Without Transaction costs 15.347% 15.274% 15.003% 9.544%
Ratio of Transaction costs 3.522% 3.517% 3.580% 4.132%

With Transaction costs 16.646% 16.585% 16.266% 10.399%
Without Transaction costs 17.416% 17.352% 17.028% 10.953%
Ratio of Transaction costs 4.606% 4.605% 4.670% 5.326%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 16.692% 16.614% 16.357% 10.426%

Performance
Average

23401

Without consider constraint of short sale

Consider constraint of short sale

CB

 
 Table 5. The performance of dynamic Arbitrages of Shin Kong CB 1A 

Model 1 Model 2 Model 3 Model 4
With Transaction costs 10.835% 10.835% 10.140% 18.239%

Without Transaction costs 11.621% 11.621% 10.917% 19.247%
Ratio of Transaction costs 7.261% 7.261% 7.702% 5.546%

With Transaction costs 8.931% 8.931% 8.259% 17.012%
Without Transaction costs 10.417% 10.417% 9.733% 18.532%
Ratio of Transaction costs 16.659% 16.659% 17.971% 8.986%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 10.335% 10.335% 9.730% 18.890%

Performance
Average

28881

Without consider constraint of short sale

Consider constraint of short sale

CB

  
Table 6. The performance of dynamic Arbitrages of Yang Ming CB 2A 

Model 1 Model 2 Model 3 Model 4
With Transaction costs 6.172% 6.172% 4.979% 9.063%

Without Transaction costs 6.703% 6.703% 5.641% 10.020%
Ratio of Transaction costs 8.688% 8.688% 14.766% 11.441%

With Transaction costs 3.547% 3.547% 2.329% 6.996%
Without Transaction costs 4.860% 4.860% 3.761% 8.592%
Ratio of Transaction costs 37.322% 37.322% 76.327% 24.177%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 3.711% 3.711% 2.425% 7.060%

Performance
Average

26092

Without consider constraint of short sale

Consider constraint of short sale

CB

 
Table 7. Mean performance of arbitrage  

Model 1 Model 2 Model 3 Model 4
With Transaction costs 13.267% 13.260% 12.480% 13.124%

Without Transaction costs 13.912% 13.903% 13.179% 14.007%
Ratio of Transaction costs 5.508% 5.499% 7.221% 7.183%

With Transaction costs 9.591% 9.586% 8.871% 10.742%
Without Transaction costs 10.811% 10.804% 10.140% 12.095%
Ratio of Transaction costs 18.556% 18.538% 26.967% 17.054%

Consider constraint of Short sale and adjusted hedge ratio With Transaction costs 9.961% 9.952% 9.251% 11.427%

Performance
Mean performance

All CBs

Without consider constraint of short sale

Consider constraint of short sale

CB

 
This section examines the arbitrage performance of sample CBs with variation in 

their rebalance frequencies. The results are listed in Tables 8 and 9. Since the dynamic 
rebalance strategy entails transaction cost to the portfolio, too frequent rebalance 
maybe eroding the profit. Consequently, we compare the arbitrage performances of 
these four models under different rebalance scenarios. The higher degree of 
rebalances, indeed, increases the cost of transaction and consumes the profit of 
underlying portfolio to some extent. However, the hedging frequency somewhat 
between 8-10% seems to generate a better return. On average, model 4 outperforms 
the others with and without considering the constraint on short trading.    
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Table 8. The arbitrage performance under different portfolio adjustment frequencies 
(Without consider constraint on short sale) 

Hedge frequency Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

0% 13.079% 13.064% 11.768% 12.543% 14.009% 13.990% 12.801% 13.984%

1% 13.098% 13.092% 11.770% 12.815% 13.986% 13.976% 12.755% 14.214%

2% 13.393% 13.369% 12.190% 11.805% 14.190% 14.160% 13.064% 12.996%

3% 13.336% 13.316% 12.385% 11.585% 14.061% 14.040% 13.168% 12.538%

4% 13.092% 13.105% 12.172% 12.280% 13.723% 13.736% 12.866% 13.203%

5% 12.839% 12.818% 12.269% 13.061% 13.423% 13.400% 12.896% 13.808%

6% 13.063% 13.044% 12.345% 13.294% 13.607% 13.586% 12.910% 13.933%

7% 13.384% 13.402% 12.982% 12.977% 13.919% 13.935% 13.557% 13.610%

8% 13.738% 13.724% 13.148% 14.491% 14.236% 14.222% 13.676% 15.120%

9% 13.547% 13.563% 12.910% 14.001% 14.030% 14.047% 13.426% 14.576%

10% 13.363% 13.360% 13.341% 15.516% 13.844% 13.840% 13.847% 16.098%

With transaction costs Without transaction costs

 
 

Table 9. The arbitrage performance under different portfolio adjustment frequencies 
(consider the constraint on short sale) 

Hedge frequency Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
0% 9.418% 9.407% 8.212% 10.507% 10.918% 10.904% 9.810% 12.411%
1% 9.435% 9.429% 8.208% 10.744% 10.894% 10.884% 9.757% 12.605%
2% 9.679% 9.654% 8.598% 9.711% 11.050% 11.021% 10.043% 11.367%
3% 9.669% 9.652% 8.751% 9.326% 10.971% 10.953% 10.105% 10.753%
4% 9.410% 9.425% 8.541% 9.981% 10.616% 10.630% 9.807% 11.372%
5% 9.154% 9.137% 8.635% 10.562% 10.316% 10.296% 9.836% 11.782%
6% 9.344% 9.327% 8.645% 10.668% 10.460% 10.440% 9.778% 11.787%
7% 9.698% 9.721% 9.352% 10.525% 10.809% 10.829% 10.503% 11.641%
8% 10.059% 10.046% 9.541% 12.024% 11.131% 11.118% 10.639% 13.138%
9% 9.941% 9.956% 9.358% 11.347% 11.003% 11.019% 10.444% 12.388%
10% 9.694% 9.691% 9.734% 12.761% 10.754% 10.751% 10.819% 13.806%

With transaction costs Without transaction costs

 
 
Table 10 presents empirical results of these models using KD index as hedging 

trigger variable. The results suggest that the application of KD index, on average, 
significantly improves the performances of our CB hedging portfolio.   
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Tabel 10. Comparison of performances with and without KD threshold   

Model 1 Model 2 Model 3 Model 4

unadjusted hedge ratio 13.693% 13.730% 12.253% 15.022%

Adjusted hedge ratio 13.864% 13.900% 12.495% 15.762%

unadjusted hedge ratio 5.139% 5.136% 5.247% 4.279%

Adjusted hedge ratio 5.205% 5.202% 5.248% 4.998%

unadjusted hedge ratio 16.646% 16.585% 16.266% 10.399%

Adjusted hedge ratio 16.692% 16.614% 16.357% 10.426%

unadjusted hedge ratio 8.931% 8.931% 8.259% 17.012%

Adjusted hedge ratio 10.335% 10.335% 9.730% 18.890%

unadjusted hedge ratio 3.547% 3.547% 2.329% 6.996%

Adjusted hedge ratio 3.711% 3.711% 2.425% 7.060%

unadjusted hedge ratio 9.591% 9.586% 8.871% 10.742%

Adjusted hedge ratio 9.961% 9.952% 9.251% 11.427%

% of excess return 3.860% 3.822% 4.290% 6.383%

23401

28881

26092

Rate of Returns

CB
Average

60042

23132

 

 
V. Conclusions 
 

The dynamic hedging strategy has evolved as a favored approach in managing 
convertible bond portfolios. Moreover, more recent bond valuation studies have 
clearly demonstrated that credit risk is an important factor related to the profitability 
of a convertible bond portfolio. The objective of this study is to formulate an 
option-based dynamic hedging model which accounts for credit risk for practitioners 
in managing convertible bond portfolio. This paper adopts four option-based dynamic 
delta-hedging models that account for the transaction costs and credit risk for 
convertible bond portfolio management. Departing from the traditional dynamic 
hedging strategy, this study incorporates the KD technical index to formulate a 
selective hedging strategy to account for asymmetric behavior of investors under bull 
and bear market conditions. Our empirical implementation proceeded in two-stages. 
First of all, four option-based models are established to estimate the Delta value. 
Second, appropriate hedge ratios are calculated to rebalance bond portfolio to 
circumvent the risk of price change in the underlying securities.  

Empirical investigations of five TSE-listed convertible bonds are provided to 
demonstrate the feasibility of our proposed method. Consistent with the literature in 
dynamic hedging, the valuation model with minimum tracking errors outperforms the 
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others, and dynamic delta hedging in our CB portfolio produces significant positive 
return (Krishnan et al., 2002; Gondzio et al., 2003; Meyer, 2003; Beltratti et al., 
2004) . In line with our expectation, transaction cost is an important issue as 
documented by Gondzio et al. (2003). Moreover, the model takes into account credit 
risk, which generates the most attractive profitability. In comparison to the dynamic 
traditional hedging strategy, our scenario modeling for selective hedging with 
incorporation of KD as threshold variable could considerably improve performance of 
CBs. Overall, our results further shed light on the application technical trading 
strategies for practitioners in CB investment management.  
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