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Order Imbalance and the Dynamics of Index and Futures Prices 
 

Abstract 

This study uses transaction records of index futures and the index stocks, with 

bid/ask price quotes, to examine the impact of stock market order imbalance on the 

dynamic behavior of index futures and cash index prices. Spurious correlation in the 

index is purged by using an estimate of the “true” index with highly synchronous and 

active quotes of individual stocks. A smooth transition autoregressive error-correction 

model (STAECM) is used to describe the nonlinear dynamics of the index and futures 

prices. Order imbalance in the cash stock market is found to significantly affect the error-

correction dynamics of index and futures prices. Order imbalance impedes error-

correction particularly when the market impact of order imbalance works against the 

error-correction force of the cash index, explaining why real potential arbitrage 

opportunity may persist over some time. Incorporating order imbalance in the framework 

significantly improves its explanatory power. The findings indicate that a stock market 

microstructure that allows a quick resolution of order imbalance promotes dynamic 

arbitrage efficiency between futures and the underlying stocks. 
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1. Introduction 

Index arbitrageurs endeavor to capture any price discrepancy between index 

futures and the underlying index. Many authors document evidence of persistent and 

apparently exploitable arbitrage opportunities.  

Grossman (1988) conjectures that arbitrage opportunities compensate arbitrageurs 

for providing liquidity in futures when trading is skewed toward one side of the market. 

Roll, Schwartz, and Subrahmanyam (2005) find that the level of arbitrage basis of the 

NYSE composite index futures is negatively related to market liquidity. They use quotes 

and effective spreads as proxies for market liquidity, finding a significant bi-directional 

causality relationship between the liquidity proxies and the level of the basis.  

Fung (2004) uses order imbalance as a measure of both the direction and the 

extent of market liquidity; on average, positive order imbalance is associated with 

positive arbitrage basis, and negative order imbalance is associated with negative 

arbitrage basis. If arbitrage opportunities are related to liquidity of the stock market, the 

same market force could be impeding error-correction mechanisms that are supposed to 

prevent and eliminate such opportunities. This effect may help explain the persistence of 

arbitrage opportunities.  

We examine how and to what extent stock market order imbalance affects error-

correction dynamics in index and futures prices, using as an example the Hang Seng 

Index (HSI) and futures. HSI futures are among the most liquid contracts in the world; 

HSI represents over 75% of the total market capitalization of stocks listed in Hong Kong. 
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 We use a smooth transition autoregressive error-correction model (STAECM) to 

capture the nonlinear error-correction dynamics of the index and futures prices. We avoid 

spurious correlation of the cash index due to infrequent trading and the bid-ask bounce by 

adopting a mid-quote index that is based on synchronous active quotes of all index stocks.    

 We examine the robustness of the empirical results by comparing findings before 

and during the 1997 financial market crisis in Hong Kong. The results show strong 

contemporaneous relationships between order imbalance and index and futures returns. 

Moreover, incorporating the market impact effect of order imbalance significantly 

improves explanatory power of the error-correction model. The benchmark framework, 

which does not consider the market impact of order imbalance, provides inconsistent 

inferences as to the error-correction dynamics of the two prices during the crisis period. 

The cash index become much more responsive to the arbitrage basis during the crisis, 

indicating that arbitrage-related trades increase when the market becomes more volatile. 

Order imbalance dictates price movements of both index and futures when the market 

impact of order imbalance is opposite to the force of error-correction, which helps 

explain the persistence of index arbitrage opportunities. 
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2. Literature review 

In a frictionless market, arbitrage mechanisms should keep the futures price 

tF close to its fair (or theoretical) value, *
tF . Following Klemkosky and Lee (1991), we 

can write the fair futures price as ( ) tT
tt drSF −−+= 1* . 1  St is the index value at a 

particular time on day t, and r and d represent, respectively, the riskless rate of interest 

and the dividend yield of the index portfolio appropriate for the period before the contract 

matures on day T. Hence, T - t is the time to maturity of the contract; T and t are 

measured in fractions of a year.  

It follows that the pricing error or the arbitrage basis zt, defined as the difference 

between the natural logarithm of the actual and the fair futures prices (i.e., 

*lnln ttt FFz −= ), should always be close to zero.  

Early research uses an Engle and Granger (1987) linear error-correction 

framework to model the conditional price dynamics of index and futures. Ignoring the 

lagged returns, a typical linear error-correction framework is as follows: 

  ttt zf 111 πω +=Δ −      (1) 

 ttt zs 212 πω +=Δ −      (2) 

where 1lnln −−=Δ ttt FFf  is the futures return between t - 1 and t conditional on an 

observed pricing error 1−tz  at time t - 1. Similarly, 1lnln −−=Δ ttt SSs is the conditional 

index returns. 1ω  and 2ω are the error-correction coefficients for the futures and index 

returns, respectively. t1π  and t2π are the error terms for the two equations.  
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If 1−tz  is positive and the futures is overpriced, long-stock short-futures arbitrage 

should cause the futures to drop and the index to rise; if 1−tz  is negative and the futures is 

underpriced, the converse occurs. Hence the conditional futures return is expected to be 

opposite in sign to the pricing error, and 1ω  is expected to be negative. The conditional 

index return should have the same sign as the pricing error, and 2ω is expected to be 

positive.  

The expected error-correction adjustments in index and futures are confirmed by 

many empirical studies. Studies of the U.S. markets include Garbade and Silber (1983) 

and Stoll and Whaley (1990). Fung and Jiang (1999) document similar results for the 

Hong Kong market.   

In reality, arbitrage involves substantial transaction costs in trading stocks and 

futures. Therefore, the futures price may fluctuate randomly when the arbitrage basis 

does not trigger arbitrage (Kawalla, 1987). It follows that the arbitrage basis reverts 

toward zero only when the deviation of the futures price is great enough to attract 

arbitrage. To capture the nonlinear pattern of the error correction dynamics, Yadav, Pope, 

and Paudyal (1994), Dwyer, Locke, and Yu (1996), and Martens, Kofman, and Vorst 

(1998) use a version of the threshold autoregressive error-correction (STAECM) process. 

Following Martens, Kofman, and Vorst (1998) and focusing on the error-correction term, 

a typical TAEC framework is as follows:  

1
*

11
1

11 lnln               cFFezz ttttt −≤+= −−−ρ       (3)  

2
*

111
*

1
2

12 lnlnln               cFFcFezz tttttt +≤<−+= −−−−ρ     (4) 

                                                                                                                                                                             
1 See Cornell and French (1983) and Modest and Sundaresan (1983) for formal proofs of the relationship. 
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2
*

11
3

13 lnln               cFFezz ttttt +>+= −−−ρ      (5)  
 

where 1c  and 2c  are the costs or required compensation (in percentage of the fair futures 

price) associated with long-futures short-stock and long-stock short-futures arbitrage, 

respectively. 1
*

1ln cFt −−  is the so-called lower no-arbitrage bound for the (logarithm of) 

the futures price, and 2
*

1ln cFt +−  the upper no-arbitrage bound.   

To trigger arbitrage, the futures price has to be either below 1
*

1ln cFt −−  (i.e., in 

regime 1) or above 2
*

1ln cFt +−  (i.e., in regime 3). Hence, the arbitrage basis is mean-

reverting and the AR(1) coefficients in regimes 1 and 3 (i.e., 1ρ  and 3ρ ) are expected to 

be significantly less than unity. If the futures price is within the no-arbitrage bounds, 

arbitrage does not take place, and the futures price may move randomly and the AR(1) 

coefficient in regime 2 (i.e., 2ρ ) is expected to be close to unity.  

This specification admits non-trivial transactions cost, and allows for asymmetries 

in the error-correction process of the index and futures prices in response to positive and 

negative pricing errors. Asymmetries may arise if there are significant institutional 

restrictions or cost and risk associated with short-selling of equity stock.2 These effects 

dampen error-correction more when the futures is underpriced than when it is overpriced. 

If the constraints, costs, and risks against short-selling have a significant impact on the 

arbitrage relationship, 1c  will be higher than 2c .  

                                                           
2 See Draper and Fung (2003) for a detailed discussion of the cost and risk associated with conducting 
short-stock long-futures arbitrage in the Hong Kong market.  
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Chan (1992) argues that quasi-arbitrage engaged in by institutional investors with 

sizable equity portfolios may reduce the impact of the constraints and costs on short-

selling. That is, when the futures is underpriced (meaning that the cash stocks are 

relatively overpriced), institutions may sell part of their stock portfolio and substitute by 

going long the underpriced futures.   

Kempf (1998) shows that the constraints against short-selling impede arbitrage. 

For the Hong Kong market, Fung and Draper (1999) show that both the extent and the 

frequency of underpricing is reduced after the Stock Exchange of Hong Kong (today’s 

HKEx) lifted its restriction against stock short-selling.  

Moreover, Jiang, Fung, and Cheng (2001) find that the contemporaneous 

relationship between index and futures strengthens when short-selling is allowed. The 

result is particularly strong in falling market situations and when the index is overpriced. 

Hence, the impact of the costs and constraints against short-selling on index and futures 

dynamics is an empirical issue. 

Dwyer, Locke, and Yu (1996) examine the nonlinear dynamics between the S&P 

500 futures price and the spot index. Their results show that the model better explains the 

price dynamics than the linear error-correction model. Martens, Kofman, and Vorst (1998) 

apply a similar framework to estimate a band around the theoretical S&P 500 futures 

price where arbitrage is not profitable for most arbitrageurs. Their results show that the 

arbitrage thresholds are different, given positive and negative pricing errors. 

The STAECM model assumes implicitly that the arbitrage triggers or cost 

thresholds are common for all market participants. Differential trading costs imply 
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arbitrage activities for various levels of mispricings but with different intensities. Traders 

may also undertake a risky dynamic arbitrage strategy that does not require that the 

mispricing be great enough to cover total transaction cost if they expect to be able to 

capture additional profit by unwinding their positions when a large basis reversal occurs 

before the contract expires.  

This potential trading strategy provides an arbitraguer an early-unwinding option 

(see MacKinlay and Ramaswamy, 1988, and Brennan and Schwartz, 1990). Hence, an 

arbitrage portfolio can be established whenever an arbitrageur believes that the value of 

the early-unwinding option is enough to compensate for the difference between 

transaction cost and the mispricing.  

Sofianos (1993) finds, on 2,659 S&P 500 actual index-arbitrage trades that 

transaction costs outweigh the average mispricing of an arbitrage portfolio; moreover, 

18% of positions were created with a mispricing between zero and less than half of the 

estimated transaction cost. Neal (1996) reports that the number of arbitrage trades (i.e., 

arbitrage intensity) is positively related to the absolute level of mispricing. He also finds 

that arbitrage positions are established over a wide spectrum of mispricing; and a 

majority of arbitrage positions are executed when mispricing amounts to only one index 

point.  

Institutional investors who have large and diversified stock holdings may avoid 

high equity trading costs and the constraints, cost, and risk of short-selling. To capture a 

positive pricing error, they may short futures and hedge the position with their equity 

portfolio to lock in a high riskless return. If the futures is underpriced, they may arbitrage 
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by selling part of their equity portfolio and avoiding the problems and costs of short-

selling in long-futures arbitrage (Chan, 1992).  

Neal finds that 28% of long-futures arbitrage involves the direct selling of stocks. 

Hence, a dynamic arbitrage strategy together with heterogeneous classes of arbitrageurs 

could make arbitrage activities a continuous function of the arbitrage basis.  

Kawalla (1991) also show that at any price, the futures can be used to advantage 

by potential users. Hence, dynamic arbitrage strategy and arbitrageurs with 

heterogeneous trading costs could make arbitrage activities a continuous function of the 

arbitrage basis.  

To model the potential arbitrage-induced price dynamic for all levels of arbitrage 

basis, Taylor et al. (2000) and Tse (2001) apply a form of a smooth transition error-

correction model (STECM); 

( ) tttt zFzf 11111 ; θγα +=Δ −−      (6) 

( ) tttt zFzs 22112 ; θγα +=Δ −−      (7) 

The iα  are the error-correction coefficients; and the iθ  are the error terms of the two 

equations. ( )itzF γ;1−  is the transition function with the form ( )2
1exp1 −−− ti zγ ,  and iγ  

measures its slope, which indicates how quickly traders in market i react to a mispricing. 

The value of the function ( )itzF γ;1−  increases monotonically over the pricing error, with 

values bounded between 0 and 1. If the pricing error is small, arbitrage activities are 

expected to be low, and the value of the transition function is then close to zero; as a 

result, error-correction adjustments of both futures and index are small, and vice versa. 
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The error-correction coefficients (i.e., iα ) thus represent the “maximum” adjustment 

speed in a particular market.  

Taylor et al. (2000) adopt the framework to examine how the introduction of 

SETS, an electronic trading system, affects the dynamic arbitrage efficiency between the 

FTSE-100 and the underlying cash index. They find that greater adjustments in the spot 

market, in absolute terms, than adjustments in the futures market during the post-SETS 

period.  

Tse (2001) applies the framework to study the dynamics of the Dow Jones 

Industrial Average (DJIA) futures price and the underlying cash index. His results show 

that investors respond more rapidly when the futures is underpriced than when it is 

overpriced. 

Order imbalance has also been found to have a significant impact on stock returns. 

Executed order imbalance is defined as the difference between the dollar volume crossed 

at ask prices and that crossed at bid prices. Trades executed at ask prices (i.e., ask trades) 

represent buyer-initiated trades and those executed at bid prices (i..e, bid trades) represent 

seller-initiated trades. A positive order imbalance indicates that buying is more active 

than selling, while a negative order imbalance indicates that selling is more active than 

buying. Blume, MacKinlay, and Terker (1989) find correlations between the aggregate 

order imbalance and the concurrent 15-minute market returns of 0.81 and 0.86,on 

October 19 and 20 significant at individual stock level. Chordia, Roll, and 

Subrahmanyam (2002) find that order imbalance reduces market liquidity and increases 

bid and ask spreads.  
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Easley, O’Hara, and Srinivas (1998) indicate that order imbalance in CBOE 

options provides information on price movement of the underlying stock. Chan, Chung, 

and Fong (2002) show that stock order imbalance, not options order imbalance, helps 

predict quote revision patterns in both stock and options. This shows that order imbalance 

in a particular market can be associated with price movements in related securities.  

Order imbalance in the cash market may also impact the futures market for two 

reasons. First, there is a liquidity effect; institutions may short index futures to substitute 

for selling off equities when a large negative order imbalance makes it costly or 

impossible to unload sizable stock positions. Institutions may be willing to short futures 

at a discount to induce greater supply of liquidity from the arbitrageurs. This widens the 

negative basis by pushing down the futures. Similarly, the basis strengthens when 

institutional buying spills over to the futures market when there is a large positive order 

imbalance in the cash market.  

Second, there is a signaling effect; positive order imbalance signals a rise in the 

cash market, when traders may buy futures ahead of the impending stock price movement. 

Similarly, a negative order imbalance signals a potential drop in the market, and traders 

will short futures ahead of the cash market decline. In this respect, the information effect 

reinforces the liquidity effect.  

Locke and Sayers (1993) have examined the relation between order imbalance 

and the stock market volatility. Chan and Fong (2000) show that order imbalance could 

explain the volume-volatility relation. They find that, on a daily basis, the order 

imbalance is highly correlated with the total number of trades in both NYSE and Nasdaq 
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stocks; the volume-volatility relation is weaker after capturing the impact of order 

imbalance on the intraday stock return.  

Several authors examine how market conditions affect the dynamics between 

index and futures. In a study of the U.K. FTSE-100 index futures, Yadav and Pope (1994) 

fail to find a significant relationship between market returns and the arbitrage basis. Fung 

and Jiang (1999) and Jiang, Fung, and Cheng (2001) report that the futures lead over the 

cash index strengthens in falling markets and when the futures is underpriced. These 

results indicate that the hurdle against short-selling impedes the short-stock long-futures 

arbitrage process when the futures is underpriced.   

Harris (1989), Kleidon (1992), and Kleidon and Whaley (1992) have examined 

the large negative basis between the S&P 500 index and futures during the U.S. market 

crash on October 19, 1987. Harris shows that the large basis cannot be entirely explained 

by non-synchronous trading in the stock market. Kleidon and Whaley (1992) argue that 

the delinkage between the stock and futures markets could be caused by the NYSE’s 

inefficient order routing system at the time.  

Blume, MacKinlay, and Terker (1989) however, find a significant positive 

relationship between order imbalance and the concurrent 15-minute market returns on 

October 19 and 20, 1987. These results seem to suggest that the behavior of the S&P 500 

index-futures basis on October 19 could be associated with the pattern of order imbalance. 

Shleifer and Vishny (1997) show theoretically that widening of the arbitrage basis under 

extreme market conditions could paralyze arbitrage if arbitrage capital is exhausted.   
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Draper and Fung’s (2003) examination of the behavior of the arbitrage basis 

during the Hong Kong financial crisis indicates that the index and futures prices remained 

closely aligned until the Hong Kong government intervened in both the stock and index 

derivatives markets. Harris, Sofianos, and Shapiro (1994) find that program trading 

activities are positively related to market volatility. Hence, it is expected that arbitrage-

related trading should intensify during the crisis period, and traders should respond faster 

to mispricing signals. 

Breen, Hodrick, and Korajczyk (2002) find that firm-specific characteristics affect 

the (positive) relationship between order imbalance and stock returns. Roll, Schwarz, and 

Subrahmanyam (2005) find a significant bi-directional causality relationship between 

market liquidity and the NYSE composite index-future basis. Liquidity and basis have a 

strong contemporaneous relationship, and the time for an error to revert to zero is 

positively related to market liquidity.  

Fung (2004) examines the Hang Seng Index futures and the underlying cash index 

and finds that the arbitrage basis is positively related to order imbalance; that is, large 

positive (negative) order imbalance is associated with large positive (negative) arbitrage 

basis. He also finds an asymmetric relationship between order imbalance and arbitrage 

basis; a negative order imbalance has a stronger impact on the basis than a positive order 

imbalance. The time for a negative basis to converge to zero is negatively related to order 

imbalance, which means that positive (negative) order imbalance speeds up (delays) error 

correction when the futures is underpriced. The time for a positive basis to converge to 

zero is not significantly related to order imbalance, however. All these results show that 
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order imbalance in the stock market can significantly affect the error-correction dynamics 

of index and futures prices. We expand upon this line of research, and examine the 

dynamic relationships between order imbalance and index and futures returns. We also 

test how and to what extent order imbalance in the stock market affects the error-

correction dynamics of index and futures prices.  

 

3. Model and hypotheses 

As a benchmark for measuring the significance of the impact of order imbalance 

on the error-correction dynamics, following Taylor et al. (2000), we adopt a smooth 

transition autoregressive (STAR) error-correction model as a benchmark:  
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where D = 1 when 0 and, 01 =<−tz  otherwise.  

The error-correction coefficient for futures returns 11α  is expected to be negative, 

and the coefficient for 12α  should be positive if the error-correction process is weakened 

when the futures is underpriced due to the constraints against short-selling stocks. The 

error-correction coefficient for index returns 21α  is expected to be positive, and the 

coefficient for 22α  should be negative, if constraints against shorting stocks significantly 
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impede arbitrage. The 12α and 22α  coefficients should be smaller than the corresponding 

error-correction coefficients 11α  and 21α to preserve convergence between the index and 

futures prices. The aij are the auto- and cross-correlation coefficients.  

( )ttzF γ;1−  is the transition function, which takes the form ( )22
1 1

exp1
−−−−

tzti z σγ . 

Its value increases monotonically with the amount of the pricing error, with values 

bounded between 0 and 1. If pricing error in the previous period is low, arbitrage is 

expected to be low and the value of the transition function is then close to zero. As a 

result, error-correction adjustments in both futures and index prices are small. iγ  

measures how quickly investors in market i respond to the mispricings. 2
1−tz  represents 

the squared pricing error in the previous period and 2
1−tzσ the  variance of the pricing error. 

Following Dwyer, Locke, and Yu (1996) and Taylor et al. (2000), 2
1−tz  is normalized by 

2
1−tzσ to make the iγ  scale-free measures.  

 

3.1 Impacts of order imbalance on the error-correction dynamics  

The market impact of order imbalance may enhance or impede the error-

correction process. There are four possible scenarios:  

Case 1: Both order imbalance and error are positive ( 01 >−tz  and 0>tOI ) 

If both order imbalance and error are positive, order imbalance has a positive market 

impact on both index and futures returns. Positive pricing error triggers short-futures 

long-stock arbitrage that exerts downward pressure on the futures and upward pressure on 

the index. The error-correction dynamics of the index would be enhanced by the market 
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impact of order imbalance, and the conditional return to the index is positive. The error-

correction force of the futures is countervailed by the opposite market force of order 

imbalance.  

The conditional futures return is ambiguous, and depends on the relative 

dominance of the two forces. If the market impact of order imbalance is stronger than the 

error-correction force in futures, then the conditional futures return is positive, and vice 

versa.   

 

Exhibit 1 
Case 1: Positive order imbalance and positive pricing error ( 0>tOI  and 01 >−tz ) 

Variable tfΔ  tsΔ  

0>tOI  Market Impact  Positive Positive 

01 >−tz  Error Adjustment  Negative Positive 

Overall Direction Ambiguous Positive 

 

Case 2: Order imbalance is negative and pricing error is positive ( 0<tOI  and 01 >−tz ). 

If order imbalance is negative and pricing error is positive, the conditional return to 

futures is negative because the market impact of order imbalance and error-correction 

dynamics affects futures in the same direction. The conditional return to the index is 

positive only if the error-correction force dominates the market impact of negative order 

imbalance. The conditional index return can be negative if the market impact force of 

order imbalance overwhelms the effect of error-correction.  
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Exhibit 2 
Case 2: Negative order imbalance and positive pricing error ( 0<tOI  and 01 >−tz ) 

Variable tfΔ  tsΔ  

0<tOI  Market Impact Negative Negative 

01 >−tz  Error-Correction Negative Positive 

Overall Direction Negative Ambiguous 

 

Case 3: Order imbalance is positive and pricing error is negative ( 0>tOI  and 01 <−tz ). 

If order imbalance is positive and pricing error is negative, the conditional futures return 

is positive because the error-correction adjustment for the futures price is enhanced by 

positive order imbalance. The conditional index return could be positive if the market 

impact of positive order imbalance exceeds the error-correction force.  

Exhibit 3 
Case 3: Positive order imbalance and negative pricing error ( 0>tOI  and 01 <−tz ) 

Variable tfΔ  tsΔ  

0>tOI  Market Impact Positive Positive 

01 <−tz  Error-Correction Positive Negative 

Overall Direction Positive Ambiguous 

 

Case 4: Order imbalance is negative and pricing error is negative ( 0<tOI  and 01 <−tz ). 

If order imbalance is negative and pricing error is negative, the conditional index return is 

expected to be negative because the market impact of order imbalance enhances the 

error-correction mechanism for the index. The conditional futures return could become 
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negative if the market impact of a negative order imbalance exceeds the error-correction 

force.  

Exhibit 4 
Case 4: Negative order imbalance and negative pricing error ( 0<tOI  and 01 <−tz ) 

Variable tfΔ  tsΔ  

0<tOI  Market Impact Negative Negative 

01 <−tz  Error-Correction Positive Negative 

Overall Direction Ambiguous Negative 

 

3.2 Modeling the impact of order imbalance - Four-regime STAR model  

To test whether order imbalance significantly impedes order correction dynamics, 

we extend the Taylor et al. (2000) model as follows: 
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The coefficient for the first dummy variable (i.e., 1β ) depicts the conditional response of 

the futures and the cash index in case 1, and so on for the other cases.  
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For the futures equation, 12β  and 13β  are expected to be (unambiguously) 

negative, since the market impact of order imbalance enhances error-correction in both 

cases. 11β  and 14β  allow us to test whether order imbalance significantly impede the 

error-correction mechanism for futures when the two forces drive the futures price in 

opposite directions. If the market impact of order imbalance dominates, then 21β  and 24β  

are positive, and vice versa.   

For the index equation, 11β  and 14β  are expected to be unambiguously positive 

since the market impact of order imbalance and error-correction affects the index price in 

the same direction. If 21β  and 22β  are negative, then the result will show that the market 

impact of order imbalance dominates the error-correction force, and vice versa.  

 

4. Data  

We obtain time stamped bid/offer quotes for the 33 constituent stocks of the Hang Seng 

Index (HSI) and transaction records for the stocks and the Hang Seng Index futures from 

the Hong Kong Exchange from May 1996 through December 1998. The stocks were 

traded electronically in a screen-based Automatic Matching System (AMS) system. The 

futures were traded via open outcry.3 The spot month futures contract is the most liquid 

of the four concurrently traded maturity months, except on its expiration day. We 

substitute the next-month contract for the spot month contract on the contract expiration 

day of each month.  

                                                           
3 Electronic futures trading began on June 5, 2000,  via the Hong Kong Automated Trading System 
(HKATS). 
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The data cover the period surrounding the Asian financial crisis of 1997. We 

separate the sample into two time periods: May 1996 - April 1997 (before the speculative 

attack on the Thai baht in May) represents the period before the Asian financial crisis, 

while May 1997 - December 1998 represents the financial crisis period. This second 

period includes extreme market conditions during the crisis and when there were wide 

fluctuations in stock and futures prices and trading volumes.  

We eliminate data in the month of August 1998 to avoid distortion of the 

analytical results when unusual trading activities occurred upon the direct intervention of 

the Hong Kong government in both the index futures and the stock markets. To reduce 

the influence of extreme observations on the test results, we eliminate observations of 

arbitrage basis and order imbalance that are more than five standard deviations from their 

means.  

After application of these procedures, the mean and standard deviation of the 

arbitrage basis (order imbalance) are -0.4059% and 0.5480% (0.001 and 16.676), 

respectively for the pre-crisis period. For the crisis period, the mean and standard 

deviation of the arbitrage basis (order imbalance) are -0.6622% and 0.944% (-0.831 and 

21.688), respectively. All are wide variations of arbitrage basis and order imbalance in 

the crisis period.  

Dividend information including the ex-date, the payment day, and the actual 

amount of dividend for the constituent stocks is also obtained from the Exchange.  To 

construct the market value weight for each index stock, we obtain market capitalization 

information and closing index quotes from Hang Seng Index Services Limited. Hong 
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Kong Inter-Bank Offer Rates (HIBORs) for maturities of one-day to one-month come 

from Datastream.  

 

4.1 Construction of the mid-quote index 

Studies of index-futures relationships have been plagued by measurement problems in the 

index caused by infrequent trading and the bid/ask bounce. Miller, Muthuswamy, and 

Whaley (1994) show that part of the negative correlation in the basis can be explained by 

the effect of infrequent trading, which delays adjustment of the cash index. The problems 

are especially pronounced in highly volatile periods when simultaneous selling and 

buying occurs, causing a large bid and ask bounce in the observed index (Harris, 1989; 

Harris, Sofianos, and Shapiro, 1994). Yet only during stressful market situations are there 

the large variations in the basis that provide a meaningful test of its dynamic behavior.  

Following Blume, MacKinlay, and Terker (1989), we negate the effects of 

infrequent trading by adopting a reconstructed time series of the index based on the mid-

quote synchronous active bid/offer prices of the index’s constituent stocks. Chan, Chung, 

and Johnson (1993) also indicate that the use of mid-quotes reduces the impact of the 

discreteness in the tick size on the responsiveness of the traded price. Such an approach 

also controls for the bias in index returns directly due to order imbalance (See Lease, 

Masulis, and Page, 1991). The bias could also be induced by arbitrage itself, as the index 

could be moved to either side of the spread as a result of index arbitrage (Harris, Sofiano, 

and Shapiro, 1994).  
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The Hang Seng Index (HSI) is a value-weighted index.  The current index value is 

the ratio of the current total market value of the index stocks divided by the total market 

capitalization at the previous day’s close, multiplied by the value of the index at the 

previous day’s close.  Following the index construction method, the mid-quote index at 

time τ on day t is equal to:  

( )∑ +=
33

2b
it

a
itit

m
t PPWS

τττ
     (14) 

where m
tS
τ

is the mid-quote index at time τ on day t, and Wit is the market value weight for 

security I on day t. a
itP
τ

and b
itP
τ

are, respectively, the ask and bid price for stock i at time τ 

on day t.  

As the quotes are refreshed every 30 seconds, a mid-quote index is obtained for a 

30-second interval when all 33 pairs of bid/offer quotes are available. We use the minute-

by-minute sample data and the mid-quote index to calculate index returns and the fair 

futures price. Returns for the overnight non-trading hours and the lunch break are 

excluded from the analysis. 4  

 

4.2 Construction of the fair futures price series 

To filter out discrete interday changes in the index-futures relationship due to uneven 

dividend payments to the index, the actual (ex-post) dividend payments accruing to the 

                                                           
4 Draper and Fung (2003) provide details of the methodology for construction of the quote-based index 
prices. 
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index during the remaining life of the contract are factored into the cost-of-carry 

framework. Let *
τt

F be the fair (or theoretical) futures price: 

( ) ( )∑
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where t and T (as fractions of a year) denote the initiation and the expiration date of the 

contract, respectively; rj  is the overnight interest rate; r is the riskless rate for the holding 

period between day t and T; and Dij is the per share cash dividend for stock i at time j. 

We measure the degree of pricing error or arbitrage basis in percentage of the fair 

futures value - i.e., *lnln ttt FFz −= .   

 

4.3 Measurement of order imbalance 

Following Blume, MacKinlay, and Terker (1989), we take the order imbalance of an 

individual stock as equal to its dollar volume crossed at the asked price minus the dollar 

volume crossed at the bid price within a particular interval. We generally follow Lee and 

Ready’s (1991) approach to identify whether a trade is executed at bid or at ask. A trade 

is identified as a bid (an ask) trade if the traded price is below (above) the middle of the 

nearest previous bid and ask quotes. If that fails to identify a trade, the nearest quotes 

following the trade are used.  

The reason is that HKEx retrieves the quote by taking snapshots of the limit order 

book every 30 seconds. Hence, the quotes following the trade could have been the quotes 

at which that trade was executed.  
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When the traded price falls exactly at the middle of the quotes both preceding and 

after the trade, a tick test is used. If the current traded price is above (below) the previous 

traded price, the trade is an up tick (down tick), and if is classified as an ask (a bid) trade. 

If the current traded price is equal to the previous traded price, the trade is classified 

according to the trade before the previous one. A zero-up tick (i.e., the previous trade is 

traded at an up tick) is classified as an ask trade, and a zero-down tick (i.e., the previous 

trade is traded at a down tick) is classified as a bid trade. The process stops when there 

are no changes in the traded price in the last two transactions, and the trade will not be 

included in the analysis. The maximum time difference between the current trade and the 

oldest transaction or quote used for the purpose of identification is restricted to five 

minutes. 

Aggregate order imbalance for the index within a particular time interval is 

obtained by summing the individual order imbalance of the constituent stock of the index 

within the same time interval; that is, ∑
=

=
33

1i
it OO τ , where τiO  denotes the order imbalance 

of stock i measured for the thτ interval.  

To make the order imbalance measure free of the level of the market and 

comparable with the volume of the HSI futures contracts, we convert the aggregate dollar 

order imbalance into an equivalent number of index futures contracts.  

To accomplish this, we divide the aggregate 30-second dollar order imbalance by 

the mid-quote index prevailing at the end of the interval and by HK$50 (the contract 

multiplier). Hence:  
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To calculate the one-minute order imbalance, we simply add the two consecutive 

30-second order imbalances within the particular non-overlapping one-minute interval. 

This procedure is followed to calculate order imbalance for other time intervals. 

To focus on the information revealed through the trades executed within the AMS 

system, we discard all non-AMS transactions. A trade is classified according to a 

matching quote that occurs nearest to the time of the trade. This criterion causes some 

trades to be classified according to quotes after it. This is possible since a trade could 

have been executed against a quote that was being revised within a 30-second interval, 

and the revised quotes are reported only after the trade occurs.  

 

5. Empirical results and interpretation 

We first apply a Granger causality test to the relationship between the futures (or cash 

index) returns and the order imbalance. According to Fung (2004), cash index returns and 

order imbalance are expected to have a strong contemporaneous relationship. Moreover, 

since futures returns usually lead cash index returns, futures returns should lead order 

imbalance. Following Fung and Jiang (1999) and Jiang, Fung, and Cheng (2001), we pre-

whiten all series with AR processes.  

Table 1 shows the results for the lead-lag relationship between futures returns and 

order imbalance. The pre-crisis results show that the two series lead and lag one an other, 

but the coefficient for the one-period lead term in order imbalance is the most significant, 
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with a t-value of 13.72. That is, there is a significant lead of futures returns over order 

imbalance by one period. The two series have a strong positive contemporaneous 

relationship.  

The contemporaneous and lead-lag relationship between futures returns and order 

imbalance strengthened during the crisis period. The one-period lead over order 

imbalance is again most significant. The two-period lead of futures over order imbalance 

and the contemporaneous relationship also strengthen. The result is consistent with the 

Blume et al. (1989) conjecture that an order imbalance leads to a price change, and a 

price change leads in turn to further order imbalance, and so on.  

Table 2 shows the lead-lag results between index futures and order imbalance. 

Results in both periods show that index returns and order imbalance have a very strong 

contemporaneous relationship. The t-values for the two periods are 38.71 and 51.60. The 

results also show that order imbalance generally leads index returns by one period, 

although index returns lead more during the crisis period. Order imbalance has a 

substantially greater impact on index returns than on futures returns.  

 

5.1 Asymmetrical error-correction mechanism in response to - positive and negative 

errors benchmark case 

To account for the non-constant error variance in the two equations, we adopt a 

GARCH (1, 1) process to capture stochastic variance: 2
1

2
1

2
−− ++= itiitiiit BaA σϖσ ; i = 1, 2 

where 2
1−ita  is the lag 1 squared residuals and 2

1−itσ  the lag 1 residual variance of tfΔ  and 
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tsΔ . Equations (1) and (2) are estimated simultaneously using the full information 

maximum likelihood (FIML) approach.  

Table 3 shows the results of the smooth transition autoregressive process for the 

futures and index returns over the two sample periods. The R-square of the index returns 

equation increased from 16.63% in the pre-crisis period to 32.24% during the crisis 

period, while the R-square of the futures returns equation also increases from 4.35% to 

8.23%. The error variance can be fitted according to the GARCH (1, 1) for the pre-crisis 

period, but the error variance is more chaotic during the crisis period and GARCH (1, 1) 

cannot capture its dynamics. Hence, we use a highly robust heteroscedastic consistent 

covariance matrix estimation (HCCME) to obtain consistent estimates of the parameters 

for the crisis period sample.  

For the pre-crisis period, the signs of the error-correction coefficients of the 

futures and index returns are both consistent with hypotheses. The error-correction 

coefficient for the futures return 11α  is negative but not significant; while the error 

correction coefficient 21α  for cash stock is positive and significant at the 10% level. The 

signs of the coefficients for the dummy variables are the opposite of the error-correction 

coefficients. These results are consistent with the proposition that restrictions on shorting 

stock impede arbitrage and reduce the speed of error-correction when the futures is 

underpriced (although the coefficients are not significant).  

For the crisis period, all the above coefficients are not significant, and the error-

correction coefficient and the coefficient for the dummy of the stock equation are of the 
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wrong signs. These results indicate that the benchmark framework cannot describe the 

error-correction dynamics of index and futures prices, particularly during crisis.   

According to Harris, Sofianos, and Shapiro (1994), arbitrageurs should be more 

responsive to pricing errors during crisis periods. Yet we find reduced response 

coefficients iγ  for both index and futures during our crisis period. These results are 

contrary to earlier findings in the U.S. market and may indicate that the benchmark 

framework is inadequate in capturing the conditional price dynamics of the two prices 

under volatile market condition.  

 

5.2 Impact of order imbalance on error-correction process – Four-regime case 

Table 4 shows the results of the STAR estimations. Four dummy variables are 

used to denote four different regimes. 11β  shows the net adjustment coefficient for 

futures returns when there is positive pricing error when order imbalance is positive. The 

11β result is positive, which shows that the market impact of order imbalance dominates 

the effect of error-correction. Because the two effects are offsetting, the coefficient is 

relatively low (0.00759).  

12β  shows the net adjustment coefficient when there is positive pricing error 

when order imbalance is negative. In this case, error-correction is enhanced by the market 

impact of order imbalance. 12β  is negative (-0.01376) as predicted.   

13β  shows the net adjustment coefficient when there is negative pricing error 

when order imbalance is positive. Again, error-correction should push the futures price 
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up along with the order imbalance. Consistent with expectations, 13β  is positive (0.00378)  

(but lower than 12β  because of impediments against short-stock arbitrage).  

14β  shows the net adjustment coefficient for futures returns when there is 

negative pricing error when order imbalance is negative. The force of error-correction 

should push up the futures price, but negative order imbalance works against this. 14β  is 

positive (0.00334), which shows that the market impact of order imbalance exceeds the 

effect of error-correction.  

Results in the crisis period are generally consistent with those in the pre-crisis 

period, except that all coefficients are higher. Hence the results show that order 

imbalance can actually impede error-correction mechanisms conditions such as regime 1 

(positive order imbalance and positive pricing errors) and regime 4 (negative order 

imbalance and negative pricing error). In both cases, the error-correction in futures prices 

is completely offset by the opposite market impact effect of order imbalance. The effect 

is particularly strong in regime 4, where error-correction is further impeded by 

restrictions on the short selling of stock. 

In the cash results, 21β  shows the net adjustment coefficient for index returns 

when there is positive pricing error when order imbalance is positive. In this case, the 

market impact of order imbalance should push the index up as does error-correction. 21β  

is positive (0.01005), consistent with expectation.  

22β shows the net adjustment coefficient when there is positive pricing error and 

negative order imbalance. In this case, error-correction should push the index up but 
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against the negative market impact of order imbalance. 22β  is negative (-0.00698), which 

means that the market impact of order imbalance exceeds the force of error-correction.  

23β shows the net adjustment coefficient when there is negative pricing error and 

order imbalance is positive. Error-correction should push the index down, but positive 

order imbalance works to push it up. 23β  is negative (-0.01044). Again, the force of 

order imbalance exceeds that of error-correction when they are offsetting effects. 23β  is 

higher than 22β , however, which again shows that the error-correction mechanism is 

particularly distorted by order imbalance when error-correction is impeded by restrictions 

on short-stock arbitrage when the futures is underpriced.  

24β shows the net adjustment coefficient for futures returns when there is negative 

pricing error and when order imbalance is negative. In this case, both forces should push 

the index price down. The coefficient is negative (0.01334), consistent with expectation.  

Results in the crisis period are generally consistent with those in the pre-crisis 

period. Hence, incorporating the market impact effect of order imbalance provides a 

consistent explanation of the price dynamics of index and futures prices, even during 

stresses in the market. Moreover, the results of the index equation also confirm those of 

the futures equation. That is, order imbalance may reverse the error-correction effect 

when the two forces are offsetting.  

In regime 2 (negative order imbalance and positive pricing errors) and regime 3 

(positive order imbalance and negative pricing error), the error-correction in index returns 

is offset by the opposite market impact effect of order imbalance. The effect is 
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particularly strong in regime 3, where error-correction is further impeded by restrictions 

on the short selling of stock. 

Moreover, consistent with expectations, the reaction coefficients iγ show that both 

futures and index prices are more responsive to pricing errors during the crisis period. 

The iγ  for the cash index is about five times higher than that of the pre-crisis period. 

These results show that incorporating the market impact of order imbalance lets us 

capture the price dynamics of the index and futures especially under stressful market 

conditions.5  

 

5.3 Test of relative explanatory power 

We apply a likelihood ratio test to examine whether incorporating order 

imbalance improves the overall goodness-of-fit of the framework. Table 5 shows the 

results for both periods. The high F-statistics suggest rejection of the null hypothesis that 

the benchmark model and the order imbalance models perform the same in both sample 

periods. That is, the four-regime model outperforms the benchmark framework.6  

 

5.4 Impact of order imbalance on convergence of index and futures prices 

 Tables 1 and 2 have shown that order imbalance has a greater impact on stock 

returns than on futures returns.  Results of a smooth transition error-correction model 

                                                           
5 We also test a three-regime framework by combining the two cases of offsetting market impact of order 
imbalance and direction of error-correction. This allows a test of the overall dominance of the force of 
order imbalance. The result again shows that order imbalance dominates error-correction when the two 
forces are of opposite direction (results available upon request).  
6 The three-regime case  also outperforms the benchmark framework.   
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estimation also show that order imbalance dominates the effect of error-correction when 

the two forces are opposite one another. Hence, order imbalance should strengthen the 

error-correction process when the imbalance is of the same sign as the arbitrage basis. 

Order imbalance will work against the error-correction mechanism if the signs of order 

imbalance and the arbitrage basis are opposite.  

 Table 6 shows the impacts on index and futures returns at various levels of pricing 

error under the four different scenarios describing directions of order imbalance and 

arbitrage basis. For the first two cases, when order imbalance is of the same sign as the 

pricing error, the error-correction mechanism is strengthened. The results are similar in 

both periods. In the third and fourth cases, when the pricing error is of the opposite sign 

as order imbalance, the impact of order imbalance on the index returns impedes the error-

correction mechanism.   

 

 

6. Conclusion 

The direction of order imbalance has an effect on the dynamics of index and index 

futures prices. Order imbalance leads the cash index returns by three minutes, with the 

lead reduced to one minute during our crisis period. Order imbalance and futures returns 

both lead and lag each other, but the lead of futures over order imbalance strengthens 

during the crisis period.  
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The benchmark model cannot consistently explain the error-correction dynamics 

especially of the cash index under the stressful market conditions of the crisis period. Our 

results show that incorporating the market impact of order imbalance provides a 

consistent explanation of the dynamic error-correction process, particularly under volatile 

market conditions and when arbitrage and trading activities are intense. Factoring in the 

potential impact of order imbalance significantly improves the explanatory power of the 

framework.  

Finally, the results show that order imbalance impedes the error-correction 

process when the market impact of order imbalance is the opposite of the error correction 

force on the cash index.  

 

 



 35

References 

Blume, M.E., MacKinlay, A.C. & Terker, B. (1989). Order Imbalances and Stock Price 
Movements on October 19 and 20, 1987. Journal of Finance, XLIV(4), 827-848. 

Breen, W.J., Hodrick, L.S., & Korajczyk, R.A. (2002). Predicting Equity Liquidity. 
Management Science, 48(4), 470-483. 

Brennan, M. & Schwartz, E., (1990). Arbitrage in Stock Index Futures. Journal Business, 
63: 7-31. 

Chan, K. (1992). A Further Analysis of the Lead Lag Relation between the Cash Market 
and Stock Index Futures Market. Review of Financial Studies, 5, 123-152. 

Chan, K., Chung, Y.P., & Fong, W.M. (2002). The Informational Role of Stock and 
Option Volume. The Review of Financial Studies, 15(4) 1049-1075. 

Chan, K., Chung, Y.P., & Johnson H. (1993). Why Options Prices Lag Stock Prices: A 
Trading-based Explanation. Journal of Finance, 48(5), 1957-1967. 

Chan, K. & Fong, W.M. (2000). Trade Size, Order Imbalance, and the Volatility – 
Volume Relation. Journal of Financial Economics, 57, 247-273. 

Chordia, T., Roll, R., & Subrahmanyam, A. (2002). Order Imbalance, Liquidity, and 
Market Returns. Journal of Financial Economics, 65(2), 111-130. 

Cornell, B., & French, K. (1983). Taxes and the Pricing of Stock Index Futures. Journal 
of Finance, 38(2), 675-694. 

Draper, P., & Fung, J.K.W. (2003). Discretionary Government Intervention and the 
Mispricing of Index Futures. Journal of Futures Markets, 23(2), 1159-1189. 

Dwyer, G.P., Locke, P., & Yu, W. (1996). Index Arbitrage and Nonlinear Dynamics 
between the S&P 500 Futures and Cash. Review of Financial Studies, 9(1), 301-332. 

Easley, D., O’Hara, M., & Srinivas, P.S. (1998). Option Volume and Stock Prices: 
Evidence on Where Informed Traders Trade. Journal of Finance, LIII(2), 431-465. 

Engle, R.F., & Granger, C.W.J. (1987). Cointegration and Error Correction: 
Representation, Estimation, and Testing. Econometrica, 55, 251-276. 

Fung, J. K.W. (2004). Order Imbalance and the Pricing of Index Futures. Working Paper, 
Hong Kong Baptist University. 

Fung, J.K.W. & Draper, P. (1999). Index Arbitrage Opportunities and Short Sales 
Constraints. Journal of Futures Markets, 10(2), 695-715. 

Fung, J.K.W., & Jiang, L. (1999). Restrictions on Short-selling and Spot-Futures 
Dynamics. Journal of Business, Finance and Accounting, 26(1)&(2), 227-248. 

Garbade, K.D., & Silber, W.L. (1983). Price Movements and Price Discovery in Futures 
and Cash Markets. Review of Economics and Statistics, 65, 289-297. 

Grossman, S.J. (1988). An Analysis of the Implications for Stock and Futures Price 
Volatility of Program Trading and Dynamic Hedging Strategies. Journal of Business, 
61(3), 275-298. 

Harris, L. (1989). The October 1987 S&P 500 Stock-Futures Basis. Journal of Finance, 
XLIV(1), 77-99. 

Harris, L., Sofianos, G. & Shapiro, J.E. (1994). Program Trading and Intraday Volatility. 
The Review of Financial Studies, 7(4), 653-685. 



 36

Jiang, L., Fung, J.K.W., & Cheng, L.T.W. (2001). Lead-lag Relationship between Spot 
and Futures Markets under Different Short-Selling Regimes. Financial Review, 38, 
63-88. 

Kawalla, I.G. (1987). A note: Debunking the Myth of the Risk-Free Return. Journal of 
Futures Markets, 7, 327-331. 

Kawalla, I.G. (1991). Determining the Relevant Fair Value(s) of S&P 500 Futures: A 
Case Study Approach. Journal of Futures Markets, 11(4), 453-460. 

Kempf, A. (1998). Short Selling, Unwinding, and Mispricing. Journal of Futures 
Markets, 18(8), 903-923. 

Kleidon, A.W. (1992). Arbitrage, Nontrading, and Stale Prices: October 1987. Journal of 
Business, 65(4), 483-507. 

Kleidon, A.W., & Whaley, R.E. (1992). One market? Stocks, Futures, and Options 
During October 1987. Journal of Finance, XLVII(3), 851-877. 

Klemkosky, R.C. & Lee, J.H. (1991). The Intraday Ex Post and Ex Ante Profitability of 
Index Arbitrage. Journal of Futures Markets, 11(3), 291-311. 

Lease, R.C., Masulis, R.W., & Page, J.R. (1991). An Investigation of Market 
Microstructure Impacts on Event Study Returns. Journal of Finance, XLVI(4), 
1523-1536. 

Lee, C.M.C., & Ready, M.J. (1991). Inferring Trade Direction from Intraday Data. 
Journal of Finance, 46(2), 733-746. 

Locke, P.R. & Sayers, C.L. (1993). Intra-Day Futures Price Volatility: Information 
Effects and Variance Persistence. Journal of Applied Econometrics, V(8), 15-30. 

Mackinlay, A.C., & Ramaswamy, K. (1988). Index-Futures Arbitrage and the Behavior 
of Stock Index Futures Prices. Review of Financial Studies, 1, 137-158. 

Martens, M., Kofman, P., & Vorst, T.C.F. (1998). A Threshold Error-Correction Model 
for Intraday Futures and Index Returns. Journal of Applied Econometrics, 13, 245-
263. 

Miller, M.H., Muthuswamy, J., & Whaley, R.E. (1994). Mean Reversion of Standard & 
Poor’s 500 Index Basis Changes: Arbitrage-induced or Statistical Illusion? Journal 
of Finance, XLIX(2), 479-513. 

Modest, D., & Sundaresan, M. (1983). The Relationship Between Spot and Futures Prices 
in Stock Index Futures Markets: Some Preliminary Evidence. Journal of Futures 
Markets, 3(1), 15-41. 

Neal, R. (1996). Direct Tests of Index Arbitrage Models. Journal of Financial and 
Quantitative Analysis, 31(4), 541-562. 

Roll, R., Schwartz, E., & Subrahmanyam, A. (2005). Liquidity and the Law of One Price: 
The Case of the Futures/Cash Basis. 

Shleifer, A., & Vishny, R.W. (1997). The Limits of Arbitrage. The Journal of Finance, 
LII(1), 35-55. 

Sofianos, G. (1993). Index Arbitrage Profitability. Journal of Derivatives, 1, 6-20. 
Stoll, H.R., & Whaley, R.E. (1990). The Dynamics of Stock Index and Stock Index 

Futures Returns.  Journal of Financial and Quantitative Analysis, 25(4), 441-468. 
Taylor, N., Dijk, D.V., Frances, P.H., & Lucas, A. (2000). SETS, Arbitrage Activity and 

Stock Price Dynamics. Journal of Banking and Finance, 24, 1289-1306. 



 37

Tse, Y. (2001). Index Arbitrage with Heterogeneous Investors: A Smooth Transition 
Error-Correction Analysis. Journal of Banking and Finance, 25, 1829-1855. 

Yadav, P.K. & Pope, P.F. (1994). Stock Index Futures Mispricing: Profit Opportunities 
or Risk Premia? Journal of Banking & Finance, 18, 921-953. 

Yadav, P.K., & Pope, P.F., and Paudyal, K. (1994). Threshold Autoregressive Modeling 
in Finance: The Price Differences of Equivalent Assets. Mathematical Finance, 4, 
205-221. 



 38

Table 1 
Lead-lag relationship between order imbalance and futures returns 

Model: tit
i

it eOIresbaFres 1

5

5
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Following Stoll and Whaley (1990), lead-lag regressions are applied to pre-whiten futures 
return residuals (Frest) and order imbalance residuals (OIrest+i).   

 Pre-crisis Period Crisis Period 

 Parameter 
Estimate t-value (p-value) Parameter 

Estimate t-value (p-value)

Intercept – 0.00027 – 0.57 (0.5693) – 0.00013 – 0.13 (0.8935)
OIres-5 – 0.00004 – 1.37 (0.1710) 0.00007 1.46 (0.1445)
OIres-4 0.00005 1.71 (0.0867) 0.00001 0.14 (0.8884)
OIres-3 0.00010 3.26 (0.0011) 0.00005 0.97 (0.3315)
OIres-2 0.00018 6.09 (<.0001) 0.00005 1.10 (0.2713)
OIres-1 0.00025 8.52 (<.0001) 0.00048 9.80 (<.0001)
OIres 0.00029 9.59 (<.0001) 0.00099 20.44 (<.0001)
OIres1 0.00041 13.72 (<.0001) 0.00128 26.29 (<.0001)
OIres2 0.00029 9.76 (<.0001) 0.00073 14.96 (<.0001)
OIres3 0.00024 7.86 (<.0001) 0.00035 7.19 (<.0001)
OIres4 0.00014 4.60 (<.0001) 0.00026 5.35 (<.0001)
OIres5 0.00008 2.74 (0.0061) 0.00014 2.92 (0.0035)

R2 0.0612  0.1014  
No. of obs. 9223  14160  
F-value (p-value) 54.61 (<0.0001)  145.11 (<0.0001)  

 

.  
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Table 2 
Lead-lag relationship between order imbalance and index returns 

Model: tit
i

it eOIresbaSres 1

5

5
11 ++= +

−=
∑  

Following Stoll and Whaley (1990), lead-lag regressions are applied to pre-whiten index 
return residuals (Srest) and order imbalance residuals (OIrest+i).   

 Pre-crisis Period Crisis Period 

 Parameter 
Estimate t-value (p-value) Parameter 

Estimate t-value (p-value)

Intercept – 0.00014 – 0.45 (0.6519) – 0.00023 – 0.42 (0.6721)
OIres-5 – 0.00001 – 0.42 (0.6768) – 0.00001 – 0.23 (0.8157)
OIres-4 0.000004 0.19 (0.8493) – 0.00006 – 2.44 (0.0146)
OIres-3 0.00007 3.64 (<.0001) – 0.00005 – 1.79 (0.0740)
OIres-2 0.00011 5.65 (<.0001) – 0.00001 – 0.33 (0.7421)
OIres-1 0.00032 16.58 (<.0001) 0.00039 15.10 (<.0001)
OIres 0.00075 38.71 (<.0001) 0.00133 51.60 (<.0001)
OIres1 0.000003 0.17 (0.8672) 0.00016 6.30 (<.0001)
OIres2 0.00009 4.67 (<.0001) 0.00027 10.54 (<.0001)
OIres3 0.00006 3.05 (0.0023) 0.00021 8.06 (<.0001)
OIres4 0.00006 3.11 (0.0019) 0.00011 4.39 (<.0001)
OIres5 0.00001 0.52 (0.6049) 0.0001 4.03 (<.0001)

R2 0.1698  0.1855  
No. of obs. 9223  14160  
F-value (p-value) 171.34 (<0.0001)  292.98 (<0.0001)  
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Table 3 
Summary of the estimation results of the benchmark STAR model 
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D = 1 when 0 and 01 =<−tz  otherwise.  ( )ttzF γ;1−  = ( )22
1 1

exp1
−−−−

tzti z σγ . 

 Pre-crisis Period (11/96 to 4/97) Crisis period (8/97 to 1/98) 

 Futures  Cash  Futures Cash 
2R  0.0435 0.1663 0.0823 0.3224 

1iα  -0.0011 (-0.39) 0.00269 (1.41)* -0.02043 (-1.12) -0.00769 (-0.74) 

2iα  0.0003 (0.09) -0.00171 (-0.73) 0.01535 (0.82) 0.0064 (0.60) 

iA  0.10174 (11.71)*** 0.08957 (7.67)*** –  – 

iB  0.86729 (63.83)*** 0.83339 (30.89)*** – – 

iγ  1.01188 (3.18)*** 0.95657 (3.05)*** 0.17435 (1.91)** 0.13906 (1.71)** 

p-values of Ljung-Box statistics 

tu  0.6112 0.9039 0.0505 0.2478 
2
tu  0.0776 0.3143 – – 

Note: the following GARCH (1,1) process is adopted to account for the non-constant error variance in 
the index and futures equations: 2

1
2

1
2

−− ++= itiitiiit BaA σϖσ ; i=1,2. 2
1−ita  is the lag 1 squared residuals and 

2
1−itσ  the lag 1 residual variance of tfΔ  and tsΔ . The system is estimated with full information maximum 

likelihood method. For all periods, outliers with absolute values of either one of df, ds, lagz and boi 
exceeding 7 standard deviation. are removed. Numbers corresponding to ut and ut2 are the p-values of 
Ljung-Box Q(24)-statistics residual diagnosis on the null hypothesis that the residuals are white noise. 
The Ljung-Box Q(24) statistics show that GARCH (1,1) is sufficient to capture the stochastic error 
variance during the pre-crisis sample period. However, the same process is found insufficient to fit the 
volatility structure. We adopt the robust Heteroscedastic Consistent Covariance Matrix Estimation 
(HCCME) to provide consistent estimates of the model parameters. We use 15 lag terms for each 
estimation. *Significant at the 10% level, **Significant at the 5% level, and ***Significant at the 1% 
level.  
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Table 4 
Summary of estimation results of benchmark STAR model with four order 

imbalance regimes   
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otherwise 0

0&0 when 1 1
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1
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tttt OIz
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( )ttzF γ;1− = ( )22
1 1

exp1
−−−−

tzti z σγ . 

 Pre-crisis Period (11/96 to 4/97) Crisis period (8/97 to 1/98) 

 Futures Cash Futures Cash 
2R  0.0454 0.1882 0.0863 0.3421 

1iβ  0.00759 (1.84)** 0.01005 (5.39)*** 0.00499 (0.64) 0.01542 (5.92)*** 

2iβ  -0.01376 (-2.43)*** -0.00698 (-3.35)*** -0.02598 (-2.55)*** -0.0175 (-8.01)*** 

3iβ  -0.00378 (-1.98)** -0.01044 (-7.79)*** -0.01841 (-5.43)*** -0.01401 (-10.06)*** 

4iβ  0.00334 (1.64)* 0.01334 (9.36)*** 0.00633 (2.06)** 0.00975 (6.37)*** 

iA  0.1118 (10.96)*** 0.11444 (8.20)*** –  – 

iB  0.85268 (51.77)*** 0.78098 (22.71)*** – – 

iγ  0.89791 (1.81)** 2.20297 (3.30)*** 0.94174 (2.53)*** 11.88921 (3.23)*** 

p-values of Ljung-Box statistics 

tu  0.5934 0.7815 0.0813 0.1060 
2
tu  0.0992 0.5507 – – 

Note: refer to the footnote in Table 6. 
 



 42

Table 5 
Comparison of explanatory power of benchmark model and four-regime framework  
 

      H0: Benchmark model 
      H1: 4-regime model 
Pre-crisis 
period   N 7332       

         
   R-sq k q F p-value 
Benchmark 
model futures 0.0435 67     

 cash 0.1663 67     
4-regime model futures 0.0454 69 2 7.2280 0.0007 
 cash 0.1882 69 2 97.9673 1.04E-42 
Crisis period  N 14354     
         
   R-sq k q F p-value 
Benchmark 
model futures 0.0823 64     

 cash 0.3224 64     
4-regime  model futures 0.0863 66 2 31.2750 2.799E-14
 cash 0.3421 66 2 213.9182 2.886E-92

High F values allow rejection of the null hypothesis that the four-regime model has the 
same explanatory power as the benchmark model. The four-regime model outperforms 
the benchmark model in describing the conditional returns of index and futures, 
especially in the crisis period. 
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Table 6 
Conditional futures and index returns in four market conditions 

 
  Pre-Crisis Crisis 

  1−tz >0 
OI>0 

1−tz <0 
OI<0 

1−tz >0 
OI<0 

1−tz <0 
OI>0 

1−tz >0 
OI>0 

1−tz <0 
OI<0 

1−tz >0 
OI<0 

1−tz <0 
OI>0 

Impact on 
futures 
return 

0.0044965 
0.0073789 

 

-0.0019786 
-0.0032470 

 
 

-0.0815389
-0.1338087

 
 
 

0.0022399
0.0036758

 

0.0030429 
0.0048727 

 

-0.0038622
-0.0061846

 

-0.0158492 
-0.0253793 

 

0.0112311 
0.0179843 

 

Impact on 
index return

0.0089433 
0.0100525 

 

-0.1186360 
-0.1333501 

 

-0.0062089
-0.0069790

 

0.0092866
0.0104384

 

0.0154149 
0.0154150 

 
 

-0.0097489
-0.0097490

 

-0.0174999 
-0.0175000 

 

0.0140099 
0.0140100 

 

Note: the upper number denotes the impact with one standard deviation of arbitrage basis, the lower number shows the impact 
with two standard deviations of arbitrage basis. Note that for one standard deviation in the basis, the last two cases for the 
crisis period in particular, the opposite impact of order imbalance on index returns disrupt the convergence of the basis. With 
two standard deviations in the basis, the impact of order imbalance in the index returns impede the convergence process.  
 
 
 


