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Abstract

Two regression coefficients often used in Finance, the Scholes-Williams (1977) quasi-multiperiod
”thin-trading” beta and the Hansen-Hodrick (1980) overlapping-periods regression coefficient,
can both be written as instrumental-variables estimators. We check the performance of these
IV -estimators and the validity of the t-tests in small and medium samples, gauge the robust-
ness of the Scholes-Williams estimator outside its stated assumptions, and report performances
relative to the standard OLS and the unit-beta model in a hedge-fund style application.

Keywords: Market Model, thin trading.
JEL-codes: C15, G11.



Thin-Trading Bias in Beta v Estimation Error:
a Note

Introduction

The ”beta” slope coefficient of the market model—the regression of an asset’s return onto

the market return—is crucial in tests or applications of the CAPM, and the residual of that

regression became a popular workhorse in event studies since Fama, Fisher, Jensen and Roll

(1973). The standard, in much of the literature, is an OLS beta, which assumes IID idiosyncratic

returns. If the beta is to be independent of the observation interval used in the returns, more

is needed: market returns must be IID too, and n-period returns must be sums of n one-period

returns, a feature that strictly holds only for log-change returns. With IID market returns and

errors and additivity over time, of course, also the total stock returns are IID , whatever the

holding period. In the rest of the paper we refer to the model with IID and additive returns as

the standard model.

This standard model has also been at the basis of beta variants that were proposed to

handle measurement errors in returns, caused by thin trading, bid-ask bounce, differential

reaction speeds to news, and so on. Its no-autocorrelation assumption echoes the stylized view

of the early efficient-markets literature as popularized by e.g. Fama (1965). True, observed

returns do not fully meet these early efficient-markets assumptions, but the violations are not

massive, and many apparent infractions are potentially explained by thin trading.1 Thus, the

standard model is adopted by Scholes and Williams (1977), whose modified beta accounts for

non-trading that lasts at most one period. Fowler and Rorke (1983) generalize this to longer

no-trading intervals. The Scholes-Williams-Fowler-Rorke (SWFR ) solution is an instrumental-

variable estimator with, as the instrument, a moving sum of the contemporaneous market

return plus L leading and L lagging market returns, L being the longest period of non-trading.

1For instance, autocorrelation in market-index returns is exactly what one would expect when not all stocks
get quoted every day: the day t + 1 reported return for stocks that did not trade on day t contains the stock’s
true day-t return and, therefore, introduces a spurious echo of the day-t market evolution into the reported index
return for the next day. For the same reason, actively traded stocks seem to lead the market return by one day,
and reported returns on thinly traded stock seem to be related to the once-lagged market. The residual for a
thinly traded stock is negatively autocorrelated, when the stock seems to belatedly catch up with the market.
And, lastly, the market-model residuals for actively traded stocks are positively autocorrelated, if only because
the cross-sectional average autocorrelation is positive.
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The SWFR estimator has been used also in different contexts. Apte, Kane and Sercu (1993)

consider a setting where PPP holds for traded-goods prices and where CPI inflation sluggishly

reacts to traded-goods prices. They show that a SWFR -like estimator is needed to extract

the full impact of inflation on the exchange rate. In optimal-hedge problems, the variance-

minimizing hedge ratio is likewise found by regressing price changes of the exposed asset on

price changes of the hedge instrument (Johnson, 1960, and Stein, 1961). Sercu and Wu (2000)

obtain good results from the SWFR estimator when some currencies partly follow others with

a lag, as was the case in the Exchange Rate Mechanism.

There are two or three alternative estimators that are not strictly consistent but still reduce

the thin-trading bias, and might be useful in reducing other errors-in-data biases too. Dimson

(1979) proposes a multiple regression with leading and lagging market returns as additional

regressors; his beta is the sum of these multiple coefficients. Another alternative is to measure

returns at lower frequencies, using e.g. weekly holding-period returns rather than daily ones.

Indeed, under the stylized assumptions, a multiperiod true beta is no different from a single-

period one, as is easily checked: the covariance in the numerator and the variance in the

denominator simply go up by the same multiple, the number of periods. The advantage of

working with returns from longer holding periods is that while the noise generated by thin

trading is not affected, the true returns become larger, implying a better signal-to-noise ratio

(see e.g. Stoll and Whaley, 1990). Similar possible motivators are data problems like bid-ask

bounce, reporting lags, or differential adjustment speeds due to differences in trading costs

or liquidity: with longer holding periods, the signal-to-noise ratio improves. The cost is that

extracting non-overlapping longer holding periods from a data base substantially reduces the

number of observation. Hansen and Hodrick (1980), discussing a related problem, point out

that the use of overlapping multi-period returns mitigates the problem; they further show

that, in such overlapping-return regressions, GLS is not the way to deal with the induced

autocorrelation in the errors. OLS , in contrast, remains unbiased, and an asymptotic standard

error for the OLS estimator can be used that takes into account the serial autocorrelation.

Most of the literature thus far has focused on bias, but the issue of standard error can be

important too. For instance, Brown and Warner (1980) show, in a Monte-carlo experiment

about event studies, that using OLS -estimated betas introduces more noise than the errors

caused if all betas are postulated to be equal to unity. Thus, more in general, it is possible that a

biased estimator is still more powerful than an unbiased one. Accordingly, one innovation in this

paper is our discussion of standard error (se) next to bias as an evaluation criterion. A related
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point is our check whether true standard errors differ dramatically from the asymptotic error

margins produced by OLS or IV software. A third innovation is the discussion of overlapping-

observation regression in IV form, next to the HH OLS form.

Summing up, in this note we report Monte-Carlo results on the comparative performance of

(i) one-day OLS , (ii) Scholes-Williams-Fowler-Rorke (SWFR ), (iii) Dimson multiple OLS , (iv)

overlapping-return regressions, and (v) an instrumental-variable variant of the overlapping-

return regression. We judge the contending estimators on the basis of bias in the coefficient,

estimator standard deviation, and reliability of the reported large-sample standard deviation.

We also set up a real-world performance race. Specifically, we consider the problem of a

portfolio manager who has a target beta—zero, in our application, like for a hedge fund—and

uses empirical betas to try and keep her portfolio market neutral. In that particular application

we also let the simple unit-beta model enter the race: it’s surely biased, but has zero estimation

error. We also test whether the standard deviations of the estimates provide any information

useful to the hedge-fund manager.

Our recommendation from the Monte-Carlo experiments is to use the overlapping-returns

regression with OLS or IV : its bias is minimal, and its precision beats everything else, even for

very active stocks. OLS on non-overlapping daily returns is biased (a known result) but rather

precise. The SWFR estimator does best with respect to bias, but its standard error is quite

large. Dimson’s beta is almost as good as SWFR when judged by bias, but has the advantage

of being less imprecise. In all cases, the standard error produced by the standard routines is a

reliable guide to the actual one, on average. OLS is quite consistent in this, in the sense that

the standard deviation, across samples, of the standard error is smallest. SWFR does worst in

this respect, and the Dimson and overlapping-OLS models’ performance is in-between.

All this bears on Monte-Carlo sampling. The real-world application is still ongoing; pre-

liminary results support the unit-beta model, but more work is needed,

The contending estimators are lined up in Section 1. Section 2 reports the simulation

results. We conclude in section 3.

1 The contenders

The familiar market-model regression is

Rj,t = α + βjRm,t + εj,t, (1.1)
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where Rj,t is the simple percentage change, cum dividend, in the j-th stock price over period

t and Rm,t is the return on the market portfolio. The stylized assumptions are that the only

correlation among these variables is the contemporaneous one between Rj,t and Rm,t, without

any auto- or cross-correlation.

1.1 Scholes-Williams-Fowler-Rorke (SWFR )

Thin trading induces bias in the OLS beta, as illustrated in e.g. Dimson (1979), arising from

(related) errors in both the regressand and in the regressor.2 The interactions of these errors

mean that for active stocks the beta is biased upward, while for thinly traded stocks the bias is

negative, as Scholes and Williams show. Assuming that the duration of inaction never exceeds

one period, they then derive a consistent instrumental-variable estimator for the market-model

beta, where the instrument is a moving sum of the market returns for days t− 1, t, and t + 1.

(Since the mis-timing of the day-t return does not affect the sum, the instrument is uncorrelated

with the error in the reported market return.) Fowler and Rorke (1983) generalize this solution

to longer no-trading intervals by extending to moving-sum window.

Scholes and Williams (1977) and Fowler and Rorke (1983) show that, when prices may

really date from up to L periods ago, the downward bias is avoided if beta is estimated as

βSW
j,H =

cov(Rj , Z
SW
H )

cov(Rm, ZSW
H )

with ZSW
H,t =

L∑

l=−L

Rm,t+l. (1.2)

The intuition why IV works here is that (i) any auto- and cross-correlations present in actually

observed returns are, by assumption, induced by thin trading, and (ii) the 2L+1-period moving

sum of market returns picks up all correlations induced by thin trading. The measured return

on stock j has to be linked to the past L true market returns because j’s last measured return

may contain its bottled-up true returns over the past L periods, which are logically linked to

the past L true market returns. But also the leading market returns must be included, because

the true market return for a period s can be smeared out over all periods s, ..., s + L if the

2On the regressand side, a stock that is not traded on day t reports a return of zero, apparently without
relation with the market’s movement. Actually, the unobserved true day-t return shows up on day t+1 (as part
of the return reported for that day), but again seemingly without relation with the true day-t market return.
Thus, at least two returns are mis-measured. On the regressor side, thin trading likewise induces two types of
error, each induced by the errors in the regressands. First, as yesterday’s non- traded stocks catch up today,
an echo of yesterday’s market return is added into today’s reported market return; this error is assumed to be
uncorrelated with today’s true return. Second, due to non-trading today, part of today’s true market return
is missing, an error that is negatively correlated with the true market return. It will also be obvious that the
thin-trading error in the regressand is positively correlated with the one in the regressor.
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market index contains thinly-traded stocks.

The consistency of the SWFR estimator is not the issue, so our Monte-Carlo tests are

intended as checks for small-sample unbiasedness and especially for the validity of the standard

error, whose consistent estimator is:3

asymptotic stdev(βSW
j,H) =

√√√√ σ2
ε (1 + 2

∑L
l=1,L ρl,jρl,Z)

∑N−L
1+L (Rm,t −Rm)2R2

RM ,Z

(1.3)

where σ2
ε is the residual variance, ρl,X the lth-order autocorrelation of the returns from asset

X = {j,m} and R2
RM ,Z the squared correlation between the market return and the instrument.

1.2 The Hansen-Hodrick overlapping-observation regression

Under standard assumptions, in the absence of thin trading the true one- and multi-period

betas are the same. For reasons outlined in the introduction, an overlapping-return regression

may be preferred, (
H−1∑

l=0

Rj,t+l

)
= α + βHH

j,H

(
H−1∑

l=0

Rm,t+l

)
+ εj,t,H . (1.4)

The overlapping returns obviously generate autocorrelation in the error terms. Hansen and

Hodrick (1980) reject GLS as biased, in the case of overlapping returns, and propose OLS with

an autocorrelation-consistent standard deviation which is consistently estimated as

Θ = (X ′X)−1X ′Ω−1X(X ′X)−1 (1.5)

where X is the N × 2 matrix of observations {1, Rm,t} and Ω is a band matrix with the

estimated variances and autocovariances of the regression errors u:

Ω = σ2
ε




1 ρ1 ... ρH−1 0 ... ... ... 0
ρ1 1 ρ1 ... ρH−1 0 ... ... 0
... ρ1 1 ρ1 ... ρH−1 0 ... 0

ρH−1 ... ρ1 1 ρ1 ... ρH−1 0 0
0 0
0 0 ρH−1 ... ρ1 1 ρ1 ... ρH−1

0 ... 0 ρH−1 ... ρ1 1 ρ1 ...
0 ... ... 0 ρH−1 ... ρ1 1 ρ1

0 ... ... ... 0 ρH−1 ... ρ1 1




. (1.6)

3The autocorrelations are new relative to the textbook IV case. See Scholes and Williams for the derivations
for L = 1. The generalization to L ≥ 2 follows easily.
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1.3 An Instrumental-Variable Overlapping-Return Estimator

We easily derive a consistent IV estimator of the overlapping-return model. We start from

the explicit objective that we want to estimate the beta over a horizon of H periods, and

accordingly write the H-period price change as the sum of H one-period changes. Next, we

use equalities like cov(X(+1), Y (+3)) = cov(X, Y (+2)); and lastly we regroup and interpret

the estimator as an IV one:

βIV
j,H =

cov(Rj + Rj(+1) + ... + Rj(+H − 1), Rm + Rm(+1) + ...Rm(+H − 1))
var(Rm + Rm(+1) + ...Rm(+H − 1))

=
∑H−1

k=0

∑H−1
l=0 cov(Rj(+k), Rm(+l))

∑H−1
k=0

∑H−1
l=0 cov(Rm(+k), Rm(+l))

=
∑H−1

k=−H+1(H− | k |)cov(Rj , Rm(+k))
∑H−1

k=−H+1(H− | k |)cov(Rj , Rm(+k))

=
cov(Rj , Z

IV
H )

cov(Rm, ZIV
H ))

, (1.7)

where

ZIV
H =

H−1∑

k=−H+1

(H− | k |)Rm(+k). (1.8)

The asymptotic standard error is the same as for SWFR .

In the next section we compare the performance of these contenders as far as bias is

concerned, true standard error, and reliability of the standard error produced by standard

software. This last issue is especially relevant when the method is applied to data where,

unlike in the standard model, the market factor exhibits genuine autocorrelation.

2 Simulation results

2.1 Monte Carlo results for the standard model

Each simulation each consist of 2000 experiments. One such experiment consists of the follow-

ing steps. First, an IID market factor f is generated with, zero mean and constant volatility

equal to 0.01 p.d., i.e. about 0.15 p.a.. This market factor has a fat-tailed Student’s distribu-

tion with seven df. From this, returns for 2000 assets are generated, all with a unit beta and

idiosyncratic noise with 1.5 times the market standard deviation, generating a p.a volatility

of about 0.30 for an individual stock. There are three classes of trading thinness: 1000 of the

stocks trade every day, 500 trade with a probability of 0.9, and 500 trade with probability 0.75.
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If a stock is not traded, the recorded return is zero; simultaneously, its true return is added to

a buffer until the stock does trade, at which time the cumulative return is recorded. Starting

from 2000 initial value weights taken from NYSE in 1992, we then update the value weights.

The initial market caps are ranked in descending order, so that large stocks tend to be active

ones, and the smallest firms most prone to missing prices. The market return is computed as a

value-weighted average of asset returns. For the market-model regressions we generate 250 such

“daily” observations for all 2000 stocks, and pick three stock files out of these, one per thinness

class, to run the regressions. We then start a new experiment, until we have gone through 2000

of them. For SWFR , L is set at 1, 2, 3, and 4 each side,4 while for the overlapping-observation

regressions H is likewise set at 2, 3, 4, 5 (one week) and 20 (monthly holding periods). For

each regression we compute the slopes and theoretical (asymptotic) standard error. For each

set of 2000 such computations (per type of regression and thinness class) we then produce the

mean and standard deviation.

Predictably, OLS does worst in terms of bias, with beta approximating unity minus the

probability of no trade. There is no evidence of any upward bias for the active stocks.5 Equally

predictably, SWFR does a good job in eliminating even severe thin-trading biases like p = .25

with modest values like L = 3. But Dimson’s beta does as well in terms of bias. For both

estimators, the reduction in bias upon increasing the window size 2L + 1 comes quite rapid:

with no-trading probabilities not exceeding 0.25, there seems to be no point in going beyond

L = 4. The overlapping-return regressions, whether OLS or IV , are good at handling moderate

thin-trading like p = .10; but for the p = .25 stocks, convergence toward unity seems to be

slow: even monthly returns (H = 20) achieve only .97, on average.

Equally interesting are the standard deviations of the betas. There is a good connection

between the theoretical standard errors (SE) and the actual one computed from the cross-

section of betas. Further experiments, not shown here, reveal that this relationship breaks

down in small samples—especially for IV estimators—or when the noise is irrealistically small.

OLS is quite precise, despite the slight autocorrelation and heteroscedasticity induced by thin

4The chance that a stock with no-trade probability 0.25 would not trade for 3 (4) periods is 0.7520.253 =
0.0088 (0.7520.254 = 0.0022), so L=3 looks reasonable. For the other models we also used H = 20 (monthly
returns); but the SWFR equivalent, 19 leads and lags produced gigantic se’s.

5Scholes and Williams demonstrate the theoretical possibility, and we actually see it in simulations with very
small noise (not shown here). The fact that the average beta is always below unity, in our table, is compatible
with a value-weighted average beta equal to unity because of the positive covariance between weights and
estimated beta: 1 =

∑
j
wjβj = (

∑
j
wj)β +

∑
j
(wj − w)(βj − β).
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Table 1: Simulation results: base case

Mean β̂ mean SE(β̂)s stdev across β̂ stdev of SE(β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression

OLS .99 .89 .74 .10 .10 .10 .09 .11 .12 .008 .008 .009

SWFR ±1 .99 .98 .92 .17 .18 .18 .17 .17 .18 .020 .021 .023
SWFR ±2 .99 .98 .97 .22 .23 .25 .22 .23 .23 .036 .037 .040
SWFR ±3 .99 .99 .98 .27 .28 .30 .27 .28 .28 .055 .058 .062
SWFR ±4 .99 .98 .98 .32 .33 .35 .32 .32 .32 .078 .082 .087

Dimson±1 .99 .98 .92 .14 .14 .15 .14 .14 .15 .012 .012 .013
Dimson±2 .99 .98 .97 .17 .17 .18 .17 .17 .17 .016 .016 .017
Dimson±3 .99 .99 .98 .19 .20 .21 .19 .20 .20 .019 .020 .021
Dimson±4 .98 .99 .98 .22 .23 .24 .22 .22 .22 .023 .024 .026
Dimson±19 .99 .99 .99 .51 .53 .55 .52 .51 .52 .100 .105 .110

H-period overlapping-returns regression

IV 2 .99 .93 .83 .12 .12 .13 .12 .12 .13 .010 .010 .011
IV 3 .99 .95 .87 .14 .15 .15 .14 .15 .15 .012 .013 .014
IV 4 .99 .96 .90 .16 .17 .18 .16 .17 .17 .015 .016 .017
IV 5 .99 .96 .92 .18 .19 .20 .18 .18 .18 .018 .018 .020
IV 20 .99 .98 .96 .41 .42 .44 .39 .40 .41 .074 .077 .084

OLS Adj2 .99 .95 .88 .13 .13 .13 .14 .14 .15 .014 .014 .014
OLS Adj3 .99 .96 .90 .15 .15 .16 .16 .16 .16 .018 .018 .019
OLS Adj4 .99 .96 .92 .17 .17 .17 .18 .18 .18 .023 .023 .023
OLS Adj5 .99 .97 .93 .19 .19 .19 .20 .20 .20 .027 .027 .027
OLS Adj20 .99 .98 .96 .33 .33 .33 .38 .39 .39 .089 .091 .089

Key. 250 ”daily” returns for 2000 stocks are generated by a unit-beta market model with a thick-tailed IID

market factor with stdev 0.01/day plus idiosyncratic noise (R2=0.3). 1000 of the 2000 stocks trade daily, 500

nine days out of ten, and 500 three days out of four. On no-trade days a zero return is reported, and the invisible

price change is cumulated until the first trade. Value-weighted market returns are computed from these 2000

returns, and three individual-stock return series are stored, one for each thinness class. This experiment is

repeated 10,000 times. OLS uses daily data. SWFR uses as the instrument a moving-window sum of market

returns with ±L leads/lags. Dimson uses a multiple regression with ±L leading/lagging market returns as

additional regressors; the beta is the sum of these 2L + 1 coefficients. The overlapping-return IV regression

uses H − 1 proximity-weighted leading and lagging market returns as the instrument. OLS Adj runs OLS with

autocorrelation-adjusted SEs. The IV SEs also account for thin-trading-induced autocorrelation in regressand

and regressor.
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Table 2: Simulation results: autocorrelation in Rm

Mean β̂ mean SE(β̂)s stdev across β̂ stdev of SE(β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression

OLS .99 .90 .75 .10 .10 .10 .10 .11 .12 .008 .008 .009

SWFR ±1 .99 .98 .93 .16 .17 .18 .16 .16 .17 .020 .021 .022
SWFR ±2 .99 .99 .98 .20 .21 .22 .20 .20 .21 .032 .033 .035
SWFR ±3 .99 .99 .99 .23 .24 .26 .23 .23 .24 .043 .045 .049
SWFR ±4 .99 .99 .99 .26 .27 .28 .26 .26 .26 .055 .058 .061

Dimson±1 .99 .98 .93 .13 .14 .14 .13 .13 .14 .012 .013 .013
Dimson±2 .99 .99 .97 .16 .17 .17 .16 .16 .17 .016 .017 .018
Dimson±3 .99 .99 .98 .18 .19 .20 .18 .18 .19 .021 .021 .022
Dimson±4 .99 .99 .98 .20 .21 .21 .20 .20 .21 .025 .026 .027
Dimson±19 1.00 .99 .99 .35 .36 .38 .35 .35 .35 .084 .087 .090

H-period overlapping-returns regression

IV 2 .99 .94 .85 .12 .12 .13 .12 .12 .13 .010 .011 .011
IV 3 .99 .96 .89 .14 .14 .15 .14 .14 .14 .013 .013 .014
IV 4 .99 .96 .92 .16 .16 .17 .15 .16 .16 .016 .016 .017
IV 5 .99 .97 .93 .17 .18 .19 .17 .17 .18 .019 .019 .021
IV 20 1.00 .99 .98 .32 .34 .35 .32 .32 .32 .072 .075 .078

OLS Adj2 .99 .96 .89 .12 .13 .13 .13 .14 .14 .014 .014 .014
OLS Adj3 .99 .96 .92 .14 .14 .15 .15 .15 .16 .019 .019 .019
OLS Adj4 .99 .97 .93 .16 .16 .16 .17 .17 .17 .023 .023 .023
OLS Adj5 .99 .97 .94 .17 .17 .17 .18 .18 .19 .027 .027 .027
OLS Adj20 1.00 .99 .98 .25 .25 .25 .30 .30 .30 .080 .080 .080

Key. 250 ”daily” returns for 2000 stocks are generated by a unit-beta market model with a thick-tailed

market factor with stdev 0.01/day plus idiosyncratic noise (R2=0.3). The partial autocorrelation schedule in

the market factor starts at ρ1 = 0.04, and linearly falls for higher lags, crossing the zero line at lag 15. The

resulting autocorrelation of monthly market factors is 0.16. Otherwise, the procedure is like in Table 1.
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trading. But for thinly-traded assets, autocorrelation and heteroscedasticity also make the OLS

SEs underestimate the true error margins. SWFR betas are 1.5 to 3 times noisier than OLS ones,

a feature easily explained using the asymptotic formula (1.3). Specifically, OLS is identical to

IV with the regressor as instrument, so the main difference between the OLS and IV SE’s comes

from the factor R2 in the numerator of (1.3), which drops from 1 (OLS ) to about 1/3 (IV with

L = 1) or 1/7 (IV with L = 3). These R2s, in turn, imply that the IV asymptotic errors rise by

a factor
√

3 = 1.7 for L = 1 and
√

7 = 2.6 for L = 3. The result is that the SWFR estimator is

actually the noisiest of the lot, two or three times worse than Dimson’s beta. The reason why

we show no results for SWFR L = 19 (i.e. one month either way) is that the variance simply is

absurdly high (five decimals before the dot). Dimson offers much more precision for the same

unbiasedness.

In terms of SE, the IV version of overlapping-observation regression does better than SWFR ’s

IV estimator, for the same reason: putting more weight on the contemporaneous market return,

its instrument has higher correlation with the regressor than has the SWFR instrument with the

same window size L. The asymptotic SEs for the IV - and OLS versions of overlapping-return

regressions are quite similar, which is as expected because the estimators are asymptotically

equivalent. In terms of actual estimation error, in contrast, the IV version does better than

the OLS one unless the window becomes quite large (H = 20, one month). Lastly, the pecking

order on the basis of actual standard error is also echoed by the standard deviations of the

SEs. That is, when the estimator is more imprecise, also the estimated theoretical SE becomes

more sensitive to sample coincidences, with OLS and Dimson doing best, followed by overlapping

returns, and finally SWFR .

2.2 Field experiment: setting up market-neutral portfolios

In this section we verify whether any of the differences observed above are noticeable in practice,

and (in one experiment) whether the standard deviations of the beta estimates are useful. We

consider the problem of a hedge-fund manager who has selected N underpriced stocks and now

wants to add positions in N more hedge stocks so as to make the entire portfolio market-neutral.

2.2.1 Two-asset market-neutral portfolios

In an exploratory round we set N equal to unity and use a target beta of zero. This corresponds

to a hedge-fund manager who has identified two stocks that seem to be mispriced relative to

each other, and wants to go long one an short the other in such a way that the combination
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is market-neutral. We take all US stocks of a given industry, and rank them by size (market

cap). We pick assets ranked 1, 4, 5, 8, 9, 12, ... for the long positions, matching each of them

with a size-wise close stock of the same industry for the short positions, notably those ranked

2, 3, 6, 7, 10, 11, etc. of a given industry, and match it with the next one.

For the portfolio to have a zero beta, the weights of the two risky assets have to satisfy

wl

ws
= −βs

βl
. (2.9)

In a first round we set wl = 1, implying ws = −βl/βs and a risk-free position w0 = 1−wl−ws =

βl/βs. This turned out to be naive: some estimated beta pairs are so egregious, say 2 and

0.01, that hedge ratios of 200 would be implied, generating absurd variances for the “hedged”

portfolios. No real-world fund manager would have believed these estimates, though. So we

truncate the estimated betas at 0.25 and 4. After this first correction, the result can still

depend very much on which stock happens to be stock 1 or stock 2. If, for instance, the betas

are 2 and 0.5, the weights would be (1, 4), producing a much higher portfolio variance than

if the betas had been the other way around and the weights, accordingly, (1, 0.25). As a

compromise we rescaled the first-pass weights by their geometric average. Elementary algebra

show that this gives us (with βtr denoting a truncated beta):

wl =

√
βtr

s

βtr
l

; ws = −
√

βtr
l

βtr
s

; w0 = 1− wl − ws, (2.10)

so that the dependence of the portfolio in which stock happened to be the high-beta one

disappears. Betas are estimated using two years of daily date. Given the portfolio weights

we then hold the two stocks for one month, and note the portfolio returns. We then re-

estimate the betas, re-rank the stocks by value, and form new portfolios, etc. This produces

100 non-overlapping out-of-sample tests per pair; and since we have about 2000 US stocks

with a 20-year history, we have about 1000 of these two-asset portfolios. We compute, for each

beta estimator and portfolio, the time-series variance of the portfolio returns. For these, we

report the mean, the median, and the number of times the particular estimator produced the

lowest-variance portfolio (averaged across the portfolios). The results for the naive and the

adjusted procedures are shown in Table 3.

The unit-beta model does best on all counts. Dimson with 19 lags comes up best quite often

too, despite its high median portfolio variances. OLS does a good job too. The overlapping-

return models provide low variances but do not come up best very often.
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Table 3: Average and Median variances of market-neutral portfolios (single share exposure
hedged by single share matching industry and size)

estimated betas, unit wl

estimator mean var median var #times 1st
OLS 0.01043 0.00544 10
Dimson±1 0.01070 0.00548 5
Dimson±2 0.01175 0.00564 4
Dimson±3 0.01156 0.00576 4
Dimson±4 0.01209 0.00589 6
Dimson±19 0.01686 0.00741 11
OLS Adj2 0.01081 0.00547 1
OLS Adj3 0.01102 0.00553 1
OLS Adj4 0.01114 0.00563 1
OLS Adj5 0.01125 0.00568 2
OLS Adj20 0.01274 0.00623 6
IV 2 0.01048 0.00542 3
IV 3 0.01078 0.00548 1
IV 4 0.01100 0.00552 1
IV 5 0.01113 0.00563 1
IV 20 0.01282 0.00627 5
SWFR ±1 0.01113 0.00564 5
SWFR ±2 0.01276 0.00599 5
SWFR ±3 0.01299 0.00628 5
SWFR ±4 0.01280 0.00627 6
β = 1 0.00928 0.00536 16
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2.2.2 Multi-asset portfolios

In a more ambitious version of the problem the manager wants to set up a market-neutral

portfolio with minimal SE for the portfolio beta, meaning that she is reluctant to put much

money into stocks whose betas are estimated with a wide error margin. Denote V = the

(exogenously given) vector of weights for the underpriced stocks, βv = the vector of their

betas, W = the vector of weights to be chosen for the hedge stocks, βw = the vector of their

betas, and Ω = the covariance matrix of the 2N beta estimates. The general problem is to

find, among all portfolios that seem to be market-neutral—see the constraint in the Lagrangian,

below—the one with the smallest estimation error for the market exposure:

MinW

[
V ′,W ′]

[
Ωvv Ω′wv

Ωwv Ωww

] [
V
W

]
− λ · [β′wW − β′vV ], (2.11)

but since V is given exogenously, this simplifies to

MinW [2W ′ΩwvV + W ′ΩwwW ]− λ · [β′wW − β′vV ]. (2.12)

The general solution is

W = Ω−1
ww[

λ

2
βw − ΩwvV ] (2.13)

λ

2
=

β′vV + β′wΩ−1
wwΩwvV

β′wΩ−1
wwβw

. (2.14)

We consider three special cases, corresponding to increasing degrees of scepticism about the

value of the estimates. In the first variant, the manager thinks the information about covari-

ances among estimation errors is no good, since the market factor has already picked up the

most important source of covariance among returns and, therefore, among beta estimation

errors. In the second one, the managers extends this scepticism to the SEs themselves: all

betas are viewed as equally prone to error, whatever the computer output may say about that.

In the last variant even the very beta estimates are distrusted and replaced by a unit value,

which produces an equally-weighted hedge portfolio:

Ωww diagonal and Ωwv = 0 : W ∗ = − Ω−1
wwβw

β′wΩ−1
wwβw

β′vV (2.15)

Ωww = σ2I and Ωwv = 0 : W ∗∗ = − βw

β′wβw
β′vV (2.16)

Ωww = σ2I , Ωwv = 0 , allβj = 1 : W ∗∗∗ = − 1
N

V ′e, (2.17)

where e is the unit vector, [1,1, ... 1]. To get a standardized situation, we scale the exogenous

long positions such that β′vV = 1.
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Table 4: Average and Median variances of market-neutral portfolios (both exposure and hedge
portfolios contain ten shares of same industry and match size)

estimated betas, unit wl

estimator mean var median var #times 1st
OLS 0.00115 0.00080 8.7
Dimson±1 0.00117 0.00084 5.3
Dimson±2 0.00116 0.00084 3.8
Dimson±3 0.00117 0.00083 3.7
Dimson±4 0.00118 0.00082 5.1
Dimson±19 0.00141 0.00098 14.5
OLS Adj2 0.00115 0.00082 0.8
OLS Adj3 0.00115 0.00082 0.6
OLS Adj4 0.00116 0.00082 0.9
OLS Adj5 0.00117 0.00082 1.4
OLS Adj20 0.00126 0.00092 5.9
IV 2 0.00115 0.00081 2.0
IV 3 0.00115 0.00082 0.9
IV 4 0.00115 0.00082 0.7
IV 5 0.00116 0.00082 0.8
IV 20 0.00127 0.00091 5.1
SWFR ±1 0.00116 0.00084 4.9
SWFR ±2 0.00119 0.00083 5.1
SWFR ±3 0.00121 0.00088 5.9
SWFR ±4 0.00124 0.00088 7.2
β = 1 0.00111 0.00080 16.8
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Again, for each beta estimator and portfolio, we compute the time-series variance of the

hedged portfolio returns and report the mean, the median, and the number of times the

particular estimator produced the lowest-variance portfolio. The results are shown in Table 4.

Compared to the two-asset market hedged portfolios, the difference in average and median

variances across models are much smaller. Clearly all methods benefit from the larger portfolio

effect. Based on the average and mean Dimson with 2 lags seems to be doing just marginally

better than its one lag variant, the unit-beta model and the IV and OLS regressions with two-

to four-day overlapping returns. When combining the average and mean with the number of

runs a model scores best, the unit-beta model becomes a clear winner. Dimson with 19 lags

comes up best quite often too, despite its high median portfolio variances. As in the two-asset

tests, while the overlapping-return models provide low variances they do not come up best

very often.

3 Conclusion

We evaluate, in the presence of thin trading, the performance and the validity of the t-tests in

small and medium samples of two commonly used regression coefficients: the Scholes-Williams

(1977) quasi-multiperiod ”thin-trading” beta and the Hansen-Hodrick (1980) overlapping-

periods regression coefficient. These two instrumental variable estimators are compared with

the estimates from ordinary least squares and Dimson’s multiple regressions with leads and

lags as additional variables.

When we introduce thin-trading in a Monte Carlo simulation, OLS does worst in terms

of bias. SWFR ’s estimator and Dimson’s beta do a good job and manage to eliminate even

severe thin-trading biases. The overlapping-return regressions, whether OLS or IV , are good

at handling moderate thin-trading, however convergence toward unity appears to be slow for

more serious thin trading.

When looking at standard deviations, we find that OLS and Dimson estimators are quite

precise. In contrast, SWFR betas are up to 3 times as noisy. In terms of SE, the IV version of

overlapping-observation regression does better than SWFR ’s IV estimator.

Finally, in a field experiment we verify whether any of the differences observed above are

noticeable in practice. Therefore, we consider the problem of a hedge-fund manager who has

selected N underpriced stocks and wants to add positions in N more hedge stocks to make the

entire portfolio market-neutral. We find that Dimson with 19 lags and the naive unit-beta
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model come first most often. In terms of low variances, the overlapping return models perform

fine, but not much better than the unit-beta model.
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