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ABSTRACT  
 

This paper investigates the hedging effectiveness of  stock index futures using KOSPI 
200 futures in Korea during the period 1996. 5. 3 to 2005. 12. 29. The hedge ratios are 
estimated by vech model, asymmetric vech model, CCOR model, asymmetric CCOR 
model, BEKK model, and asymmetric BEKK model and the hedging performances 
calculated by these models are compared. Main findings are as follows. First, two prices are 
non-stationary. However, two return series are all stationary. There is a cointegration 
relationship between two level prices. Second, for in-sample period, the hedging 
performance of  asymmetric vech model is the largest. Third, in case of  out-of-sample, it is 
found that BEKK model is best. 
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1. Introduction 
 

Since the KOSPI (Korea Stock Price Index) 200 futures contract was launched on 
May 3, 1996, it has grown into one of  active stock index futures contracts in the world. 
Many of  the participants in KOSPI 200 futures markets aim to reduce or eliminate a 
particular risk that they face. Since risk is usually measured as the volatility of  portfolio 
returns, the hedgers may be interested in the hedge ratio that minimizes the variance of  
the returns of  a portfolio.  

To determine the minimum variance hedge ratio, previous investigations assume 
that the hedge ratio is constant over time and estimate it using simple ordinary least 
square (OLS) estimation (see Ederington, 1979) and vector error correction model 
(VECM) (Ghosh, 1993; Lien and Luo, 1993; Chou, Fan, and Lee, 1996). However, 
given the time-varying nature of  the variance and covariance in many financial markets, 
the classical assumption of  the time-invariant optimal hedge ratio appears inappropriate. 
A superior performance has been made by adopting an autoregressive conditional 
heteroskedasticity (ARCH) model (see Cecchetti, Cumby, and Figlewski, 1988), 
GARCH (generalized ARCH) model (see Baillie and Myers, 1991; Sephton, 1993a; 
Sephton, 1993b; Brooks, Henry, and Persand, 2002; Poomimars, Cadle, and Theobald, 
2003; Wang and Low, 2003; Choudhry, 2004) and SV (stochastic volatility) model 
(Anderson and Sorensen, 1996; Lien and Wilson, 2001). Except for Brooks et al. (2002), 
most literatures do not allow for an asymmetric effect across the entire variance-
covariance matrix of  returns and compare various time-varying models 

In this paper, the hedge ratios are estimated by vech model, asymmetric vech 
model, CCOR (constant correlation) model, asymmetric CCOR model, BEKK model, 
and asymmetric BEKK model. We examine the difference of  hedge effectiveness 
between symmetric models and asymmetric models using KOSPI 200 futures. Main 
empirical results show that the conditional variance and covariance varies over time. In 
the comparison of  in-sample, the hedging performance of  asymmetric vech model is the 
largest, indicating that there are big market shocks, for example IMF bailout, for this period. 
In case of  out-of-sample, it is found that BEKK model is best. 

The remainder of  the paper is organized as follows. Following the introduction, 
Section 2 describes hedge models. Data and the results of  stationarity test are presented 
in section 3. Section 4 estimates hedge models and analyzes hedging effectiveness. 
Section 5 concludes the paper. 
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2.  Hedge models 
 
2.1. VECM 
 

There has been some debate in the literature as to whether the two markets must 
be cointegrated. Ghosh (1993), for example, suggests that market efficiency should 
imply that cash and futures are cointegrated. We tested the unit root and cointegration 
of level prices and returns series of KOSPI 200. If these markets are cointegrated, the 
conditional mean equations of the model employed in this article are a Vector Error 

Correction Model (VECM), shown as equation (1). In this model, ],[ ftstt εεε =  

represents the innovation vector from the stock and futures models respectively and 
11 −− − tt FS θ  represents an error correction term. 

 
                    (1) 
 
 

 
, 
 

 
2.2. vech model  

 
In estimating bivariate vech model, it is required to estimate 21 parameters in the 

conditional variance-covariance structure, subject to the requirement that tH  be 

positive-definite. Bollerslev, Engle, and Wooldridge (1988) propose the model 
restricted the coefficient matrices A and B to be diagonal, where each element of the 
conditional variance-covariance matrix depends only on its past values and surprises. 

We use the diagonal vech model (hereafter vech model), presented in equation (2). 
Equation (3) illustrates asymmetric vech model. In this specification, vech(.) denotes 
the vector-half operator that stacks the lower triangular elements of an N×N matrix 
into an [N(N+1)/2]×1 vector. 
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(3) 
 
 

 
 
2.3 CCOR model  
 

Bollerslev (1990) shows an invariant measure of the coherence between spot and 
futures evaluated at time t-1. Of course, in general, this measure of coherence will be 
time varying as tH  varies over time. However, in some applications the time-varying 

conditional covariance might be taken as proportional to the square root of the product 
of the corresponding two conditional variances. Bollerslev (1990) assumes a 
GARCH(1,1) structure for the conditional variance, but allows for non-zero constant 
correlation between spot and futures. We use the diagonal CCOR model as equation (4) 
and the asymmetric CCOR model as equation (5). 
 

 
(4) 
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2.4 BEKK model 
 

Engle and Kroner(1995) proposed the Bollerslev, Engle, Kroner, and 
Kraft(BEKK) parameterization. The BEKK parameterization requires estimation of 
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only 11 parameters in the conditional variance-covariance structure and guarantees tH  

to be positive definite. We use the diagonal BEKK model as equation (6) and the 
asymmetric BEKK model as equation (6). 

 
(6) 
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3. Data and stationarity test 
 

3.1. Data description 
 
The data employed in this study comprise 2,503 daily observations on the KOSPI 

200 stock index and stock index futures contract spanning the period May 3, 1996 - 
December 29, 2005. Days corresponding to Korea public holidays are removed from 
the series to avoid the incorporation of  spurious zero returns. To avoid thin trading and 
expiration effects, the nearest contract is used, rolling over to next nearest contract 
prior to expiration month of  the current contract. These data are collected from Korea 
Exchange. 

Let tS  and tF  represent the logarithms of  the stock index and stock index 
futures prices. The daily return on a spot position held from t-1 to t are calculated 

stR = ( tS - 1−tS )×100. Similarly, the actual return on a futures position is stR = ( tF -

1−tF )×100.  
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Summary statistics for the data are presented in Table 1. Two series show excess 
kurtosis, implying fatter tails than a normal distribution. This result is backed by the 
Jarque-Bera statistics. The values of  Ljung-Box (hereafter LB) for the return series are 
significant at the 1% level. The LB (10) for squared return series are highly significant 
for two markets, suggesting the possibility of  the presence of  autoregressive 
conditional heteroskedasticity. 

 
[Insert Table 1] 

 
3.2. Stationarity test 
 

Panel A of  Table 2 reports stationarity test results for spot and futures series. ADF 
(augmented Dickey-Fuller) test and PP (Pillips-Perron) test fail to reject the null 
hypothesis of  the presence of  a unit root in both the spot and futures prices, indicating 
that these series are non-stationary. The hypothesis of  the existence of  a unit root in 
the two return series is rejected at the 1% level.  

To test for cointegration between spot and futures, Johansen methodology is 
adopted. The results are reported in Panel B of  Table 2. Since 75.441 exceed the 5 
percent critical value of  the traceλ statistic, it is possible to reject the null hypothesis of  
no cointegration vectors and accept the alternative of  one or more cointegration 
vectors. Next, we can use he )1(traceλ statistic to test the null of  1≤γ  against the 
alternative of  two or three cointegrating vectors. Since 8.790 is less than the 5% critical 
value of  12.25, we can not reject the null hypothesis at this significance level. The value 
of  maxλ statistic is such that the null hypothesis of  no cointegration ( 0=γ ) is 
soundly rejected and 1=γ cannot be rejected. As such, it is evident that there is one 
cointegrating vector between two series. 

 
[Insert Table 2] 

 
 

4. The empirical and comparison results 
 

4.1. The estimation of  hedge models 
 
Given the evidence of  a long-run or cointegrating relationship between tS  and 

tF , the conditional mean equations are parameterized as a VECM rather than a VAR 
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to avoid the loss of  long-run information. The lag of  conditional mean equation 
decided on 1 using AIC and SBC. 

The 3,1β  of  all models is significant. The null hypothesis “futures prices do not 
Granger cause stock prices” is rejected. This suggests that new information tends to be 
reflected first in futures prices rather than the stock index prices. This results is 
consistent with the findings of  Brooks et. al (2002) and Wang and Low (2003). 

The estimated parameters are presented in Table 3. All parameters in variance 
equations are statistically significant, suggesting that the variances, covariances, and the 
risk-minimising hedge is indeed changing over time [Wang and Low (2003)]. Significant 
ARCH process is found in all stock and futures tests. The size of  the ARCH 
parameters ( 11A  and 33A ) are significant and less than unity. The size and significance 
of  the ARCH parameters indicates volatility clustering in these markets. The covariance 
parameters ( 22A  and 22B ) indicate a significant and positive interaction between the 
two returns. The value of  LLR (log likelihood ratio) in the asymmetric vech model is 
higher than other models. The values of  LB (10) for the innovation series and for 
squared innovation series are not significant at the 5% level, suggesting that hedge 
models are adequate. 

 
[Insert Table 3] 

 

4.2. In-sample comparisons of  hedge ratios and hedging effectiveness 
 
The hedge ratios, computed using the various GARCH models, are reported in 

panel A of  Table 4. All of  hedge ratios are less than one, indicating that one to one 
hedge method is not suitable. Asymmetric BEKK hedge ratio is larger than other hedge 
ratios.  

The panel B of  Table 4 reports the resultant portfolio variances and hedging 
performance using various hedging techniques over in-sample period. To facilitate 
comparisons, we report the result of  naïve hedge( 1=tHR ) and OLS model. The 
eight hedging techniques appear to yield lower portfolio variances compared to a naïve 
hedge. The portfolio variance of  asymmetric vech model is smallest. Similarly the 
hedging performance of  asymmetric vech model is larger than other hedging 
techniques. This implies is that asymmetric vech model shows appropriate hedge ratio 
and low variance of  return because more coefficients than other models are estimated.  

When we compare the results between the symmetric and asymmetric models, it is 
found that the asymmetric models, which allow for an asymmetric response of  the 
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conditional variance to positive and negative shocks, show the better performance than 
symmetric models. The evidence on the asymmetry is consistent with the findings in 
Brooks et. al (2002).  

.  
[Insert Table 4] 

 
4.3. Out-of-sample comparisons of  hedging effectiveness 

 
Table 5 shows the hedging performance using various hedging techniques over out-

of-sample period. It appears that variance of  return of  the BEKK model is smallest 
and the BEKK model outperforms other model in terms of  hedging performance.  
This is because forecasting power of  the BEKK model is superior to that of  other 
models.  

The hedging performances of  asymmetric hedging techniques are smaller than 
those of  symmetric model for out-of-sample period. However, the difference among 
hedge models is very small. This is consistent with Choudhry (2004). The reason for 
these results is that because there are not big market shocks, for example IMF bailout, 
for out-of-sample (July 1, 2005 - December 29, 2005), KOSPI 200 stock index and 
futures returns do not have asymmetry. From this point of  view, for in-sample, they 
have asymmetry. 

 
[Insert Table 5] 

 
5. Conclusion 

 

This paper seeks to contribute to current literatures by examining the impact of  
asymmetries on the hedging of  stock index positions and comparing three asymmetric 
models with three symmetric models. In this study, we examine the hedging 
effectiveness of  stock index futures using the daily data of  KOSPI 200 futures in Korea 
during the period 1996. 5. 3 - 2005. 12. 29. The hedge ratios are estimated by various 
GARCH models such as vech model, asymmetric vech model, CCOR (constant 
correlation) model, asymmetric CCOR model, BEKK model, and asymmetric BEKK 
model and the hedging performances calculated by these models are compared.  

Our results indicate that two prices are non-stationary, while two return series are 
all stationary. From the Johansen method, it is found that there exists cointegration 
relationship between two prices. We find that asymmetric models, which allow positive 
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and negative price shocks to affect volatility forecasts differently, yield improvements in 
forecasting in-sample, but not out-of-sample. In the comparison of  in-sample, the 
hedging performance of  asymmetric vech model is the largest, indicating that there are big 
market shocks, for example IMF bailout, for this period. In case of  out-of-sample, it is 
found that BEKK model is best. 
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Table 1 

 Descriptive statistics for spot and futures return series 
 
 Stock Futures 

Mean 0.003 0.003 

Variance 0.976 1.229 

Skewness -0.096 -0.020 

Kurtosis 2.169 1.750 

Jarque-Bera 469.229** 303.208** 

LB(10) 38.537** 25.471** 

LB2(10) 474.153** 740.404** 
 
LB(n) is the Ljung-Box statistic for up to n lags, distributed as 2χ  with n degrees of  freedom. 
**, * indicate significance at the 1%, 5% level, respectively.  
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Table 2 
Stationarity test for spot and futures series 

 

Panel A: Unit root test 

 ADF PP 

tS  -0.005 
(-2.667) 

-0.005 
(-2.680) 

tF  -0.006 
(-2.746) 

-0.006 
(-2.849) 

stR  -1.058** 
(-23.776) 

-0.914** 
(-44.523) 

ftR  -1.094** 
(-24.068) 

-0.968** 
(-47.158) 

 

 

Panel B: Cointegration test 

Null 

Hypothesis 

Alternative 

Hypothesis 
 1% Critical value 5% Critical value 

traceλ test  traceλ value   

0=γ  0>γ  75.441** 30.45 25.32 

1≤γ  1>γ  8.790 16.26 12.25 

maxλ test  maxλ value   

0=γ  1=γ  66.652** 23.65 18.96 

1=γ  2=γ  8.790 16.26 12.25 

 

The t-statistics are reported in parentheses. **, * indicate significance at the 1%, 5% level, 
respectively. γ is the number of  cointegration vector.  
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Table 3 

Maximum Likelihood Estimates for models 

Panel A: Estimation results 

 
VECM Vech Asym. 

vech CCOR Asym. 
CCOR BEKK Asym. 

BEKK 
 0.266** 

(0.002) 
0.013 
(0.018) 

-0.011 
(0.016) 

0.048** 
(0.016) 

0.014 
(0.012) 

0.003 
(0.013) 

-0.012 
(0.014) 

 0.319** 
(0.103) 

0.012 
(0.020) 

-0.010 
(0.017) 

0.055** 
(0.016) 

0.020 
(0.013) 

-0.001 
(0.014) 

-0.010 
(0.014) 

 -0.003** 
(0.001) 

0.012 
(0.021) 

0.005 
(0.015) 

0.022 
(0.016) 

0.019 
(0.013) 

0.012 
(0.016) 

0.006 
(0.014) 

 -0.004** 
(0.001) 

0.094** 
(0.024) 

0.084** 
(0.016) 

0.089** 
(0.019) 

0.086** 
(0.015) 

0.096** 
(0.019) 

0.086** 
(0.017) 

 -0.523** 
(0.036) 

-0.133* 
(0.056) 

-0.119* 
(0.057) 

-0.091 
(0.070) 

-0.083 
(0.066) 

-0.125** 
(0.047) 

-0.106 
(0.059) 

 0.096** 
(0.031) 

0.233** 
(0.050) 

0.213** 
(0.055) 

0.156* 
(0.064) 

0.143* 
(0.066) 

0.236** 
(0.044) 

0.207** 
(0.055) 

 0.027 
(0.040) 

-0.062 
(0.055) 

-0.081 
(0.063) 

-0.110 
(0.071) 

-0.124 
(0.074) 

-0.064 
(0.049) 

-0.093 
(0.063) 

 0.505** 
(0.035) 

0.142** 
(0.060) 

0.153** 
(0.064) 

0.135 
(0.077) 

0.144 
(0.075) 

0.161** 
(0.054) 

0.176** 
(0.067) 

  0.007 
(0.004) 

0.007** 
(0.003) 

0.006** 
(0.002) 

0.006** 
(0.002) 

0.074** 
(0.020) 

0.089** 
(0.014) 

  0.007 
(0.004) 

0.007** 
(0.003)   0.071** 

(0.016) 
0.092** 
(0.014) 

  0.007 
(0.004) 

0.008** 
(0.003) 

0.008** 
(0.002) 

0.007** 
(0.002) 

-0.026** 
(0.005) 

-0.018** 
(0.007) 

  0.067** 
(0.006) 

0.039** 
(0.003) 

0.086** 
(0.011) 

0.050** 
(0.004) 

0.262** 
(0.028) 

-0.199** 
(0.027) 

  0.064** 
(0.001) 

0.040** 
(0.003)     

  0.064** 
(0.003) 

0.040** 
(0.003) 

0.085** 
(0.011) 

0.054** 
(0.005) 

0.254** 
(0.021) 

-0.217** 
(0.025) 

  0.929** 
(0.006) 

0.930** 
(0.008) 

0.912** 
(0.011) 

0.915** 
(0.007) 

-0.964** 
(0.008) 

0.963** 
(0.006) 

  0.931** 
(0.006) 

0.931** 
(0.007)     

  0.930** 
(0.008) 

0.930** 
(0.008) 

0.912** 
(0.010) 

0.913** 
(0.008) 

-0.966** 
(0.006) 

0.963** 
(0.005) 

   0.051** 
(0.017)  0.066** 

(0.014)  0.235** 
(0.034) 

   0.046** 
(0.015)     

   0.047** 
(0.016)  0.059** 

(0.005)  0.191** 
(0.040) 

    0.928** 
(0.004) 

0.929** 
(0.003)   

LLR  547.988 576.459 345.797 368.379 518.369 550.855 

0,1β

0,2β

1,1β

1,2β

2,1β

3,1β

2,2β

3,2β

10C

20C

30C

11A

22A

33A

11B

22B

33B

11D

22D

33D

ρ
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Table 3 (continued) 

Panel B: Diagnostic tests 

 VECM Vech Asym. 
vech CCOR Asym. 

CCOR BEKK Asym. 
BEKK 

LB(10)  6.649 
[0.758] 

5.793 
[0.832] 

9.528 
[0.483] 

9.089 
[0.524] 

7.105 
[0.716] 

5.833 
[0.830] stR

 LB2(10)  8.324 
[0.597] 

8.177 
[0.612] 

7.677 
[0.660] 

8.495 
[0.581] 

8.386 
[0.591] 

8.266 
[0.603] 

LB(10)  8.261 
[0.603] 

7.652 
[0.663] 

17.228 
[0.069] 

16.843 
[0.078] 

7.940 
[0.635] 

7.547 
[0.673] ftR

 LB2(10)  15.567 
[0.113] 

14.343 
[0.158] 

11.730 
[0.304] 

11.194 
[0.343] 

16.283 
[0.092] 

13.854 
[0.180] 

D.W. 2.288       
 

LB(n) is the Ljung-Box statistic for up to n lags, distributed as 2χ  with n degrees of  freedom. 
The standard errors are reported in parentheses. The t-statistics are reported in [ ]. **, * indicate 

significance at the 1%, 5% level, respectively. 
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Table 4 

Hedge ratio and hedging performance (in-sample) 

Panel A: Hedge ratio 

 VECM Vech Asym. 
vech CCOR Asym. 

CCOR BEKK Asym. 
BEKK 

Mean 0.7902 0.8469 0.8445 0.8273 0.8228 0.8467 0.8472 

Variance - 0.0122 0.0124 0.0080 0.0080 0.0129 0.0129 

 

Panel B: Hedging performance 

 Volatilities of  hedge returns Hedging performance 

naive 0.2372 0.7571 

OLS 0.1883 0.8072 

VECM 0.1885 0.8070 

vech 0.1852 0.8103 

Asym. 
vech 0.1847 0.8110 

CCOR 0.1872 0.8084 

Asym. 
CCOR 0.1861 0.8095 

BEKK 0.1866 0.8090 

Asym. 
BEKK 0.1862 0.8094 

 
The naïve hedge is        . 1=tHR
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`Table 5 

Hedging performance (out-of-sample) 

 Volatilities of  hedge returns Hedging performance 

naive 0.0214 0.9122 

OLS 0.0179 0.9264 

VECM 0.0184 0.9244 

vech 0.0163 0.9330 

Asym. 
vech 0.0164 0.9329 

CCOR 0.0166 0.9319 

Asym. 
CCOR 0.0169 0.9307 

BEKK 0.0162 0.9334 

Asym. 
BEKK 0.0163 0.9333 

 
The naïve hedge is        .  1=tHR


