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Abstract
In this paper, we consider a correlation between the default intensities to incorporate depen-

dency between multivariate Cox process. Assuming that each obligor has its own default intensity
process, we use multivariate shot noise intensity process where jumps (i.e. magnitude of contribu-
tion of primary events to default intensities) occur simultaneously and their sizes are correlated.
A homogeneous Poisson process is used to describe simultaneous jumps in default intensities and
the Farlie-Gumbel-Morgenstern (FGM) copulas are used to produce correlations between jump
sizes. Using bivariate Cox process with exponential margins for FGM copulas, we derive joint
survival/default probabilities, conditional default probabilities and linear default correlations. As
an example of pricing of credit derivatives, we calculate the market credit default swaps (CDS)
rates, assuming that a zero-coupon default-free bond price follows a generalised Cox-Ingersoll-Ross
(CIR) model. Standard martingale theory is used to derive the joint Laplace transforms.

Keywords: Multivariate shot noise process; multivariate Cox process; joint survival/default
probability; the Farlie-Gumbel-Morgenstern copulas; conditional default probabilities; linear de-
fault correlation; market credit default swaps (CDS) rate.

1. Introduction

Over the recent years, numerous papers have looked at the modelling for dependence of default
intensities via the Cox process or a point process (Schönbucher and Schubert 2001; Jouanin et
al. 2001; Yu 2005 and Giesecke 2005). Besides the construction of a point process, considerable
attraction is given to the use of copulas to measure default dependence between the obligors (Li
2000; Schönbucher and Schubert 2001; Jouanin et al. 2001 and Giesecke 2004). The possiblilty
to incorporate default dependence between multiple �rms is to introduce correlation between thier
intensity processes. The work by Du¢ e and Singleton (1998) considered joint jumps in the default
intensity. Kijima (2000) and Jarrow & Yu (2001) developed it further considering the possibility
of default-event triggers that cause joint default. Another approach is based on credit contagion
which are from the previous research by Davis and Lo (2000, 2001). In practice, once one �rm
defaults, it causes increase of other �rms default intensity accordingly due to business links or ties
between �rms. A couple of works for default intensities based on credit contagion can be found in
Schönbucher (2003) Giesecke (2004) and Giesecke and Weber (2006).

This paper is mainly based on the �rst approach. We introduce separate intensity processes
for each obligor. These intensities are triggered by primary events such as oil and commodity
prices, the governments��scal and monetary policies, the release of corporate �nancial reports, the
political and social decisions, the romours of mergers and acquisitions among �rms, collapse and
bankcrupcy of �rms, September 11 WTC catastrophe and Hurricane Katrina etc. that will result in
a positive jump simultaneously in intensity processes. As time passes, default intensity processes
decrease respectively, as all �rms in the market will do their best to avoid being in bankruptcy after
the arrival of a primary event. This decrease continues until another event occurs which again will
result in a positive jump simultaneously in intensity processes.
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For the purpose of this paper, we concentrate on a very speci�c vector of intensity process,
i.e multivariate shot noise process and show how within this model explicit calculation for market
credit default swaps (CDS) rate can be performed. The multivariate default intensity model we
consider has the following structure:

d�
(1)
t = ��(1)�(1)t dt+ dC

(1)
t ; C

(1)
t =

MtX
j=1

X
(1)
j ;

d�
(2)
t = ��(2)�(2)t dt+ dC

(2)
t ; C

(2)
t =

MtX
j=1

X
(2)
j ;

...

d�
(n)
t = ��(n)�(n)t dt+ dC

(n)
t ; C

(n)
t =

MtX
j=1

X
(n)
j ; (1.1)

where:

�
n
X
(i)
j

o
j=1;2;���

is a sequence of independent and identically distributed random vari-

ables with distribution function F (x) (x > 0) and i = 1; 2; � � � ; n.
� Mt is the total number of events up to time t.

� �(i) is the rate of exponential decay for �rm i = 1; 2; � � � ; n.

We also make the additional assumption that the point processMt and the sequences
n
X
(i)
j

o
j=1;2;���

are independent of each other.
In this model, dependence between the intensities �(i)t comes from the common event arrival

process Mt, together with dependence between the jumps X
(i)
j . The latter is modelled using the

notion of copula (Nelson, 1998 and McNeil et al., 2005), i.e. the joint distribution of the vector�
X
(1)
j ; X

(2)
j ; � � � ; X(n)

j

�
is assumed to be of the form C (F1; F2; � � � ; Fn) with a given copula

C. The uniqueness of this two stage construction goes back to Sklar�s Theorem (Sklar, 1996).
We assume that event arrival processMt follows a homogeneous Poisson process with frequency

�. The multivariate Cox process (Cox 1955; Grandell, 1976 and Brémaud 1981) is used to model
the joint default time. Many alternative de�nitions of a doubly stochastic Poisson process can be
given. We will o¤er the one used by Dassios and Jang (2003).

De�nition 1.1 Let (
; F; P ) be a probability space with information structure given by F =
f=t; t 2 [0; T ]g. Let Nt be a point process adapted to F . Let �t be a non-negative process adapted
to F such that

tZ
0

�sds <1 almost surely (no explosions).

If for all 0 � t1 � t2 and u 2 <

E
n
eiu(Nt2�Nt1)j=�t2

o
= exp

8<:�eiu � 1�
t2Z
t1

�sds

9=; (1.2)

then Nt is call a =t-doubly stochastic Poisson process with intensity �t where =�t = � f�s; s � tg.
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With the above model speci�cation with n = 2, in Section 2 we derive the joint Laplace

transform of the vector
�
�
(1)
t ; �

(2)
t

�
using standard martingale theory, i.e.

E
�
e�
�

(1)
t e���

(2)
t j �(1)0 ; �

(2)
0

�
(1.3)

where 
 � 0; � � 0 and �(i)t =
tR
0

�
(i)
s ds: From the latter, we can then calculate the joint survival

probability, i.e.

Pr
�
�1 > t; �2 > t j �(1)0 ; �

(2)
0

�
= E

n
e��

(1)
t e��

(2)
t j �(1)0 ; �

(2)
0

o
: (1.4)

and relevant joint probabilities like:

Pr
�
�1 > t; �2 � t j �(1)0 ; �

(2)
0

�
= E

n
e��

(1)
t

�
1� e��

(2)
t

�
j �(1)0 ; �

(2)
0

o
; (1.5)

Pr
�
�1 � t; �2 > t j �(1)0 ; �

(2)
0

�
= E

n�
1� e��

(1)
t

�
e��

(2)
t j �(1)0 ; �

(2)
0

o
(1.6)

and the joint default probability, i.e.

Pr
�
�1 � t; �2 � t j �(1)0 ; �

(2)
0

�
= E

n�
1� e��

(1)
t

��
1� e��

(2)
t

�
j �(1)0 ; �

(2)
0

o
; (1.7)

where � (i) � inf
n
t : N

(i)
t = 1 j N (i)

0 = 0
o
is the default arrival time for the �rm i that is equivalent

to the �rst jump time of the Cox process N (i)
t .

As a speci�c example for C, we use the Farlie-Gumbel-Morgenstern copulas, which are given by

C(u; v) = uv + �uv(1� u)(1� v); (1.8)

where u 2 [0; 1], v 2 [0; 1] and � 2 [�1; 1]. In order to make latter calculation somewhat easier, we
also assume that F (x1) = 1� e��x1 (� > 0; x1 > 0) and F (x2) = 1� e��x2 (� > 0, x2 > 0). The
resulting joint distribution function F (x1; x2) takes the form:

F (x1; x2) = 1�e��x2�e��x1+e��x1��x2+�e��x1��x2��e��x1�2�x2��e�2�x1��x2+�e�2�x1�2�x2 :
(1.9)

In Section 3, we illustrate the calculations of market credit default swaps (CDS) rate assuming
that a zero-coupon default-free bond price follows a generalised Cox-Ingersoll-Ross (CIR) model.
Section 4 contains some concluding remarks.

2. Joint Laplace transform of the vector
�
�
(1)
t ; �

(2)
t

�
and joint survival probability

In order to calculate the joint survival/default probability and relevant joint probabilities, we

�rstly consider using the joint Laplace transform of the vector
�
�
(1)
t ; �

(2)
t

�
. Once its expression

is derived we can easily calculate them by setting 
 = 1 and � = 1 in the equation (1.3).

Using standard martingale theory, the joint Laplace transform of the vector
�
�
(1)
t ; �

(2)
t ; �

(1)
t ; �

(2)
t

�
is given by
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E
�
e
�

�
�
(1)
t2
��(1)t1

�
e
��
�
�
(2)
t2
��(2)t1

�
e���

(1)
t2 e� �

(2)
t2 j �(1)t1 ; �

(2)
t1

�
= exp

�
�
�




�(1)
+

�
�� 


�(1)

�
e��

(1)(t2�t1)
�
�t1

�
� exp

�
�
�

�

�(2)
+

�
 � �

�(2)

�
e��

(2)(t2�t1)
�
�t2

�

� exp

24�� t2Z
t1

�
1� ĉ

�



�(1)
+

�
�� 


�(1)

�
e��

(1)s;
�

�(2)
+

�
 � �

�(2)

�
e��

(2)s

��
ds

35 ; (2.1)
where t2 > t1; � � 0;  � 0 and ĉ (�; ') =

1R
0

1R
0

e��x1e�'x2dC(F (x1) ; F (x2)). If we set � =  = 0

in (2.1), then the joint Laplace transform of the vector
�
�
(1)
t ; �

(2)
t

�
is given by

E
�
e
�

�
�
(1)
t2
��(1)t1

�
e
��
�
�
(2)
t2
��(2)t1

�
j �(1)t1 ; �

(2)
t1

�
= exp

�
� 


�(1)

n
1� e��(1)(t2�t1)

o
�t1

�
� exp

�
� �

�(2)

n
1� e��(2)(t2�t1)

o
�t2

�

� exp

24�� t2Z
t1

�
1� ĉ

�



�(1)

�
1� e��(1)s

�
;

�

�(2)

�
1� e��(2)s

���
ds

35 : (2.2)

If we use (1.9) as the joint distribution of the vector
�
X
(1)
j ; X

(2)
j

�
, the joint Laplace transform

of the vector
�
�
(1)
t ; �

(2)
t

�
is given by

E
�
e
�

�
�
(1)
t2
��(1)t1

�
e
��
�
�
(2)
t2
��(2)t1

�
j �(1)t1 ; �

(2)
t1

�
= exp

�
� 


�(1)

n
1� e��(1)(t2�t1)

o
�
(1)
t1

�
� exp

�
� �

�(2)

n
1� e��(2)(t2�t1)

o
�
(2)
t1

�

� exp

24�� t2Z
t1

�
fA(s; �) +B(s; 
) + C(s; 
; �)gD(s; 
)F (s; �)�G(s; 
; �)

H(s; 
)I(s; �)D(s; 
)F (s; �)

�
ds

35 ; (2.3)

where

A(s; �) =
��
�
1� e��(2)s

�
�(2)

; B(s; 
) =
�

�
1� e��(1)s

�
�(1)

;

C(s; 
; �) =

�
�
1� e��(1)s

��
1� e��(2)s

�
�(1)�(2)

;

D(s; 
) = 2�+


�
1� e��(1)s

�
�(1)

; F (s; �) = 2� +
�
�
1� e��(2)s

�
�(2)

;
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G(s; 
; �) =
���
�

�
1� e��(1)s

��
1� e��(2)s

�
�(1)�(2)

;

H(s; 
) = �+


�
1� e��(1)s

�
�(1)

; I(s; �) = � +
�
�
1� e��(2)s

�
�(2)

:

Assuming that �(1)t and �(2)t are stationary, it is given by

E
�
e
�

�
�
(1)
t2
��(1)t1

�
e
��
�
�
(2)
t2
��(2)t1

��

=

8<: �

�+ 


�(1)

�
1� e��(1)(t2�t1)

�
9=;

�

�(1)
8<: �

� + �

�(2)

�
1� e��(2)(t2�t1)

�
9=;

�

�(2)

� exp

24�� t2Z
t1

�
fA(s; �) +B(s; 
) + C(s; 
; �)gD(s; 
)F (s; �)�G(s; 
; �)

H(s; 
)I(s; �)D(s; 
)F (s; �)

�
ds

35 (2.4)

and if we set 
 = � = 1, we can easily obtain the joint survival probability, i.e.

E
�
e
�
�
�
(1)
t2
��(1)t1

�
e
�
�
�
(2)
t2
��(2)t1

��

=

8<: �

�+ 1
�(1)

�
1� e��(1)(t2�t1)

�
9=;

�

�(1)
8<: �

� + 1
�(2)

�
1� e��(2)(t2�t1)

�
9=;

�

�(2)

� exp

24�� t2Z
t1

�
fA(s) +B(s) + C(s)gD(s)F (s)�G(s)

H(s)I(s)D(s)F (s)

�
ds

35 ; (2.5)

where

A(s) =
�
�
1� e��(2)s

�
�(2)

; B(s) =
�
�
1� e��(1)s

�
�(1)

;

C(s) =

�
1� e��(1)s

��
1� e��(2)s

�
�(1)�(2)

;

D(s) = 2�+

�
1� e��(1)s

�
�(1)

; F (s) = 2� +

�
1� e��(2)s

�
�(2)

;

G(s) =
���

�
1� e��(1)s

��
1� e��(2)s

�
�(1)�(2)

;

H(s) = �+

�
1� e��(1)s

�
�(1)

; I(s) = � +

�
1� e��(2)s

�
�(2)

:
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If we set � = 0 in (2.4), i.e. jump sizes in default intensities
n
X
(1)
j

o
j=1;2;���

and
n
X
(2)
j

o
j=1;2;���

are independent each other, the joint Laplace transform of the vector
�
�
(1)
t ; �

(2)
t

�
is given by

E
�
e
�

�
�
(1)
t2
��(1)t1

�
e
��
�
�
(2)
t2
��(2)t1

��

=

8<: �

�+ 


�(1)

�
1� e��(1)(t2�t1)

�
9=;

�

�(1)

�

8<: �

� + �

�(2)

�
1� e��(2)(t2�t1)

�
9=;

�

�(2)

� exp

24�� t2Z
t1

24 ��

�(2)

�
1� e��(2)s

�
+ �


�(1)

�
1� e��(1)s

�
+ 
�

�(1)�(2)

�
1� e��(1)s

��
1� e��(2)s

�
n
�+ 


�(1)

�
1� e��(1)s

�on
� + �

�(2)

�
1� e��(2)s

�o
35 ds

35 ;
(2.6)

If we set 
 = 1 and � = 0 either in (2.4) or in (2.6), the survival probability of �rm 1 is given by

E
�
e
�
�
�
(1)
t2
��(1)t1

��

=

8<: �e��
(1)(t2�t1)

�+ 1
�(1)

�
1� e��(1)(t2�t1)

�
9=;

�

�(1)
8<:�+

1
�(1)

�
1� e��(1)(t2�t1)

�
�e��

(1)(t2�t1)

9=;
��

�(1)�+1

(2.7)

and if we set � = 1 and 
 = 0 either in (2.4) or in (2.6), the survival probability of �rm 2 is given
by

E
�
e
�
�
�
(2)
t2
��(2)t1

��

=

8<: �e��
(2)(t2�t1)

� + 1
�(2)

�
1� e��(2)(t2�t1)

�
9=;

�

�(2)
8<:� +

1
�(2)

�
1� e��(2)(t2�t1)

�
�e��

(2)(t2�t1)

9=;
��

�(2)�+1

; (2.8)

which also can be found in Dassios and Jang (2003) and Jang (2006).

3. Conditional default probabilities and linear default correlation.

Having dervied joint and marginal survival probability in the previous section, we can easily
calculate the conditional default probabilities and the linear correlation coe¢ cient between indicator
random variables for two �rms. Using Bayes�rule, the conditional default probabilities between
�rm 1 and 2, denoted by p1j2 and p2j1 are given by

p1j2 =
p12
p2

=
Pr (�1 � t; �2 � t)

Pr (�2 � t)

=
1� E

n
e��

(1)
t

o
� E

n
e��

(2)
t

o
+ E

n
e��

(1)
t e��

(2)
t

o
1� E

n
e��

(2)
t

o ;
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p2j1 =
p12
p1

=
Pr (�1 � t; �2 � t)

Pr (�1 � t)

=
1� E

n
e��

(1)
t

o
� E

n
e��

(2)
t

o
+ E

n
e��

(1)
t e��

(2)
t

o
1� E

n
e��

(1)
t

o
and the linear correlation coe¢ cient between indicator random variables for two �rms, denoted by
�
�
1(�1�t); 1(�2�t)

	
, is given by

�
�
1(�1�t); 1(�2�t)

�
=

p12 � p1p2p
p1 (1� p1)

p
p2 (1� p2)

=
E
n
e��

(1)
t e��

(2)
t

o
� E

n
e��

(1)
t

o
E
n
e��

(2)
t

o
rh
1� E

n
e��

(1)
t

oi
E
n
e��

(1)
t

orh
1� E

n
e��

(2)
t

oi
E
n
e��

(2)
t

o :
Now let us illustrate the calculations of the joint survival/default probabilities and relevant

joint probabilities before we calculate the conditional default probabilities and the linear correlation
coe¢ cient.

Example 3.1
We assume that the magnitude of the contribution to the default intensity of the �rm 1 from

the primary events is smaller than that of the �rm 2. We also assume that the decay rate for the
�rm 1, that measures how quick the �rm gets out of the in�uence of primary events lowering their
default intensity rate, is higher than that for the �rm 2. So the parameter values used to calculate
the joint probabilities are

� = 10; � = 5; �(1) = 0:5, �(2) = 0:3 and � = 4:

Setting t1 = 0 and t2 = 1; joint survival probability is given by

Pr (�1 > 1; �2 > 1) = E
n
e��

(1)
1 e��

(2)
1

o
and relevant joint probabilities are given by

Pr (�1 > 1; �2 � 1) = E
n
e��

(1)
1

o
� E

n
e��

(1)
1 e��

(2)
1

o
,

Pr (�1 � 1; �2 > 1) = E
n
e��

(2)
1

o
� E

n
e��

(1)
1 e��

(2)
1

o
and the joint default probability is given by

Pr (�1 � 1; �2 � 1) = 1� E
n
e��

(1)
1

o
� E

n
e��

(2)
1

o
+ E

n
e��

(1)
1 e��

(2)
1

o
:

From the equation (2.5), (2.7) and (2.8), the calculations of the joint survival/default probabil-
ities and relevant joint probabilities are shown in Table 3.1, 3.2, 3.3. and 3.4.
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Table 3.1.

� Pr (�1 > 1; �2 > 1)

1 0:040875

0:5 0:040797

0 0:040720

�0:5 0:040643

�1 0:040565

Table 3.2.

� Pr (�1 > 1; �2 � 1)
1 0:42322

0:5 0:42330

0 0:42337

�0:5 0:42345

�1 0:42353

Table 3.3.

� Pr (�1 � 1; �2 > 1)
1 0:045414

0:5 0:045492

0 0:045570

�0:5 0:045647

�1 0:045724

Table 3.4.

� Pr (�1 � 1; �2 � 1)
1 0:49049

0:5 0:49041

0 0:49034

�0:5 0:49026

�1 0:49018

where

Pr (�1 > 1) = 0:46409 and Pr (�2 > 1) = 0:08629; (3.1)

Pr (�1 � 1) = 0:53591 and Pr (�2 � 1) = 0:91371. (3.2)

As we can see in (3.1), the survival probability of the �rm 2 is very low. Hence the joint
probabilities where the survivorship of the �rm 2 is concerned are dominated by the survival
probability of the �rm 2 (see Table 3.1 and 3.3). On the contrary, the default probability of the
�rm 2 in (3.2) is very high. Hence joint probabilities where the defaultability of the �rm 2 is
concerned are dominated by the survival or default probability of the �rm 1 (see Table 3.2 and
3.4).

Table 3.1 and 3.4 show that joint survival and default probability decrease as the values of
copula parameter � becomes �1 as time to default for each �rm moves the same direction. On
the other hand, Table 3.2 and 3.3 show that joint probabilities increase as the values of copula
parameter � becomes �1 as time to default for each �rm moves the opposite direction. All joint
probabilities in the tables above show that they are not very sensitive to the change of the values
of the copula parameter �.

Based on the same parameter values used in Example 3.1, let us illustrate the calculations of
the conditional default probabilities and the linear correlation coe¢ cient between indicator random
variables for two �rms.

Example 3.2
The calculation of the conditional default probabilities are shown in Table 3.5 and Table 3.6,

respectively.

Table 3.5.

� p1j2
1 0:53682

0:5 0:53673

0 0:53665

�0:5 0:53656

�1 0:53648

Table 3.6.

� p2j1
1 0:91526

0:5 0:91511

0 0:91497

�0:5 0:91482

�1 0:91468
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The conditional default probabilities in the tables above are rescaled to the joint default prob-
abilities in Table 3.4 by the default probability of the �rm1 and 2 in (3.2), respectively. Hence the
default probabilities of the �rm 1 (or 2) given that the �rm 2 (or 1) defaults are very similar to the
unconditional default probability of the �rm 1 (or 2) in (3.2).

The calculations of the linear correlations between two �rms are shown in Table 3.7.

Table 3.7.

� �
�
1(�1�t); 1(�2�t)

	
1 0:0059177

0:5 0:0053607

0 0:0048108

�0:5 0:0042609

�1 0:0037039

Table 3.7 shows that there exists very weak linear relationship between random variable 1(�1�t)
and 1(�2�t). The complete speci�cation of the default correlation is given by the joint sur-
vival/default probability and relevant joint probabilities in Example 3.1. Therefore, using �

�
1(�1�t); 1(�2�t)

	
as only dependence measure will misguide and fail us to capture all the dependence structure be-
tween two �rms as they are covariance-based dependence measure. For details on inadequacy of
linear correlation, we refer you McNeil, Frey and Embrechts (2005).

Next example shows that conditional default probabilities up to 1 can be achieved by changing
the values of � (or �) and �(2) (or �(1)) in the model speci�ed.

Example 3.3
Using the same parameter values used in Example 3.1, the calculations of conditional default

probabilities of p2j1 at each value of � and �
(2) are shown in Table 3.8 and 3.9 with � = 1 respectively

Table 3.8.

� p2j1
10 0:72357

5 0:91526

3 0:97995

1 0:99993

0:1 1:00000

Table 3.9.

�(2) p2j1
0:5 0:77552

0:3 0:91526

0:2 0:97489

0:1 0:99935

0:01 1:00000

The bigger � and the higher �(2) is, i.e. the bigger the magnitude of the contribution to the
default intensity of the �rm from the primary events is and the slower the �rm gets out of the
in�uence of primary events, the conditional default probabilities are getting closer to 1.

4. Measuring market credit default swaps (CDS) rate

In order to calculate the market credit default swaps (CDS) rate, �rstly let us assume that the
interest rate process for a zero-coupon default-free bond, rt follows a generalised Cox-Ingersoll-Ross
(CIR) model (1985), i.e.

drt = c(b� art)dt+ �
p
rtdBt, (4.1)

where a > 0; b > 0 and c > 0. Then its price at time 0, paying 1 at time t is given by
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B(0; t) = E

8<:exp
0@� tZ

0

rsds

1A j r0

9=; = E
�
e�Rt j r0

�
; (4.2)

where B(0; t) denotes the price of a default-free zero-coupon bond, Rt =
tR
0

rsds, =rt = � frs; s � tg.

From CIR (1985) with c = 1, we can easily obtain the explicit expression for the equation (4.2):

B(0; t)

= exp

24�
8<: 2

n
1� exp

�
�
p
a2 + 2�2t

�o
n�p

a2 + 2�2 + a
�
+
�p

a2 + 2�2 � a
�
exp

�
�
p
a2 + 2�2t

�o
9=; r0

35

�

8>><>>:
2
p
a2 + 2�2 exp

�
�(

p
a2+2�2�a)

2 t

�
�p

a2 + 2�2 + a
�
+
�p

a2 + 2�2 � a
�
exp

�
�
p
a2 + 2�2t

�
9>>=>>;

2b
�2

: (4.3)

Now let us denote the default intensity process of the CDS buyer and seller by �(b)t and �(s)t ,

respectively. We also specify the default intensity prcess of the reference credit by �(rc)t . For
simplicity, we assume a deterministic recovery rate �. Then the market credit default swaps
(CDS) rate, denoted by s, is given by

s = (1� �)

kNP
k=1

erc;s(0; tk�1; tk)

NP
k=1

(tkn+1 � tkn)B
b
(0; tkn)

; (4.4)

where

erc;s(0; tk�1; tk)

= E

266664
exp

 
�

tkR
0

rsds

!(
exp

 
�

tk�1R
0

�
(rc)
s ds

!
� exp

 
�

tkR
0

�
(rc)
s ds

!)

�
(
exp

 
�

tkR
0

�
(s)
s ds

!)
j r0; �(rc)0 ; �

(s)
0

377775 ;
(4.5)

B
b
(0; tkn) = E

24exp
8<:�

tknZ
0

�
rs + �

(b)
s

�
ds

9=; j r0; �(b)0

35 (4.6)

and tk1 < tk2 < � � � < tkn . Assuming that rt and �
(i)
t are independent each other and that �(i)t is

stationary, the equation (4.5) and (4.6) can be expressed as

10



erc;s(0; tk�1; tk) = B(0; tk)�

264E�e��(rc)tk�1e
��(s)tk�1

�
E

8><>:exp
0B@� tkZ

tk�1

�(s)s ds

1CA
9>=>;� E

�
e
��(rc)tk e

��(s)tk

�375
= B(0; tk)�

�
E
�
e
��(rc)tk�1e

��(s)tk�1
�
E
�
e
�
�
�
(s)
tk
��(s)tk�1

��
� E

�
e
��(rc)tk e

��(s)tk

��
(4.7)

and

B
b
(0; tkn) = B(0; tkn)E

�
e
��(b)tkn

�
: (4.8)

Using the equation (4.8), we can easily price defaultable bonds as well as credit spread between
default-free bond and defaultable bond. For details we refer Jang (2006).

Let us illustrate the calculations of the market credit default swaps (CDS) rates using the
expressions derived above.

Example 4.1
The parameter values used to calculate (4.4) are

r0 = 0:05; a = 0:05; b = 0:025 and � = 0:8 for rt

and

� = 50%, N = 2; tk0 = 0; tk1 = 0:5; tk2 = 1.

We assume that the default intensity prcesses of CDS buyer and seller follows �(1)t , i.e.

�
(1)
t = �

(b)
t = �

(s)
t

and that the default intensity prcess of reference credit follows �(2)t , i.e.

�
(2)
t = �

(rc)
t :

Using the same parameter values as in Example 3.1 for �(i)t , the calculations of market credit default
swaps (CDS) rates are shown in Table 4.1.

Table 4.1.

� s

1 3647:7bp
0:5 3648:4bp
0 3649:1bp
�0:5 3649:7bp
�1 3650:4bp

Assuming that � = 1, we now examine the e¤ect on market credit default swaps (CDS) rate
caused by changes in the value of � and �(rc) for the reference credit and by changes in the value
of �(s) and �(s) for the CDS seller.

Example 4.2
Using the same parameter values used in Example 4.1, the calculations of market credit default

swaps (CDS) rates caused by changes in the value of � and �(rc) for the reference credit and by
changes in the value of �(s) and �(s) for the CDS seller are shown in Table 4.2 and Table 4.3,
respectively.
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Table 4.2.

s

� = 0:1 4000:1bp
� = 1 3999:7bp
� = 3 3914:8bp

�(rc) = 0:01 4000:1bp
�(rc) = 0:1 3997:3bp
�(rc) = 0:2 3895:5bp

Table 4.3.

s

�(s) = 0:1 0bp
�(s) = 0:5 0:74161bp
�(s) = 1 24:42bp

�(s) = 0:01 0bp
�(s) = 0:1 172:64bp
�(s) = 0:2 1161:6bp

Compared to CDS rates in Table 4.1, we can see more clear relationship between CDS rates and
the parameter values of default intensity for the reference credit and for the CDS seller in Table 4.2
and 4.3, respectively. In Table 4.2, we can see that CDS rate is converging by lowering the values
of � and �(rc) for the reference credit, respectively as the CDS seller�s default intensity is not as
bad as its counterpart for the reference credit. On the contrary, Table 4.3 shows that CDS rate
is getting lower to 0 by decreasing the value of �(s) and �(s) for the CDS seller. From the CDS
buyers�point of view, it is better for them to purchase a CDS contract that the CDS seller is less
likely to default. As long as the CDS seller�s credit is strong enough, they can hedge against the
default risk of the reference credit using a CDS contract. Hence the lower the CDS rate is, the
more likely the CDS seller defaults. The worst case scenario for the CDS buyer is when both the
reference credit and the CDS seller default.

5. Conclusion

Using the intensity-based framework, i.e. employing the bivariate Cox process with bivariate
shot noise intensity, we examine how it can be used to calculate the market credit default swaps
(CDS) rate. In this model, dependence between the two default intensities comes from the common
primary event arrival process Nt, together with dependence between their jump sizes. The latter
is modelled using the notion of copula. To be speci�c, we use a homogeneous Poisson process
to describe simultaneous jumps in default intensities and the Farlie-Gumbel-Morgenstern copula
with exponential margins for dependent jump sizes. Based on this copula-dependent default
intensities of bivariate Cox process, we calculate joint survival/default probabilities, conditional
default probabilities, linear default correlations and market CDS rates. We also examine the
relationship between CDS rates and the parameter values of default intensity for the reference
credit and for the CDS seller.
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