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Abstract. This paper proposes a stylized two-factor model of the nominal term
structure of interest rates, in which the log-price kernel has an autoregressive drift
process and a nonlinear GARCH volatility process. With these two state variable
processes, we derive closed form solutions for the zero-coupon bond prices as well as
the yield-to-maturity for a given time to maturity.

1. Introduction

This paper proposes a stylized two-factor model of the term structure of interest
rates with the logarithm of the nominal discount factor (plus its long-term mean) and
its conditional variance being the state variables.1 Motivated by the empirical evidence
assembled by prior research on interest rate processes in the literature,2 we model the
dynamics of the state variables in the following way. The first state variable, which
is the logarithm of the nominal discount factor, follows a first order autoregressive,
AR(1), process. The second state variable, which is the conditional variance of the
first state variable, has a nonlinear asymmetric generalized autoregressive conditional
heteroskedasticity (NGARCH) process. With the above two state variable processes,
we derive the closed form solutions for the zero-coupon bond price as well as the yield-
to-maturity for a given time to maturity. The resulting yield to maturity is affine in the
two state variables. Equivalently, the yield is a function of the spread of long-term rate
and short rate, the difference between the conditional variance and its long-term mean,
as well as time to maturity. An alternative representation of yield using another yield
and its conditional volatility is also derived in this paper. Finally, a simple calibration
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1As a two-factor model, it provides two state variables in the squared-autoregressive-independent-
variable nominal term structure (SAINTS) similar to the model proposed by Constantinides (1992).
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and Shiller (1987), Longstaff (1989, 1990), and Chan, Karolyi, Longstaff, and Sanders (1992). See
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exercise is performed on the model to show that the proposed model is capable of
producing different shapes of yield curves and its volatility curves can be very different
from those of the simple AR(1) model.

The remainder of the paper is organized as follows. In Section 2 we review the
GARCH process, its continuous-time version, and a rearranged discrete-time version.
The prices or yields of default-free bonds are derived and the functional dependences
of the short-term rate and yields on the logarithm of the discount factor are illustrated
in Section 3. The importance of the selection of moments for volatility curves as well
as yield curves is illustrated through typical patterns of yield and volatility curves in
Section 4. Section 5 contains concluding remarks. Finally detailed proofs for the prices
and yields formula are relegated to the Appendix.

2. The Model

Let mt be the nominal discount factor at time t. Let σ2
t be the conditional variance

of the logarithm of discount factor between t and t + ∆, where ∆ is the length of time
steps. This conditional variance is known from the information set at time t. Let
lt = ln mt + α, where α is the mean of the logarithm of the nominal discount factor.
Suppose that lt and σ2

t have the following processes over ∆:

lt+∆ = (1− ρ)lt + σtvt+∆, vt+∆
i.i.d∼N(0, 1) (1)

σ2
t+∆ = β0 + β1σ

2
t + β2σ

2
t (vt+∆ − γ)2, (2)

where vt+∆, conditional on information at time t, is a standard normal random variable
and i.i.d means ”identically and independently distributed as”.

The state variable lt in (1) follows an AR(1) process, while the conditional variance
σ2

t in (2) follows a nonlinear asymmetric GARCH (NGARCH) process, that has been
studied by Engle and Ng (1993) and Duan (1995). Note that this model is quite similar
to but differs in some subtle ways from the affine discrete-time GARCH models proposed
by Heston and Nandi (2000). More specifically, the Heston-Nandi model is designed
specifically to produce closed-form option prices, while the specification in (1)-(2), like
the Engle-Ng model, is designed foremost to provide a good fit to the interest-rate data.

The variance process, σ2
t+∆, and the logarithm of the nominal discount factor, ln mt+∆,

are assumed to be correlated, such that

Covt

(
σ2

t+∆, ln mt+∆

)
= −2β2γσ3

t . (3)

Given β2 > 0, the negative parameter γ captures the positive correlation between
discount factor and volatility innovations. That is, γ controls the skewness or the
asymmetry of the distribution of the discount factor. Furthermore, the third power
term on σt allows more variation over time in the leverage effect. This is likely to
enhance the model’s ability to fit the data to the extent that the leverage effect figures
prominently in the term struture of interest rate. Thus our simple model accommodates
two important stylized facts of interest-rate data: volatility clustering and leverage
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effect. Note that for γ = 0, the model simplifies to the popular GARCH model of
Bollerslev (1986).

Since vt+∆ and v2
t+∆ − 1 are uncorrelated by construction, the variance equation can

be rearranged in the following form:

σ2
t+∆ − σ2

t = β0 − θσ2
t − 2β2γσ2

t vt+∆ + β2σ
2
t (v

2
t+∆ − 1),

where θ = 1− β1− β2(1 + γ2) with 1− θ measuring the persistence of the variance. As
the observation interval, ∆, shrinks to zero, a corresponding continuous-time system is
obtained as:

dlt = −ρ ltdt + σtdW1,t

dσ2
t = (β0 − θσ2

t )dt− 2β2γσ2
t dW1,t + β2σ

2
t dW2,t,

(4)

where (W1,t, W2,t) is a bi-variate standard Brownian motion. From this continuous-time
version, it is easy to see that the long-run variance of the logarithm of the discount
factor is β0/θ. That is, β0/θ is the unconditional variance or, equivalently, the uncondi-
tional expectation of σ2

t , which is E[ σ2
t ] = β0/θ. Also, we impose stationary such that

E[ σ2
t+∆ ] = E[ σ2

t ] on the variance equation (2) by the following parameter restrictions:3

β0 > 0 and θ > 0, ( i.e., β1 + β2(1 + γ2) < 1).

Furthermore, we impose a stationary restriction such that E[ lt+∆ ] = E[ lt ] on the mean
equation (1) by requiring that the speed of the mean-reversion equation obeys the
additional restriction that 0 < ρ < 2.

The continuous-time model in matrix form can be expressed as:

d

(
lt
σ2

t

)
=

( −ρ lt
β0 − θσ2

t

)
dt +

(
σt 0

−2β2γσ2
t β2σ

2
t

)(
dW1,t

dW2,t

)

= b dt +
(
σ·1 σ·2

) (
dW1,t

dW2,t

)

Next using Itô-Taylor formula, the Euler-Maruyama approximation scheme of the
continuous-time version of (4) can be written as:

(
lt+∆

σ2
t+∆

)
=

(
lt
σ2

t

)
+ b∆ +

2∑
j=1

σ·j(Wj,t+∆ −Wj,t)

=

(
lt
σ2

t

)
+

( −ρ lt
β0 − θσ2

t

)
∆ +

(
σt

−2β2γσ2
t

)
∆tW1 +

(
0

β2σ
2
t

)
∆tW2

3To ensure that the conditional variance is always positive further restrictions need to be imposed
on β1 and β2 in (2). Alternatively, we can formulate the conditional variance by exponential GARCH
(EGARCH) process (Nelson (1991)) instead of the NGARCH process (Equation (2)). The EGARCH
process ensures positivity of the conditional variance and also allows for leverage effects and fat tails.
However we choose the NGARCH process in this paper because it has been shown to improve the fit
of empirical models substantially better than the GARCH process.
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where ∆tWj = Wj,t+∆−Wj,t is an independent normal distribution with zero mean and
variance ∆, i.e., N(0, ∆). Thus, another way of writing the equations in (1) and (2) is:

lt+∆ = ρ∆lt + σtzt+∆, zt+∆
i.i.d∼N(0, ∆) (5)

σ2
t+∆ = β0∆ + δσ2

t − 2β2γσ2
t zt+∆ + β2σ

2
t z

2
t+∆, (6)

where ρ∆ = 1− ρ∆ and δ = 1− (θ + β2)∆ = 1− (1− β1 − β2γ
2)∆.

3. Zero-Coupon Bond Pricing and Yield-to-Maturity

It is well-known that the absence of arbitrage opportunities is characterized by the
existence of an equivalent martingale measure Q, so that the time-t price of a default-
free, zero-coupon bond maturing at time t + T , Pt,T , is given by

Pt,T = EQt

[
exp

(∫ t+T

t

ln ms ds
)]

. (7)

By [i] partitioning the time interval [t, t + T ] into subintervals of equal size; [ii]
utilizing the Euler-Maruyama scheme in (5) and (6) and the tree property of conditional
expectations; [iii] employing the trapezoidal rule to approximate the definite integral
in the exponential function; and finally [iv] letting a subinterval size shrink to zero, we
have an analytical approximation formula for the nominal price at time t of a default-
free, zero-coupon bond maturing at time t + T . The result is stated in the following
theorem.

Theorem 1. If the yield factors follow the discrete stochastic differential equations in
(5) and (6), the nominal price at time t of a default-free, zero-coupon bond maturing at
time t + T , Pt,T , is given by

ln(Pt,T ) = −αT +
1− e−ρT

ρ
lt +

β0

2θρ2
f(T ) +

σ2
t − β0/θ

2ρ2
g(T ), (8)

where

f(T ) = f(T ; ρ) = T − 2
1− e−ρT

ρ
+

1− e−2ρT

2ρ

g(T ) = g(T ; ρ, θ) =
1− e−θT

θ
− 2

e−θT − e−ρT

ρ− θ
+

e−θT − e−2ρT

2ρ− θ
,

(9)

where θ = 1− β1− β2(1 + γ2). Furthermore, EQt [
∫ t+T

t
ln ms ds ] is given by the first two

terms of ln P (t, T ), −αT + 1−e−ρT

ρ
lt.

In a simple case of constant conditional variance, σ2 = β0/θ, its corresponding nom-
inal price, Pt,T , has the exact analytical formula of the following form:

ln(Pt,T ) = −αT +
1− e−ρT

ρ
lt +

σ2

2ρ2
f(T ).

Note that the nominal yield-to-maturity is defined as

y
(T )
t = −T−1 ln(Pt,T ).
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From Theorem 1, the yield-to-maturity can be written in terms of state variables, lt
and σ2

t , as:4

y
(T )
t = α− 1− e−ρT

ρT
lt − β0

2θρ2T
f(T )− σ2

t − β0/θ

2ρ2T
g(T ), (10)

where f(T ) and g(T ) are defined in (9).

As the time-to-maturity, T , tends to zero, the nominal (instantaneous) short rate is
defined and calculated as

rt = lim
T→0

y
(T )
t = α− lt = − ln mt, (11)

where the second equality is obtained by applying the L’Hopital’s rule into functions
such as f(T )/T and g(T )/T . Thus, it follows as a simple computation using (4) that
the dynamics for the nominal short rate can be written as a stochastic process

drt = −dlt = ρ(α− rt)dt− σtdW1,t. (12)

In a simple case of constant conditional variance, σ2 = β0/θ, it becomes the well-
known Vasicek (1977) model and if the nominal price, Pt,T−t, is represented by A(t, T )e−rtB(t,T ),
where ln(A(t, T )) = −α(T − t) + α(1− e−ρ(T−t))/ρ + σ2f(T − t)/(2ρ2) and B(t, T ) =
(1 − e−ρ(T−t))/ρ, then A(t, T ) and B(t, T ) satisfy the following system of differential
equations: 




∂A

∂t
− ραAB +

1

2
σ2AB2 = 0

∂B

∂t
− ρB + 1 = 0.

Similarly, as the time-to-maturity tends to infinity, the nominal long-term rate is
defined as:

y
(∞)
t = lim

T→∞
y

(T )
t = α− β0

2θρ2
. (13)

Note that it does not depend on the nominal short rate rt. Thus, combining the short
rate with the long-term rate, the nominal yield to maturity can be rearranged as:

y
(T )
t = y

(∞)
t − 1− e−ρT

ρT
(y

(∞)
t − rt) +

g(T )

2ρ2T
(β0/θ − σ2

t ) +
β0

4θρ3T
(1− e−ρT )2, (14)

which implies that the yield-to-maturity is obtained by adjusting the long-term rate by
the spread between the long-term rate and the short-term rate, the difference between
the current and long-run variances (this is a new feature resulting from the GARCH
effect on the variance equation), and the time to maturity.

Since the state variable, lt or rt
5, is unobservable, when we estimate the model param-

eters and calibrate the model, the shortest yield, for example, y
(∆)
t for a ∆ time-period,

4This shows that the yield to maturity is an affine function of the two state variables (logarithm of
discount factor and conditional variance) defined in (1) and (2), in contrast to quadratic models (such
as Ahn et al (2002)) in which the yield is a quadratic function of the state variables.

5From (11) and (13), it is clear that it does not matter whether we choose lt or rt.
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is an alternative state variable instead of lt or rt. To this end, lt can be rearranged in

terms of one-period ahead state variables, y
(∆)
t−∆ and σt−∆, as:

lt =
√

∆σt−∆ψt − ρ∆(1− ρ∆)

1− e−ρ∆

(
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

)
(15)

Substituting rt with α− lt in the equation (15), we have another form of (14) which
is stated with its variance and kurtosis in the following theorem.

Theorem 2. If the yield factors follow the discrete stochastic differential equations in

(5) and (6), the yield-to-maturity, y
(T )
t , can be written in terms of the shortest yield,

y
(∆)
t−∆, and the volatility, σt−∆, as:

y
(T )
t =

∆(1− ρ∆)

T

1− e−ρT

1− e−ρ∆

(
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

)

+ y
(∞)
t − 1− e−ρT

ρT
σt−∆

√
∆ψt +

g(T )

2ρ2T
(β0/θ − σ2

t ) +
β0

2θρ2

(
1− f(T )

T

)
,

(16)

where σ2
t = β0∆ + δσ2

t−∆− 2β2γσ2
t−∆

√
∆ψt + β2σ

2
t−∆∆ψ2

t and δ = 1− (1− β1− β2γ
2)∆

and its variance and kurtosis per ∆ time period are

Vart−∆

(
y

(T )
t

)
= Et−∆[ (ut)

2 ] = C2 + 2D2

K
(
y

(T )
t

)
=

Et−∆

[
(ut)

4
]

(
Vart−∆(y

(T )
t )

)2 =
3C4 + 2D4

(C2 + 2D2)2
< 3,

where ut = y
(T )
t − Et−∆[ y

(T )
t ] and

C =
σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ− (1− e−ρT )

)

D = − g(T )

2ρ2T
β2σ

2
t−∆∆.

Note that Theorem 2 predicts that the excess kurtosis of nominal yields to maturity
is negative even when the logarithm of the nominal discount factor is specified as an
AR(1)-NGARCH(1,1) process.6

4. Yield and Volatility Curve of Yield-to-Maturity

In this section we illustrate the typical patterns of yield and volatility curves of
the nominal yield-to-maturity of AR(1) (which is the Vasicek (1977) model) or AR(1)-
NGARCH(1,1) process with the time-to-maturity and show the importance of moments
for volatility curves as well as yield curves when we calibrate the model to match market
data.

6This should be interpreted as short-term prediction only as negative excess kurtosis of nominal
yields to maturity in the long run is hard to reconcile with the empirical data.
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As we noted in (10) or (16), parameters affecting the shape of yield curves are the
current volatility, σt, the long-run variance, β0/θ, the AR(1) coefficient, ρ, the repro-
duced parameter from a stationary restriction on the conditional variance equation, θ,

the current short-term yield, y
(T )
t−∆, the long-run short-term yield, E[ y(∆) ], and the long-

run long-term spread, α. Figure 1 – Figure 4 present the typical patterns for yield and
volatility curves of AR(1) or AR(1)-NGARCH(1,1) processes and their related functions
such as f(T ; ρ) and g(T ; ρ, θ) defined in Theorem 1 and are calculated from parameters
in Table 1. For the random innovation at t −∆, we assume that ψt ∼ N(0, 1) have 7
possible values: [−2, −1, −0.5, 0, 0.5, 1, 2 ].

Parameters ρ θ σt β0/θ y
(T )
t−∆ E[ y(∆) ] α γ

1(a) 0.12 0.08 0.012 0.02 0.02 0.05 0.07 -0.56

1(c) 0.25 0.02 0.02 0.015 0.04 0.05 0.08 -2

1(e) 0.05 0.03 0.01 0.015 0.035 0.055 0.07 -0.6

3(a) 0.2 0.25 0.01 0.02 0.03 0.05 0.06 -0.4

3(c) 0.07 0.1 0.02 0.022 0.05 0.04 0.07 -0.5

3(e) 0.16 0.01 0.02 0.01 0.05 0.035 0.07 -0.6

Table 1. Parameter Values for Figure 1–Figure 4 This table pro-
vides parameter values for Figure 1–Figure 4. Since θ = 1−β1−β2(1+γ2)
is a function of β1 and β2, given by γ, there are infinite pairs (β1, β2) sat-
isfying θ; thus, we impose the restriction that β1 = (1− θ)/6.

The left (right) panels of Figure 1 and Figure 3 present the yield curves for AR(1)
(AR(1)-NGARCH(1,1)) processes and the left panels of Figure 2 and Figure 4 depict
the volatility curves of AR(1) processes, AR(1)-NGARCH(1,1) processes, and market
data for the yield volatility of On-the-Run Treasuries in 1987 (See Exhibit 22-10 in
Fabozzi (1993)). Finally, the right panels of Figure 2 and Figure 4 present the function,
f(T ; ρ), which appears in both processes and the function, g(T ; ρ, θ), which appears
only in the NGARCH processes. These panels illustrate the effects of the magnitude of
function values in f(T ) and g(T ) on the volatility curve.

Since the random part in (16) at time t−∆ can be written as

Cψt + Dψ2
t ,

where C = σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ−(1−e−ρT )

)
and D = − g(T )

2ρ2T
β2σ

2
t−∆∆, the volatility

of yield curve, which we call a volatility curve, is calculated as:√√√√Vart−∆

(y
(T )
t − y

(T )
t−∆

y
(T )
t−∆

)
=

√
C2 + 2D2

y
(T )
t−∆

.

Figure 1a–1b, Figure 3a–3b, and Figure 2a and Figure 4a illustrate that although the
yield curves are all upward-sloping, the volatility curves have different shapes depending
on whether the corresponding model is an AR(1) process or an AR(1)-NGARCH(1,1)
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process. In addition they show that the yield curves retain their upward-sloping shape
independent of the sign of a new innovation shock. However, Figure 1c–1d and Figure
2c illustrate that a yield curve can change its shape, provided that a new innovation
shock is negative. Furthermore, Figure 1e–1f and Figure 2e show that although model
parameter values are kept the same, except the parameter value of γ, the yield curves
exhibit slightly different shapes. But volatility curves have even more strikingly different
shapes. The AR(1)-NGARCH(1,1) process has a volatility curve. Recall that this
process has been shown empirically to fit the observed volatility curve very well. Thus,
we have demonstrated that the GARCH model for the conditional variance of interest
rates is a necessary component of the model and it is important that we take into
account of moments for the volatility curve as well as the yield curve when we calibrate
the model to match the market data. Finally, Figure 3c–3d, Figure 3e–3f, and Figure
4c and 4e reproduce the results for the case of downward-sloping yield curves.

5. Conclusions

This paper presented a stylized model of the nominal term structure of interest rates.
Our proposed model was derived with specific considerations for data availability and
model tractability as discussed so eloquently in Dai and Singleton (2003). To achieve
this objective, we established a linkage between a discrete-time version of the model
and its continuous-time counterparts. This was done in two steps. First, the nominal
discount factor was selected as a state variable of the model. Second, the logarithm
of the discount factor was specified as an AR(1) process with its conditional variance
following an NGARCH process. This particular modeling strategy has several distinct
advantages: [i] the process has been shown to fit market data rather well; [ii] it al-
lows tractability in deriving the formula for the prices or yields-to-maturity (yields) of
default-free bonds; [iii] the functional dependence of the short-rate on this state variable
can be easily obtained from the established linkage between the discrete-time model and
its continuous-time counterpart. In other words, the model tractability, which is ob-
tained from the result that the discrete-time GARCH models are linked to bivariate
diffusion processes as limiting cases, can be exploited to show that the short-term rate
is linearly dependent on the logarithm of this state variable as a limiting result; [iv] in
a simple case of constant conditional variance, the discrete-time term-structure model
can be shown to reduce to the well-known Vasicek (1977) model; and finally [v] the
comparison between the yield volatility of On-the-Run Treasuries with the volatility
curve of our model indicates that it is important in the modeling process to take into
account moments for volatility curves and yield curves.

Thus, we attempted to take into considerations features known to be important to the
empirical modeling of the term structure of interest rates, such as time-varying volatil-
ity, volatility clustering and, leverage effect, in the formulation of our model. With its
closed form solution, which cannot be obtained by many other existing nonlinear, sto-
chastic volatility models, our model can be potentially appealing for empirical purposes.
Having said this, the paper, admittedly, is incomplete without actually establishing the
empirical advantages of the proposed model based on actual data evaluation. To do,
we first need to discuss identification and estimation issues of the model. For instance,



A SIMPLE MODEL OF THE NOMINAL TERM STRUCTURE 9

what are the conditional densities of the state variables in this model? Which estima-
tion technique is most appropriate to the model? What restrictions on the parameters
of the model should be imposed to rule out arbitrage opportunities? What econometric
issues may be involved when the state variables of the model are unobservable?

Further it is of interest to empirically implement the proposed model and assess its
goodness-of-fit. In particular, it is useful to analyze the models ability to capture the
historical movements in yields and volatilities for a full sample as well as for different
subsamples, and perform across model comparison. Since the proposed model in this
paper is a two-factor model, good candidates for model comparison include a two-factor
affine Gaussian model (with contant volatility), and Longstaff and Schwartz (1992, using
interest rate‘and its volatility as state variables). Other multifactor models known to
have with empirical support, e.g. Ahn et al (2002), and Dai and Singleton (2000), may
also serve as good candidates for model comparison. These empirical exercises would
allow us to asses how well our model capture the historical movement in yields, whether
it is able to produce different shapes of yield curves, whether the model’s parameters
can easily be identified, Which parameters of the model actually govern the dynamics
of the state variables. All these empirical questions are undoubtedly important before
the empirical appeal of the proposed model can be truly appreciated; therefore they
will be researched in greater detail in the near future.
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Appendix

Proof of Theorem 1:

By partitioning the interval [t, t + T ] into t0 = t < t1 < · · · < tn = t + T with

tj = t + j∆ and ∆ = T
n
, we compute the conditional expectation of exp

(∫ t+T

t
ln ms ds

)
under the equivalent martingale measure Q. For simplicity, we denote ltj , σtj , ztj , and

EQtj by lj, σj, zj, and Ej, respectively for j = 0, 1, . . . , n− 1 and assume that t = 0.

The trapezoidal rule is employed to approximate the definite integral in the exponent
function of (7)), so that the integral part can be written in terms of lt instead of ln mt

∫ t+T

t

ln ms ds ≈ −αT + ∆In,

where In = l0/2+ l1 + · · ·+ ln−1 + ln/2. It follows as an application of the tree property
of conditional expectation that

exp(δT )Pt,T ≈ E0 E1 · · ·En−1

[
e∆In

]
.

To compute the conditional expectation of e∆In , it is necessary to represent lj in terms
of random variables {zj}j=1,...,n and obtain as an application of induction arguments on
AR(1) process that

lj = ρj
∆l0 + ρj−1

∆ σ0z1 + · · ·+ ρ∆σj−2zj−1 + σj−1zj

for j = 1, . . . , n, where ρ∆ = 1 − ρ∆. A simple computation using the above formula
yields the result that

In = an+1l0 +
n∑

j=1

an−j+1σj−1zj, (17)

where a1 = 1/2, aj =
1−ρj−1

∆

1−ρ∆
+

ρj−1
∆

2
for j = 2, . . . , n, and an+1 = 1

2
+ ρ∆

1−ρn−1
∆

1−ρ∆
+

ρn
∆

2
. To

compute the conditional expectations, we stated a well-known result in the following
lemma.

Lemma 1. Suppose that ψ is a standard normal distribution, i.e., ψ ∼ N(0, 1). Then
we have

E[ eb
√

Tψ] = e
1
2
b2T .

Furthermore, the moment generating function of Q(ψ) = (ψ − w)2 is

E[ evQ(w) ] = exp
(−w2

2

) 1√
1− 2v

exp
( w2

2(1− 2v)

)
(18)

First, applying the first equation of Lemma 1 into the case a1σn−1zn in In, we have

En−1

[
e∆a1σn−1zn

]
= e∆3a2

1σ2
n−1/2,

which implies that

ln En−1[ e
∆In ] = ∆In−1 + ∆3a2

1σ
2
n−1/2
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where

Ik = an+1l0 +
k∑

j=1

an−j+1σj−1zj

for k = 1, 2, . . . , n. Using the recursive formula in (6) with t = tn−2, the random part
in ln En−1[ e

∆In ] at time tn−2 is written as

In−1,r = ∆
(
a2σn−2zn−1 + ∆2a2

1σ
2
n−1/2

)

= vn−1(ψn−1 − wn−1)
2 − vn−1w

2
n−1 +

∆3

2
a2

1(β0∆ + δσ2
n−2),

where vn−1 = β2∆
4a2

1σ
2
n−2/2, wn−1 = [γ−a2/(β2∆

2a2
1σn−2)]/

√
∆, and ψn−1 = zn−1/

√
∆

is a standard normal distribution.

Second, applying (18) into vn−1(ψn−1 − wn−1)
2 in In−1,r with vn−1 and wn−1 and the

tree property of conditional expectation, we have

ln En−2[ e
∆In ] = ∆In−2 +

∆3

2
a2

1(β0∆ + δσ2
n−2)

+
w2

n−1

2

(
1/(1− 2vn−1)− 1− 2vn−1

)− 1

2
ln(1− 2vn−1).

As a subinterval size, ∆, shrinks, vn−1 is sufficiently small. Thus we can approximate
ln(1− 2vn−1) by −2vn−1 and 1/(1− 2vn−1)− 1− 2vn−1 = 4v2

n−1/(1− 2vn−1) by 4v2
n−1,

and then obtain

ln En−2[ e
∆In ] ≈ ∆In−2 +

∆3

2
a2

1(β0∆ + δσ2
n−2) + 2v2

n−1w
2
n−1 + vn−1

= ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
a2

1σ
2
n−2

(
δ + β2∆ + (β2γa1σn−2∆

2 − a2/a1)
2
)

≈ ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
a2

1σ
2
n−2

(
δ + β2∆ + (a2/a1)

2
)

= ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
σ2

n−2b2,

where the second approximation comes from approximating β2γa1σn−2∆
2 − a2/a1 by

a2/a1, since a2 = 1 + ρ∆/2 and a1 = 1/2 implies that a2/a1 = O(1), and b2 = (δ +
β2∆)b1 + a2

2 with the initial value b1 = a2
1.

Similarly, using the recursive formula in (6) with t = tn−3, the random part in
ln En−2[ e

∆In ] at time tn−3 is written as

In−2,r = ∆
(
a3σn−3zn−2 + ∆2b2σ

2
n−2/2

)

= vn−2(ψn−2 − wn−2)
2 − vn−2w

2
n−2 +

∆3

2
b2(β0∆ + δσ2

n−3),

where vn−2 = β2∆
4b2σ

2
n−3/2, wn−2 = [γ− a3/(β2∆

2b2σn−3)]/
√

∆, and ψn−2 = zn−2/
√

∆
is a standard normal distribution. Thus, we have a similar computation problem as in
the case of t = tn−2. That is, we have

ln En−3[ e
∆In ] = ∆In−3 +

∆4

2
β0(b1 + b2) +

∆3

2
σ2

n−3b3,



12 CHOI AND WIRJANTO

where bj = (δ + β2∆)bj−1 + a2
j = (1 − θ∆)bj−1 + a2

j with the initial value b1 = a2
1 for

j = 2, . . . , n.

Continuing this procedure, we have

ln E1[ e
∆In ] = ∆I1 +

∆4

2
β0(b1 + b2 + · · ·+ bn−2) +

∆3

2
σ2

1bn−1.

Finally,

ln E0[ e
∆In ] = an+1l0∆ +

∆4

2
β0(b1 + b2 + · · ·+ bn−2)

+ ln E0[ e
∆(anσ0z1+∆2bn−1σ2

1/2) ]

= an+1l0∆ +
∆4

2
β0(b1 + b2 + · · ·+ bn−1) +

∆3

2
σ2

0bn.

(19)

To obtain the convergence result as n approaches +∞, we need several simple com-
putations. Recall that the number e is defined as the limit of the sequence, i.e.,

lim
n→∞

(
1 +

1

n

)n
= e,

which implies that for ∆ = T/n,

lim
n→∞

(
1− c∆

)n
= e−cT .

Applying this result to a sequence, we have the following lemma.

Lemma 2. Given the sequence {aj}, if a sequence {bn} is described by b1 = a2
1 and the

recursive relationship bj = (1− θ∆)bj−1 + a2
j for j = 2, . . . , n, then bn can be explicitly

written as

bn =
n∑

j=1

a2
j(1− θ∆)n−j.

Also, its partial sum is
n−1∑
j=1

bj =

(
n∑

j=1

a2
j − bn

)
/
(θ∆). (20)

In particular, if {aj} is given by a1 = 1/2, aj =
1−ρj−1

∆

1−ρ∆
+

ρj−1
∆

2
for j = 2, 3, 4, . . . , n,

∆3bn =
1− (1− θ∆)n−1

ρ2θ
+ (

∆2

4
− 2cρ∆

ρ
− c2

ρ∆
2)(1− θ∆)n−1∆

+
2cρ∆

ρ

(1− θ∆)n − (1− ρ∆)n

ρ− θ
+ c2

ρ∆
2 (1− θ∆)n − (1− ρ∆)2n

2ρ− θ − ρ2∆

Thus, its limit, limn→∞ ∆3bn, is g(T ; ρ, θ)/ρ2, where

g(T ; ρ, θ) =
1− e−θT

θ
− 2

e−θT − e−ρT

ρ− θ
+

e−θT − e−2ρT

2ρ− θ

Also, we have

∆3

n∑
j=1

a2
j =

∆n

ρ2
+

2cρ∆

ρ2
(1− ρn

∆) + c2
ρ∆

2 1− ρ2n
∆

2ρ− ρ2∆
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and its limit, limn→∞ ∆3
∑n

j=1 a2
j , is f(T ; ρ)/ρ2, where

f(T ; ρ) = T − 2
1− e−ρT

ρ
+

1− e−2ρT

2ρ

where cρ = 1/2−1/(ρ∆), hence, limn→∞ ∆cρ = −1/ρ. Finally, an+1∆ = (1
2
+ρ∆

1−ρn−1
∆

1−ρ∆
+

ρn
∆

2
)∆ has the limit

1− e−ρT

ρ
.

Substituting the relationship in (20) into (19) and rerranging terms give us the result
that

ln E0[ e
∆In ] = an+1l0∆ +

β0

2θ
∆3

n∑
j=1

a2
j +

σ2
0 − β0/θ

2
∆3bn.

Thus, as the observation interval approaches zero, the desired result (8) is obtained as
a simple application of Lemma 2.

Also, by the linear property of the expectation operator and the i.i.d property of
{zj}, it is easy to see that

E0

[ ∫ t+T

t

ln ms ds
] ≈ −αT + an+1l0∆ → −αT +

1− e−ρT

ρ
l0

In a simple case of constant conditional variance, σ2 = β0/σ, the recursive formula
of lj can be written as

lj = ρj
∆l0 + ρj−1

∆ σ
√

∆ψ1 + · · ·+ ρ∆σ
√

∆ψj−1 + σ
√

∆ψj

for j = 1, . . . , n, where ρ∆ = 1−ρ∆ and {ψj = zj/∆} are i.i.d standard normals. Thus,
we have a similar form for (17) as follows

In = an+1l0 +
n∑

j=1

an−j+1σ
√

∆ψj.

Using the i.i.d property of {ψj}, it is easy to obtain a similar form for (19) as follows

ln E0[ e
∆In ] = an+1l0∆ +

∆3

2
σ2

n∑
j=1

a2
j .

As the observation interval approaches zero, the limit results in Lemma 2 provides us
the desired result.

Proof of Equation (15):

Recall that we have equation (10) with T = ∆:

y
(∆)
t = α− 1− e−ρ∆

ρ∆
lt − β0

2θρ2∆
f(∆)− σ2

t − β0/θ

2ρ2∆
g(∆)
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Applying the stationary property such as E[ lt ] = 0 and E[ σ2
t ] = β2/θ, this equation

can be rearranged as

y
(∆)
t − E[ y(∆) ] = −1− e−ρ∆

ρ∆
lt − σ2

t − β0/θ

2ρ2∆
g(∆) (21)

Substituting lt by (5) in terms of lt−∆ and σt−∆ and replacing lt−∆ by (21) in terms of

y
(∆)
t−∆ and σt−∆, we have an another form of (21) as follows

y
(∆)
t − E[ y(∆) ] = (1− ρ∆)

[
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

]

− 1− e−ρ∆

ρ∆
σt−∆

√
∆ψt − σ2

t − β0/θ

2ρ2∆
g(∆)

Subtracting the above equation from (21), we have

1− e−ρ∆

ρ∆
lt =

1− e−ρ∆

ρ∆
σt−∆

√
∆ψt − (1− ρ∆)

[
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

]
,

which gives us the desired result in (15).

Proof of Theorem 2:

Combining (11) with (12), we have

y
(∞)
t − rt = lt − β0

2θρ2
.

Substituting lt in this above equation by (15) and then plugging this result into (14)
give us the desired result in (16).

The random part in (16) at time t−∆ can be written as

Cψt + Dψ2
t ,

where C = σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ− (1− e−ρT )

)
and D = − g(T )

2ρ2T
β2σ

2
t−∆∆. Thus, using

the moments of the standard normal distribution ψ, that is, E[ ψ2K ] = 1 × 3 × · · · ×
(2k − 1) for k = 1, 2, . . . and the odd moments are zero, we have

y
(T )
t − Et−∆[ y

(T )
t ] = Cψt + D(ψ2

t − 1).

A simple calculation provides us the desired result about the variance and kurtosis of
nominal yields to maturity.
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Figure 1. Typical patterns of yield curves for the case of AR(1) process
or AR(1)-NGARCH(1,1) process and the desired result (8) is obtained-
with the time to maturity.
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Figure 2. Typical patterns of volatility curves for the case of AR(1)
process or AR(1)-NGARCH(1,1) process when function values appear in
the yield curve and with the time to maturity.
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Figure 3. Typical patterns for yield curves for the case of AR(1) process
or AR(1)-NGARCH(1,1) process and with the time to maturity.
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(a) ρ = 0.20, θ = 0.25, σt = 0.01, β0/θ =
0.02
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(b) ρ = 0.20, θ = 0.25, σt = 0.01, β0/θ =
0.02
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(c) ρ = 0.07, θ = 0.1, σt = 0.02, β0/θ =
0.022
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(d) ρ = 0.07, θ = 0.1, σt = 0.02, β0/θ =
0.022
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(e) ρ = 0.16, θ = 0.01, σt = 0.02, β0/θ =
0.01
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(f) ρ = 0.16, θ = 0.01, σt = 0.02, β0/θ =
0.01

Figure 4. Typical patterns for volatility curves for the case of AR(1)
process or AR(1)-NGARCH(1,1) process where function values appear in
the yield curve and with the time to maturity.


