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Abstract 
 
 
 
This article proposes a multicommodity model of futures prices to explain the 

stochastic behavior of more than one commodity.  Jointly modeling more than one 

commodity has the advantage of being able to use long-maturity futures prices of 

one commodity to estimate futures prices for another commodity which only has 

short-maturity contracts. 

 

The model considers that commodity prices have a set of common factors that 

explain the correlation among them, in addition to some commodity-specific 

factors.  A procedure for choosing the number of common and commodity-specific 

un-observable-Gaussian factors is presented.  Also, it is shown how commodities 

with and without seasonality may be modeled together and how to estimate the 

multicommodity model using a Kalman Filter.      

 

Two empirical implementations of the proposed multicommodity model are 

presented: First a model for the WTI and the Brent oil contracts, with the former 

commodity having much longer maturity contracts than the latter, and second a 

model for the WTI and the Unleaded Gasoline in which the second commodity not 

only has shorter maturities, but also a strong seasonality. 

 

Results for both model implementations show strong improvements over the 

traditional individual-commodity models, with much lower out-of-sample errors and 

better volatility estimates, even when using fewer factors. 

 
 



I. Introduction. 
 
There is an evolving literature on how to model the stochastic behavior of 

commodity futures prices.   The relevance of these models is at least two-fold. First 

they are used to estimate prices for contracts for which there are no market prices, 

and second they provide an estimation of the volatility term structure required to 

value option-like derivatives or to estimate risk exposures. 

 

Commodity models have been evolving in several aspects. First, the number of risk 

factors has been increasing from early one-factor models to two, three and four 

factor models, with considerable gain in flexibility and adjustment to different term 

structure behaviors (Brennan and Schwartz (1985), Gibson and Schwartz (1990), 

Cortazar and Schwartz  (1994),  Cortazar and Naranjo (2006)). 

 

A second aspect in which models have been evolving is in how the drift and the 

factors are modeled.  Initial models considered simple geometric Brownian motions 

while more advanced models included different specifications factor dynamics 

including seasonality and mean reversion (Laughton and Jacoby (1993), Schwartz 

(1997), Dai and Singleton (2000), Manoliu and Tompaidis (2002), Sorensen 

(2002)). 

 

A third dimension in which models have been developing is on the estimation 

procedures, including simple cross section model calibration, traditional Kalman 

Filtering with complete data panels to Extended Kalman procedures with time-

dependent number of daily observations which requires no data aggregation and 

makes a better use of all available data (Cortazar and Schwartz (2003), Sorensen 

(2002), Cortazar and Naranjo (2006)) 

 

A fourth dimension in which models differ is in the volatility specification.  Most 

models consider a constant volatility specification while some propose a USV 



specification (Trolle and Schwartz (2006)) which seems to better fit volatility 

structures at the expense of some loss on term-structure fitting. 

 

In this paper we propose a new dimension for model evolution which considers 

extending individual-commodity models into a multicommodity setting. The basic 

intuition is that for commodities with highly correlated returns, price variations on 

contracts for one commodity should be useful information for the other.  This has 

the advantage of being able to use information on the behavior of long-maturity 

futures prices available for one commodity to estimate futures prices for another 

commodity which only has short-maturity contracts.  Another advantage of using 

these multicommodity models arises when the spread between two commodities is 

of interest.   By jointly modeling both commodities more stable spreads should be 

obtained compared to the alternative of individually modeling both commodities 

and subtracting one commodity estimate from the other one. 

 

The proposed multicommodity model considers that commodity prices have a set 

of common factors that explain the correlation among them, in addition to some 

commodity-specific factors.  A procedure for choosing the number of common and 

commodity-specific un-observable-Gaussian factors is presented.  Also, it is shown 

how commodities with and without seasonality may be modeled together and how 

to estimate the multicommodity model using a Kalman Filter.      

 

Two empirical implementations of the proposed multicommodity model are 

presented: First a model for the WTI and the Brent oil contracts, with the former 

commodity having much longer maturity contracts than the latter, and second a 

model for the WTI and the Unleaded Gasoline in which the second commodity not 

only has shorter maturities, but also a strong seasonality. 

 

Results for both model implementations show strong improvements over the 

traditional individual-commodity models, with much lower out-of-sample errors and 

better volatility estimates, even when using fewer factors. 



 

The paper is organized as follows. In Section 2 the general multicommodity model, 

with and without seasonality, is presented.   Section 3 shows how to estimate this 

model using the Kalman Filter.  Section 4 explains a model selection procedure for 

choosing the number of common and of commodity-specific factors. Section 5 

shows the results of implementing the model for two pair of commodities: WTI-

Brent and WTI-Unleaded Gasoline. The last section concludes. 

 

II. The Multicommodity Model 

II.1. Model Definition 
 
The proposed multicommodity model is based on the canonical representation of 

Dai and Singleton (2000) for interest rates and represents an extension of Cortazar 

and Naranjo (2006) for more than one commodity.  

 

First, an -commodity model is described, in which all commodities 

share 

m ( 1, , ,… mp k k )

p  common factors and have  commodity-i specific factors.  Later the 

model is extended to include seasonality. 
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Where   is a vector of dimension ih� 1×n ,  is a time-dependent function and itc itX  is 

a vector of  state variables which follows a multivariate Orstein-Uhlembeck (O-U) 

stochastic process. 
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Where  is a  matrix, h ×m n tX is a state variable vector 1×n  and is a time-

dependent matrix . 

tC

1×m

 

The dynamics of the state variables is defined as: 

 

( )= − + +� � � �t tdX X dt dA b Σ w t

t

        (2.3) 

 

Where  is a  semi-positive matrix, b  is a constant vector,  is a  matrix 

and  is a vector of n correlated Brownian motion increments such that 

A� ×n n � Σ� ×n n

tdw�

 

( )( ) 't td d d=w w Θ�� � .          (2.4) 

 

Assuming that tX  follows a non-stationary process and applying a linear 

transformation  

 

( ) = +t tX XT φ L ,         (2.5) 

 



the canonical multicommodity model is defined as:  
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 Where p is the number of common state variables, ki in the number of specific 

factors for commodity-i, 
1=

= +∑
m

i
i

n p k  is the total number of state variables, tX is a 

 vector of state variables,1×n µ  is the long-term growth rate and δ ij  is the weight of 

state variable j for commodity i.  

 

 

The dynamics of the vector of state variables tX  is: 

 

( )= − +t tdX KX dt dΣ w t         (2.7) 

       

 

Where 

 

2

0 0 0
0 0

0 0

κ

κ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

"
"

# # % #
" n

K      

1

2

0 0
0 0

0 0 n

σ
σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Σ

"
"

# # % #
"

 



'      t tdt d d=Θ w w

12 1

21 2

1 2

1
1

1

ρ ρ
ρ ρ

ρ ρ

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

"
"

# # % #
"

n

n

n n

Θ ⎟
⎟
     (2.8) 

 

This is a non-stationary model for the log spot price. By assuming a constant risk 

premiumλ , the risk adjusted process for the vector of state variables is:  
*( )λ= − + +t tdX KX dt dΣ wt         (2.9) 

 

Where λ  is a vector of real constants. 1×n

 

II.2. Futures Prices With and Without Seasonality 
 

One of the good properties of this model is that it has an analytic expression for the 

futures prices.  Following Cox et al (1981), the price at time t of a futures contract 

with maturity T must be equal to the expected spot price for T under the risk-

neutral measure: 
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There are several ways to include seasonality in the model.  Following Manoliu and 

Tompadis (2002) we add a deterministic function to the futures expression, 

thus 
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With  being a periodic step-function, such that if T  belongs to month m , then  ( )P T

 

P(T) = Sm  
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In any case, the volatility of futures returns is: 
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III.   Multicommodity Estimation Using the Kalman Filter 
III.1.  Kalman Filter and Incomplete Data 
 
To adequately benefit from using the information on the prices of one commodity to 

calibrate the stochastic behaviour of the prices of another, a joint estimation of both 

processes should be performed.  In this section it is shown how the Kalman Filter 

can be used to estimate a model, even if data is incomplete and for some days 

there are no prices for a commodity (Cortazar and Naranjo (2006)). 
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Let the following measurement equation relate a vector of observable variables  
with a vector of state variables,   

tz

tx

                     ( , )t t t t t t tN= + +z H x d v v 0 R∼                                                          (3.1) 

Where  is a  matrix,  is a tH tu n× td 1tu × vector and  is an tv 1tu ×  of uncorrelated 

Gaussian disturbances with mean 0 and covariance matrix . tR

The transition equation describes the stochastic process followed by the state 

variables  

                     (0, )t t t t t t t N−∆= + +x A x c w w Q∼ t

) '

c

                                                     (3.2) 

Where   is n  ,     vector and  is a vector of uncorrelated Gaussian 

disturbances. The variance-covariance matrix of the estimation error,  , is: 

tA n× tc 1n× tw

tP

ˆ ˆ( )(t t t t t t= − −P E x x x x                                                                                    (3.3) 

 So for a given  and  the estimated state variables and variance-covariance 

error estimation matrix for t will be. 
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The following one-step-ahead prediction of the observed variables can be 

obtained: 
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When there is new information , a new estimation can be obtained tz
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As Cortazar and Naranjo (2006) point out, the above optimal estimates can be 

obtained even if the number of observations varies with time. The Kalman Filter 

allows the dimension  of vectors , ,  and of matrices  and , to be a 

function of time.  

tu tz td tv tH tR



This missing observation problem may be increasingly important in multicommodity 

settings where not for all days and maturities there may be prices for all 

commodities in the model. 

Model parameter estimations, , are obtained maximizing the log-likelihood 

function of innovations. 
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III.2. Kalman Filter of the Multicommodity Model 
 

In this section it is shown how to make a state space representation of the 

multicommodity model to solve it using the Kalman Filter. 

 

First all commodities from 1 to  are stacked in the following way: m
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Where is the price of a futures contract of commodity i at time t with maturity 

corresponding to the  position. 
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With this state space representation, the multicommodity model may be estimated 

using the Kalman Filter. 

 

IV. The Model Selection Procedure 
IV.1. The Basic Idea 
 

Previous sections have shown how to define and estimate a given 

model for  commodities which shares( 1, , ,… mp k k ) m p  common factors and has  

commodity-i specific factors.  In this section a procedure is proposed for choosing 

ik

p and , without resorting to estimating all possible models and comparing their 

performance which may be very expensive in computation time and not practical 

for real world applications.   

ik

                                                

In individual-commodity models it has long been recognized that using Principal 

Components methods is useful to select the number of factors that should be used 

to explain a given data variance percentage.  This is the case in Litterman and 

Scheinkman (1991) for bonds and in Cortazar and Schwartz (1994) for commodity 

futures. Also, these individual principal components have been compared to 

analyze the behavior of correlated commodities (Tolmasky and Hindanov(2002)). 

 

Multicommodity models have the difficulty of having to relate different variance-

covariance matrices, finding common and commodity-specific factors.   A similar 

problem can be found in the study of the evolution of biological species with the 

goal of finding their common components (Krzanowski (1979), Flury (1988) and 

Philips and Arnold (1999)).   

 

To perform the comparison between biological species represented by their 

variance-covariance matrices of dimension r r× , two procedures have been 

proposed: Common Principal Components (CPC), in which all components are 

Felipe Severino Díaz
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common to the different matrices, and Partial Common Principal Components 

(CPC(p), in which only p of the components are common.   

 

Principal components are based on an eigenvalue-eigenvector decomposition of 

variance-covariance matrices.  The first procedure (CPC) searches for a set of 

principal components that simultaneously explains the variance of all matrices.  In 

this case the eigenvectors are equal for all matrices, being the eigenvalues specific 

for each one. The second procedure (CPC(p)) extends this approach allowing  

p eigenvectors to be identical in all groups while the remaining eigenvectors 

are specific for each group.  

r p−

 

The model selection procedure proposed considers aggregating all futures data 

into a fixed number ( of maturity-classes. Second, estimating different factor 

representations (CPC(p)), computing the likelihood, eigenvalues and eigenvectors 

for each representation.  Finally, in order to penalize representations with a high 

number of parameters, the model is chosen using the Schwarz Information Criteria 

(SIC).  

)r

 

The benefits of this model selection procedure is that it is computationally efficient 

and multiple model representations can be easily explored, before engaging on the 

much more demanding Kalman Filtering of the chosen model. 

 

IV.2. A More Detailed Description of CPC-CPC(p) and SIC 
 

The Common Principal Components approach assumes a level of similarity among 

covariance matrices  of dimensionm 1, , mΨ Ψ… r r× , assuming that all Ψ i are 

positive definite. 

 

Then, covariances matrices have common principal components if m

 

Felipe Severino Díaz
Suena mejor choused



' 1, ,i i i mβ βΨ = Λ = …         (4.1) 

 

Where β  is an orthogonal matrix and r r×

 

1( , , )i idiag irλ λΛ = …          (4.2) 

 

The number of parameters is ( 1) /r r 2−  for the orthogonal matrix β  plus m r⋅ for 

the diagonal matricesΛ . i

Assuming that all CPCs are well defined, that is, for each { }1, ,j∈ … r there is a 

least one population in which the characteristic root i λij is distinct. 

Being the sample covariance matrices ( , )i
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Where the factor C does not depend on the parameters. Maximizing (4.3) the 

estimation of common principal components analyzes the similarity of the different 

matrices (Flury (1988)).   

 

However, if the two “species” are not actually the same, even though they do have 

some common factors, the CPC model may still be rejected.  The Partial Principal 

Components Model (CPC(p)) model takes care of this problem by allowing 

p components to be identical for all  matrices while the remaining 

components are specific. Formally, the hypothesis of partial CPCs (of 

order

m

r p−

p ) is 
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All  ( )β i  are orthogonal matrices. Thenr r× cβ , of dimension r p× , is common to all 

groups, while ( )β i
s , of dimension (r r p)× − , is specific. By orthogonality ( 1CPC r )−  

implies  which is the ordinary CPC model. We therefore restrict ( )CPC r p to the 

range1 2p r≤ ≤ − . This means that the partial CPC model requires a dimension r of 

at least 3. 

 

In this case cβ  and ( )β i
s  will be written as  
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s p r iβ β β+= … m= …        (4.8) 

 

Just like in the CPC approach, we start with  independent sample 

matrices

m

( , )i
i r i

i
S W n n

Ψ∼ . Assuming the C model, maximizing the likelihood is 

equivalent to minimizing the function. 

PC(p)  
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∑ ∑ ∑ ∑… …  (4.9) 

 

To minimize this function under orthogonal constraints for all ( )β i : 
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This is equivalent to minimizing the function 
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Where the ( ) ( ), , ,γ γ γ γi i
h hj h hj and ( )δ i

hj are the [ ]( 1) ( )( 1) /p p m r p r p+ + − + + 2  Lagrange 

multipliers.   

 

To avoid the shortcomings of multiple testing when comparing several competing 

models, we propose using the Schwarz Information Criteria (SIC) which penalizes 

models with many parameters.  

 

2log log( )SIC L q n= − +                      (4.12) 

 

Where is the likelihood function,  is the number of parameters and   is the 

sample size. 

L q n



 

Suppose the existence of c models, where 1 2 cq q q< < <…  denote the number of 

parameters estimated, and 1 2 cL L L≤ ≤ ≤… are the values of the likelihood function 

at the maxima. Then minimizing 4.12 is equivalent to choosing the ith model if: 

 

1( ) 2 log ( ) log( )i
i

c

LSIC i q q n
L

= − + −       ,∀ =ii n n      (4.13) 

  

is a minimum.   

 

V. Model Implementation and Results for the WTI-Brent 
and the WTI-Unleaded Gasoline models 
 

V.1. The Data  
 
Two empirical implementations of the proposed multicommodity model are 

presented. Model CLCB studies the WTI OIL (CL) and the BRENT OIL (CB) 

futures contracts, while Model CLHU analyzes the WTI (CL) and the Unleaded 

Gasoline (HU) contracts.  In both models the WTI has much longer-maturity 

contracts than the other commodity.  In addition, in Model CLHU, prices of the 

unleaded gasoline contract exhibit seasonality. 

 

Each of the two models is tested using three different data sets. First, for the in-
sample testing, a data set is used for parameter and state-variable estimation.  

Second, in what we call traditional out-of-sample testing a data set is used only 

for state-variable estimation, but without re-estimating model parameters.  Finally 

in the extreme out-of-sample testing model prices are compared with those of a 

data set that is neither used for parameter nor for state variable estimation.   

 



For Model CLCB the in-sample data consists of daily prices for CL and CB 

contracts traded at NYMEX and ICE, respectively, between 2001 and 2004.  The 

longest-maturity CL-contract used is 7 years, while the longest-maturity CB-

contract used is 2.5 years.  The traditional out-of-sample data includes the same 

contracts traded daily between January 2005 and December 2006.  Given that new 

long-maturity CB contracts (over 2.5 years) are issued starting on February 2005, 

we reserve this data to be used only for the extreme out-of-sample testing to 

compare these prices with model estimations that did not consider this information 

at all. 

 

For Model CLHU the in-sample data consists of daily prices for CL and HU 

contracts traded at NYMEX between 2000 and 2004.  The longest-maturity CL- 

contract used is 7 years, while the longest-maturity HU-contract is 1 year.  The 

traditional out-of-sample data includes the same contracts traded daily between 

January 2005 and December 2006.  Given that during 2006 the HU contracts are 

being been faced out (with the last contract maturing on December 2006), and a 

new reformulated gasoline contract (RB) was introduced, prices from July to 

December of 2006 for this new RB-contract (with maturities that extend to 2007) 

are used for the extreme out-of-sample testing. 

 

V.2. Model Selection 
 
In this section the question of how many common factors to include in each of the 

multicommodity models is addressed. 

 

Contracts for each of the three commodities (CL, CB and HU) in the in-sample data 

set are aggregated into 6 groups, (Litterman and Scheinkmann (1991), Cortazar 

and Schwartz (1994)).   

 

Then, for each pair of commodities (CL-CB and CL-HU), Partial Common Principal 

Components are estimated, using different number of common factors (from cero 



to 5), and the Schwarz Information Criteria (SIC) number (which takes into 

consideration both the likelihood and the number of model parameters) is 

computed.  The number of common factors chosen for each model will be the one 

that minimizes the SIC.   

 

The following Tables show that for the CLCB Model, this procedure proposes 3 

common factors and for the CLHU Model, 2 common factors. 

 

Table: Model Selection for the CL-CB case. 
 Minimizing the SIC for different number of Partial Common Principal Components CPC(p), in which 

p is the number of common factors. Note that given that the data set is aggregated into 6 groups, 

CPC(5) = CPC(6)  
 ChiSqr Number of parameters (qi) (qi-q1) SIC(i)

CPC(5) 82,67 27 0 82,67 

CPC(4) 76,30 28 1 82,97 

CPC(3) 38,13 30 3 58,14 

CPC(2) 20,71 33 6 60,74 

CPC(1) 11,08 37 10 77,80 

CPC(0)  42 15 100,08

n 790     

 

Table: Model Selection for the CL-HU case. 
Minimizing the SIC for different number of Partial Common Principal Components CPC(p), in which 

p is the number of common factors. Note that given that the data set is aggregated into 6 groups, 

CPC(5) = CPC(6)  
 ChiSqr Number of parameters (qi) (qi-q1) SIC(i)

CPC(5) 301,93 27 0 301,93

CPC(4) 277,28 28 1 284,40

CPC(3) 69,74 30 3 91,10 

CPC(2) 38,25 33 6 80,96 

CPC(1) 17,15 37 10 88,33 

CPC(0)  42 15 106,78

n 1234     

 

 



To allow for each model to have at least one commodity-specific factor and also for 

each commodity to have at least 3 factors to adequately represent its dynamics, 

we finally choose (3, 0, 1) factors, for the CLCB Model, and (2, 1, 1) factors for the 

CLHU Model, in which (p, k1, k2) defines a model with p common factors and ki 

commodity-specific factors for commodity i. 

 

V.3. Model Estimation 
 
Using the Kalman Filter procedure with incomplete data panels described earlier, 2 

multicommodity models (CLCB and CLHU) plus their 4 individual commodity 

models to be used as benchmarks, are calibrated.   

 

The performance of Model CLCB, which is specified with (3, 0, 1) factors, will be 

compared with an individual CL model with 3 factors and an individual CB model 

with 4 factors. 

 

The performance of Model CLHU, which is specified with (2, 1, 1) factors and 12 

seasonality factors, will be compared with an individual CL model with 3 factors 

and an individual HU model with 3 factors and 12 seasonality factors. 

 

The next Table shows the parameter estimates for all the models 

 

 

 

 

 

 

 

 

 

 



Table 
Parameter Estimates for Multicommodity and Individual-Commodity Models  

 

 CLCB CL CB CLHU CL HU 
κ1               -               -               -               -               -               - 
κ2           0,384           0,318          0,460          0,414          1,081          1,000 
κ3           0,911           1,106           0,697          1,184          0,455          4,001 
κ4           0,435           6,951          1,104    
σ1           0,196           0,424          0,252          0,217          0,239          0,333 
σ2           0,178           0,688          0,885          0,122          0,662          0,398 
σ3           0,336           0,977          1,000          0,325          0,286          0,362 
σ4           0,080               -          0,121          0,355    
ρ21 -        0,389 -        0,902 -        0,567 -        0,408          0,424 -        0,604 
ρ31           0,370           0,892          0,525          0,152 -        0,483          0,488 
ρ41 -        0,192               - -       0,055          0,010     
ρ32 -        0,589 -        0,948 -        0,965 -        0,026 -        0,760 -        0,603 
ρ42           0,180               -          0,275          0,044    
ρ43 -        0,087               - -       0,310          0,954    
λ1           0,022           0,079          0,051          0,018          0,037          0,006 
λ2           0,046           0,054 -        0,068 -        0,010          0,179          0,004 
λ3 -        0,003           0,137          0,213          0,064          0,074          0,007 
λ4           0,017               - -        0,179 -        0,170    
µ           0,002           0,001          0,000          0,000          0,007           0,003 
ξ1           0,005           0,005          0,003          0,006          0,006          0,017 
ξ2           0,008               -               -          0,022    
s1              0,963           0,969 
s2              0,978           0,974 
s3              1,021           1,021 
s4              1,063           1,056 
s5              1,063           1,051 
s6              1,051           1,042 
s7              1,035            1,030 
s8              1,011           1,010 
s9              0,971           0,975 
s10              0,955           0,962 
s11              0,949           0,958 
s12              0,951           0,960 
δ11           1,000           1,000          1,000          1,000          1,000          1,000 
δ12           1,000           1,000          1,000          1,000          1,000          1,000 
δ13           1,000           1,000          1,000          1,000          1,000          1,000 
δ14               -               -          1,000               -    
δ21           1,000            0,998    
δ22           1,000            0,985    
δ23           1,000                 -    
δ24           1,000            1,000    
log L 182458 123558 71267 229490 185474 48174 



 

V.4. Results  
 
To analyze the performance of the multicommodity models we compare each of 

them with individual commodity models specified with same number of factors.  For 

example the (3, 0, 1) CLCB Model is compared with the 3-factor CL model and the 

4-factor CB Model.  This is a conservative comparison in the sense that the 

multicommodity model has 4 different factors, while the individual models use 

altogether 7.   Even with this somewhat unfair comparison the multicommodity 

model performs in many ways much better than the individual commodity models, 

as will be shown in what follows. 

 

There are at least three measures of model performance that could be used to 

validate the use of a multicommodity, over an individual-commodity, model. First, 

Price Adjustment, second Volatility Adjustment, and third Spread Stability (between 

two commodities).  As expected, our preliminary results show much more stable 

spreads on multicommodity models, but we do not report them in this version of the 

paper and restrict ourselves to the first two performance measures. 

 

V.4.1. Price Adjustments 
 

The following Figure shows individual model estimations for the CL and CB 

contracts on June 20, 2005.  All CL and CB contracts with less than 2,5-year 

maturities are included in the traditional out-of-sample data and are very similar to 

model estimates.  CB contracts with more than 2,5-year maturities belong to the 

extreme out-of-sample data set (not used for parameter or state-variable 

estimation) and exhibit strong differences with model estimates.   

 

As can be seen in the next Figure, the multicommodity model is able to fit very well 

this extreme out-of-sample data set by using the correlation structure between both 

commodities to infer prices from commodities without transactions. 

Felipe Severino Díaz
Falta una explicación como anterior para CLHU

Felipe Severino Díaz
Lo mismo que el comentario anterior
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CLCB Multicommodity Model
June 20, 2005. CB contracts over 3 years are not used for calibration
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The next Table shows the in-sample and out-of-sample ME and RMSE errors for 

the CL  and CB contracts, using the individual and the multicommodity models.  

For the CB contract the extreme out-of-sample testing using CB contracts of more 

than 2,5-year maturity contracts, is also reported. 

 



 ME CL Indiv Mod ME CL Multi Mod RMSE CL Indiv RMSE CL Multi 

IN SAMPLE -0,0011% -0,0012% 0,48% 0,54% 

OUT SAMPLE -0,0012% -0,0129% 0,33% 0,45% 

 

 ME CB Indiv ME CB Multi  RMSE CB Indiv RMSE CB Multi

IN SAMPLE 0,0029% -0,0080% 0,31% 0,80% 

OUT SAMPLE 1,1668% 0,3625% 2,86% 1,06% 

EXTREME   

OUT SAMPLE 4,2567% 1,5560% 5,15% 1,74% 

 

 

The following Figures and Tables compare the performance of individual and 

multicommodity models for the CL and HU contracts. 
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CL HU Multicommodity Commodity Model
August 23, 2006. RB contracts  are not used for calibration
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 ME CL Ind Mod ME CL Multi Mod 

RMSE CL 

Indiv 

RMSE CL 

Multi 

IN SAMPLE -0,0083% -0,0038% 0,54% 0,54% 

OUT SAMPLE 0,0076% 0,0054% 0,38% 0,38% 

 

 ME HU Ind ME HU Multi RMSE HU Ind

RMSE HU 

Multi 

IN SAMPLE 0,0082% 0,1913% 1,56% 1,87% 

OUT SAMPLE 0,0225% -0,6392% 0,81% 2,19% 

EXTREME OUT 

SAMPLE 8,6271% -0,3812% 10,38% 3,73% 

 

An analysis of the above Tables and Figures show a much better behavior of 

multicommodity models on extreme out of sample testing for extrapolating long-

maturity prices for a commodity with only short-maturity contracts.  The figures also 

show better spread estimates using multicommodity models.  Finally, given that 



individual-commodity models have more independent factors, it is not surprising 

that their in-sample errors are smaller. 

 

V.4.2. Volatility Adjustments 
 

In this section we show how model-volatility compares to empirical-volatility for 

each commodity. 
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CB Volatility 
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HU Volatility 
 Individual and Multicommodity CLHU Model
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For all the above cases, it can be seen that multicommodity volatility estimates 

track much more closely empirical data volatilities. This should induce commodity 

spreads to be much more stable. 

 

VI. CONCLUSION 
 

This article proposes a multicommodity model of futures prices to explain the 

stochastic behavior of more than one commodity.  Jointly modeling more than one 

commodity has the advantage of being able to use long-maturity futures prices of 

one commodity to estimate futures prices for another commodity which only has 

short-maturity contracts. 

 

The model considers that commodity prices have a set of common factors that 

explain the correlation among them, in addition to some commodity-specific 

factors. The multicommodity model is based on the canonical representation of Dai 

and Singleton (2000) for interest rates and represents an extension of the 

individual-commodity model in Cortazar and Naranjo (2006). 

 



A procedure for choosing the number of common and commodity-specific un-

observable-Gaussian factors is presented.  Also, it is shown how commodities with 

and without seasonality may be modeled together and how to estimate the 

multicommodity model using a Kalman Filter.      

 

A first empirical implementation of the proposed multicommodity model is 

presented for the WTI (CL) and the Brent oil (CB) contracts.  A (3, 0, 1) CLCB 

model is chosen, with three common factors and one commodity-specific factor for 

the CB contract. 

 

A second implementation for the WTI (CL) and the Unleaded Gasoline (HU) is 

discussed.  A (2, 1, 1) CLHU model is chosen, with two common factors and one 

commodity-specific factor for each of the two commodities. In addition, the HU 

contract is assumed to have 12 monthly constants to fit its seasonal behavior. 

 

Results for both model implementations show strong improvements over the 

traditional individual-commodity models, with much lower out-of-sample errors and 

better volatility estimates, even when using fewer factors.    

 

The advantages of using these multicommodity models is specially clear when 

model estimates are compared with data not used at all in model calibration, in 

what is call extreme out-of-sample testing.  Also if spreads between two 

commodities are of interest, using multicommodity models provides much more 

stable estimates, as will be shown in the next version of this paper.  
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