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Abstract

We study option pricing in a regime switching market where the risk free interest rate, growth
rate and the volatility of a stock depends on a finite state Markov chain. Using a minimal
martingale measure we find explicit expressions for the risk minimizing option price and the
corresponding hedging strategy.

1 Introduction

We consider option pricing in a regime switching market. We suppose that the state of the market is

described by a finite state continuous time Markov chain {Xt, t ≥ 0} taking values in {1, 2, ...,M}.
If Xt = i , the risk free interest rate is r(i). The stock price process {St, t ≥ 0} is governed by

a Markov modulated geometric Brownian motion, i.e., the drift and the volatility of St depends

on Xt. The additional uncertainty arising due to the regime switching leads to incompleteness

of the market. As a consequence there is no unique or fair price of an option on the stock St.

At the same time the writer of the option cannot hedge himself perfectly. In other words every

contingent claim in such a market will have an intrinsic risk. The option pricing in a regime

switching framework has been studied by several authors using different approaches [2], [3], [7], [8],

[10], [12] and [13]. In [5], Föllmer and Schweizer has addressed the option pricing in an incomplete

market. By introducing a quadratic risk function they have obtained an abstract formula for the

risk minimizing option price via the minimal martingale measure. In this paper we compute the

minimal martingale measure P ∗ for the regime switching model and express the risk minimizing

strategy under the minimal martingale measure P ∗. We show that the risk minimizing option price

satisfies a system of Black-Scholes partial differential equations with weak coupling; the coupling

term representing the correction term arising due to regime switching. We also obtain the optimal
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mean self-financing strategy and the residual risk. Using a certain transformation we decouple the

Black-Scholes system of equations into M number of decoupled Black-Scholes equations. We then

obtain an explicit expression of the risk minimizing option price as the weighted average of the

Black-Scholes options price in each regime.

Our paper is structured as follows. The model description is presented in Section 2. An risk

minimizing strategy is described in Section 3. In Section 4, we obtain explicit expressions of option

price, hedging strategies and other Greeks. We conclude our paper in Section 5 with a few remarks.

2 Model Description

Let (Ω,F , P ) be the underlying complete probability space. Let {Xt, t ≥ 0} be an irreducible

Markov chain taking values in X := {1, 2, ...M} describing the state of the market. The evolution

of Xt is given by

P (Xt+δt = j | Xt = i) = λijδt + o(δt), i 6= j (2.1)

where λij ≥ 0, i 6= j; λii = −∑M
j=1 λij . Let Λ = [λij ] denote the generating Q-matrix of the

chain. We consider two assets: one (locally) risk free and the other risky. Let r : X → [0,∞)

denote the (local) risk free interest rate; i.e., if the regime Xt = i, then the instantaneous interest

rate is r(i). Thus the interest rate process rt = r(Xt) is also an irreducible Markov chain taking

values in R := {r(1), r(2), ..., r(M)} with the same generating matrix Λ. Let {Bt, t ≥ 0} denote

the amount in the money market account at time t where the risk free interest rate is rt = r(Xt).

If B0 = 1, then

Bt = e
∫ t
0 r(Xs)ds. (2.2)

Thus

dBt = r(Xt)Btdt. (2.3)

We assume that the risky asset is a stock whose price process {St, t ≥ 0} is governed by a Markov

modulated geometric Brownian motion, i.e., the evolution of {St} is given by

dSt = µ(Xt)Stdt + σ(Xt)StdWt (2.4)

where {Wt, t ≥ 0} is a standard Wiener process independent of {Xt, t ≥ 0}, µ : X → R is the

drift coefficient and σ : X → (0,∞) describes the volatility.

It would be convenient to write (2.1) in an equivalent way where {Xt} is represented as a stochastic
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integral with respect to a Poisson random measure [6]. For i, j ∈ X , i 6= j, let 4ij be consecutive

(w.r.t. to lexicographic ordering on X × X ) left closed right open intervals of the real line, each

having length λij . By embedding {1, 2, ...,M} into RM , define a function h : X × R −→ RM by

h(i, z) =
{

j − i if z ∈ 4ij

0 otherwise.
(2.5)

Then

dXt =
∫

R
h(Xt−, z)p(dt, dz) (2.6)

where p(dt, dz) is a Poisson random measure with intensity dt×m(dz), where m(dz) is the Lebesgue

measure on R; p(·, ·) and W (·) are independent. Let p̃(dt, dz) denote the corresponding compensated

martingale measure. It is shown in [6] that {St, Xt} is a Feller Markov process with infintesimal

generator L whose action on smooth functions on R×X is given by

Lf(s, i) = µ(i)s
∂f(s, i)

∂s
+

1
2
σ2(i)s2 ∂2f(s, i)

∂s2
+

∑

j

λijf(s, j). (2.7)

Let Ft = σ(St, Xt, t ≥ 0). Without any loss of generality we assume that the filtration {Ft, t ≥ 0}
is right continuous and P -complete. Let T > 0 be the planning horizon and H a European type

contingent claim at time T . We wish to find the price of this contingent claim at any time 0 ≤ t ≤ T .

To this end we first find an equivalent martingale measure (EMM) P ∗ for this model. Set

ρT = exp{
∫ T

0

(r(Xs)− µ(Xs)
σ(Xs)

)
dWs − 1

2

∫ T

0

(r(Xs)− µ(Xs)
σ(Xs)

)2
ds}. (2.8)

Let E denote the expectation under P . Then EρT = 1 and {ρt, t ≥ 0} is an exponential martingale,

where ρt is the expression given in (2.8) with t replacing T . Let P ∗ be defined by

dP ∗

dP
= ρT . (2.9)

Then P ∗ is equivalent to P , and under P ∗

W̃t = Wt −
∫ t

0

(r(Xs)− µ(Xs)
σ(Xs)

)
ds (2.10)

is a standard Wiener process. Under P ∗ the dynamics of {St} is given by

dSt = r(Xt)Stdt + σ(Xt)StdW̃t. (2.11)

Let {S̃t} denote the discounted stock price, i.e.

S̃t =
St

Bt
= e−

∫ t
0 r(Xs)dsSt. (2.12)
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Then under P ∗ the dynamics of S̃t is given by

dS̃t = σ(Xt)S̃tdW̃t. (2.13)

Therefore {S̃t} is a martingale under P ∗. This means that P ∗ is an EMM (equivalent martingale

measure) for this model which implies that the model is arbitrage free. Hence an arbitrage free

option price for the contingent claim H at time t is given by

BtE
∗[B−1

T H | Ft] = E∗[e−
∫ T

t r(Xs)dsH | Ft] (2.14)

where E∗ denotes expectation under P ∗. Let

M(P ) = {P̃ : P̃ ≡ P} (2.15)

and {S̃t} is a martingale under P̃ ∈M(P ). For a complete marketM(P ) is known to be a singleton

[1], [11]. For an incomplete market with no arbitrage M(P ) may have several elements. For each

P̃ ∈ M(P ), the corresponding expression in (2.11) under P̃ is an arbitrage free price of H at t.

Thus the option price is not unique. At the same time in an incomplete market, the writer of the

option cannot hedge himself perfectly. Thus every contingent claim is associated with an intrinsic

risk. In the next section we describe a risk minimizing option price in the framework of Fölmer

and Schweizer [5].

3 Risk Minimizing Strategy

Let the contingent claim H at time T satisfy

H ∈ L2(Ω,F ,P). (3.1)

In order to replicate this claim we consider a strategy which involves the stock St and the money

market account Bt, and which yields the terminal payoff H at time T . Let ξt and ηt denote the

amounts invested in St and Bt respectively at time t; where ξ = {ξt, 0 ≤ t ≤ T} is a predictable

process satisfying

E
[ ∫ T

0
ξ2
t σ2(Xt)S2

t dt +
( ∫ T

0
| ξt | | µ(Xt) | dt

)2]
< ∞ (3.2)

and η = {ηt, 0 ≤ t ≤ T} is an adapted process satisfying

E(ηt)2 < ∞. (3.3)
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The value of the portfolio under the strategy π = {πt, 0 ≤ t ≤ T} = {ξt, ηt, 0 ≤ t ≤ T} at t is

given by

Vt(π) = ξtSt + ηtBt. (3.4)

The discounted value of the portfolio is given by

Ṽt(π) = ξtS̃t + ηt. (3.5)

The discounted cost accumulated upto time t is given by

C̃t(π) = Ṽt(π)−
∫ t

0
ξudS̃u, 0 ≤ t ≤ T. (3.6)

A strategy π = {ξt, ηt} is said to be admissible

VT (π) = H. (3.7)

Note that for a self-financing strategy π, C̃t(π) is a constant. We look for an admissible strategy π

which minimizes at each time t, the residual risk given by

Rt(π) := E[(C̃T (π)− C̃t(π))2 | Ft] (3.8)

overall admissible strategies. We say that an admissible strategy π∗ is risk minimizing if

Rt(π∗) ≤ Rt(π) (3.9)

for any other admissible strategy π. In view of the results of [5] an admissible strategy π∗ is optimal

if the associated discounted cost process C̃t(π∗) is a square integrable martingale orthogonal to the

martingale part {S̃t}. We summarize this in the following Lemma.

LEMMA 3.1 An admissible strategy π = {ξt, ηt} is optimal in the sense of (3.9) if the corre-

sponding discounted cost C̃t(π) as in (3.6) is orthogonal to the martingale

Mt :=
∫ t

0
σ(Xt)S̃tdWt. (3.10)

Let H̃ = B−1
T H. It is shown in [5] that the existence of an optimal strategy is equivalent to the

existence of a decomposition of H̃ in the form

H̃ = H̃0 +
∫ T

0
ξH̃
s dS̃s + LH̃

T (3.11)
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where H0 ∈ L2(Ω,F0,P), ξH̃ = {ξH̃
t } satisfies (3.2), and LH̃ = {LH̃

t , 0 ≤ t ≤ T} is a square

integrable martingale orthogonal to the martingale {Mt, 0 ≤ t ≤ T} (as in (3.10)). For the

decomposition (3.11), the associated optimal strategy π = (ξt, ηt) is given by

ξt = ξH̃
t , ηt = Ṽt − ξtS̃t. (3.12)

with

Ṽt = H̃0 +
∫ t

0
ξH̃
s dS̃s + LH̃

t , 0 ≤ t ≤ T. (3.13)

Thus the discounted optimal cost C̃t(π) is given by

C̃t(π) = H̃0 + LH̃
t . (3.14)

We know define the minimal martingale measure for our model.

DEFINITION 3.1 An EMM P ′ ≡ P is said to be minimal if P ′ = P on F0, and if any square

integrable P -martingale which is orthogonal to M (as in (3.6)) under P remains a martingale under

P ′.

In view of Theorem 3.5 in [5], it is easily seen that the unique minimal martingale measure in our

case is given by

dP ∗ = ρT dP (3.15)

where ρT is as in (2.7). In other words, the EMM P ∗ constructed in the previous section is the

unique minimal martingale measure for our model. Note that the minimal martingale measure

preserve orthogonality , i.e., for any square integrable martingale {Lt} with 〈L,M〉t = 0 under P

satisfies

〈L,M〉t = 0 under P ∗. (3.16)

Also by Theorem 3.14 in [5], the optimal strategy, hence also the decomposition (3.11), is uniquely

determined. In fact it can be determined in terms of the minimal martingale measure P ∗. Note

that {LH
t } is a square integrable martingale under P . Since P ∗ is the minimal martingale, {LH

t }
is also a martingale under P ∗. Thus Ṽt as in (3.13) is a martingale under P ∗ which is the risk

minimized discounted price of the H at t.

We now focus on a European call option on {St} with strike price K and maturity time T . In this

case the contingent claim H is given by

H = (ST −K)+. (3.17)
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For this case we now obtain the decomposition (3.11) so as to obtain the optimal strategy through

(3.12) and (3.13). To this end consider the following system of partial differential equations

∂φ(t, s, i)
∂t

+
1
2
σ(i)2s2 ∂2φ(t, s, i)

∂s2
+ r(i)s

∂φ(t, s, i)
∂s

+
M∑

j=1

λijφ(t, s, j) = r(i)φ(t, s, i) (3.18)

for i = 1, 2, ..., M , with the terminal condition

φ(T, s, i) = (s−K)+ ∀i. (3.19)

The Cauchy problem (3.18)-(3.19) has a unique solution {φ(t, s, i), i = 1, 2, ..., M} in the class of

C([0, T ] × R)
⋂

C1,2((0, T ) × R) functions having at most polynomial growth [9]. Finally we have

the following result.

THEOREM 3.1 Let {φ(t, s, i), i = 1, 2, ..., M} denote the unique solution of the Cauchy prob-

lem (3.18), (3.19) in the above class of functions. Then

(i) φ(t, St, Xt) is the risk minimizing option price at time t;

(ii) An optimal strategy π∗ = {ξ∗t , η∗t } is given by

ξ∗t =
∂φ(t, St, Xt−)

∂s
(3.20)

η∗t = Ṽt − ξ∗t S̃t (3.21)

where

Ṽt = φ(0, X0, S0) +
∫ t

0

∂φ(u, Su, Xu−)
∂s

dS̃u

+
∫ t

0
e−

∫ u
0 r(Xv)dv

∫

R
[φ(u, Su, Xu− + h(Xu−, z))− φ(u, Su, Xu−)]p̃(du, dz); (3.22)

(iii) The residual risk process is given by

Rt(π∗) = E[
∫ T

t

∑

j

λXu−je
−2

∫ u
0 r(Xv)dv(φ(u, Su, j)− φ(u, Su, Xu−))2du | Ft]. (3.23)

Proof Let 0 ≤ t ≤ T . By applying Ito’s formula to e−
∫ t
0 r(Xu)duφ(t, St, Xt) under the measure P

and using (2.4), (2.5), (2.6) and the PDE (3.18), we obtain after suitable rearrangement of terms

e−
∫ t
0 r(Xu)duφ(t, St, Xt) = φ(0, S0, X0) +

∫ t

0

∂φ(u, Su, Xu−)
∂s

dS̃u

+
∫ t

0
e−

∫ u
0 r(Xv)dv

∫

R
[φ(u, Su, Xu− + h(Xu−, z))− φ(u, Su, Xu−)]p̃(du, dz).

(3.24)
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Letting t ↑ T , we obtain

e−
∫ T
0 r(Xu)du(ST −K)+ = φ(0, S0, X0) +

∫ T

0

∂φ(u, Su, Xu−)
∂s

dS̃u

+
∫ T

0
e−

∫ u
0 r(Xv)dv

∫

R
[φ(u, Su, Xu− + h(Xu−, z))− φ(u, Su, Xu−)]p̃(du, dz).

(3.25)

The desiring results (i) and (ii) now follow from (3.25). Finally the residual risk at time t is given

by

Rt(π∗) = E[{
∫ T

t

∫

R
[e−

∫ u
0 r(Xv)dv{φ(u, Su, Xu− + h(Xu, z))− φ(u, Su, Xu−)}]p̃(du, dz)}2 | Ft]

= E[
∫ T

t

∑

j

λXu−je
−2

∫ u
0 r(Xv)dv(φ(u, Su, j)− φ(u, Su, Xu−))2du | Ft]. (3.26)

This completes the proof of the theorem.

4 Explicit Solutions and the Greeks

The equation (3.18) is a cooperative system of parabolic partial differential equations with weak

coupling. It is cooperative in the sense that the Q-matrix Λ is irreducible. Thus the Markov Chain

Xt does not have an absorbing state. This implies that each φ(t, s, i) depends on the other φ(t, s, j),

j = 1, 2, ..., M. The coupling is weak in the sense that it occurs only through the zeroth order term.

Using a transformation we decouple the system of equations (3.18) into M number of Black-Scholes

PDE’s. To this end we write (3.18) into a vector valued PDE. Set

φ̃(t, s) = [φ(t, s, 1), φ(t, s, 2), ..., φ(t, s, M)]
′

where ′ stands for transpose of a vector (or matrix).

Then the equation (3.18) can be written as

∂φ̃(t, s)
∂t

+
1
2
s2Σ

∂2φ̃(t, s)
∂s2

+ sR
∂φ̃(t, s)

∂s
+ Λφ̃(t, s) = Rφ̃(t, s) (4.1)

where

Σ = diag[σ2(1), σ2(2), ..., σ2(M)], R = diag[r(1), r(2), ..., r(M)].

The terminal condition (3.19) becomes

φ̃(T, s) = (s−K)+1̃ (4.2)
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where 1̃ = [1, 1, ..., 1]
′
. Let

φ̃(t, s) = eΛ(T−t)ψ̃(t, s) (4.3)

where

ψ̃(t, s) = [ψ(t, s, 1), ψ(t, s, 2), ..., ψ(t, s, M)]
′
.

Substituting (4.3) in (4.1) and simplifying we obtain

∂ψ̃(t, s)
∂t

+
1
2
s2Σ

∂2ψ̃(t, s)
∂s2

+ sR
∂ψ̃(t, s)

∂s
= Rψ̃(t, s). (4.4)

The terminal condition (4.2) becomes

ψ̃(T, s) = φ̃(T, s) = (s−K)+1̃. (4.5)

Now note that (4.4) is a system of M decoupled equations given by

∂ψ(t, s, i)
∂t

+
1
2
σ2(i)s2 ∂2ψ(t, s, i)

∂s2
+ sr(i)

∂ψ(t, s, i)
∂s

= r(i)ψ(t, s, i), i = 1, 2, ..., M. (4.6)

The terminal condition (4.5) can be written as

ψ(T, s, i) = (s−K)+, i = 1, 2, ...,M. (4.7)

For each i the equation (4.6) with the terminal condition (4.7) is a Black-Scholes PDE for the

European call option with parameters r(i), σ(i),K. Thus the solution of (4.6), (4.7) is given by [11]

ψ(t, s, i) = sΦ
( log s

K + (r(i) + 1
2σ2(i))(T − t)

σ(i)
√

(T − t)

)−Ke−r(i)(T−t)Φ
( log s

K + (r(i)− 1
2σ2(i))(T − t)

σ(i)
√

(T − t)

)

(4.8)

where as usual Φ(x) = 1√
(2π)

∫ x
−∞ e

−u2

2 du. Thus ψ(t, s, i) is the price of a European call option with

strike price K and terminal date T , where the interest rate is r(i) and the volatility is σ(i). We

now obtain φ̃(t, s) from ψ̃(t, s) using (4.3). Since Λ is a Q-Matrix, eΛt is a probability transition

matrix. Let

P (t) = [pij(t)] = eΛt. (4.9)

Then

pij(t) = P (Xt = j | X0 = i). (4.10)

Therefore from (4.3), (4.9) and (4.10) it follows that

φ(t, s, i) =
M∑

j=1

pij(T − t)ψ(t, s, j), i = 1, ..., M, (4.11)
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where ψ(t, s, j) is given in (4.8). Note that

pij(T − t) = P (XT−t = j | X0 = i) = P (XT = j | Xt = i).

Hence when the stock price St = s, and the regime Xt = i, the risk minimizing option price φ(t, s, i)

as given in (4.11) is the weighted average of the Black-Scholes prices in fixed regimes j = 1, 2, . . . ,M ,

with parameter r(j), σ(j),K and with weights pij(T − t) = P (XT = j | Xt = i).

We now compute the risk minimizing hedging strategy. Let

∆φ(t, s, i) =
∂φ(t, s, i)

∂s
, i = 1, 2, ..., M (4.12)

∆ψ(t, s, i) =
∂ψ(t, s, i)

∂s
, i = 1, 2, ..., M (4.13)

and

∆̃φ(t, s) = [∆φ(t, s, 1), ...,∆φ(t, s, M)]
′

(4.14)

∆̃ψ(t, s) = [∆ψ(t, s, 1), ...,∆ψ(t, s, M)]
′
. (4.15)

From (4.8) it follows that

∆ψ(t, s, i) = Φ
( log s

K + (r(i) + 1
2σ2(i))(T − t)

σ(i)
√

(T − t)

)
. (4.16)

Therefore from (4.3), (4.9) and (4.16) it follows that

∆φ(t, s, i) =
M∑

j=1

pij(T − t)Φ
( log s

K + (r(j) + 1
2σ2(j))(T − t)

σ(j)
√

(T − t)

)
. (4.17)

Thus if at time t, the stock price St = s and the regime Xt = i, then the risk minimizing hedging

strategy ξ∗t = ∆φ(t, s, i), as given in (4.17). Again we see that the risk minimizing hedging strategy

is a weighted average of the hedging strategy in fixed regimes j with the weight given by pij(T − t)

which is the probability of regime switching from i at time t to j at the terminal time T . We now

summarize these results in the following theorem.

Theorem 4.1 (i) The risk minimizing option price is a vector valued function given by

φ̃(t, s) = [φ(t, s, 1), ..., φ(t, s,M)]
′

where φ(t, s, i) is the risk minimizing option price when the stock price St = s and the regime

Xt = i. This option price is a weighted average of the Black-Scholes option prices in fixed regimes;

which is given explicitly in (4.11).
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(ii) The risk minimizing hedging strategy is given by ∆̃(t, s) = [∆φ(t, s, 1), ...,∆φ(t, s, M)]
′
, where

∆φ(t, s, i) is the hedging strategy at t when St = s, Xt = i (more precisely Xt− = i, so that the

strategy is predictable); ∆φ(t, s, i) is the weighted average of the Black-Scholes hedging strategies

in fixed regimes i. This strategy is given explicitly in (4.17).

Some comments are in order.

REMARK 4.1 (i) Since option price in a regime switching model has already been studied in

the literature, it necessitates a comparison of our present work with the existing literature on this

problem. We have addressed the risk minimizing option price in the framework of Föllmer and

Schweizer [5]. To our knowledge this has not been done before. DiMasi et al [3] have studied the

problem in the mean-variance set up. Guo [7] has addressed the problem by completing the market

using a new security related to the cost of switching. The option price in [7] differs fundamentally

from ours. Note that in [7] the option price formula depends on the drift parameters of the stock

price whereas our option price formula has no explicit dependence on the drift process. The ∆-

hedging and other Greeks are not addressed in [7], or for that matter in any paper in the existing

literature. In [2], [10], the entire dynamics is described under a risk neutral measure. In particular

in [2] the drift µ(Xt) of the stock process {St} is different from the instantaneous interest r(Xt)

whereas in [10], it is assumed that µ(Xt) = r(Xt). Thus the option price formula in [2] has explicit

dependence on µ whereas the option price formula in [10] is the same as that of ours. There is,

however, a major difference in the interpretation of the option price formula in [10] and our option

pricing formula (4.11). Our option pricing formula is valid under the real world market probability

P, whereas the formula in [10] holds in an ideal risk neutral world. As a consequence, in our model

the parameters λij , σ(i), r(i) etc. can be directly estimated from the market data, whereas the same

quantities in [10] have to be estimated using specific risk neutral instruments such as federal bonds,

treasury bills etc. To be more specific the σ(Xt) in our model is the volatility of St as observed

in the stock market whereas in [10] σ(Xt) is the implied volatility. The same holds for all other

parameters.

(ii) We can derive explicit expression of other greeks like gamma and theta. One can show that

gamma retains the same characteristic as delta, but the nature of theta changes in the market

modulated market.
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5 Conclusions

We have studied the risk minimizing option price in the framework of Föllmer and Schweizer [5].

For our model we have obtained explicit expressions for the risk minimizing option pricing and the

corresponding hedging strategy. Our method can be generalized to multi-dimensional case where

there are n stocks which are correlated.
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