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Abstract  
 

The ability of the Black-Scholes (BS) model and its variants to produce reasonable fair 

values for options has proven itself for the more than thirty years of its existence. Despite 

usefulness of BS type models, significant discrepancies remain between the real market 

prices of options and the ir theoretical fair values arrived at by using them. This paper 

investigated the pricing accuracy of a hybrid model, developed by combining the BS 

model and Artificial Neural Networks (ANNs), for estimating the fair value of options. 

The relative pricing accuracy of BS model and hybrid model was tested for the options 

traded at National Stock Exchange of India Ltd., a leading stock exchange in India. The 

hybrid model was found to outperform BS model on various quantitative parameters viz., 

mean deviation; mean absolute deviation; mean proportionate deviation; mean squared 

deviation. Therefore, it is concluded that ANNs can be trained to learn the nonlinear 

relationship underlying the BS model and hence provide better estimates of fair value of 

options. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

The Black-Scholes (BS) model and its variants postulate that option price is a function of 

five variables: value of the underlying asset, standard deviation of its expected returns, 

exercise price of the option, time until the maturity of the option, and interest rate on the 

default -free bond. The relationship between option price and the five variables is a 

complex nonlinear one. Although the BS type models rely on several highly questionable 

assumptions, yet the significant discrepancies remain between the real market prices of 

options and their estimated fair values arrived at by using them. Due to the above 

weaknesses of BS type models, attempts have been made to work out the alternative 

better techniques for option valuation. 

 

The use of Artificial Neural Networks (ANNs) in finance is a recent phenomenon. An 

ANN is a computational technique inspired by studies of the brain and nervous system. It 

is an information-processing system designed to mimic the ability of the human brain to 

comprehend relationships and patterns. They have been found to perform well in a 

number of applications in which linear models fail to perform well. Specially, when it 

comes to forecasting financial market variables characterized by non-stationarity, neural 

networks incorporating nonlinear regression models have a distinct edge. Given that 

ANNs have been shown to learn complex relationships, several studies have looked at the 

ability of the neural networks to learn Black-Scholes type model (Hutchinson et al., 1995; 

Carverhill and Cheuk, 2003; Hamid and Habib, 2005 etc.).  

 

This study extends the above literature and uses a hybrid model for option pricing 

developed by combining the BS model and ANNs. The relative pricing accuracy of 

hybrid model and BS model was examined for the options traded at National Stock 

Exchange (NSE) of India Ltd., a leading stock exchange in India2. It was found that the 

hybrid model provide better estimates of fair value of options than the BS model. 

                                                 
2 The NSE introduced options on its index, S&P CNX Nifty, on June 4, 2001.The index is well diversified 
50 stock index accounting for 23 sectors of the Indian economy. The NSE accounts for more than 97% of 
the derivatives trading in India. The total number of trades in ‘the index options’ have risen fast and have 
surpassed the trades in ‘cash markets’, though it is still to reach the volumes of the other international 
exchanges. 



The present study extends the prior literature on option pricing via ANNs in the following 

ways. First, none of the existing studies have tested the efficacy of ANNs to estimate the 

pricing of option traded on the Indian stock exchanges3. Second, most existing studies, 

take the input variables for ANNs in their native form. Instead, in this  study, transformed 

variables are fed into the hybrid network. Third, BS model in its native form does not 

allow for dividends on American options. This paper would allow for dividends in the 

model.  

 

The remaining of this paper is organized as follows. The next section summarizes the 

existing literature existing on this topic. Section 3 describes relevant theoretical overview 

about BS model and ANNs. Section 4 provides a description about data and data sources. 

Section 5 explains how the models were fitted to the data. Finally results and conclusions 

are presented respectively in Sections 6 and 7. 

2. Literature Review4 
 
The numerous studies have examined the relative performance of ANNs in pricing equity 

options in the USA, the UK, Australia, Brazil, France, Germany, Japan and Sweden.  

Bennell and Sutcliffe (2004) provide a comprehensive review of most studies done prior 

to their own studies.  

 

USA Hutchinson et al. (1995) and Geigle and Aronson (1999) examined the performance 

of ANNs in pricing American-style options on S&P500 futures, and found they were 

superior to Black–Scholes. Similarly, Qi and Maddala (1996) compared the performance 

of an ANN in pricing European-style call options on the S&P500 index with that of 

Black–Scholes and concluded that the ANN was superior.  

                                                 
3 The only documented study found on efficiency of option pricing models in the Indian context was by 
Rao, Yadav, Bansal and Jain (2004). They compared pricing efficiency of Black-Scholes, GARCH, and 
Closed-form GARCH Models in the case of S&P CNX Nifty Options. They found that there is error in the 
option prices predicted by all the three models. But the GARCH models considerably outperforms Black-
Scholes model. 
 
4 Presentation of this section is adapted from and is quite similar to the literature review section of Bennell 
and  Sutcliffe (2004). 



A similar conclusion was reached by Garcia and Gençay (1998, 2000), Gençay and Qi 

(2001), Gençay and Salih (2001), Ghaziri et al. (2000), Liu (1996)  and Saito and Jun 

(2000). Dugas et al. (2002) found that constraining the ANN produced better prices for 

European-style call options on the S&P500 index than those by an unconstrained ANN. 

 

Malliaris and Salchenberger (1993) compared the performance of the Black–Scholes 

model and an ANN in pricing American-style S&P100 call options. They found that 

Black–Scholes was preferable for in-the-money options, whereas the ANN performed 

better for out-of-the-money options. 

 

Kitamura and Ebisuda (1998) found that the performance of an ANN in pricing 

American-style S&P100 call options was poor. However, as well as a very small sample, 

this result may be due to the use of only two inputs to the ANN.  

 

Kelly (1994) priced American-style put options on four US firms using an ANN and the 

binomial option pricing model. He found that the ANN was clearly more accurate than 

the binomial model. 

 

UK. Niranjan (1996) used daily data from February to December 1994 for call and put 

FTSE 100 options. He compared the pricing errors for an ANN and Black–Scholes, and 

for a sample of 100 days found no clear dominance in pricing accuracy. Using the 

Niranjan (1996) data, De Freitas et al. (2000) applied ANNs and Black–Scholes to price 

FTSE 100 call and put options, and found that all the ANNs considered were superior to 

the Black–Scholes model. 

 

Healy et al. (2002) used closing prices for FTSE 100 call options for 1992–1997 and 

found that their ANN fitted the data well (there was no direct comparison with the Black–

Scholes prices). 

 



Bennell and Sutcliffe (2004) compared the performance of Black–Scholes with an ANN 

in pricing European-style call options on the FTSE 100 index. They allowed for 

dividends in the closed-form model. For out-of-the-money options, the ANN was clearly 

found to be superior to Black–Scholes. For in-the-money options, if the sample space is 

restricted by excluding deep in-the-money and long maturity options, then the 

performance of the ANN is comparable to that of Black–Scholes.  

 

Australia, Brazil, France, Germany, Japan and Sweden. Lajbcygier et al. (1996a,b) 

compared three ANNs with three closed-form models (Black–Scholes, Barone-Adesi and 

Whaley and modified Black) in pricing American-style call options on Australian Share 

Price Index futures. They concluded that the ANNs were inferior to the theory-based 

models; however, for observations that were near-the-money for short-maturity options, 

the ANNs were superior.  

 

Lachtermacher and Rodrigues Gaspar (1996) used ANNs to price options on the shares of 

the Brazilian company Telebrás, and found the ANNs were superior to Black–Scholes. 

De Winne et al. (2001) employed an ANN to price options on French CAC 40 index 

options, which are American style. They compared their ANN with the binomial model 

when both models used dividends, and found that their ANN was almost as good as the 

binomial model.  

 

Anders et al. (1998) used data on European-style DAX call options and discovered that 

the ANN was superior to Black–Scholes, as did Ormoneit (1999) and Krause (1996). 

Herrmann and Narr (1997) studied both call and put options on the DAX (both European 

style), and found that all four ANNs outperformed Black–Scholes. Hanke (1999) applied 

ANNs and the Black–Scholes model to European-style call options on the DAX index. 

After optimizing the volatility and interest rate data to suit the Black–Scholes model, the 

ANN was less accurate than Black– Scholes.  

 



Yao et al. (2000) used ANNs to price call options on Nikkei 225 futures, which are 

American style, and found they outperformed Black–Scholes. Amilon (2001) compared 

the performance of an ANN with Black–Scholes in pricing European-style call options on 

the OMX index. He controlled for dividends by omitting data for the 2 months when 

shares go ex-dividend in Sweden. For both historical and implied volatilities, the ANN 

was generally superior. 

 

These papers support the view that ANNs are capable of outperforming well-regarded 

closed-form models in pricing call options. Futures contracts do not pay dividends, and 

so this complication was absent from the studies by Geigle and Aronson (1999), 

Hutchinson et al. (1994), Lajbcygier et al. (1996) and Yao et al. (2000). However, 

American-style options on a futures contract may be exercised early, as may warrants, 

and so being American style may be valuable. Since Black– Scholes is only appropriate 

for pricing European-style options, the outperformance of Black–Scholes by the ANN 

found by Geigle and Aronson (1999), Ghaziri et al. (2000), Hutchinson et al. (1994), 

Lajbcygier et al. (1996a,b), Malliaris and Salchenberger (1993a,b) and Yao et al. (2000) 

may be due to the omission of the early exercise option from the theory-based valuation 

model. 

 

While many studies have considered options on an underlying asset that pays dividends, 

the theory-based option pricing models used were often not adjusted to incorporate 

dividends. This will have biased the theory-based models, leading them to overprice call 

options and underprice put  options. Although the ANNs in these studies were usually not 

supplied with dividend information, they need not have been biased by the omission of 

dividends to the same extent as the theory-based models. 

 



Besides pricing exchange-traded equity options, ANNs have also been applied to other 

options. Hanke (1997) used simulated data to investigate the performance of ANNs in 

pricing Asian-style call options, and White (1998, 2000) used real and simulated data for 

European-style call and put options on Eurodollar futures. Raberto et al. (2000) used an 

ANN to price options on German treasury bonds (Bunds), and Karaali et al. (1997) used 

an ANN to price options on an index of the  volatility of the $–DM exchange rate. Taudes 

et al. (1998) considered using ANNs to value real options, and Carelli et al. (2000) 

applied ANNs to pricing $–DM forex call and put options. ANNs have also been 

proposed for pricing European-style contingent claims with state-dependent volatility 

(Barucci et al. , 1996, 1997). Provided they are traded on competitive markets for which a 

price history is available, ANNs have the potential to price a very wide  range of financial 

securities. 

3. Theoretical Overview5 

3.1. Black–Scholes 

The Black–Scholes call prices were computed using the standard formula, but with the 

Merton (1973) adjustment for dividends: 

 
M = S e- Dt is the Merton adjustment for dividends, S is the current share price, K is the 

exercise (or strike) price, r is the annual risk-free rate of interest on a continuously 

compounded basis (e.g. 0.06), t is the time to expiry in years (e.g. 0.25), s is the standard 

deviation of the share’s continuously compounded annual rate of return (e.g. 0.30), D is 

the annual dividend rate (e.g. 0.05), and N(d) is the probability that a standardized 

normally distributed random variable will be less than or equal to d. 

 

                                                 
5 Parts of this section are adapted from Hamid and Habib (2005) and Bennell and  Sutcliffe (2004). 



3.2. Artificial Neural Networks  

A number of different approaches are classified as members of the ANN family. Our 

investigation concentrates on the multilayer perceptron (MLP). This is one of the most 

popular approaches and has been used in the majority of applications to options pricing 

(e.g. Lajbcygier and Connor, 1997a,b; Anders et al., 1998; White, 1998). It has also been 

applied successfully to a range of difficult and diverse problems (Brockett et al., 1997; 

OhnoMachado and Rowland, 1999). Further, Hornik et al. (1989, 1990) demonstrated 

that multilayer feedforward networks are able to approximate a large class of functions 

and their derivatives accurately with a single hidden layer. A further advantage of 

feedforward networks is their ability to deal with missing or spurious data. 

 

MLPs consist of connected layers of processing elements, called neurons that pass 

information through the network by weighted connections. The input variables are 

presented to the input layer of processing elements, which sends a signal that propagates 

through the network layer by layer. 

 

A neural network has (a) processing elements, (b) connections between the elements, (c) 

weights associated with the connections, (d) activation function.  

 

A neural network can have a large number of processing elements called neurons or 

nodes or cells or units in which information processing takes place. In its simplest form, 

these neurons are arranged in two layers. The first layer is the input layer -- it takes in 

inputs to be processed. There will be as many neurons in the input layer as there are input 

categories. The second layer is the output layer. It will have as many neurons as there are 

output categories. To process complex problems, the network can have one or more 

intermediate layers called hidden layers -- so called, because they are essentially hidden 

from the access of users. The optimal size for the number of layers and neurons per layer 

is a matter of experimentation. But one hidden layer can essentially map any nonlinear 

function. The optimal number of neurons in the hidden layer will probably be from one-

half to two times the number of neurons in the input layer.  

 



Each neuron has an activation (also called "transfer" or "squashing") function which is 

applied to the input to determine the output from that neuron. The inputs that a neuron 

receives from other neurons are summed up and then passed through its transfer function 

to get the output from that neuron. This function tries to find a relationship between the 

input variables on one hand and the desired output on the other. The most commonly 

used transfer functions are the sigmoid, variations of sigmoid, the hyperbolic tangent, and 

the Gaussian. Thus, a transfer function describes the behavior of a neuron in a neural 

network. For nonlinear modeling, a transfer function should be nonlinear and 

continuously differentiable. 

 

In order for the ANN to learn, data on the possible factors influencing the phenomena is 

required. In the case of option pricing, these factors may be chosen from the inputs 

required by a corresponding theory-based option pricing model. An ANN does not rely 

on assumptions concerning the price process of the underlying asset (e.g. constant-

volatility geometric Brownian motion), nor does it depend on the specification of theory 

that connects the price of the underlying asset to the price of the option. Therefore, the 

strength of ANNs lies in modeling those relationships between the input and output 

variables that may be complex and difficult to capture in a convenient mathematical 

formulation. 

 

Finally, ANNs are flexible and can be used to generate pricing models for a wide variety 

of options, including options that are difficult to price using the conventional theory-

based approach. 

 

The network learns by comparing the resulting output with the desired output and then 

applying an adjustment to the network weights in accordance with an error correction 

rule. This is called error back-propagation and is commonly based on the least mean 

square algorithm. 

 



In order to construct an MLP, various decisions must be made. These are: the number of 

hidden layers, the number of processing elements in the hidden layer(s), the learning rate 

and momentum, the set of input variables and the sample period. In addition, 

preprocessing the inputs before presenting them to the network can reduce the learning 

required of the network. For example, the ratio of two inputs may be more important in 

determining an outcome than each input individually. In which case, it is beneficial to 

generate a new input by dividing these inputs in the preprocessing phase. All the above 

decisions are key to the success of the MLP. 

 

4. Data and Data Sources 
 
The analysis used data on options traded on NSE over the period from 1 November 2005 

to 25 January 2007. Only index options on S&P CNX Nifty index were considered. Stock 

options are American in nature, whereas Black-Scholes is designed to price only 

European options correctly. The analysis required ANN to be trained separately on call 

and put options. 

 

The Black–Scholes model requires values for six parameters: spot price, strike price, 

maturity, risk-less interest rate, dividend rate and volatility. The daily closing values of 

the S&P CNX Nifty index were taken from NSE’s archives sections, the strike price for 

each observation was adjusted for dividends and stock splits, and the maturity of each 

observation (in days) was computed using the date of the observation and the expiry 

month of the option. As the sample data had an average maturity of 70 days, the 

annualized risk-less interest rate was measured using the 3 month Treasury bill rate. The 

daily volatilities were taken as historical volatilities over a period of last one year. This 

was then annualized before being put into the Black Scholes formula. 

 



5. Methodology 
 
Hybrid Model 

The basis of the hybrid approach to the problem is in using the Black-Scholes model as a 

base, and allowing the neural network to augment its performance. This can be illustrated 

as follows: 

 

The project aims to train a hybrid neural network to predict option pricing and then test 

its validity. The hybrid model combines the Black-Scholes model and ANNs. 

 

The Black-Scholes model for option pricing has become a de facto standard in the 

finance industry for a variety of options. The ability of the model to produce reasonable 

fair values for options has proven itself for the more than thirty years that it has existed. 

Despite its usefulness, there appear to remain discrepancies between the real market 

values and the values that a Black-Scholes model would produce. Some scholars have 

proposed a simple function approximation approach through the use of ANNs, where the 

network is trained to learn option price data, and it is shown that the neural network 

approach can achieve comparable performance to (and sometimes better than) the Black-

Scholes model.  

 

The basis of the hybrid approach to the problem is in using the Black-Scholes model as a 

base, and allowing the neural network to augment its performance. This can be illustrated 

as follows: 

 
  

Neural 
Network 

Black 
Scholes 

+ - S/X 
T-t 
: 
s  

C/X 

+ - 



Where S is the value of the underlying asset and C is the value of the call option on the 

underlying asset, r is the risk free rate to the time of the expiration of the option, s  is the 

standard deviation of the instantaneous rate of return on the underlying asset (S), X is the 

strike price of the option and T-t is the time to expiry. 

 

The values of S, X, T-t and C are obtained from past market option information, and the 

interest rate and volatility can be estimated or approximated as desired. Essentially, the 

network has S/X, T-t, the interest rate and the volatility presented as inputs, and the 

difference between the Black-Scholes model and the C/X value taken from the real data 

presented as targets. The network is thus trained to produce an appropriate deviation from 

the Black-Scholes according to the input parameters as shown in the figure above. 

Therefore, when the system is used for pricing, the difference between the Black-Scholes 

and the network output should produce the appropriate estimated C/X value. The network 

is shown in the figure below. 

 
 

To estimate the volatility we will use the annualised sample standard deviation of the 

daily returns of the contract. 

i.e.  s  = sv252 

where s is the sample standard deviation of the daily returns of the contract. 

 

The data used will be options traded in S&P CNX Nifty index (alternately, other 

exchange traded index options depending on the availability of the data can be used). 
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The above model is developed using SAS enterprise miner. Following is the process 

model designed to model the option prices: 

Figure1: Process flow diagram in SAS Enterprise miner 

 

 

The results of the hybrid model are compared with the Black-Scholes model and using 

neural networks alone to test the accuracy of the model and its robustness. The statistical 

measures for checking the accuracy can be R2 and NRMSE  

 
Performance Measurement 

As there is no agreement on the appropriate loss function, a single generally accepted 

measure of the pricing accuracy of Black–Scholes and the MLP in generating the actual 

call prices is not available. Therefore, five alternative summary measures of performance 

were used: (a) squared correlation between the actual and computed prices (R2); (b) mean 

deviation (MD); (c) mean absolute deviation (MAD); (d) mean proportionate deviation 

(MPD); (e) mean squared deviation (MSD) 

 



 

The measures used were defined as follow: 

 
 

where x is the actual value of the dependent variable (e.g. C/K), y is the estimated value 

of the dependent variable, and n is the number of observations. 

 

The R2 measure is a measure of the correlation between the two variables, and hence will 

represent a closeness of variation of the actual and estimated values. This is useful in 

verifying the closeness of the relationship between the two variables, but not really the 

absolute closeness of fit. For this problem, however, it is important that the results be 

close to the actual data in an absolute sense, something which the NRMSE is more suited 

to. It measures the root mean square error, and normalizes it to make it independent to 

scaling effects. 



6. Results 

 The entire data set was divided into three parts: 

• Training: 40% 

• Validation: 30% 

• Test: 30% 

Training part of the data is used by the SAS package to optimize the neural network. It 

decides on the number of hidden layers, as well as the number of processing elements 

(PEs) in each layer. 

This is followed by the validation stage, whereby the weights assigned in the neural 

network are checked on the new data set. Tweaking of parameters is done to optimize on 

the expected output matching with the actual output. 

Finally the model is run on the test data set, to gauge its performance in terms of handling 

new data.  

 
Figure 2: Finding the optimal neural network 



On analyzing the data we found that homogeneity hint clearly improves on the MLP’s 

performance relative to when S and K are used as separate inputs. This preprocessing of 

the data is based on the result from finance theory that S and K can be combined into the 

variable S/K, which is moneyness. The results presented are typical of all experiments 

run, with respect to the use of the homogeneity hint. 

They also accord with previous studies by other researchers who have used the 

homogeneity hint and moneyness. The use of moneyness (not S and K) as an input 

variable, and C/K (not C) as the output variable, is the key to ANNs outperforming 

Black–Scholes. 

Table I. In the money European Style Index options 

 MD MAD MPD R2 MSD 

Black Scholes  
26.218645 

 

28.60300998 

 

0.177490174 

 

12.1158052 

 

1246.214139 

 

Hybrid model 
0.5963087 

 

9.602887973 

 

0.000466767 

 

9.0978350 

 

202.6400226 

 

 

Table II. Out of money European Style Index options 

 MD MAD MPD R2 MSD 

Black Scholes  
17.4529 
 

26.52849 
 

0.469645 
 

4.7214054 
 

1242.339 
 

Hybrid model 
1.009369 
 

10.36371 
 

0.379611 
 

4.5735771 
 

193.7271 
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Figure3. Scatter plot of the deviation of the Black- Scholes price from the actual closing 
price versus moneyness for in the money options 
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Figure4. Scatter plot of the deviation of the hybrid model price from the actual closing 
price versus moneyness for in the money options 
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Figure5. Scatter plot of the deviation of the Black- Scholes price from the actual closing 
price versus moneyness for out of money options 
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Figure6. Scatter plot of the deviation of the hybrid model price from the actual closing 
price versus moneyness for out of money options 
 

 



From the above results, we can infer that our hybrid model outperforms the conventional 

Black Scholes model in four of the five parameters considered comfortably, both for in-

the-money and out-of-the-money options. The only parameter where performance of 

Black Scholes is better compared to the hybrid model is in the case of R2. 

7. Conclusions 
 

This paper compared the pricing accuracy of BS model and hybrid ANN model as tools 

for pricing options. In order to evaluate the performance of this approach, European-style 

equity index options viz., S&P CNX Nifty index options were selected as a case study. 

For both in-the-money and out-of the-money options, the hybrid ANN model is clearly 

superior to BS model. It is found that the use of the homogeneity hint and moneyness is 

of key importance to outperforming Black–Scholes. Using the Black-Scholes to represent  

part of the complexity of the actual data, the neural network is freed to learn that part of 

the real system that cannot be otherwise efficiently represented by conventional models. 

This hybrid approach is shown to improve the overall pricing performance markedly. 

 

Thus it is concluded that the ANN approach is generally superior to Black–Scholes in 

pricing S&P CNX Nifty index call options. The approach presented here has successfully 

learnt the differences between the actual market determined call prices, and theoretically 

estimated Black-Scholes call price values. The out-of-sample performance indicates that 

these differences are not noise, but can be attributed to some systematic deviation. It is  

possible that these deviations come from a breakdown in the assumptions made in the 

derivation of the Black-Scholes model. For example, Black and Scholes assumed that the 

interest rate and volatility were constant over the life of the option. This is evidently not 

the case, and the Black Scholes model itself is given these varying values as inputs while 

calculating the estimated values. The neural network, taking these two parameters as 

inputs makes no such assumptions  and is thus better equipped to incorporate their effects. 

Geometric Brownian motion in the underlying is another assumption which has been 

shown to be untrue 
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