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Abstract 

Substantial progress has been made in developing more realistic option pricing 
models for S&P 500 index (SPX) options. Empirically, however, it is not known 
whether any by how much each generalization of SPX price dynamics improves VIX 
option pricing. This paper fills this gap by first deriving a VIX option model that 
allows simultaneous correlated and state-dependent jumps in stochastic volatility and 
SPX returns. Using both VIX options and VIX futures, this paper examines several 
alternative models from three perspectives: internal consistency of parameters with 
relevant time-series data, and out-of-sample pricing. Overall, incorporating stochastic 
volatility, price jumps and state-dependent correlated volatility jumps are important 
for pricing and internal consistency. 
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1. Introduction 

In contrast to the implied volatility extracted from an option pricing model,1 

the VIX (volatility index) uses a model-free formula to derive expected volatility 

directly from the prices of a weighted strip of S&P 500 index (SPX) options over a 

wide range of strike prices, which incorporates information from the volatility skew. 

This VIX calculation supplies a script for replicating the VIX squared with a static 

portfolio of SPX options. This critical fact lays the foundation for tradable products 

based on the VIX, facilitating hedging and arbitrage of VIX derivatives. 

The Chicago Board Options Exchange (CBOE) launched VIX futures on March 

26, 2004 and VIX options on February 24, 2006. These were the first of an entire 

family of volatility products traded in exchanges. VIX futures (VIX options) are the 

futures (options) contracts on forward 30-day implied volatility. The current prices of 

both VIX futures and VIX options consequently reflect the market’s expectation of the 

VIX level at expiration.2 As a result of expectation VIX futures prices can swing 

from a premium to a discount to spot VIX, but converge to spot VIX at expiration. 

Hence, the current VIX futures price, rather than the spot VIX itself, is the underlying 

price of VIX options.3  

Although the construction of VIX squared is model-free, the simple formula for 

the fair value of VIX futures given in the CBOE website is model-dependent. It 

involves the variance of the VIX futures price from current time to its expiry. Hence, 

this study examines the effect using alternate variance models to calculate the fair 

                                                 
1 The idea of developing a volatility index was first suggested by Brenner and Galai (1989). In a 
follow-up paper, Brenner and Galai (1993) have introduced a volatility index based on implied 
volatilities from at-the-money options. The same idea is also described in Whaley (1993). 
2 The forward view offered by volatility implied by the market prices of VIX futures or VIX options is 
often regarded as bona fide investor fear gauge (Whaley, 2000). 
3 For example, on May 19, 2006 that was 98 days to the expiry of both VIX AUG Options and VIX 
AUG Futures, the spot VIX index was trading at 12.8 while VIX AUG Futures was 156.0 or 15.6 for 
comparison. The price for VIX AUG 15 Call was by 1.65 while VIX AUG 15 Put was traded at 1.10. 
This is the consequence that VIX options pricing is based on VIX futures rather than the spot VIX. 
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market value of VIX futures and thus the theoretical value of VIX options. In 

particular, the derivation for the theoretical VIX futures price and VIX option price is 

based on affine stochastic-volatility models with simultaneous jumps both in the asset 

price and variance processes. To the best of the author’s knowledge, this process is 

one of the most general specifications for the SPX price in the literature (see Andersen, 

Benzoni, & Lund, 2002; Alizadeh, Brandt, & Diebuld, 2002; Duffie, Pan, & Singleton, 

2000; Eraker, Johannes, & Polson, 2003; Eraker, 2004). For comparison, its nested 

models are also taken into account. The VIX futures formulas considered here are 

exactly the same as the one given in the CBOE website. The proof also answers the 

question of why this study uses a stochastic-volatility model as a benchmark for VIX 

futures pricing given that the CBOE uses a simple model.4 

The literature on the price behavior of VIX spot and futures markets is growing 

fast. Carr and Wu (2006) present that the price of the VIX futures stays within a lower 

bound and an upper bound. The lower bound is the forward volatility swap rate and 

the upper bound is the forward variance swap rate. Dupire (2006) derives the 

concavity adjustment, which needs to be subtracted from the price of forward variance 

to arrive at the fair value of VIX futures. Zhang and Zhu (2006) posit a stochastic 

variance model of VIX time evolution and develop a numerical expression for the 

VIX futures price. Zhu and Zhang (2007) value VIX futures based on the term 

structure of forward variance. Dotsis, Psychoyios, and skiadopoulos (2007) 

empirically compare continuous-time models for implied volatility indices and point 

out the importance of the jump and mean reversion.  

The literature on the developments in volatility options has emerged after 1987 

crash. Brenner and Galai (1989, 1993) first suggested options written on a volatility 

                                                 
4 See “Additional Features of VIX Futures” at http://cfe.cboe.com/education/vixprimer/Features.aspx. 
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index. Various models to price volatility options written on the instantaneous volatility 

have also been developed (see Detemple & Osakwe, 2000; Grünbichler & Longstaff, 

1996; Whaley, 1993). These models differ in the specification of the assumed 

stochastic process, and the assumptions made about the volatility risk premium. For 

the volatilities depending only on the instantaneous variance, any options can be 

hedged perfectly with a combination of any other option plus stock. The volatility 

skew, appropriately defined, is thus constant. The hedging effectiveness of those 

volatility options compared to that of plain-vanilla options has been studied by 

Psychoyios and Skiadopoulos (2006). Which dynamics are consistent with market 

prices? From historical developments in volatility derivatives pricing, the prior studies 

attempt to add factors other than one-factor stochastic volatility models. From 

Principle Component Analysis (PCA) of volatility surface time series (Jarrow, 2002), 

there are at least three important sources of fluctuation: level, term structure, and skew. 

It makes sense to add at least one more factor. Variance curves are more realistic in 

the two-factor case. For example, they can have humps. Historical attempts to add 

factors include Dupire’s (1996) unified theory of local volatility; Derman et al.’s 

(1998) stochastic implied volatility which has, under diffusion, complex no-arbitrage 

condition, and is thus impossible to work with in practice; and variance curve models 

(Dupire, 1993; Bergomi, 2005; Balland, 2006; Buehler, 2006) that assume variances 

are tradable and allow for simple no-arbitrage condition. Rather than directly 

modeling volatility dynamics, this study reconciles the growing literature of SPX 

price processes to investigate how much each generalization of the SPX price 

dynamics improves VIX option pricing and hedging. 

Since VIX futures and VIX options are tradable, and VIX futures prices are 

martingales under the risk-neutral measure, this study imposes consistent dynamics on 
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forward VIX as a result of SPX price processes. This study evaluates the VIX options 

from four classes of the SPX price dynamics. The first class (SV model) consists of 

Heston’s (1993) model with volatility parameterized as in Cox, Ingersoll, and Ross 

(1985). This class of models has the advantages of non-negative variance and 

capturing level-dependent volatility. The second class (SVJ model) consists of Bates 

(1996) and the Bakshi, Cao, and Chen (1997) models with asset returns containing 

price jumps. The third class (SVCJ model) indicates Duffie et al.’s (2000) model with 

correlated jumps both in the SPX return and volatility. The fourth class (SVSCJ model) 

extends the mean intensity of the jump frequency to be state-dependent as in Eraker 

(2004). Duffie et al. (2000) and Eraker (2004) illustrate that the SVSCJ model 

generalizes the models of SV model, SVJ model, and SVCJ model for the dynamics 

of the SPX price. It should be emphasized, however, that the main motivation here is 

to study how such underlying processes are applied to model forward VIX and thus 

the valuation of the VIX futures and VIX options. This study then demonstrates that 

the resultant formula for the prices of VIX futures and VIX options based on the 

SVSCJ model collapses to the ones under the SVCJ, SVJ, and SV models, 

respectively. 

This study uses the most recent one-month joint VIX futures and VIX options 

to investigate the option pricing performance of the SV, SVJ, SVCJ and SVSCJ 

models. The whole sample period covers February 26, 2006 to November 30, 2007. 

The resultant parameter estimates are then adopted to investigate models’ internal 

consistency and out-of-sample pricing. These two yardsticks judge the alternative 

models from different perspectives. First, the reasoning of the consistency test 

adopted by Bates (1996) and Bakshi et al. (1997) is that if an option model is correctly 

specified, its structural parameters implied by option prices will necessarily be 
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consistent with those implicit in the observed time-series data. Second, out-of-sample 

pricing errors give a direct measure of model misspecification. In particular, while a 

more complex model will generally lead to better in-sample fit, it will not necessarily 

perform better out of sample as any overfitting may be penalized. Our results show 

that complex jump specifications add explanatory power in fitting options. But, 

incorporating price jumps mainly improves short-term out-of-sample pricing fits, 

whereas allowing for volatility jumps fares better in fitting the medium- and 

long-dated VIX options.  

The rest of the paper is organized as follows: In the next section, we present the 

general model for the index price dynamics as formulated in Duffie et al. (2000) and 

Eraker (2004), and discuss implications for VIX option pricing. Section 3 presents the 

data. Section 4 discusses the econometric design and evaluates the in-sample fit of 

each model. Section 5 assesses the extent of each model’s misspecification, including 

out-of-sample pricing results. Concluding remarks are offered in Section 6. Proof of 

pricing equations and most formulas are provided in the Appendix. 

       

2. Models and Pricing 

The stochastic volatility model accompanied with state-dependent and 

correlated jumps in both asset returns and volatility (denoted as SVSCJ) is the most 

general process in the equity derivatives literature (Eraker, 2004). This study first 

extends model-free implied volatility of Britten-Jones and Neuberger (2000) and 

Jiang and Tian (2005) to the asset price process under the SVSCJ specification. We 

then demonstrate that the VIX formula is still valid when the underlying asset price 

process includes volatility jumps. The second is to price all VIX futures of various 

maturities using the martingale pricing theory. The third is to price VIX options taking 
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as given the market prices of the VIX futures. Overall, our methodology imposes 

stochastic structure directly on the evolution of the SPX price. It has a closed-form 

solution to the VIX options built on the resultant forward VIX term structure.  

 

2.1 The S&P 500 Price Process 

Although the construction of VIX is model-free, the fair values of VIX futures 

and VIX options are model-dependent. Different dynamics for the index price result 

in various expressions for VIX and thus different theoretical formulas for the VIX 

futures (Lin, 2007) and VIX option prices. A number of earlier studies (see Bates, 

1996; Bakshi et al., 1997; Andersen et al., 2002; Chernov, Ghysels, Gallant, & 

Tauchen, 2003) point out the importance of stochastic volatility and price jumps to 

equity price models. Andersen, Bollerslev, Diebuld, and Ebens (2001), Alizadeh et al. 

(2002), and Eraker et al. (2003) further find the presence of an additional, rapidly 

moving factor driving conditional volatility, which, unlike jumps in returns, has a 

persistent component. Jumps in volatility provide such a factor. Together, this 

suggests a strong evidence for volatility driven by the diffusive and jump components. 

Jump models, however, typically specify jumps to arrive with constant intensity. This 

assumption poses problems in explaining the tendency of large movements to cluster 

over time. Bates (2000), Pan (2002), and Eraker (2004) use a linear specification 

tνλλ 10 + , for instantaneous variance ν  and some nonnegative constants 0λ  and 1λ , 
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of jump-arrival intensity to allow jumps to arrive more frequently in high-volatility 

regimes. The stochastic-volatility model with state-dependent and correlated jumps, 

both in the asset price and variance (SVSCJ model), is the most general process for 

the SPX price considered in this study.  

Under the SVSCJ, there exists a forward measure F such that the forward asset 

price, denoted as ),(/)( TtBSTF tt = , is a martingale where St is the spot index price 

minus the present value of all expected future dividends to be paid prior to the option 

maturity, and ),( TtB  is time-t price of a zero-coupon bond that pays $1 at time T . 

Note that the forward measure F is equivalent to the risk-neutral measure Q when 

interest rates are deterministic, which is the assumption of this study. 

dtdNJd
TF
TdF

ttttSt
t

t   
)(
)(

, κλων −+=  (1) 

ttttt dNzddtd ννννν ωνσνθκν ++−= , )(  (2) 

where 1)exp( −= St zJ  is the percentage price jump size with mean κ . Satisfying 

the no-arbitrage condition, 1)1/()2/exp( 2 −−+= νμρσμκ jjj . tS ,ω  and t,νω  are 

correlated Brownian motions with ),(corr ,, ttS dddt νωωρ = . They are independent of 

the compound Poisson processes tSdNz  and tdNzν . The instantaneous variance ν  

follows a mean-reverting square-root process with exponentially-distributed jump size 

νz  that is correlated to price jump size Sz  by νρμ zz jjS += . Formally, jumps in 

volatility are assumed to have an exponential distribution, i.e., )exp(~ νν μz , whereas 

jumps in asset log-prices are normally distributed conditional on the realization of νz , 
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i.e., ),(~| 2
jjjS zNzz σρμ νν + . Thus, Sz  has mean νμρμ jjSz +=)(E , variance 

222)var( νμρσ jjSz += , and is correlated with νz  by 222/ νν μρσμρ jjj + . The 

underlying return and its volatility share the same jump arrival uncertainty followed 

by a Poisson process tN  with state-dependent intensity tt νλλλ 10 += . Further, νκ , 

νθ , and νσ  are the speed of adjustment, long-run mean, and variation of 

instantaneous variance ν .  

 

2.2 VIX and Expected Total Return Variance 

Britten-Jones and Neuberger (2000) derived the model-free implied volatility 

under diffusion assumption, while Jiang and Tian (2005) generalized it to processes 

with price jumps. This study further generalizes the model-free implied volatility to 

the processes with correlated jumps in asset returns and volatility. We then 

demonstrate that model-free implied volatility is the VIX. This justifies the validness 

of the VIX formula under a general asset price process that includes both price jumps 

and volatility jumps.  

Applying Itô’s lemma to the SVSCJ process in equation (1), we have 

dtdNJddtTFd ttttSttt  )1ln( 
2
1)(ln , κλωνν −+++−=  (3) 

where 2

2
1)1ln( ttt JJJ −≈+ . Thus, we have the log profile for the SVSCJ, 

( )

( )
)(
)(

2
1                

  
2
1)(ln

2

,
2

TF
TdFdNJdt

dtdNJddNJdtTFd

t

t
ttt

ttttSttttt

++−≈

−+++−≈

ν

κλωνν
 (4) 

Integrating both sides, the total variance of the instantaneous rate of return of the S&P 

500 over a period is equal to twice the difference between the total variations of the 
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continuously compounded and simple rates of return of the forward S&P 500 price 

( )(TFt ) over the period: 

)](ln)([ln2)]()([
)(

2                             

)(ln
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)( 2)(

 

 

 

 

2
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A Taylor expansion of the logarithmic term ))(/)(ln( TFTF tT  shows that it can be 

replicated by trading stock index futures and a continuum of out-of-the-money (OTM) 

options: 
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Combining the two equations above, the total variance is 

∫∫ ∫

∫∫

∫∫

∫

∫∫

∞

∞ +

∞ ++

++
−

+=

−−
+=

−−−
+≈

−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+

 

 2

 

 

 

0 2

 

0 2

 

 

 

0 2

 

 

 

 

 

 

 

 

2

),(2),(2
)(

))()((2
)(
)(2    

))((),(2
)(
)(2    

))(())((2
)(
)(2    

))(ln)((ln2
)(
)(2    

ln
)(
)( 2)(

t

t

F
T

T

t

F
T

t

tT

u

u

tTT

t
u

u

tT
T

t
u

u

Tt

T

t
u

u

T

t u
u

u
T

t uuu

dK
K

KTCdK
K

KTP
TF

TFTF
TF
TdF

dK
K

KTFKTC
TF
TdF

dK
K

KTFKTF
TF
TdF

TFTF
TF
TdF

Fd
TF
TdFdNJduν

 (7) 

The first term of the total variance is the return to a position in index futures 

dynamically rebalanced to maintain a constant dollar exposure to the stock index, the 
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second term is the return to a static position of )(TFt  index futures held to expiration, 

and the last terms are the return to a static portfolio of OTM puts and calls, with 

moneyness defined relative to the forward price )(TFt . This portfolio contains 

2/ KdK  puts with strike price K where K is the smaller than or equal to )(TFt , and 

2/ KdK  calls with strike price K, where K is greater than or equal to )(TFt . At 

expiration, the return to a put at strike K is +− )]([ TFK T  and the return to a call at 

strike K is +− ])([ KTFT . The replicating portfolio for total variance assumes 

continuous trading, a continuum of listed strike prices, and a listed strike 

at-the-money (ATM). 

Two discrete approximations are needed to assemble and trade this portfolio. 

First, the dynamic component of the futures position is rebalanced at discrete intervals 

it
Δ ; second, the strip of options consists of all listed puts with strikes at or below K0, 

and all listed calls with strikes at or above K0, where K0 is the closest listed strike 

below )(TFt . This leads to the discrete approximation: 
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 (8) 

)(TFiΔ  is the change in the futures position over itΔ , KΔ  is half the distance 

between the two strikes adjacent to K, i.e. 2/)( 11 −+ −=Δ iii KKK , or the distance to 

the adjacent strike for the initial and final strikes in the put and call series. The last 
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term of the approximation is an adjustment compensating for the fact that the strip is 

not centered around a strike exactly at-the-money. This term drops out if there is a 

listed strike at-the-money, i.e. )(0 TFK t= . 

The forward price )(var TPt  of total variance is determined from the discrete 

approximation to this variance. Specifically, the forward price of total variance is the 

expected value of this approximation, with the expectation taken under the 

F-probability measure. Next taking into account the fact that the expected value of the 

futures positions is zero,5 the forward price of total variance simplifies to the forward 

price of the strip of options plus the adjustment term: 
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The LHS of the above equation is equivalent to the expected integrated return 

variance, i.e. })](/)([{E)]}()/([{E
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 ∫∫ =
T

t uu
F
t

T

t uu
F

t
F
t TFTdFTFTdFvar . Note that 

),(/)( TtBSTF tt =  is the forward stock price. ),(/)()( TtBCC t
F
t ⋅=⋅  and 

),(/)()( TtBPP t
F

t ⋅=⋅  are the forward prices of OTM European calls and puts, 

respectively, where ),( it KTC  or ),( it KTP  is the midpoint of the bid-ask spread for 

                                                 
5 The current index futures price Ft(T) is the expected value of future futures prices, and payment of 
futures contract is deferred. This implies that the expected value of FT(T)–Ft(T) and ΔFi(T) are zero. 
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each option with strike iK . This is consistent with Bakshi and Madan’s (2000) results 

that any payoff function with bounded expectation can be spanned by a continuum of 

OTM European calls and puts. 

The forward price of a 30-calender day variance is interpolated from the 

forward prices )( 1
var TPt  and )( 2

var TPt  of variances over the terms T1 and T2 of 

nearby and second-nearby listed options, with the nearby option at least a week from 

expiration. This price is annualized and VIX is the square root.6 

τ/)(VIX var TPtt ≡  (10) 

where )()1()()( 2
var

1
varvar TPwTwPTP ttt −+= , )/()30( 122 TTTw −−= , 365/30=−= tTτ .

Or equivalently, the VIX squared is the expected integrated return variance when the 

index process contains correlated jumps in returns and volatility. 
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Thus, under regularity conditions the VIX squared under the SVSCJ model is 

expressed by 
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where )]([21 11 νμρμκλζ jj +−+= , )]([2 02 νμρμκλζ jj +−= , and 365/30=τ . 
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6 More specifically, τνττ
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volatility td ,νω  and volatility jumps tdNzν . Under the SVSCJ, 
νν
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11 eb . The VIX squared is thus a linear 

function of the instantaneous variance ν . From (12), we can also back out the 

instantaneous variance ν  from the current VIX level by 
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t
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1

2
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2VIX  (13) 

The theory behind the VIX calculation is that VIX is obtained as the square root 

of the price of variance, and this price is derived as the forward price of a particular 

strip of SPX options. The justification for this derivation is that variance is replicated 

by delta-hedging the options in the strip. An intuitive explanation of the mechanics of 

this replication based on Demeterfi, Derman, Kamal, and Zou (1999) is: (i) The price 

of a stock index option varies with the index level and with its total variance to 

expiration. This suggests using SPX options to design a portfolio that isolates the 

variance. (ii) The portfolio which isolates variances is centered around two strips of 

OTM SPX calls and puts. Its exposure to the risk of stock index variations is 

eliminated by delta hedging with a forward position in the S&P 500. (iii) A clean 

exposure to volatility risk independent of the value of the stock index is obtained by 

calibrating the options to yield a constant sensitivity to variance. If each option is 

weighted by the inverse of the square of its strike price times a small strike interval 

centered around its strike price, the sensitivity of the portfolio to total variance is 

equal to one. Holding the portfolio to expiration therefore replicates the total variance. 

(iv) Arbitrage implies that the forward price of variance must be equal to the forward 

price of the portfolio which replicates it. Observing that the S&P 500 forward 

positions in the portfolio contribute nothing to its value, the forward price of variance 



 15

reduces to the forward price of the strips of options. 

 

2.3 Fair Price of VIX Futures 

The fair value of VIX futures corresponds to the VIX that one can contract for 

at time t, on VIX futures that takes an expectation on the implied volatility beginning 

on date T and returning 30 days later. Thus, the fair value of VIX futures is derived by 

pricing the forward 30-day volatility that underlines the settlement price of VIX 

futures. CBOE shows that the fair value of VIX futures (converted to our notation) is 

the square root of this expected variance less an adjustment factor, which reflects the 

concavity of the square root function used to extract volatility from variance. The fair 

value of VIX futures expiring at T is given by 

)VIX(E)(FVIX
T

F
tt T =  (14) 

Although the VIX squared is model-free which can be replicated by SPX option 

prices, the fair value of VIX futures is model-dependent. It involves the convexity 

adjustment relevant to the variance of the VIX futures price from current time t to its 

expiry T. From the approximation of Brockhaus and Long (2000) and Bates (2006), 

who use the second-order Taylor expansion for the square root of latent affine 

stochastic processes, Lin (2007) shows that the current VIX futures is worth 

theoretically: 

2/32

2
2VIX

)]VIX(E[ 8
)VIX(var)VIX(E)VIX(E)(F

T
F
t

T
F

t
T

F
tT

F
tt T −≈=  (15) 

where })]VIX(E[ 8/{)VIX(var 2/322
T

F
tT

F
t  is the convexity adjustment relevant to the 

VIX futures. But, this study provides the closed-form solution to the fair value of the 

VIX futures using the characteristic function of the log VIX squared under probability 

measure F (see Appendix A for the details). 
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2.4 Fair Price of VIX Options 

The VIX option is European-style exercise and AM settled. The opening value 

of VIX on the day after the last day of options trading determines the final settlement 

value of the VIX index. Thus, VIX options are priced on VIX futures. The VIX 

futures contract trades up to six near-term serial months and five months on the 

February quarterly cycle, whereas VIX options trade on two near-term month 

expirations plus one month in the February quarterly expiration cycle. The Final 

Settlement Date for both VIX futures and VIX options is the Wednesday that is thirty 

days prior to the third Friday of the calendar month immediately following the month 

in which the contract expires. Therefore the last day of options and futures trading is 

usually a Tuesday, and settlement is determined by Wednesday’s open.  

Now, consider a European call option written on the VIX with strike price K 

and expiry T and thus time-to-maturity Cτ , its time-t price ),( CtC τ  must, under the 

SVSCJ dynamics, solve 
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subject to )0,VIXmax()0,( KtC TC −=+τ  with 211 // VIX ζτζτνζ ττ ++= ba TT  

and SL ln= . In the Appendix A it is shown that  

21
VIX  ),( )(F ),(),( Π−Π= TtKBTTtBtC tCτ  (17) 

where )exp(),( CrTtB τ−=  under the deterministic interest-rate assumption. The 

risk-adjusted probabilities, 1Π  and 2Π , are recovered from inverting the respective 

characteristic functions of the log VIX squared (see Bakshi et al., 1997; Bates, 1996; 
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Heston, 1993; Scott, 1997; Heston and Nandi, 2000 for similar treatments): 
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where Re[] denotes the real part of a complex number. The characteristic function 

);,(2 φτ itf C  of 2VIXln T  is given in the Appendix B. The fair value of the VIX 

futures, )(FVIX Tt , in equation (14) is given by setting 2/1=φi , 

i.e. )VIX(E)2/1;,(2 T
F
tCtf =τ . The price of a European put on the same VIX can be 

determined from the put-call parity.7  

The option valuation model in equation (17) has several distinctive features. 

First, it applies to economies with the index price process containing stochastic 

volatility and correlated jumps in returns and volatility. It reconciles most existing 

equity dynamics as special cases. For example, we obtain (i) the SV model by setting 

jump frequency equal to zero, i.e. 010 == λλ ; (ii) the SVJ model by setting volatility 

jump size equal to zero, i.e. 0=νμ ; and (iii) the SVCJ model by setting a 

state-independent jump frequency, i.e. 01 =λ . The Appendix B provides the exact 

VIX option pricing formulas respectively for the SV, the SVJ, the SVCJ, and the 

SVSCJ models. Second, this general model allows for a flexible correlation structure 

between the index return and its volatility and the correlation between price jumps and 

volatility jumps. Third, the formula in equation (17) is parsimonious in the number of 

                                                 
7 Grünbichler and Longstaff (1996, equation (14) at page 992) show that since volatility is not the price 
of a traded asset, the price of a volatility call can be below their intrinsic value. Hence, the traditional 
put-call parity relation does not hold for these options, and the pattern of time decay is perverse. 
However, the underlying of their volatility derivatives is “interpreted” as spot volatility, but actually 
they use the forward volatility as the underlying, which is exact the conception used in this study. To 
put more precisely, our volatility derivatives pricing framework is more analog to the forward interest 
rate dynamics of Heath, Jarrow and Morton (1990, 1992). 



 18

parameters; especially since it is given only as a function of identifiable variables such 

that all parameters can be estimated.  

The closed-form option pricing formula in equation (17) makes it possible to 

derive comparative statistics and hedge ratios analytically. In the present context, 

there is one source of stochastic variation over time, i.e. price risk )(FVIX Tt . 

Consequently, there is one delta: 

0),(
)(F

),(
1VIX

VIX

)(FVIX ≥Π=
∂

∂
≡Δ TtB

T
TKC

t

tcall
Tt

    (20) 

This analytical expression for the delta forms a convenient basis for constructing 

hedges. 

 

3. Data Description 

Since options written on the VIX are less actively traded than SPX options, this 

study uses both VIX call and put option prices for our empirical work. VIX options 

were launched on February 24, 2006. In April 2006, average daily volume for VIX 

options was 15,089 contracts, 55% above March-2006 volume, the first full month of 

trading in VIX options. Total volume in VIX options during April 2006 was 286,699 

contracts. On May 10, 2006 VIX options were 150,493 contracts, beating the previous 

record of 62,461 contracts, set on May 1, 2006. Open interest stood at 561,207 

contracts at the start of trading on May 10, 2006. On November 30, 2007, the trading 

volumes for VIX calls and puts were 44,277 and 12,852 contracts, in total 57,129 

contracts; the open interests were 533,793 for VIX calls and 320,132 for VIX puts. Its 

underlying, VIX futures, had trading volume 130,278 and open interests 1,779,062 

contracts on November 30, 2007. Figure 1 shows the trading volume and open 

interests of the VIX options and VIX futures across our trading months. 
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Figure 1. Trading volume and open interests. The figure shows the trading volume 
(volume) and open interest (oint) of the VIX options and VIX futures across trading 
month, February 2006 – November 2007. 

 

The sample period extends from February 24, 2006 through November 30, 2007. 

Spot VIX, daily midpoints of the last bid and last ask quotations for VIX options, and 

daily settlement prices for VIX futures are obtained from CBOE.8 The data on the 

daily U.S. Treasury-bill bid and ask discounts with maturities up to one year are 
                                                 
8 Note that the recorded VIX futures prices are the daily settlement prices. They are not the 
corresponding futures levels at the moment when daily last bid and ask quotations of the VIX options 
are recorded. Thus, there is a non-synchronous price issue here. One solution to avoid non-synchronous 
prices between futures and options on VIX is to use the intraday data. 
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obtained from Datastream. By convention, the average of the bid and ask U.S. 

Treasury-bill discounts is used and converted to an annualized continuously 

compounded interest rate. Since Treasury bills mature on Thursdays while options and 

futures on VIX settle on Wednesday that is 30 days before the third Friday of the 

calendar month immediately following the month in which the contract expires, we 

utilize the two Treasury-bill rates straddling an option’s expiration date to obtain the 

interest rate corresponding to the option’s maturity. This is done for each contract and 

each day in the sample. 

Several exclusion filters are applied to construct the option price data. First, as 

options with less than six days to expiration may induce liquidity-related biases, they 

are excluded from the sample. Second, to mitigate the impact of price discreteness on 

option valuation, price prices lower than $3/8 are not included. Finally, the VIX call 

option prices not satisfying the arbitrage restrictions 

)(F),(),()]})(F)[,( ,0max{ VIXVIX TTtBtCKTTtB tCt ≤≤− τ  (21) 

, and the VIX put option prices violating the boundaries 

KTtBtPTKTtB Ct ),(),()]}(F)[,( ,0max{ VIX ≤≤− τ  (22) 

are taken out of the sample. Based on these critera, 19,589 observations 

(approximately 29.43 percent of the original sample) are eliminated. A total of 46,969 

records of joint futures and options prices on VIX are used for the estimation of the 

parameters of the SV, SVJ, SVCJ and SVSCJ models. Of these, 22,109 are calls and 

24,860 are puts. Table I presents characteristics of the data sample across maturity and 

moneyness, where moneyness is defined as KTt /)(FVIX . Average VIX option prices 

ranged from $0.8214 for deep out-of-the-money (DOTM) short-term (SR) calls to 

$9.0448 for deep in-the-money (DITM) medium-term (MR) puts. The average VIX 

futures price ranges from $15.1965 corresponding to the SR at-the-money (ATM) 
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calls to $19.0767 within the SR DOTM puts. 

 

Table I 
Sample Characteristics of VIX options and VIX futures 

The reported figures are respectively the average VIX option price, the average VIX futures price, and 
the total number of observations of VIX options for each moneyness-maturity category. The sample 
period extends from February 24, 2006 through November 30, 2007 for a total of 22,109 calls and 
24,860 puts. Daily information from the midpoints of last quotations for each option contract and daily 
settlement futures prices are used to obtain the summary statistics. )(FVIX Tt  indicates the time-t VIX 
futures price with expiry T and K is the option exercise price. Moneyness is defined as KTt /)(FVIX . 
 

  Days to Expiration 
  Calls Puts 
Moneyness  <60 60–180 >180 <60 60–180 >180

<0.94 
Option price 
Futures price 
Observations 

$0.8214
16.4892

2357 

$1.0851
16.9383

4476 

$1.3180
16.3520

4543 

$8.1798
15.3433

5257 

$9.0448 
16.4938 

6010 

$8.5087
16.2413

5008 

0.94–0.97 
Option price 
Futures price 
Observations 

$1.2940
15.5783

262 

$2.0751
16.9965

327 

$2.4410
16.5446

267 

$1.9336
15.4194

273 

$2.8567 
16.9965 

327 

$3.1758
16.5448

266 

0.97–1.00 
Option price 
Futures price 
Observations 

$1.4981
16.0649

253 

$2.1193
16.5600

286 

$2.5023
16.0585

309 

$1.7217
16.0300

255 

$2.3559 
16.5600 

286 

$2.7353
16.0585

309 

1.00–1.03 
Option price 
Futures price 
Observations 

$1.5188
15.1965

257 

$2.2664
16.4529

250 

$2.7604
16.3282

252 

$1.2824
15.2760

252 

$2.0287 
16.4529 

250 

$2.4883
16.3282

252 

1.03–1.06 
Option price 
Futures price 
Observations 

$1.7835
15.4616

256 

$2.5875
17.1513

285 

$2.8483
16.0491

269 

$1.1448
15.6918

240 

$1.8476 
17.1513 

285 

$2.1701
16.0475

268 

>1.06 
Option price 
Futures price 
Observations 

$4.2986
17.9294

2196 

$4.0056
17.8422

2833 

$4.0630
16.9714

2431 

$0.8501
19.0767

771 

$1.0239 
18.2766 

2138 

$1.2186
17.0761

2413 

 

 

4. Structural Parameter Estimation and In-Sample Performance 

A. Estimation Procedure 

For the empirical work to follow, we concentrate on the four models: the SV, 

the SVJ, the SVCJ and the SVSCJ. As stated before, the analysis is intended to 

present a complete picture of how much each generalization of the SPX price 

dynamics can improves VIX option pricing and hedging. The vector of structural 

parameters for alternate models is },,,{ ρσθκ ννν=Φ  for the SV, 
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},,,,,,{ jjJ σμλρσθκ ννν=Φ  for the SVJ, and },,,,,,,,{ jjjJ ρμσμλρσθκ νννν=Φ  

for the SVCJ, and },,,,,,,,,{ 10 jjj ρμσμλλρσθκ νννν=Φ  for the SVSCJ. The vector 

of structural parameters is backed out by the minimization of the sum of the squared 

pricing errors between option model and market prices. Following the standard 

approach in the literature (Bates, 1991, 1996; Dumas, Fleming & Whaley, 1998; 

Longstaff, 1995; Madan, Carr, & Chang, 1998; Bakshi et al., 1997; Nandi, 1998), the 

minimization is given by 

∑∑
= =

Φ
Φ−

T tN

t

N

n
nn CC

1 1

2* )]([min  (23) 

where TN  is the number of trading days in the estimation sample, tN  is the number 

of options on day t, and nC  and *
nC  are the observed and model option prices, 

respectively. The model is estimated separately each month and thus Φ  is assumed 

to be constant over a month. The assumption that the structural parameters Φ  are 

constant over a month is justified by an appeal to parameter stability (Bates, 1996; 

Eraker, 2004; Zhang and Zhu, 2006). Applying such an implied-parameter procedure 

to implement the candidate models should in some sense give each model an “equal” 

chance, and it is also consistent with the existing practice of judging a new option 

pricing model’s performance among others. 

 

B. Implied Parameters and In-Sample Pricing Fit 

In implementing the above procedure, this study uses spot VIX and market 

prices of the options and futures on VIX available in each given month as inputs to 

estimate that month’s structural parameters. This estimation is separately done for 

each model and for each month from March 2006 to October 2007. Table II reports 

the monthly average and t-statistic of each estimated parameter series as well as the 
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monthly-averaged in-sample mean squared errors (MSE), respectively for the SV, SVJ, 

SVCJ, and SVSCJ models. The implied volatility of the VIX futures price changes is 

computed based on equation (25) below, using estimated parameters and spot VIX. 
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Table II 
Implied Parameters and In-Sample Fit 

The values of MSE, implied volatility and estimated structural parameters reported here are their 

averages over 20 non-overlapping estimation months from February 24, 2006 to October 16, 2007. The 

figures within the parentheses are the t-statistics of parameter estimates. The symbols of ** and * 

indicate significance of t-statistics at the 1% and 5% levels, respectively. Note that the variance of the 

VIX futures price changes ))(F( VIX Tvar t can be decomposed into the variations respectively attributed 
to stochastic volatility and volatility jumps, )(F, VIX Tt t

ν  and )(F, VIX TJ t
ν  (see equations (24)–(25) for the 

details). The implied volatility of the VIX futures price changes is computed from estimated parameters 

and spot VIX. 
 

Parameters SV SVJ SVCJ SVSCJ 

MSE 8.9036 7.511 3.4225 2.9443 

νκ  5.2028** 
(2.6744) 

7.4837** 
(3.6125) 

8.0532** 
(2.8168) 

9.1425** 
(3.9566) 

νθ  0.0594** 
(5.6355) 

0.0498** 
(4.7626) 

0.0393** 
(2.9784) 

0.0283* 
(3.1763) 

νσ  0.7262** 
(4.8042) 

0.5391** 
(3.2701) 

0.3672** 
(2.6242) 

0.2725** 
(2.6385) 

ρ  −0.8248** 
(−5.3758) 

−0.6723** 
(−3.8882) 

−0.5112** 
(−3.1853) 

−0.3101** 
(−3.5935) 

0λ  or Jλ   1.3289* 
(3.1925) 

1.2113** 
(2.9178) 

1.2104** 
(3.3889) 

1λ     0.7658** 
(3.8457) 

jμ   −0.2673** 
(−3.6838) 

−0.3142** 
(−3.0182) 

−0.5482** 
(−2.8977) 

jσ   0.3236** 
(2.8845) 

0.2513* 
(2.8146) 

0.1412* 
(2.7286) 

νμ    1.6324** 
(3.2331) 

0.8236** 
(4.1522) 

jρ    −0.1658* 
(−3.7783) 

−0.3175* 
(−3.6147) 

Implied Volatility (%)     

)(F, VIX Tt t
ν  0.7256 0.7243 0.4661 0.4218 

)(F, VIX TJ t
ν    0.5679 0.5935 

 

These reported statistics are quite informative about the internal working of the 

models. As such, several observations are in order. First, the estimated implied 
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variances of the VIX futures price changes, 
)(F, VIX Tt t

ν +
)(F, VIX TJ t

ν  , are generally very 

close for all models, where 
)(F, VIX TJ t

ν  is the variance per year attributed to volatility 

jumps. However, the sample path for spot variance estimated under the SVJ, the SVCJ, 

and the SVSCJ models involves a reflection off the minimum value of 

2
1

22VIX2
0)(F,

)/()VIX/)(F(2VIX τζμλν τν aT ttTJ t
∂∂= , whereas the path estimated under the 

SV model never approaches the reflecting barrier at 
)(F, VIX Tt t

ν =0. Second, the 

estimated structural parameters for the SPX price process generally differ across 

models. Recall that in the SV model the volatility is allowed to be mean-reverting and 

stochastic. The SVJ model relies on the same flexibility, with the additional feature of 

having price jumps to internalize more skewness and kurtosis without making other 

parameters unreasonable. In addition to inheriting all features of the SVJ model, the 

SVCJ model allows volatility jumps to occur. The SVSCJ model relies on the same 

flexibility, with the additional caveat of allowing volatility jumps to arrive more 

frequently in high-volatility regimes.  

With this in mind, note that the speed-of-volatility adjustment is νκ  for the SV, 

SVJ, and SVCJ models and νν μλκ 1−  for the SVSCJ model. The estimate of νκ  is 

highest for the SVSCJ model, partly attributed to the existence of volatility jumps. 

Estimates of the speed-of-volatility adjustment can be interpreted as approximately 

one minus autocorrelation of volatility. Hence, annualized estimates ranging from 
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5.2028 to 9.1425 imply daily volatility autocorrelations in the range 0.9637–0.9794 

which is in line with the voluminous time-series literature on volatility models. The 

long-run mean variance is νθ  for the SV and SVJ models, νννν κμλθκ /)( J+  for the 

SVCJ model, and )/()( 10 ννννν μλκμλθκ −+  for the SVSCJ model. The estimate of 

νθ  for the SV model is 0.0594 which is relatively high, whereas for the SVJ, SVCJ, 

and SVSCJ models the estimates of νθ  are much smaller, suggesting that the jump 

components are explaining a significant portion of the unconditional return variance.  

The SV model has the strongest negative correlation between Brownian 

increments in volatility and index returns. More specifically, negative estimates of ρ  

are −0.8248, −0.6723, −0.5112, and −0.3101 respectively for the SV, SVJ, SVCJ and 

SVSCJ models.  

Further, the SVJ, SVCJ and SVSCJ models attribute part of the negative 

skewness and excess kurtosis to the possibility of jumps. The jumps occur extremely 

rarely: The λ  estimates in Table II indicate that one can expect about four to six 

jumps in a stretch of 1,000 trading days. The unconditional jump frequency is only 

marginally higher under the state-dependent SVSCJ model. Whenever spot volatility 

is high, say an annualized variance of 3%, the estimate of 1λ  is indicative of an 

instantaneous jump probability of about 0.023 – a 2% increase over the constant 

arrival intensity specifications. The possibility of price jumps occurs with an average 
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price jump size jμ  of −0.2673, −0.3142, and −0.5482 (with the jump size 

uncertainty jσ  estimated at 0.3236, 0.2513, and 0.1412) for the SVJ, SVCJ, and 

SVSCJ models. Further, the volatility jump size under the SVCJ model is 1.6324 to be 

greater than its SVSCJ model counterpart, 0.8236, as one would expect the extra 

parameters (related to the state-dependent volatility jump process) to make the SVSCJ 

model fit the data better than the SVCJ model. The negative correlation between price 

jumps and volatility jumps (−0.1658 for the SVCJ and −0.3175 for the SVSCJ) 

indicates the asymmetry of volatility jumps across the index price level.  

These estimates together present that, to the extent that the pricing structure of 

the options prices can be explained respectively by each model, the SVSCJ model or 

SVCJ model’s demand on the )(tν  process is the most stringent as it requires both 

the highest variation and the greatest covariance (in magnitude) with underlying 

returns.  

The parameter estimates in Table II are interesting in light of estimates obtained 

in the prior studies. Bakshi et al. (1997) estimate the jump frequency for the SVJ 

model is 0.59 annualized jump probability, and the jump-size parameter jμ  and jσ  

are –5.37% and –7%, respectively. Their estimate of νκ  and νσ  are 2.03 and 0.38. 

Pan (2002) and Bates (2000) assume that the jump frequency, λ , depends on the spot 

volatility, and hence the jump size and jump frequency parameters are comparable to 
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those reported in Eraker’s (2004) SVSCJ model and here. The average jump intensity 

point estimates in Pan (2002) are in the range of [0.07%, 0.3%] across different model 

specifications, whereas Eraker (2004) indicates two to three jumps in a stretch of 

1,000 trading days. Interestingly, Bates (2000) obtains quite different results, with an 

average jump intensity of 0.005.9 Bates (2000) also reports a jump size mean ranging 

from –5.4% to –9.5% and standard deviations of about 10%–11%. Hence, Bates’ 

estimates imply more frequent and more severe crashes than the parameter estimates 

reported in Bakshi et al. (1997) and Eraker (2004). Our estimates are in the same 

ballpark as those reported in Bates (2000). The practical implication of the difference 

is that Bates (2000) and our estimates will generate more skewness and kurtosis in the 

conditional index returns distributions. 

Finally, the fact that allowing jumps to occur enhances the SV model’s fit is 

illustrated by each model’s MSE in an average month. The MSE is 8.90 for the SV 

model, 7.51 for the SVJ model, 3.42 for the SVCJ model, and 2.94 for the SVSCJ 

model. The in-sample mean squared errors are consistently smaller for a more 

complicated model. Table II also gives the t values for the parameter estimates of the 

index price process. These results indicate that all parameter estimates are 

significantly different from zero at the 95% confidence interval. 

 

                                                 
9 Pan (2002) and Bates (2000) model the jump frequencies as tνλλ 1=  with tν  the spot volatility, 
whereas Eraker (2004) assumes the jump frequency as tνλλλ 10 += . The average jump intensities 
reported here are obtained from Pan, Bates and Eraker’s papers as the multiple of the long-run volatility 
mean, νθ , and the proportionality parameter, 1λ , and plus 0λ . 
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C. Internal Consistency of Implicit Parameters 

Another way to gauge model misspecification is to follow the approach taken 

by Bates (1996, 2000), Bakshi et al. (1997), Pan (2002) and Eraker (2004) and 

examine whether each model’s implied parameters are consistent with those implicit 

in the time series of the VIX futures prices. That is, is the forward view offered by 

volatility implied by the market prices of VIX options similar in magnitude to those 

from the time series counterparts? The closer the implied parameters, the closer the 

implied time-series path to its observed counterpart and hence the less misspecified 

the model. The justification for the internal consistency test using time-series VIX 

futures prices is that VIX option pricing is based on VIX futures rather than the spot 

VIX.  

Bates (1996, 2000), Bakshi et al. (1997), and Pan (2002) suggest that the 

volatility of volatility, νσ  implied by SPX option prices, cannot be reconciled with 

time-series estimates. In particular, Bates (1996, 2000) and Bakshi et al. (1997) show 

that their estimated volatility paths are too smooth to be consistent with the relatively 

high νσ  estimated from option prices. In contrast, Eraker (2004) reports that 

estimates of νσ  from the simulated values of the historical volatilities match almost 

exactly the option implied volatility of volatility. He points out the match partly 

attributed to their Markov Chain Monte Carlo (MCMC) method providing much more 

erratically behaving volatility paths than other methods based on Kalman filtering, 

and quasi-maximum likelihood methods.  

This study re-examines the consistency of VIX option-implied volatility of the 

forward VIX, i.e. ))(F( VIX Tdvar t , with the sample volatility of daily VIX futures price 

changes, i.e. )(F)(F VIXVIX TT ttt −Δ+ . By the law of iterated expectations, futures prices are 
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martingale under the forward probability measure: 

)](F[E)](VIXE[E)VIX(E)(F VIX
11

VIX TT t
F
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tt ++ ===  

The futures price martingale property implies the drift term of )(FVIX Td t  equals zero. 

Further, the theoretical time-t value of T-expiry VIX futures, )(FVIX Tt , equals the 

characteristic function of 2lnVIXT  evaluated at 2/1=φi  under the probability 

measure F, i.e. ]VIXln)()()(exp[)2/1;,( 2
2222 tCCCC DJCtf ττττ ++= . Using Itô’s 

lemma, the dynamics of the VIX futures price under the forward probability measure 

become 
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The variance of the VIX futures price change is expressed by 
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Two distinct approaches are adopted for estimating the volatility function 

),( Ttσ . Implicit volatility estimation uses the parameters recovered from the market 

prices of the VIX options (generated in the Table II), whereas historic volatility 

estimation uses time-series observations of the VIX futures price.  

For the overall sample period from February 24, 2006 to November 30, 2007, the 
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annualized daily VIX futures price changes have a mean of 0.03 percent, a volatility 

of 32.44 percent, a skewness of –1.90, and a kurtosis of 83.60. The historical volatility 

is indeed lower than its option-implied counterparts (see Table II). This departure 

between the average implied and the time-series estimated is remarkably similar 

across alternate models. Hence, each of the four models is hence equally misspecified. 

Figure 1 contains time series graphs of the VIX futures prices and the estimated 

forward VIX from the market prices of VIX options, i.e. )2/1;,()(F 2
VIX

Ct tfT τ= , over 

the entire time period studied. There are 445 observations of daily means of VIX 

futures prices across maturities in this time period. In this graph, the forward VIX 

curves are piecewise constant. As seen, the forward VIX processes recovered from the 

market prices of both VIX futures and VIX options are remarkably similar in 

time-series patterns. However, the implied value of ))(F( VIX Tdvar t  is, for each model, 

about two times its time-series estimate. The volatility process of the forward VIX 

implicit in option prices is therefore much too volatile, relative to each volatility time 

series implicit in futures prices. According to these yardsticks, each of the four models 

is hence significantly misspecified. On a relative scale, however, this departure 

between the average implied and the time-series estimates is the weakest for the SVJ, 

SVCJ and SVSCJ models, and the strongest for the SV model. 
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Figure 1 Forward VIX curve evolutions, 24 February 2006 – 30 November 2007. 
The dotted line is the average VIX futures prices and the line with cross symbols is 
the forward VIX recovered from VIX option prices. 

 

Further, this study uses the time-series observations of VIX futures prices to 

examine the variance function in equation (24). For this analysis, we use daily 

changes in the market prices of the VIX futures of various maturities, i.e. 

)(F)(F VIXVIX TT ttt −Δ+  for 252/1=Δt  and adopt the PCA method to determine volatility 

function. The volatilities, therefore, depend on empirically specified factor loadings 

and these factors’ volatilities. From these volatility functions, we can diagnose 

whether the volatility functions of the forward VIX posit the characteristics of the 

“term structure”, “mean reversion”, and “volatility of volatility”. 

Since CBOE may list for trading up to six near-term serial months and five 

months on the February quarterly cycle for the VIX futures contract, whereas the 

expiration months for the VIX options are generally up to three near-term months plus 

up to three additional months on the February quarterly cycle. For comparison, this 

study selects the VIX futures contracts with the same expiration months as the VIX 

options. Hence, there are at most seven different maturities of the VIX futures 
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contracts in our sample period. For each of these maturities, we compute the VIX 

futures price changes over one month in the entire observation period (February 

2006–November 2007). We then run the PCA on the covariance matrix across 

different maturities to estimate the volatility functions of the VIX futures price for 

each model.  

The estimated volatility function (24) using PCA is graphed in Figure 2. We 

found three factors dominating the variation of VIX futures. On average, the first 

three factors on average explain about 99.32% of the variation in VIX futures. The 

first factor explains on average 85.91%, the second factor 10.68%, and the third factor 

2.74%. The first three factors can be interpreted as the level, slope, and twist. The first 

factor of the principal component-based volatility function is roughly a parallel shift, 

except in the middle range. The second factor emphasizes the relation between the 

short and long forward VIX. Finally, the third factor accounts for isolated movements 

in short-term forward VIX. As we use a rolling horizon of one month, the estimated 

volatility functions change monthly, but the shapes of these volatility functions turn 

out to be quite robust over time in general.  
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Figure 2 Graphs of volatility functions of forward VIX implicit in VIX futures 
prices. The volatility functions are estimated using a principal component analysis on 
a monthly basis. VF1 with cross markers, VF2 with cycle markers, and VF3 with dot 
markers respectively denote the first, the second and the third factors dominating the 
variation of VIX futures. 
 

In summary, the four models rely on implausible levels of volatility variation of 

forward VIX to rationalize the observed option prices. This finding is similar to those 

of Bates (1996, 2000) using currency and SPX futures options and Bakshi et al. (1997) 

and Pan (2002) using SPX options. While the SV, the SVJ, the SVCJ, and the SVSCJ 

are clearly misspecified (though to a lesser degree compared to the SV and SVJ), how 

will they perform in pricing and hedging options? We answer this question in the 

sections to follow. 

 

5. Assessment of Relative Model Misspecification 

Although a more complicated model will generally lead to a better in-sample fit, 

it will not necessarily perform better in out-of-sample pricing because any overfitting 

will be penalized. To test whether the additional parameters of the volatility models 

are economically informative for VIX options pricing, this section provides a 
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comparison of out-of-sample pricing.  

Out-of-sample pricing is carried out with the previous month’s structural 

parameters and current day’s VIX and VIX futures prices to calculate current day’s 

VIX option model price. Following Dumas, Fleming, and Whaley (1998), we define 

the pricing error outside the bid-ask spread as 

⎩
⎨
⎧

>−
<−

=
PriceAsk    Price Model if Price,Ask Price Model

Price Bid  Price Model if Price, BidPrice Model
Error Pricing  (27) 

Two measures of goodness of fit are then employed to assess the out-of-sample 

pricing performance of the VIX option pricing models on the SV, SVJ, SVCJ and 

SVSCJ specifications. These are the mean percentage pricing error (PE) and the mean 

absolute pricing error (MAE).  

Table III reports MAE and PE values for several categories according to time to 

expiration and moneyness. Out of maturity combinations reported in Table III, RMSE 

and MAE are lowest for the SVJ (SVSCJ) model for the short-term (medium-term and 

long-term) options contracts. Thus, improvements are generated respectively for the 

short-dated VIX options under the SVJ model and for the medium- and long-dated 

VIX options under the SVSCJ model. From the panel of PE values, in contrast to the 

results of the SV and SVJ models, the SVCJ and SVSCJ models substantially 

overprice the short- and medium-dated VIX options. For the long-dated VIX options, 

all models are overpriced. The PE values show that the SVCJ and SVSCJ models 

pricing errors across maturities are less than zero, indicating an overpricing fit for 

VIX options. 

Bakshi et al. (1997) point out that the price jump and the diffusive volatility 

features can in principle improve the pricing of, respectively, short-term and relatively 

long-term options. Therefore, the SVJ model enhances the flexibility of permissible 
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return distributions and thus provides a better pricing fit for short-term and long-term 

options than the SV model (unless the covariance and volatility variation of the SV 

model are unreasonably high). Table III confirms this argument. The SVJ model 

provides a better out-of-sample pricing fit for VIX futures across maturities than the 

SV model. 

Further, what is it that jumps in volatility provide that jumps in returns and 

diffusive stochastic volatility cannot? Eraker et al. (2003) point out that jumps in 

returns can generate large movements such as the crash of 1987, but the impact of a 

jump is transient: A jump in returns today has no impact on the future distribution of 

returns. On the other hand, diffusive volatility is highly persistent, but its dynamics 

are driven by a Brownian motion. For this reason, diffusive stochastic volatility can 

only increase gradually via a sequence of small normally distributed increments. 

Jumps in volatility fill the gap between jumps in returns and diffusive volatility by 

providing a rapidly moving but persistent factor that drives the conditional volatility 

of returns. 

It is important to note that the presence of jumps in volatility does not eliminate 

the need for jumps in returns. With both types of jumps, jumps in returns occur less 

often ( SVJ 
Jλ =1.33> SVCJ 

Jλ =1.21), but they still play an important role, as they generate 

the large, though infrequently observed, crashlike movements. This indicates that 

jumps in volatility and returns play a greater role than diffusive stochastic volatility in 
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generating the index dynamics. This suggests that jump components should command 

relatively larger risk premia than diffusive ones. When allowing both types of risk 

premia for diffusive volatility and volatility jumps to reconcile simultaneously the 

spot and option dynamics, Lin (2007) using the joint data of VIX futures prices and 

integrated volatility shows that the price jump-risk premium and volatility jump-risk 

premium dominate by far the diffusive volatility-risk premium. 

In summary, like jumps in returns and unlike stochastic volatility, jumps in 

volatility are a rapidly moving factor driving returns. Like diffusive stochastic and 

unlike jumps in returns whose impact on returns is transient, a jump in volatility 

persists. Thus, jumps in volatility provide a rapidly moving but persistent factor 

driving volatility. Therefore, each factor (diffusive volatility, price jump and volatility 

jump) generates very different behavior. In particular, the persistent feature of 

volatility jumps enhances the long-dated derivatives valuation. This is because as 

maturity increases, the fat-tails and asymmetries in the conditional distribution are 

driven to a larger extent by diffusive volatility and the volatility jump through its 

persistence, rather than price jumps. Similarly, as maturity decreases, the fat-tails and 

asymmetries in the conditional distribution are driven to a larger extent by price jumps, 

rather than other two factors. Hence, according to the yardstick of out-of-sample 

pricing fits the SVJ performs best for our short-dated VIX options and the SVSCJ 
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model outperforms for the medium- and long-dated VIX options. 

In Table III, the dramatic pricing errors for the SV come mostly from OTM calls 

and OTM puts, whereas the large errors for the other three models are all associated 

with short-dated options. Outside of the OTM categories, the SV percentage pricing 

errors show no particular relation to maturity or moneyness. For medium- and 

long-dated options the pricing errors due to the SVJ, the SVCJ, or the SVSCJ are 

quite random across strike prices. Therefore, using moneyness-based 

parameter/volatility estimates for the SV and maturity-based parameter/volatility 

estimates for the other three models serves to correct for their respective weakness. 
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TABLE III 
Out-of-Sample Pricing Errors 

For a given model, we compute the price of each option using the previous month’s structural 
parameters and current day’s VIX and VIX futures prices. The reported mean absolute pricing error 
(MAE) is the sample average of the absolute difference between the market price and the model price 
for each option in a given moneyness-maturity category. The reported percentage pricing error (PE) is 
the sample average of the market price minus the model price, divided by the market price. The sample 
period is April 2006–November 2007, with a total of 22,109 call option prices and 24,860 put option 
prices. Moneyness is defined as KTt /)(FVIX . 
 

  Absolute Pricing Errors Percentage Pricing Errors 

Moneyness  Days to Expiration Days to Expiration 

(St−Dt)/X Model <60 60−180 >180 <60 60−180 >180

< 0.94 SV $2.53 $2.48 $2.76 −0.19 −0.50 −0.27

 SVJ 0.87 1.12 1.05 −0.09 −0.40 −0.22

 SVCJ 0.95 1.79 0.53 −0.12 −0.39 −0.17

 SVSCJ 1.02 0.58 0.32 −0.11 −0.25 −0.15

0.94−0.97 SV 1.38 1.79 2.79 −0.68 −0.31 −0.16

 SVJ 0.83 1.15 1.21 −0.33 −0.24 −0.15

 SVCJ 1.14 1.04 0.92 −0.61 −0.20 −0.12

 SVSCJ 1.10 0.51 0.42 −0.42 −0.15 −0.08

0.97−1.00 SV 1.69 2.14 2.10 −0.36 −0.17 −0.24

 SVJ 0.58 1.82 1.24 −0.08 −0.12 −0.22

 SVCJ 1.25 1.77 1.22 −0.26 −0.13 −0.21

 SVSCJ 0.85 0.84 0.95 −0.15 −0.07 −0.06

1.00−1.03 SV 1.22 1.18 2.36 −0.19 −0.26 −0.25

 SVJ 0.95 1.21 1.15 −0.09 −0.18 −0.20

 SVCJ 1.19 1.09 2.10 −0.15 −0.17 −0.16

 SVSCJ 1.02 0.86 1.01 −0.10 −0.54 −0.32

1.03−1.06 SV 0.91 1.66 1.72 −0.22 −0.23 −0.19

 SVJ 0.38 1.21 1.53 −0.65 −0.16 −0.17

 SVCJ 0.52 1.01 1.06 −0.20 −0.12 −0.17

 SVSCJ 0.45 0.97 0.93 −0.10 −0.08 −0.08

≥ 1.06 SV 1.70 2.67 2.27 −0.21 −0.24 −0.34

 SVJ 0.23 1.23 1.25 −0.09 −0.22 −0.25

 SVCJ 0.59 1.15 2.04 −0.15 −0.21 −0.22

 SVSCJ 0.43 0.71 0.89 −0.12 −0.10 −0.06
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To further understand the structure of remaining pricing errors, we appeal to a 

regression analysis to study the association between the errors and factors that are 

either contract-specific or market condition-dependent. We first fix an option pricing 

model, and let )(tnε  denote the nth option’s percentage pricing error on day t. Then, 

we run the regression below for the entire sample:  

)()( )(  )(F)( 432

VIX

10 tutVJtBA
K

Tt nnn
n

t
n +++++= ββτβββε  (28) 

where nK  is the strike price of the option, nτ  the remaining time to expiration, and 

)(tBAn  the percentage bid-ask spread at date t of the option (i.e., 

)]BidAsk(5.0/[)BidAsk( +− , all of which are contract-specific variables. The 

variable, )(tVJ , is the date-t (annualized) volatility jump of the SPX returns 

computed from the skewness premium introduced by Bates (1991) as a proxy for fears 

of a jump in volatility, and it is included in the regression to see whether the current 

day’s volatility jump of the SPX returns may cause systematic pricing biases. Since 

volatility shocks tend to follow negative rather than positive shocks to the value of the 

underlying asset in the stock market, this study uses the skewness premium introduced 

by Bates (1991) as a proxy for fears of a jump in volatility: 

1
),,(
),,()( SPXSPXSPX

SPXSPXSPX
SPX −≡

Ptt

Ctt
t XTFP

XTFCTskew  (29) 

where )( SPXTskewt  is the skewness premium at time t for SPX options maturating at 

SPXT  two days after the comparable maturity T  of the VIX option, SPX
tC  and 

SPX
tP  are the prices of SPX call and put options as functions of tF , the SPX’s 

forward price at t, and the strike prices SPX
CX  and SPX

PX , respectively. The strike 

prices of both options are defined to be x percent of out-of-the-money (x>0) and 
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spaced geometrically around the forward price of the underlying SPX in the following 

way: 

SPXSPX )1(
1 Ctt

t
P XxFF

x
FX =+<<
+

=  (30) 

As described in Bates (1991), the skewness premium can be used as a diagnostic of 

the symmetry or skewness in the risk neutral distribution implicit in option prices. 

Theoretically, negative skewness in the risk-neutral distribution reflects either the 

existence of crash fears or that volatility is expected to rise if the market falls. Since 

unexpected increases in volatility are much more often associated with negative 

shocks to the underlying in stock markets than with positive shocks (French, Schwert, 

& Stambaugh, 1987; Figlewski & Wang, 2000; Low, 2004; and Andersen, Bollerslev, 

Diebold, & Ebens, 2001), this study assumes this is a good proxy for the markets’ 

expectations of a positive jump in volatility. The assumption of a strong negative 

relationship between rates of SPX returns and volatility in the stock market is 

confirmed by the negative estimates of ρ  and ),ln( νdSdcov  in Table II. This 

study uses SPX options prices that are 4% out-of-the-money to calculate the skewness 

premium. Since option exist only for specific strike prices, this study interpolates the 

relevant option prices fitting a constrained cubic spline through observed option 

price/forward price ratios as a function of observed strike price/forward price ratios 

(see Appendix A in Bates, 2000, for detailed information on the calculation of these 

constrained cubic splines). Similar to Bates (1991, 1997, 2000), this study requires 

that prices exist for at least four call strikes and four put strikes.  

In some sense, the contract-specific variables help detect the existence of 

cross-sectional pricing biases, whereas )(tVJ  serves to indicate whether the pricing 

errors over time are related to the dynamically changing market conditions. Table IV 
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reports the regression results based on the entire sample period, where the standard 

error for each coefficient estimate is adjusted according to the White’s (1980) 

heteroskedasticity-consistent estimator and is given in the parentheses. Regardless of 

the model, each independent variable has statistically significant explanatory power of 

the remaining pricing errors. That is, the pricing errors from each model have some 

moneyness, maturity, volatility jump, and bid-ask spread related biases. The 

magnitude and sign of each such bias, however, differ among the models. The pricing 

errors due to the two models with volatility jumps are always biased in the same 

direction. To look at some point estimates, the SV and the SVJ percentage pricing 

errors will on average be 1.50 and 0.75 points higher when the bid-ask spread )(tBA  

increases by one point, whereas the SVCJ and the SVSCJ percentage errors will only 

be, respectively, 3.23 and 1.23 points higher in response. Other noticeable patterns 

include the following. The SV and SVJ pricing errors are significantly, while the 

SVCJ and the SVSCJ pricing errors are only barely, decreasing in the SPX’s volatility 

jump, which confirms that modeling volatility jumps is important. The deeper 

in-the-money the call, or equivalently the deeper out-of-the-money the put, the lower 

the SVJ, the SVCJ’s, and the SVSCJ’s mispricing. But for the SV model, its 

mispricing increases with moneyness. Even though all four models’ pricing errors are, 

in most cases, statistically significantly related to each independent variable, the 

collective explanatory power of these variables is quite high only for the SV but not 

so for the others. The adjusted 2R  is 24 percent for the SV formula’s pricing errors, 

12 percent for the SV’s, 5 percent for the SVCJ’s, and 3 percent for the SVSCJ 

model’s. 
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TABLE IV 
Regression Analysis of Pricing Errors 

The regression results below are based on the equation: 

)()( )(  )(F)( 532
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where )(tnε  is the percentage pricing error of the nth call on date-t; nt KT /)(FVIX and nτ  respectively 
represent the moneyness and the term-to-expiration of the option contract; the variable )(tBAn  is the 
percentage bid-ask spread; and )(tVJ  proxies the volatility jump computed from Bates’ (1991) 
skewness premium using the ratio of deep out-of-the-money S&P 500 index puts and calls with 
comparable maturity to the VIX option. The standard errors, reported in parentheses, are White’s (1980) 
heteroskedasticity consistent estimator. The percentage pricing errors are obtained using the parameters 
implied by all of the previous month’s options. The sample period is March 2006 – November 2007 for 
a total of 46,969 observations. SV, SVJ, SVCJ, and SVSCJ, respectively, stand for the 
stochastic-volatility model, the stochastic-volatility model with random price jumps, the 
stochastic-volatility model with state-independent but correlated jumps in both S&P 500 index returns 
and their volatility, and the stochastic-volatility model with state-dependent and correlated jumps in 
both S&P 500 index returns and their volatility. 
 
Coefficient SV SVJ SVCJ SVSCJ

Constant −1.43**

(−6.95)
1.89**

(2.96)
1.86**

(7.37)
1.49**

(2.59)

KTt /)(FVIX  3.08**

(11.92)
−2.96**

(−11.42)
−2.13**

(−10.06)
−1.88**

(−6.69)

τ  0.07**

(3.53)
0.04*

(1.74)
−0.01*

(−1.98)
−0.02**

(−5.95)

BA  1.50**

(6.47)
0.75**

(3.23)
3.23**

(8.38)
1.23**

(6.92)

VJ  1.55**

(3.52)
1.12**

(3.52)
−0.75**

(−2.90)
−0.42**

(−2.82)

Adj. 2R  0.24 0.12 0.05 0.03
 

 

6. Conclusion 

This study has developed a parsimonious VIX option pricing model that 

reconciles the most general price processes of the SPX in the literature: stochastic 

volatility, random price jumps, and state-independent/state-dependent volatility jumps. 

It is shown that this closed-form pricing formula is practically implementable, leads to 

useful analytical hedge ratios, and contains many VIX option formulas as special 

cases. This last feature has made it relatively straightforward to study the relative 

empirical performance of several models of distinct interest. 
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Our empirical evidence indicates that regardless of performance yardstick, 

taking volatility jumps into account is of the first-order importance in improving upon 

the SV and SVJ formulas. In terms of internal consistency, the SV, the SVJ, the SVCJ, 

and the SVSCJ are still significantly misspecified. In particular, the four models rely 

on implausible levels of volatility variation of forward VIX to rationalize the observed 

option prices. But, such structural misspecifications do not necessarily preclude these 

models from performing better otherwise. According to the out-of-sample pricing 

measures, adding the random price jump feature to the SV model can further improve 

its performance, especially in pricing short-term VIX options; whereas modeling 

volatility jumps can enhance the fit of long-term VIX options. With the SVCJ, the 

SVSCJ and the SVJ, the remaining pricing errors show the least contract-specific or 

market-conditions-related biases. Overall, the two performance yardsticks employed 

in this article can rank a given set of models differently as they capture and reveal 

distinct aspects of a pricing model. Our results support the claim that a model with 

stochastic volatility and state-dependent correlated jumps in SPX returns and 

volatility (i.e. the SVSCJ) is a better alternative to the others in terms of pricing. 

The contributions of this study are fivefold. First, it demonstrates that the VIX 

formula is still valid when the SPX price process contains volatility jumps. Second, it 

provides closed-form solutions to the fair value of the VIX futures and VIX options 

under alternate affine processes. Third, a methodology for an integrated analysis of 

futures and options on VIX is proposed. Finally, the models’ internal consistency tests 

and out-of-sample pricing fits are assessed. 
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Appendix A: Closed-Form Solution to the VIX Call Option 

One can calculate risk-adjusted probabilities, 1Π  and 2Π , from respective 

characteristic functions of the log VIX squared, following Feller (1971) or Kendall 

and Stuart (1977). Let );,(2 φτCtf  denote the moment generating function of the 

probability density under the measure F, )VIX(ln 2
2 Tq . Let )VIX(ln 2

1 Tq  be a 

probability density under measure R defined by  
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It is easy to see that it is a valid probability density because it is non-negative and 

)VIX(E)2/1;,(2 T
F
tCtf =τ . The moment generating function of logarithmic VIX 

squared for )VIX(ln 2
1 Tq  is 
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Since the terminal spot asset price is TVIX , then the expectation of the payoff of a 

VIX call option separates into two terms with probability integrals. 
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Note that );,(2 φτ itf C  is the characteristic function corresponding to )VIX(ln 2
2 Tq  

and )2/1;,(/)2/1;,( 22 CC tfitf τφτ +  is the characteristic function corresponding to 

)VIX(ln 2
1 Tq . Feller (1971) and Kendall and Stuart (1977) show how to recover the 
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“probabilities” from the characteristic functions 
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and similarly the other integral of )VIX(ln 2
1 Tq . 
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Substituting (A.4) and (A.5) into the expression (A.3) proves the equations (17), (18) 

and (19) and noting that under the probability measure F, the time-t VIX futures price 

is )2/1;,()VIX(E)(F 2
VIX

CT
F
tt tfT τ== . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47

Appendix B: Conditional Characteristic Function of the Log VIX 
Squared for the SVSCJ Model under the Probability Measure F 
   

The valuation partial differential equation (PDE) in equation (16) can be 

rewritten as 
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where we have applied the transformation )//ln(lnVIX 211
2 ζτζτζ ττ ++= bva tt . 

Assuming that jumps in volatility have an exponential distribution )/1exp(~ νν μz , 

conditional on volatility jump occurring the formula for VIX squared becomes 
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and the fair value of VIX futures is )VIX(E)(F 2VIX
, νμν

+= T
F
tzt T . Inserting the 

conjectured solution in equation (17) into (B1) produces the PDEs for the 

risk-neutralized probabilities, jΠ  for j=1, 2: 
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and 



 49

0])VIXln,;,(E[ 

])VIXln,;,()VIXln,;,(E[VIX

)VIXln,;,(

)VIX(ln
)VIXln,;,(

VIX
VIX

2
1

)VIX(ln
)VIXln,;,(

VIX
VIX

VIX2
1

)VIX(ln
)VIXln,;,(

VIX
VIX

),;,(VIX
2
1

),;,(VIX
2
1

2
21

2
2

2
2

1

2

1

2

10

2
2

22

2
2

22

2
1

1

2

1

2
2

2

2
2

2
1

1

2

1

2

2
12

2

2
2

2

2
1

1

2

1

2

2
2

2

1

2

1

2

2

1

2

1

2

10

=+Π+

Π−+Π⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++

∂
Π∂

−

∂
Π∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

∂
Π∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+

∂∂
Π∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

∂
Π∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

∂
Π∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟

⎠
⎞

⎜
⎝
⎛ +−−

ν

ν

τλ

ττ
ζ

τζ
ζ

τλλ

τ
τ

τ
τ

ζ
ζ

τζ
ζ

τσ

τ
τ

ζ
ζ

τζ
ζ

τ
τ

ζσκθκ

τ
τ

ζ
ζ

τζ
ζ

τρσ

ντ
ζ

τζ
ζ

τ

ντ
ζ

τζ
ζ

τκλκλ

ν

ττ

τ

τ

τ

ττ

τ

τ
ν

τ

ττ

τ

τ

τ
νννν

τ

ττ

τ

τ
ν

ττ

τ

τ

ττ

τ

τ

zSC

CzSC
t

C

C

C

t

t

C

t

t

t

t

t

t

t

zLtz

LtzLt
aa

b
a

Lt

Lta
aa

b
a

Lta
aa

b
a

a

L
Lta

aa
b

a

L
Lt

aa
b

a

L
Lt

aa
b

a
r

 (B4) 

Observe that equation (B3) and (B4) are Fokker-Planck forward equations for 

probability functions. This implies that 1Π  and 2Π  must indeed be valid  

probability functions, with values bounded between 0 and 1. In Appendix A, we show 

that 1Π  can be calculated from the characteristic function );,(2 φτCtf  of 2Π . 

Hence, we focus on solving the PDE for 2Π  subject to the terminal condition: 

22 lnVIXln2 1)0,(
KC

T
t

≥
=+Π τ  (B5) 

The corresponding characteristic functions for 2Π  will also satisfy the similar PDE: 
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with the boundary condition: 

2VIXln 
2 );0,( Ti

C etf φφτ =+  (B7) 

Conjecture that the solution to the PDE (B6) is given by 

tCtCCC LGDJC
C etf )(VIXln)()()(

2
2

2
222);,( ττττφτ +++=  (B8) 

with 0)0()0()0( 222 === GJC  and φiD =)0(2 . Solving the resulting systems of 

differential equations respectively produce the desired characteristic functions.  

The PDE (B6) contains an expression involving a characteristic function 

conditional on the occurrence of jumps. The jump-related characteristic function 

contains all the information required to describe the joint behavior of jumps in the 

asset price and volatility. Assuming that jumps in log-asset prices are normally 

distributed conditional on the realization of νz , formally ),(~| 2
jjjS zNzz σρμ νν + , 

the closed form of the jump-related characteristic function of the SVSCJ process is 

given by 
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where )ln(VIXVIXln 22
, νμ+= TzT v

 obtained from (B2). The term in the expectation 

of (B9) can be re-written as 
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Take M largely enough to ensure the value of )M1/()MVIX/( 2 +−Tνμ  is small. The 

Taylor’s series expansion up to the first order should give a reasonable approximation 

to the log value, )]M1/()MVIX/(1ln[ 2 +−+ Tνμ , by )M1/()MVIX/( 2 +−Tνμ . Since 

the maximum and minimum of the settlement VIX (converted to the notation of 

annualized standard deviation) in our sample are 0.2670 and 0.0995, respectively, 

with mean of 0.1493 and median of 0.1300, we choose M as =)min(VIX/ 2
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20995.0/νμ . Since )M1/()MVIX/( 2 +−Tνμ  is small, we can approximate 
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where  
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Therefore, the characteristic function )VIXln,;,( 2
,2 ν
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Now, the expectation terms in the PDE (B6) become 
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Having specified the expectations term of the PDE (B6), we can proceed with finding 

a solution to it. The conjectured solution (B8) is inserted into the PDE (B6) and the 

terms in 2VIXln t , the ones related to the diffusion part of the process, and the ones 

related to jumps are grouped together to obtain four ordinary differential equations 
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Boundaries conditions are 0)0(2 =C , 0)0(2 =J , 0)0(2 =G , and φiD =)0(2 , so that 

)lnVIX exp();0,( 2
2 TC itf φφτ =+ .  

The closed-form expression of the conditional characteristic function (B8) is 

obtained by finding solutions to ODEs (B15): 
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We now obtain the closed-form solution to the characteristic function 
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desired characteristic function for 1Π : 
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 (B17) 

The SV, the SVJ and the SVCJ models are all nested within the general formula 

in equation (17). In the SVCJ case, for instance, the state-dependent jump frequency 

vanishes in equation (B1). The general solution in equations (B16)–(B17) will still 

apply except that now 01 =λ . The final characteristic functions jf  for the SVCJ 

model are respectively given by setting 01 =λ  in equations (B8) and (B17). The 

characteristic functions for the SVJ model can be obtained by setting 0=νμ  in (B8), 

(B16), and (B17). The characteristic functions for the SV model are obtained by 

further setting 010 == λλ  in (B8), (B16), and (B17). 
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Conditional on the occurrence of volatility jumps, the fair value of a VIX call 

option is re-written as 
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where  
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