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Abstract

In this paper, we investigate the multiscale relationship between the stock and futures
markets over various time horizons. We propose a new approach — the wavelet multiscaling
method — to undertake this investigation. This method enables us to make the first analysis of
the multiscale hedge ratio using high frequency data (5 min). Wavelets are treated as a “lens”
that enables the researcher to explore relationships that previously were unobservable. The
approach focuses on the relationship in three ways: (1) the lead-lag causal relationship, (2)
covariance/correlations, and (3) the hedge ratio and hedging effectiveness. Our empirical
results show that the future market Granger causes the stock market. We find that the
magnitude of the wavelet correlation between the two markets increases as the time scale
increases, indicating that the stock and futures markets are not fundamentally different. We
also find that the hedge ratio at the second scale has the lowest value and increases
monotonically at a decreasing rate, converging toward the long horizon hedge ratio of one,
which suggests that the shared permanent component ties the stock and futures series together,
and the effect of the transitory components becomes negligible.
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1. Introduction

Many of the participants in futures markets are hedgers. Hedging is one of the important
reasons for using derivative securities such as futures contracts. The literature shows that the
study of the hedge ratio using futures contracts has been of interest to both academicians and
practitioners and widely discussed. In addition to this aspect, understanding the long-run and
short-run relationships between the stock and futures markets is important for portfolio
management. For example, in financial risk management. risk is asscssed at different time
scales, which vary from intervals as small as a few minutes to longer time scales such as days
or even months. A common practice in the risk management industry is the conversion of
short-scale risk measures into longer horizons by taking the corresponding scaling quantity
into account. Based on this practice, we would question whether the long-run
covariance/correlation between the stock and futures markets is similar to that of the short-run.
We can then question whether the long-run hedge ratio is similar to the short-run hedge ratio.
As in the study of Lee (1999), given the time-varying nature of the covariance in many
financial markets, the classical assumption of a time-invariant optimal hedge ratio’ appears
inappropriate.

To determine the optimal hedge ratio, some early studies assume that the hedge ratio is
constant over time and estimate it using simple ordinary least square estimation (see
Ederington, 1979; Hill and Schneeweis, 1982). However, given the time-varying nature of the

covariance in many financial markets, the classical assumption of the time-invariant optimal

! Since risk in this context is usually measured as the volatility of portfolio returns, an ntuitively plausible
strategy might be to choose the hedge ratio that mmimizes the variance of the retums of a portfolio contamning
the stock and futures position. This is known as the optimal hedge ratio (Brooks et al., 2002).



hedge ratio appears inappropriate. An improvement has been made by adopting a bivanate
GARCH framework (see Kroner and Sultan, 1993; Choudhry, 2003; Wang and Low, 2003).
Traders and investors working in the stock and futures markets have a different hedging
horizon. Therefore, examining and applying the one-period hedge ratio could lead investors to
invalid decision making. The previous literature has shown little attention to the multiscale
hedge ratio, except for Howard and D’ Antonio (1991), Lien and Luo (1993, 1994), Geppert
(1995), and Lien and Wilson (2001). However, the models presented by these authors have at
least three problems in estimating the multiscale hedge ratio. First, the ratio is an unreliable
estimator due to a handful of independent observations generated from long-horizon return
series (see Geppert, 1995). Second, computation is burdensome and difficult to calculate over
longer investment horizons. Finally, it requires an assumption for the error term for
GARCH/SV model estimation (see Lien and Wilson, 2001), which can cause inaccurate
results.

To overcome these problems, In and Kim (2006) recently proposed a new approach for
investigating the relationship between the stock and futures markets using wavelet analysis.
The main advantage of using wavelet analysis is the ability to decompose the financial data
into several time scales (investment horizons). All market participants such as regulators and
speculative investors who trade in the stock and futures markets make decisions over different
time scales. The time frame over which they operate differs immensely, ranging from seconds
to months and beyond. In fact, due to the different decision-making time scales among traders,
the true dynamic structure of the relationship between the stock and futures markets itself will
vary over the different time scales associated with those different horizons. Although it is

logical to assume that there are several time periods in decision making, economic and



financial analyses have been restricted to at most two time scales (the short-run and the long-
run), due to the lack of analytical tools to decompose data into more than two time scales.
However, unlike previous studies, this paper uses wavelets to produce an orthogonal
decomposition of correlation and the hedge ratio between the stock and futures indices over
several different time scales (In and Kim, 2006).

Recently, several applications of wavelet analysis to economics and finance have been
documented in the literature. To the best of our knowledge, applications in these ficlds
include examination of foreign exchange data using waveform dictionaries (Ramsey and
Zhang, 1997), decomposition of economic relationships of expenditure and income (Ramsey
and Lampart, 1998a and 1998b), the multihorizon Sharpe ratio (Kim and In, 2005a),
systematic risk in a capital asset pricing model (Gengay et al., 2003), and examination of the
multiscale relationship between stock returns and inflation (Kim and In, 2005b).

This paper is different from the previous studies. We utilize intra-day data. Adopting intra-day
data and wavelet analysis is very useful for examining the multiscale hedge ratio in that it
allows us to investigate how the hedge ratio can be affected by hedge horizon from intra-day
to longer horizons. More specifically, we can observe the difference between the 5-minute
hedge ratio and the much longer horizon hedge ratio.

Our empirical results indicate that first, at 5-minute (original data) and approximately one-day
dynamics (seventh scale), the futures market Granger causes the stock market. From this
result, it is concluded that the futures market is more efficient. Examining the wavelet
variance reveals an approximate decreasing linear relationship between the wavelet variance
and the wavelet scale. This implies that an investor with a short investment horizon has to

respond to every fluctuation in realized returns, while the long-run risk for an investor with a



longer horizon is significantly less. We find that the magnitude of the wavelet correlation
between the two markets increases as the time scale increases, indicating that the stock and
futures markets are not fundamentally different. Finally, we also find that the hedge ratio at
the second scale has the lowest value and increases monotonically at a decreasing rate,
converging toward the long horizon hedge ratio of one, which suggests that the shared
permanent component ties the stock and futures series together and the effect of the transitory
components becomes negligible.

This paper is organized as follows. Section 2 derives the minimum variance hedge ratio.
Section 3 describes the fundamental methods of wavelet analysis that we apply. Section 4

discusses the data and the empirical results. In section 5, concluding remarks are presented.

2. Minimum variance hedge

The most widely used static hedge ratio” is the Minimum Variance (MV) hedge ratio,
which is derived Johnson (1960) by minimizing the portfolio risk. In this framework, the risk
is given by the variance of changes in the value of the hedged portfolio. Assume that an
individual has taken a fixed position in some asset and that this person is long one unit of the
asset without loss of generality. Let A, represent the short position taken in the futures market
at time ¢ under the adopted hedging strategy. Ignoring daily resettlement, the hedger’s

objective within this framework is to minimize the variance of the change in the value of the

hedged portfolio:



Min Var(AHPE, ) = Var(AS, + i AF})

=Var(AS,)+ herar(AF} )+ 2h,Cov(AS,, AF,) 4y

where A/IF, is the change in the value of the hedged portfolio during time #; AS, and AF, are
the changes in the log of the stock and the futures prices at time 7, respectively; and 4, is the

optimal hedge ratio. Duffie (1989) shows that the optimal hedge ratio for a person with mean-
variance utility can be decomposed into two portions: one reflecting speculative demand
(which varies across individuals according to their risk aversion) and another reflecting a pure
hedge (which is the same for all mean-variance utility hedgers). Because the pure hedge term
is common to all hedgers, and the speculative demand term is both difficult to estimate and
often close to zero, it is reasonable to focus attention on the pure hedge.

Suppose the hedger decides to pursue a hedging strategy. The optimal hedge is determined by

solving equation (1).

oVar(AHP,
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Where p,; 1s the correlation coefficient between AS, and AF), and o and &, arc standard

deviations of AS, and AF}. This corresponds to the conventional hedge ratio, when changes

*'We use the static MV hedge ratio, which changes with the holding period, not with time. Our purpose is not to
examine the time-varying hedge ratio, but to investigate the horizon-varying hedge ratio.



in both stock and futures prices are homoskedastic. In the absence of conditional

heteroskedasticity, both Cow(AS,, AF,) and Var(AF,) are independent of the information set.

As a result, h: 1s a constant term regardless of whatever information is available. Commonly,
the value of the hedge ratio is less than unity, so that the hedge ratio that minimizes risk in the
absence of basis risk turns out to be dominated by h: when basis risk 1s taken into

consideration (Choudhry, 2003). The attractive feature of the MV hedge ratio is that it is casy
to understand and simple to compute. In general, it is considered that the MV hedge ratio is
not consistent with the mean-variance framework, since it ignores the expected return on the
hedged portfolio. However, for the MV hedge ratio to be consistent with the mean-variance
framework, either the investors need to have an infinite risk aversion coefficient or the
expected return on the futures contracts is zero, in other words, the futures price follows a
pure martingale process.3

The degree of hedging effectiveness, proposed by Ederington (1979), is measured by the
percentage reduction in the variance of the stock prices changes. Therefore, the degree of

hedging effectiveness, denoted as ET/, can be expressed as follows:

_ Var(AS,)—Var(AHE) _ - Var(AHE)

EH - psf
Var(AS,) Var(AS,)

€]

where Péf’,z is the square of the correlation between the change in the stock and futures prices.

? Other strategies that mcorporate both the expected return and risk (variance) of the hedged portfolio have been
recently proposed: Optimum mean-variance hedge ratio by Hsin et al. (1994), Sharpe hedge ratio by Howard and
D’ Antonio (1984), and minimum generalized semivariance (GSV) hedge ratio suggested by Chen et al. (2001).
However, it 1s shown that 1f the futures price follows a pure martingale process or if the futures and spot returns
are jointly normally distributed, the optimal mean-variance hedge ratio will be the same as the MV hedge ratio.



3. Wavelet analysis

The stock and futures markets are complex systems resulting from the action and reaction
of many traders. Each trader has different motivations for buying and selling financial assets,
and possibly different contractual or legal constraints, resulting in different trading time
frames. The key fact is the existence of many traders working with very different time
horizons when it comes to making an investment. Therefore, the relationship between the two
markets should be examined at the different time scales. Wavelet analysis is a tool with a
distinct advantage for investigating the relationship between the stock and futures markets in
terms of correlations and the hedge ratio, as it enables us to decompose the data on a scale-by-
scale basis. We first introduce general wavelet analysis and then present the method for
calculating the wavelet variance and covariance from the data decomposed by wavelet
analysis.

Throughout, we use multiresolution analysis (MRA), introduced in Mallat (1998). MRA is a

mathematical method to decompose a square-integrable function or signal f(-) at different
scales. The key of MR A is a mother wavelet function (-). The mother wavelet function has

three properties: sum to zero, unit energy and orthogonality. Orthogonality means that the
shified functions in the same scale are orthogonal and also that the functions at different

scales are orthogonal. The orthonormality of () implies that the doubly infinite sequence

{w, ()} constitutes an orthonormal basis, where

_J j _AJ
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This sequence 1s obtained from a single mother wavelet w(-) by dilations and translations.

The integers j and & arc called the dilation and translation parameters. In other words, to
capture the high and low frequencies of the signal, the wavelet transformation utilizes a
mother wavelet that is scaled and shifted.

Another basis function of wavelet analysis is the father wavelet as follows:

4 ; '
$:()=2 2¢(2""r—k)=2%¢[f_22jﬂ (5)

where 27 is a sequence of scales. The term 2 //2 maintains the norm of the basis functions

¢(2) at 1. Using these two wavelets, any time series can be expressed as follows:
X = ZSJ,k¢J,k O+ ZdJ,kWJ,k O+ Z dy ¥ O+A + Z Ay (6)
k k k k

where J is the number of scales, and & ranges from 1 to the number of coefficients in the

specified component. The coefficients s,, . d,, ., ..., d;, are the wavelet transform

coefficients. J is the maximum integer such that 27 is less than the number of data points. In

this expression, the first expansion gives a function that is a low resolution or a coarse

approximation of x,. For each increasing index ; in the second summation, a higher or finer

resolution function is added. The coefficients in this wavelet expansion are called the discrete



wavelet transform (DWT) of the signal x,. More specifically, s, , represents the smooth
coefficients that capture the trend, while the detail coefficients d Gk e dyp » which can

capture the higher frequency oscillations, represent increasing finer scale deviations from the
smooth trend.

In this study, we use the Maximal Overlap Discrete Wavelet Transform (MODWT). It is
natural to ask why the MODWT is needed instead of the DWT. The motivation for
formulating the MODWT is essentially to define a transform that acts as much as possible
like the DWT. but does not suffer from the DWT’s sensitivity” to the choice of a starting point
for a time series (Percival and Walden, 2000). Importantly, the zero-phasing property of the
MODWT permits meaningful interpretation of “timing”™ regarding the wavelet details. With
this property, we can align perfectly the details from decomposition with the original time
series. In comparison with the DWT, no phase shift will result in the MODWT.

Given the wavelet coefficients obtained from MODWT, the wavelet variance 1s estimated
using the coefficients for scale 4, = 2™ under the assumption that the dependence structure of

our returns is independent of time through:

1 N-1
af(ﬂbj)zj\T S PLi=x 1 (7

j =Ll

where dit is the wavelet coefficient of variables / at scale 4.

* This sensitivity results from down-sampling the outputs from the wavelet and scaling filters at each stage of the
pyramid algorithm (Percival and Walden, 2000).



The wavelet covariance can decompose the sample covariance into different time scales. The

wavelet covariance at scale A; can be expressed as follows:

N-1
Covyy(4;)= ﬁi > dhdy, (8
jt=L,-1
Although the wavelet covariance decomposes the covariance between two stochastic
processes on a scale-by-scale basis, in some situations it may be beneficial to normalize the
wavelet covariance by the variability inherent in the observed wavelet coefficients. This leads
us to calculate the wavelet correlation. The estimator of the wavelet correlation can be

expressed as follows using equations (7) and (8):

Covyy(4;)

9
W oy () ®

ﬁXY(;l’j) =

As with the usual correlation coefficient between two random variables, | gy (14 ;) [<1. Given

the wavelet variance and covariance between two series, the hedge ratio at scale A; can be

calculated using equations (7) and (8).

W _ Covsf(ﬁ,j)

. 10
TN a0

In this specification, h}” indicates the wavelet multiscale hedge ratio, which can vary

depending on the wavelet scales (i.e., investment horizons). To understand how the wavelet

10



scale represents the investment horizon, it is more informative to consider the spectral

representation theorem. By this theorem, the spectrum of original 5-minute return series, R,,
contains all frequencies between zero and 1/2 cycles, equivalent to a 0 — 10 minute period in
our data frequency. The wavelet coefficients at the first scale, d,, are associated with the
frequencies in the interval [1/4, 1/2], equivalent to a 10 — 20 minute period, while the wavelet

coefficients at the second and third scales, d, and d,, respectively, contain frequencies [1/8,

1/4] and [1/16, 1/8], respectively. Thus, the hedge ratios calculated at different scales
represent the short position taken in the futures market at various frequencies (in other words,

at various time scales).

4. Empirical results

In this paper, we use the S&P 500 Index and the S&P 500 Futures Index maturing in June
2004. Our data is composed of 5-minute prices for each index obtained from Tickdata
(www.tickdata.com) for the period 22 March 2004 to 9 June 2004. The final three-months’
trading data has been chosen for our study because most trading occurs in and close to the
expiry month. The trading hours of the Chicago Mercantile Exchange (CME) are 8:30 to
15:15 local time, while the New York Stock Exchange (NYSE) opens from 9:30 to 16:00
local time. However, the local time of New York is one hour ahead of Chicago. Therefore, the
opening hours of both markets are the same, while the CME closes 45 minutes earlier than the
NYSE. Therefore, in our study we use the time period from 8:30 to 15:00, which generates 78

observations per day. In our sample we have 56 trading days, which generates a total of 4368
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(56><78) observations. The 5-minute changes of both stock and futures indexes are calculated
by log(Py) — log(FPr1).

Table 1 summarizes selected basic statistics. All sample means are positive in the sample
period. Variances are 0.0016 for the futures index and 0.0014 for the stock index, showing
that the futures market has a higher volatility than the stock market. The signs of skewness are
all positive. The values of [.jung-Box up to 15 lags (hereafter LB(15)) for the return series are
significant at the 5% level. The LB(15) for squared return series are highly significant for
both markets, suggesting the possibility of the presence of autoregressive conditional
heteroskedasticity. First-order autocorrelations of futures and stock returns (p) are —0.0374
and 0.0129, respectively. For the squared return data, the first-order serial correlations (pz) for
the futures and stock markets are 0.0075 and 0.0119, respectively, indicating that the stock
returns are more persistent than the futures returns.

To analyze the relationship between the stock and the futures markets using wavelet analysis,
requires choosing which wavelet filter to use from the various wavelet filters. In consideration
of the balance between the sample size and the length of wavelet filter, we settle with the
Daubechies least asymmetric wavelet filter of length 8 (LA(8))’, while we decompose our
data up to scale 9. To examine the lead-lag relationship in wavelet analysis, first, we test for
Granger causality up to level 9, including the original data set.

The results of the Granger causality tests are reported in Table 2. As can be seen in Table 2,
the futures market leads the stock market at the original data and the seventh scale, while at

the other scales, there are feedback relationships. Note that lower scales correspond to higher

3 Tn our study, to check the appropriateness of our choice of wavelet filter, we examined the same test using
other wavelet filters, such as the Daubechies extremal phase wavelet filter of length 4, D(4) and the Daubechies
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frequency bands. For example, the first scale is associated with 5-minute changes, the second
scale is associated with 2 > 5 = 10-minute changes, and so on.
The first six scales capture the frequencies 1/64 < f < 1/2; i.e., oscillations with a period

length of 2 (10 minutes) to 64 (320minutes). Since there are 785 = 390 minutes in a day, the

first six scales relate to the intra-day dynamics of our sample. This is of interest in that at 5-
minute (original data) and approximately one-day dynamics (seventh scale), the futures
market Granger causes the stock market. The cost-of-carry (COC) model states that as new
information arrives simultancously to the stock and futures markets and is reflected
immediately in both the stock and futures prices, profitable arbitrage should therefore not
exist, under the assumption that the two markets are perfectly efficient and frictionless and act
as perfect substitutes. In other words, if both markets are efficient, the COC model indicates
that the two markets have a feedback relationship in terms of Granger causality. Based on this
finding of the Granger causality test, we can conclude that the futures market is more efficient.
In other words, price discovery is greater in the futures market (Iin and Stevenson, 2001).

Turning to the second purpose of our paper (correlation in the various time scales), we first
examine the variances of the futures and the stock markets’ returns in various time scales. An
important characteristic of the wavelet transform is its ability to decompose (analyze) the
variance of the stochastic process. Figures 1a and b illustrate the MODWT-based wavelet
variances of two series in log-log scales. The straight lines indicate the variance and the

dotted lines indicate the 95% confidence interval.®

least asymmetric wavelet filter of length 16, D(16). The results are not quantitatively different from those of
LA(R). To conserve space, the results are not reported but available from the authors on request.

® For a detailed explanation on how to construct the confidence interval of wavelet variance, see Gengay et al.
(2002, p. 242).
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There is an approximate linear relationship between the wavelet variance and the wavelet
scale, indicating the potential for long memory in the volatility series. The variances of both
the stock and futures markets decrease as the wavelet scale increases. Note that the variance-
versus-wavelet scale curves show a broad peak at the first secale in both markets. More
specifically, a wavelet variance in a particular time scale indicates the contribution to sample
variance (Lindsay et al., 1996, p. 778). The sample variances of the stock and futures markets
arc 0.0014 and 0.0016, respectively, and 49% and 51% of the total variances of the stock and
futures markets, respectively, are accounted for by the first scale. This result implies that an
investor with a short investment horizon has to respond to every fluctuation in the realized
returns, while for an investor with a much longer horizon, the long-run risk is significantly
less. In addition, notice that the wavelet variances show that the futures market is more
volatile than the stock market regardless of the time scale. This is consistent with the results
of Lee (1999), who finds that the futures market has higher volatility than the stock market
using a GARCH model.

Furthermore, the eighth scale, where we observe an apparent break in the variance for both

series, is associated with 1285 = 640-minute changes. Since there are 390 minute in one day,

the eighth scale corresponds to 1.64 days. This implies that the stock and futures returns have
a multiscaling behavior. There are two different scaling parameters corresponding to intra-day
and higher scales, respectively. This apparent multiscaling behavior occurs approximately at
the daily horizon where the intra-day scasonality i1s strongly present. The removal of the

intra-day seasonality would not eliminate this multiscaling, but the transition between two

" This figure can be calculated by the normalization of the wavelet variance using the sample variance. For more
detail, see Lindsay et al. (1996).
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scaling regions would be more gradual by exhibiting a concave scaling behavior (Gengay et
al., 2001).

In addition to examining the variances of two time series, a natural question is to consider
how the two series are associated with one another. The wavelet correlation is constructed to
examine how the two series are related over various time scales. Figure 2 illustrates the
estimated wavelet correlation between the stock and futures returns against the various time
scales. In this figure, the straight line indicates the wavelet correlations up to ninth scale,
while the dotted lines represent the 95% confidence interval.

Two things are worth noting in Figure 2. First, the correlations up to the seventh secale are
increasing, starting from the second scale. In the intra-day scales (up to seventh scale), the
correlation cocflicients are very different, depending on the specific time scale, while at one-
day and higher dynamics, the correlation remains very high, close to one. This implies that in
the intra-day scales, especially at very short scales, the primary purpose for traders’
participation in the futures market is not hedging, but speculation. Second, the magnitude of
the correlation increases as the time scale inereases, indicating that the stock and futures
markets are not fundamentally different (Lee, 1999).

The final purposc of this paper is to examine the multiperiod hedge ratio, based on the results
of variance and covariance obtained from wavelet analysis. As indicated in Lien and Luo
(1993, 1994), realism suggests that the hedger’s planning horizon usually covers multiple
periods. Therefore, examining the multiperiod hedge ratio is more appropriate than examining
the one-period hedge ratio. Figure 3 shows the hedge ratio and hedging effectiveness using

the various time scales up to scale 9. Note that these wavelet hedge ratios are estimated by a
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nonparametric method. Therefore, it is not necessary to assume a particular distribution of the
error term as in the GARCH/SV model.

As can be seen in Figure 3, the hedge ratio at second scale has the lowest value, —0.06 and
increases monotonically at a decreasing rate, converging toward the long horizon hedge ratio
of one. As indicated in Figure 3, the degree of hedging effectiveness has the lowest value at
the second scale, 0.004, and approaches one as the wavelet time scale increases. Intuitively,
hedging effectiveness approaches one because, over long horizons, the shared permanent
component tics the stock and futures series together, and the effect of the transitory
components becomes negligible. In the long run, the stock and futures prices are perfectly
correlated (Geppert, 1995). This result is consistent with the results of Low et al. (2002) and
Geppert (1995), who compare the hedge ratios and hedging effectiveness obtained from

various models.

5. Concluding remarks

This paper investigates the multiscale relationship between the stock and futures markets
over various time horizons. Ours is the first analysis to undertake this investigation using
wavelet analysis and high frequency intra-day data. The paper examines this relationship in
three ways: (1) the lead-lag relationship, (2) covariance/correlations, and (3) the hedge ratio
and hedging effectiveness. To examine the lead-lag relationship between the two markets, we
employ the Granger causality test for various time scales utilizing the decomposed data. The
wavelet correlation is estimated by testing the correlation between the two markets in the

various time scales from the wavelet coefficients. The hedge ratio, defined by the covariance
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between the stock return and the futures return divided by the volatility of the futures return,
is calculated from the wavelet covariance and variance. The main advantage of using wavelet
analysis is the ability to decompose the data into various time scales. This advantage allows
researchers to investigate the relationship between two variables in various time scales, while
the traditional methodology allows examination of only two time scales — short- and long-run
scales.

The wavelet analysis is undertaken using the LA(8) wavelet filter, and it supports four main
conclusions. First, it is found that at 5-minute (original data) and approximately one-day
dynamics (scventh scale), the futures market Granger causes the stock market. From this
result, it is concluded that the futures market is more efficient. In other words, price discovery
is greater in the futures market.

Second, it is found that there is an approximate decreasing linear relationship between the
wavelet variance and the wavelet scale, indicating the potential for long memory in the
volatility series. This result implies that an investor with a short investment horizon has to
respond to every fluctuation in the realized returns, while for an investor with a much longer
horizon, the long-run risk is significantly less.

Third, at the eighth scale (associated with 128><5 = 640-minute changes), it is found that there

is an apparent break in the variance for both series. Since there are 390 minutes in one trading
day, the eighth scale corresponds to 1.64 days. This implies that the stock and futures returns
have a multiscaling behavior. This apparent multiscaling behavior occurs approximately at the
daily horizon, where the intra-day scasonality 1s strongly present.

Fourth, we also find that at the intra-day scales (up to seventh scale), the correlation
coefficients between the two markets vary at different horizons, while at one-day and higher

scales, the correlation remains very high and stabilizes close to one. In addition, the
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magnitude of the wavelet correlation between the two markets increases as the time scale
increases, indicating that the stock and futures markets are not fundamentally different.

Fifth, the analysis of the wavelet hedge ratio and hedging effectiveness indicates that the
hedge ratio at the second scale has the lowest value and increases monotonically at a
decreasing rate, converging toward the long horizon hedge ratio of onc. The degree of
hedging effectiveness also has the lowest value at the second scale and approaches one as the
wavelet time scale increases. Intuitively, hedging effectiveness approaches one because, over
long horizons, the shared permanent component ties the stock and futures series together and

the effect of the transitory components becomes negligible.
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Table 1
Basic statistics

Futures market Stock market
Mean 0.0003 0.0003
Variance 0.0016 0.0014
Skewness 0.2966 0.4281
Kurtosis 14.8162 13.5827
B 39979.8616 33679.8516
(0.0000) (0.0000)
I -0.0374 0.0129
LB(15) for R, 22.2503 26.8247
(0.0348) (0.0082)
pz 0.0075 0.0119
LB(15) for th 31.7695 55.2397
(0.0015) (0.0000)

Note: Sample period: 22 March 2004 — ¢ June 2004. The means and variances are calculated by multiplying by
100 and 10,000, respectively. Sigmficance levels are m parentheses. LB(#) 1s the Ljung-Box statistic for up to »
lags, distributed as 5* with 7 degrees of freedom. pand ¢ indicate the first-order autocorrelations of returns and
squared returns, respectively. Skewness and lurtosis are defined as E[(R; - /.1)]3 and E[(R; - /.1)]4, where 4 is the
sample mean.

Table 2
Granger causality test

original 1 2 4 8 16 32 64 128 256
Stock 1.83  62.46* 108.30* 382.27* 38.34* l4l.66* 21.10* 122 49.92%  77.29%
SFutures  (0.12)  (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.30) (0.00)  (0.00)
Futures B1R.B0* 579.75% 431.55% 240.74* 435.70* 603.02* 631.01* 557.13*% 514.61% 204.49*
—Stock (0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Note: The original data has been transformed by the wavelet filter (LA(R)) up to time scale 8. * indicates
significance at 5% level. The significance levels are in parentheses. The first detail (wavelet coefficient) dl

captures oscillations with a period length 5 to 10 min. The last wavelet scale captures oscillations with a period
length of 1280 to 2560 min.
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(log) scale

Fig. la. Estimated wavelet variance of stock returns. Wavelet variances for stock retumns are plotted on different
time scale x-axis. The dotted lines represent approximate 95% confidence interval. Each scale is associated with
a particular time period. For example, the first scale is 5 min, the second scale is 2x5 = 10 min, the third scale is
4x5= 20 mm and so on. The seventh scale 18 64x5 = 320 min. Smce there are 390 min per day, the seventh scale
corresponds to approximately one day.
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Fig. 1b. Estimated wavelet variance of futures returns. Wavelet variances for futures returns are plotted on
different time scale x-axis. The dotted lines represent approximate 95% confidence mterval. Each scale is
assoclated with a particular time period. For example, the first scale 1s 5 min, the second scale 1s 2x5 = 10 min,
the third scale is 4x5= 20 min and so on. The seventh scale is 64x5 = 320 min. Since there are 390 min per day,
the seventh scale corresponds to approximately one day.

23



wav elet correlation

(log) scale

Fig. 2. Estimated wavelet correlation between stock and futures returns. The dotted lines denote approximate
95% confidence mterval. At scales d1 — d3, correlation rapidly increases and at scales d4 — d8, gradual and
persistent behavior becomes more visible. Fach scale is associated with a particular time period. For example,
the first scale 15 5 min, the second scale i1s 2x5 = 10 min, the third scale 13 4x5= 20 min and so on. The seventh
scale 18 64x5 = 320 min. Since there are 390 min per day, the seventh scale corresponds to approximately one

day.
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Fig. 3. Hedge ratio and hedging effectiveness agamst wavelet domains. Each scale is associated with a particular
time period. For example, the first scale 15 5 mm, the second scale 1s 2x5 = 10 min, the third scale 13 4x5= 20 min
and so on. The seventh scale is 64x5 = 320 min. Since there are 390 min per day, the seventh scale corresponds

to approximately one day.
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