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Abstract 

VIX futures are launched on 26 March 2004, and their underlying VIX obviously 
becomes an indicator of investors’ confidence towards the U.S. equity market. Since 
VIX futures settle to the forward 30-day implied volatility of the S&P 500, they are 
natural to hedge the “forward vega” risk of S&P 500 options. Empirically, however, it is 
not known whether and by how much VIX futures improves hedging. This study fills 
this gap by first deriving a futures option model that allows volatility and jumps to be 
stochastic. Using VIX futures, S&P 500 futures and S&P 500 futures options, this study 
examines several alternative models within two types of hedging strategy, including (i) 
the minimum-variance hedge of option contracts that rely on the underlying futures as 
the single hedging instrument, and (ii) a delta-neutral hedge, in which as many hedging 
instruments as there are risk sources are used to make the net position completely 
risk-immunized (locally). For comparison, a forward-start strangle portfolio is 
constructed using S&P 500 options. Our findings show that VIX futures outperform 
forward-strangle strategy at most moneyness-maturity categories and the results are 
robust across models and hedging strategy. Overall, VIX futures are a better hedging 
instrument than standard options if the target option is a futures option, or equivalently 
if the risk exposure is the forward volatility risk. But for VIX futures, incorporating 
stochastic volatility and jumps yields the best hedging performance. 
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1. Introduction 

Brenner et al. (2004) argue that option market makers’ and portfolio managers’ 

performance may be affected by unexpected changes in volatility and thus suggest a 

standard straddle using standard call and put options to hedge volatility risk. However, 

this option portfolio will need to hedge the changes in delta and volatility 

simultaneously. One can refer to Carr and Madan’s (2002) dynamic trade to isolate the 

volatility risk, but it will incur a higher cost. Carr and Madan (2002) also provide 

another opinion to hedge volatility risk—options on a straddle (STO). They use a 

numerical method to calculate the value of STO, and find the value of STO is highly 

sensitive to the volatility, especially for high volatility variation and shorter maturities. 

Therefore, they conclude that STO is an efficient tool to hedge volatility risk. Other than 

straddle, Rebonato (1999) proposes another idea to hedge volatility risk. The target 

instrument is a long position on the forward-start option. It is considered as an 

at-the-money (ATM) option because its strike price is set in the future. Therefore, there 

are no delta and gamma risk exposures, but only volatility risk remained. Rebonato 

(1999) constructs two wide strangles with different maturities so that the changes of 

underlying stock price will not affect the payoff of the portfolio. In other words, this 

strangle portfolio can hedge forward volatility risk, without exposure to delta and 
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gamma risk. Since volatility is time-dependent and state-dependent, however, this 

strategy must rebalance whatever time passes by or the volatility risk exposure exists. 

Further, using Eurodollar options Chaput and Ederington (2005) examine the trading 

and structure of alternate volatility trades. They find that straddles are the most popular 

volatility trade since volatility traders seek volatility trading designs with low deltas, 

low transaction costs and high gammas and vega.  

Briefly, the risks of an option writer can be partitioned into the price risk and 

volatility risk. For the futures option writer, however, the volatility risk he faces is the 

so-called forward volatility risk. The forward volatility risk refers to the risk exposure 

induced by volatility randomness between the futures option’s expiry and the futures’ 

expiry. In contrast, the traditional straddle or strangle strategy mainly hedges the 

volatility risk between current day and option’s expiry, so-called spot volatility risk.  

The Chicago Board Options Exchange (CBOE) introduces the VIX (volatility 

index) in 2003, which is the sentiment volatility implicit in S&P 500 index (SPX) 

option prices.1 For offering more instruments to manage volatility risk, CBOE launches 

the VIX futures in March 2004 and the VIX option in February 2006. Before CBOE 

launches VIX and derivatives on VIX, Brenner and Galai (1989) have introduced the 
                                                 
1 Since 1990, VIX has moved opposite the SPX 88% of the time, with a negative daily return correlation 
of –0.67. On average, VIX has risen 16.8% on days when SPX fell 3% or more. Simply buying VIX call 
options, therefore, could be considered a hedge to protect against sharply falling stock prices. 
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concept of volatility index and options on volatility index. They believe that different 

volatility measures that are highly correlated to the volatility exposures of all market 

participants are different. Hence, the volatility index may be based on standard 

deviation of historical data, implied volatility of options, or the combination of 

historical and option data. Then, the futures or options on volatility index may satisfy 

the hedging demand of different participants. However, it is still an empirical question 

of whether the hedging efficiency of derivatives on volatility is as perfect as the 

theoretical result. This paper fills this gap by examining whether and by how much VIX 

futures improves hedging. Since VIX futures settle to the forward 30-day implied 

volatility of the S&P 500, they are natural to hedge the “forward vega” risk of S&P 500 

options. A short position on S&P 500 futures call options is chosen as our target 

instrument, since it consists of the volatility risk between option’s expiry and its 

underlying futures’ expiry, or equivalently the “forward vega” risk. But in reality most 

futures option contracts are American in nature. This paper derives a model for 

American futures options in the following manner. For options with early exercise 

potential, compute the Barone-Adesi and Whaley (1987) early-exercise premium, 

treating it as if the stock volatility. Adding this early-exercise adjustment component to 

the European futures option price in the pricing formula should result in a reasonable 
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approximation of the corresponding American futures option price (e.g., Bates, 1996; 

Broadie et al., 2007). Alternatively, one can follow such a nonparametric approach as in 

Aït-Sahalia and Lo (1998) and Broadie et al. (2000) to price American options. The 

closed-form option pricing formula makes it possible to derive hedge ratios analytically. 

The analytical expressions for the hedge ratios form a convenient basis for constructing 

hedges. 

In the present literature, there are at least three sources of stochastic variations 

over time: price risk, volatility risk and interest rate risk. Bakshi et al. (1997) relax the 

Black-Scholes-Merton (1973) (BSM) model to incorporate stochastic volatility, 

stochastic interest rates and random price jumps and study what the most important 

element to improve hedging effectiveness. They use a short position on a SPX call 

option as the target instrument and investigate the performance of two hedging 

strategies, the single-instrument hedge2 and the delta-neutral hedge3. For both strategies, 

the stochastic-volatility model is the best performer, followed by the random jumps and 

stochastic-volatility model. This illustrates that once the stochastic volatility is modeled, 

the hedging performance may be improved by incorporating neither price jumps, nor 

                                                 
2 The single-instrument hedging strategy only consists of underlying asset, this strategy mainly hedges 
price risk. 
3 Under the delta-neutral hedge, BSM only uses the underlying stock, the SV and SVJ models consist of 
the underlying stock and another SPX option with different strikes or maturities, and the SVSI model 
further adds a discount bond. 
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stochastic interest rate into the option pricing framework. Nevertheless, the delta-neutral 

strategy provides a better hedging performance than a single-instrument strategy. Bakshi 

and Kapadia (2003) use Heston’s (1993) stochastic-volatility option pricing model to 

construct a delta-hedged strategy for a long position on SPX call options.4 They find 

that the volatility risk is priced and the price jump affects the hedging efficiency. 

Vishnevskaya (2004) follows the structure of Bakshi and Kapadia (2003) and constructs 

a delta-vega-hedged portfolio for a long position on the SPX call option, consisting of 

the underlying stock, another option and the money-market fund. His result suggests the 

existence of some other sources of risk. Further, Mwanga and Ndogmo (2005) describe 

the characteristics of BSM greeks and their hedging functions for the target position on 

the option, futures and forward contracts. By assuming deterministic interest rates, their 

hedge gets a lot of exposure to delta and vega risks. Other than using a traditional option 

to hedge vega risk, Neuberger (1994) adopts the log contract to hedge volatility. Finally, 

Psychoyios and Skiadopoulos (2006) use the short position on a standard 

European-style call option as the target instrument and apply a joint Monte Carlo 

simulation to generate data. They then couple two hedging schemes with two traditional 

option models and three volatility option models in order to investigate which 

                                                 
4 A delta-hedged portfolio is a replicating portfolio constructed to hedge a long position in option by 
shorting delta units of the underlying stock, such that the net investment earns the risk-free rate. 
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combination gets the best hedging performance. Psychoyios and Skiadopoulos (2006) 

further investigate the hedging performance under different rebalance frequencies, 

maturity and moneyness. Consistent with Boyle and Emanuel’s (1980) work, the delta 

hedging errors for the short- and medium-term options under daily rebalance are less 

than the hedging errors under weekly rebalance. In addition, the short-term volatility 

options are more sensitive to the changes of volatility, and using short-term volatility 

options with rolling-over strategy will thus get a better hedging performance. In 

conclusion, the traditional option, on the one hand, is a more efficient instrument than 

the volatility option for hedging a tradition option. On the other hand, the hedging 

performance using volatility option can be improved by either increasing the rebalance 

frequency or with a rolling-over strategy.  

Guided by previous studies, the price risk, stochastic-volatility risk and price-jump 

risk apparently become the key factors when constructing a hedging strategy for option 

writers. Hence, this paper derives a futures option model that allows volatility and 

jumps to be stochastic, abbreviated as the SVJ model. The setup is rich enough to 

contain competing futures option formulas as special cases, including the 

constant-volatility (CONST) model, and the stochastic-volatility (SV) model. For 

comparison, a forward-start strangle portfolio is constructed using SPX options. For 
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comparison, a forward-start strangle portfolio using SPX options is also constructed. 

The forward-start strangle is a combination of long-term and short-term strangles and is 

aimed to hedge the forward volatility risk. This paper then uses these models and two 

instruments, VIX futures and the forward strangle portfolio, to construct the hedged 

portfolio. 

The contributions of this paper are threefold. First, closed-form solutions to the 

target American futures options under alternate underlying processes are provided. 

Second, the concept of forward volatility risk applied to VIX futures and the 

construction of a forward strangle portfolio are introduced. Third, we derive the hedging 

weights of VIX futures and the forward strangle portfolio that will be convenient to 

practical participants for risk management purposes.  

Our finding reveals that the VIX futures generally outperform the forward strangle 

portfolio over the hedging period 20 October 2004 − 30 June 2005. In particular, based 

on the absolute hedging errors, the SVJ model is the best overall performer, followed by 

the SV model, and then by the CONST for a short position on the SPX futures call 

option. Our findings are in sharp contrast with that obtained by Psychoyios and 

Skiadopoulos (2006). They find that volatility options are not better hedging 

instruments than plain-vanilla options, and that the most naïve volatility option-pricing 
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model can be reliably used for pricing and hedging purposes. Further, regardless of 

hedge rebalancing frequency, the real significant improvement by the stochastic 

volatility models over the CONST occurs only when OTM calls are being hedged. The 

hedging-based ranking of the models is in contrast with that obtained in Bakshi et al. 

(1997). Bakshi et al. (1997) find that the SVJ does not improve over the SV’s hedging 

performance for a short position in a SPX call option. Based on our results, we conclude 

that the VIX futures is a better hedging instrument than standard options if the target 

option is a traditional futures option, or equivalently if the risk exposure is the forward 

volatility risk. Hedging performance can also be improved further by incorporating 

price jumps into the American-style futures option pricing framework. 

The rest of this paper proceeds as follows. Section 2 develops the hedging models. 

Section 3 provides a description of the data for the empirical work. The empirical 

procedure is presented in Section 4. Finally, Section 5 concludes. 

 

2. Empirical Model 

2.1 The Futures Options 

To investigate whether VIX futures hedge the forward volatility risk better than 

the forward strangle portfolio composed by standard plain-vanilla options, this study 
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first develops in closed form the fair prices of index futures options under alternate SPX 

price processes. The jump-diffusion and stochastic volatility (SVJ) process of Bates 

(1996) and Bakshi et al. (1997) for the SPX price contains constant volatility (CONST) 

of BSM (1973) and stochastic volatility (SV) of Heston (1993) as special cases. 

Consequently, we concentrate our efforts on the SVJ and the two processes just 

described. Given a constant volatility (BSM) structure, the price process of the SPX 

futures under a risk-neutral probability measure Q becomes 

tStt dFdF , ωσ=  (1) 

where tF  is the futures price at time t, σ  is the volatility of the underlying SPX price, 

and tS ,ω  is Brownian motion under Q. The time-t price of a futures call option ( )(FCt ) 

with option expiry 1T  and futures expiry 2T , for 12 TT ≥ , is given by, 

)]()([)( *
2

*
1

)( 1 dXNdNFeFC t
tTr

t −= −−  (2) 

where X is the strike price of the futures option, )(⋅N  is the cumulative probability 

function of a standard normal distribution, tTtTXFd t −−+= 11
2*

1 /]2/)()/ln( σσ  

and tTtTXFd t −−−= 11
2*

2 /]2/)()/ln( σσ . The accurate derivation is given in the 

Appendix A.  

Under the SV, Heston (1993) assumes that the underlying stock of futures follows 

a geometric Brownian motion and the instantaneous variance tν  of the underlying 
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stock follows a mean-reverting square root process; that is, 

tStttt dSrSdS , ων+=  (3) 

tttt ddtd , )( νννν ωνσνκθν +−=  (4) 

where tS  is the price of the underlying stock; r is the annualized continuously 

compound interest rate; νκ  is the speed of mean-reverting adjustment of tν ; /ν νθ κ  

is the long-run mean of tν ; νσ  is the variation coefficient of tν ; and tS ,ω  and t,νω  

are two correlated risk-neutral Brownian processes with the correlation coefficient 
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where 2T  is the expiration date of SPX futures, and 12 TT > . The accurate derivation is 
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given in the Appendix B. Under the SVJ model, the process of the underlying stock is 

given as  

ttttStttJJt dNSJdSSrdS ++−= , )( ωνμλ  (7) 

where tJ  is the percentage jump size with mean *κ . The jumps in asset log-prices are 

assumed to be normally distributed, i.e., ),(~)1ln( 2
JJt NJ σμ+ . Satisfying the 

no-arbitrage condition, 1)2/exp( 2* −+= JJ σμκ . Further, tdN  is the jump frequency 

following a Poisson process with mean Jλ . Finally, tν  follows the equation (4). The 

price of a futures option under the SVJ model is similar with the one under the SV 

model. The differences between the SV and the SVJ are the characteristic functions as 

shown in equations (C1) and (C2), and the function of 2q  is given in equation (C6) of 

Appendix C. 

 

2.2 Hedging Strategies 

This study uses a short position on the futures option as the target portfolio at 

time t,5 i.e. )(FCTAR tt −= , where the expiration dates of SPX futures and SPX futures 

options are respectively 2T  and 1T  and 21 TTt << . Furthermore, this study constructs 

two hedging schemes. 

                                                 
5 Because the last trading date of the VIX futures is usually the third Tuesday and the last trading date of 
SPX futures options is the third Friday of the expiration month. 
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Hedging Scheme 1 (HS1): The instrument portfolio consists of tN  ,1  shares of 

underlying futures, and tN  ,2  shares of forward-start strangle portfolios. Following 

Rebonato (1999), the forward-start strangle portfolio consists of a short position of 

short-term strangle (the expiration date of the standard call and standard put is 1T ; the 

strikes of the call and put are 2K  and 1K  with 2 1K K> ) and a long position of 

long-term strangle (the expiration date of the standard call and standard put are 2T ; the 

strikes of the standard call and put are 2K  and 1K  with 2 1K K> ), i.e. 

),(),(),(),( 12221121 KTPKTCKTPKTCINST ttttt ++−−= . 

Hedging Scheme 2 (HS2): The instrument portfolio consists of tN  ,1  shares of 

underlying futures, and tN  ,2  shares of the VIX futures, i.e. )(FVIX TINST tt = . 

Next, this study incorporates two hedging schemes with the BSM, the SV and the 

SVJ option models to construct six hedging strategies, respectively. 

1. HS1−BSM hedging strategy: Under the hedging scheme 1, the BSM model is used 

to calculate the greeks of the target and the instrument portfolio. Therefore, the profit of 

this hedging portfolio is defined as 

)(,2,1 FCINSTNFN tttttt −+=π  (8) 
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where ( , )C T KΔ  and ),( KTPΔ  are BSM’s deltas that respectively equal 1( )N d  for a call 

and 1),( −Δ KTP  for a put with 2
1 [ ( / ) 0.5 ( )]/td ln S K T t T tσ σ= + − − ; ),( KTCυ  and 

),( KTPυ  are BSM’s vegas for call and put options, respectively, equal to ( 1)tS T t N d− . 

The hedging ratios are derived in equations (A7)−(A10) of the Appendix A. Assuming 

that there are no arbitrage opportunities, this portfolio should earn the risk-free rate. The 

change of the value of this portfolio is defined as 

ttttt πππ −=Δ Δ+Δ+  (13) 

Finally, the hedging error is defined as the additional profit (loss) over the risk-free 

return and it can be written as 
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And the absolute hedging error through a hedging period ( tT −1 ) is calculated as 
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2. HS1−SV hedging strategy: Under the hedging scheme 1, the SV model is used to 

calculate the greeks of the target and the instrument portfolio. This study further addes 
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The shares of instrument assets are given by 
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The hedging ratios for the hedging instrument and the target portfolio are given in the 

Appendix B. 

3. HS1−SVJ hedging strategy: Under the hedging scheme 1, the SVJ model is used to 

calculate the greeks of the target and the instrument portfolio. This study further adds 

the constraints of delta-neutral and vega-neutral as given in equations (16) and (17). The 

formulas for the shares of instrument assets, tN ,1  and tN ,2 , are derived in the 

Appendix C which exactly change 1Π′  and 2Π′  in equations (18) and (19) into their 

counterparts under the SVJ model. 

4. HS2−BSM hedging strategy: Under the hedging scheme 2, the BSM model is used 

to calculate the greeks of the target and the instrument portfolio. Therefore, the profit of 

the hedged portfolio is defined as equation (8). By further adding the constraints of 

delta-neutral and vega-neutral as shown in equations (9) and (10), we can obtain the 

share of instrument assets: 
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The hedging ratio of the VIX futures is derived in the Appendix D. 

5. HS2−SV hedging strategy: Under the hedging scheme 2, the SV model is used to 

calculate the greeks of the target and the instrument portfolio. By imposing delta-neutral 

and vega-neutral conditions given in equations (16) and (17), the shares of instrument 

assets are computed as 
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6. HS2−SVJ hedging strategy: Under hedging scheme 2, the SVJ model is used to 

calculate the greeks of the target and the instrument portfolio. Satisfying the conditions 

of delta-neutral and vega-neutral, we have the shares of instrument assets: 
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where the values for t
A

t FC ν∂∂ /)(  and ttINST ν∂∂ /  are obtained by replacing 02 =ζ  

in equations (22) and (23) with )(2 *
2 JJ μκλζ −= . The details of the hedging ratio of 

the VIX futures are given in the Appendix D. 

 

3 Data Description 

3.1 Contracts introduction 

The target of the hedging portfolio is the S&P 500 index (SPX) futures option 

traded in Chicago Mercantile Exchange (CME). It lists four months in the March 

quarterly cycle and two serial months. For options that expire in the March quarterly 

cycle, options trading shall terminate at the same date with the underlying futures 
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contract. For options that expire in months other than those in the March quarterly cycle, 

options trading shall terminate on the third Friday of the contract month. Every one 

point of futures option equals $250. The underlying SPX futures are traded in CME. It 

lists eight months in the March quarterly cycle. The last trading day for futures will be 

the Thursday prior to the third Friday of the contract month. Every one point of futures 

equals $250. The SPX options are traded in CBOE. Its expiration months are three 

near-term months followed by three additional months from the March quarterly cycle. 

The last trading date is the Thursday before the expiration date (the third Friday) of the 

expiration month. Every one point of the SPX options equals $100. Finally, the VIX 

futures are traded in CBOE. It lists two near-term months plus two months in February 

quarterly cycle (February, May, August and November). The settlement date for the VIX 

futures is the Wednesday that is thirty days prior to the third Friday of the calendar 

month immediately following the month in which the contract expires. And the last 

trading day of the VIX futures is the day before the settlement date. Every one point of 

the VIX futures equals $100. 

 

3.2 Empirical data 

In order to assess the hedging performance of forward volatility risk, we use the 
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SPX futures, the SPX options and the VIX futures to hedge a short position on the SPX 

futures call option. The sample period for hedging is from October 20, 2004 to June 30, 

2005. The intraday prices for the SPX futures and the SPX futures option are obtained 

from the CME. The daily prices for the SPX options are obtained from CBOE, and the 

daily prices for the VIX futures are captured from CBOE. Further, for our empirical 

work, the contracts that we select are as follows: First, the SPX futures contracts 

employed expire on March, June, September, and December. Second, the SPX futures 

call options that expire on February, May, August, and November are selected as our 

target instrument. Third, the forward-start strangle portfolio involves in two strangles. 

We use the SPX options contracts expire on February, May, August, and November to 

construct a strangle, and May, June, September, and December for another one. Finally, 

The VIX futures expire on February, May, August, and November that are selected as 

the hedging instrument. The interest rate data are daily annualized Treasury-bill rates 

obtained from DataStream Database. The daily dividend-yield ratio data are obtained 

from the S&P Corporation. 

The raw data of futures options from March 26, 2004 to May 4, 2006, are in total 

99,875 observations.6 For our empirical work, we use only that options expire on 

                                                 
6 The listing date of the VIX futures is March 26, 2004. 
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February, May, August, and November. After we filter out the raw data, the remainder 

observations are 29,804. Next, we employ the last reported quote of each contract for 

each day.7 Hence, there are 6,507 traded prices, 174 middle points of bid-ask quotes, 

218 bid quotes, and 332 ask quotes, in total 7,231 observations. The time gap between 

the last ask and the last bid quotes is about one hour and five minutes. After we couple 

with VIX futures expiring on February, May, August, and November, there are 7,003 

observations in our sample.8 Because the SPX options available for constructing the 

forward-start strangle in only October 20, 2004 to June 30, 2005, we filter out the 4,521 

and 2,482 SPX futures options observations remains. We define the moneyness of the 

SPX futures options as the point of the underlying futures divided by the strike of the 

futures option (F/K). According to the moneyness, we classify these observations as 

deep out-of-the-money (DOTM) if F/K 0.94; ≦ out-of-the-money (OTM) if 

F/K∈[0.94,0.97); at-the-money 1 (ATM1) if F/K∈[0.97,1); at-the-money 2 (ATM2) if 

F/K∈[1,1.03); in-the-money (ITM) if F/K∈[1.03,1.06); and deep in-the-money (DITM) 

if F/K>1.06. By the term to maturity, these observations are classified as short-term 

(<30 days), medium-term (30–60 days), and long-term ( 60 days≧ ). Table 1 describes 

                                                 
7 If two call option data with the same trading day, expiration month, and strike price. Then, these two 
data are the same contract. 
8 The last trading date of the VIX futures is usually the third Tuesday and the last trading date of SPX 
futures options is the third Friday of expiration month. 
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some properties of the SPX futures call options. It reports the average point of the SPX 

futures call option, its corresponding futures price and the observations for each 

moneyness-maturity category. There are in total 2,482 futures call option observations, 

with OTM and ATM options about 56 and 40 percent, respectively. The average futures 

call price range is from 0.1827 points for short-term DOTM call options to 117.7 points 

for medium-term DITM call options. 

For the forward-start strangle strategy, we use SPX options expiring in 

February-quarterly cycles as 1T  and expiring in March-quarterly cycles as 2T , where 

the pair of ( 1T , 2T ) must be February−March, May−June, August−September and 

November−December. The maximum and the minimum strikes of SPX options 

available for each pair of ( 1T , 2T ) on each day are selected as the two strike prices. 

Hence, there are four pairs of SPX options with strikes ( 1K , 2K ) corresponding to SPX 

options expiring on the four pairs of ( 1T , 2T ). In summary, there are 692 SPX option 

observations selected. Hence, the 1K  is the minimum strike that is available in the 

options expiring on the February quarterly cycle and the March quarterly cycle, 

simultaneously, and traded for each working date. The result shows that the 1K  of the 

options are all 700 index points. The 2K  of the options expires on November 2004 and 

February, May, August 2005 are 1,250, 1,250, 1,300 and 1,350, respectively. 
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Those SPX options expiring on the pairs of ( 1T , 2T ) from October 20, 2004 to June 

30, 2005 are reported in Table 2. We define the moneyness of the SPX options as the 

point of the underlying index divided by the strike of the SPX option (S/K). According 

to the moneyness, we classify these observations as deep out-of-the-money (DOTM) if 

S/K 0.94; ≦ out-of-the-money (OTM) if S/K∈[0.94,0.97); at-the-money 1 (ATM1) if 

S/K∈[0.97,1); at-the-money 2 (ATM2) if S/K∈[1,1.03); in-the-money (ITM) if 

S/K∈[1.03,1.06); and deep in-the-money (DITM) if S/K>1.06. By the term to maturity, 

these observations are classified as short-term (<30 days), medium-term (30-60 days), 

and long-term (≧60 days). It reports the average point of the SPX option and the 

observations for each moneyness-maturity category. There are totally 30,166 option 

observations, 15,083 observations for call and put. The average call price range is from 

0.1628 points for short-term DOTM call options to 301.1628 points for long-term 

DITM call options. The average put price range is from 0.3092 points for short-term 

DITM call options to 176.2546 points for long-term DOTM call options. 

Based on Lin (2007), the parameters of the SV and the SVJ are estimated using 

the joint VIX and 30-day realized volatility calculated from five-minute index returns 

over the period, April 21, 2004 to October 19, 2004. The risk-neutral parameters νκ , 

νθ , νσ  and ρ  of the SV model are on average 5.6269, 0.6866, 0.5320 and –0.5012, 
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respectively. The risk-neutral parameters νκ , νθ , νσ , ρ , Jλ , Jμ  and Jσ  of the 

SVJ model are 8.7697, 0.6517, 0.4366, –0.4182, 2.1651, −0.3503, 0.3123, respectively. Next, 

we use the traded SPX futures options data from September 15, 2004 (Wednesday) to 

October 19, 2004 (Tuesday) to estimate the moneyness for immediate exercise *
cy  by 

assessing the estimation error of these parameters for the SV and the SVJ, respectively. 

It is because the settlement day of the VIX futures is the third Wednesday, and the last 

trading day is Tuesday. Hence, the month is defined as the period from the third 

Wednesday of prior calendar month to the third Tuesday of this calendar month. At last, 

the hedging period of this study is from October 20, 2004 to June 30, 2005, of SPX 

options for constructing a forward-start strangle portfolio. 
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Table 1 
Sample Properties of SPX Futures Call Options 

The three rows of each moneyness denote the average points of futures options ($250 per point), 
underlying futures ($250 per point) and observations, respectively. The futures option contracts listed at 
CME are four quarterly and two serial, and the longest maturity for our observations is 120 days. 
Therefore, by the term to maturity, we classified these observations as short-term (<30 days), 
medium-term (30-60 days), and long-term ( 60 days≧ ). By the moneyness, we classified these 
observations as deep out-of-the-money (DOTM) if F/K 0.94; ≦ out-of-the-money (OTM) if 
F/K∈[0.94,0.97); at-the-money 1 (ATM1) if F/K∈[0.97,1); at-the-money 2 (ATM2) if F/K∈[1,1.03); 
in-the-money (ITM) if F/K∈[1.03,1.06); and deep in-the-money (DITM) if F/K>1.06. The data period is 
from 20 October 2004 to 30 June 2005. F is the price of the SPX futures and K is the strike price of 
S&P500 futures options. 
 

 Moneyness Maturity  
 F/K <30 30−60 60≧  Subtotal 

DOTM 0.94≦  
0.1827 0.5007 1.3969  

1156.245 1175.539 1200.946  
231 238 113 582 

OTM 0.94−0.97 
0.7433 2.5717 4.7168  

1162.678 1184.388 1203.839  
345 289 184 818 

ATM1 0.97−1 
4.9073 10.5415 12.7566  

1168.642 1181.149 1205.591  
424 196 61 681 

ATM2 1−1.03 
19.4346 24.2600 29.6692  
1171.62 1176.276 1211.154  

257 50 13 320 

ITM 1.03−1.06 
48.7425 52.0571 NA  
1171.179 1166.5 NA  

60 7 NA 67 

DITM >1.06 
81.6333 117.7 74.2  
1171.55 1216 1198.8  

12 1 1 14 
Subtotal  1329 781 372 2482 
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Table 2 

Sample Properties of SPX Options 
The first row of each moneyness denotes the average points of the SPX options ($100 per point). The second row of each moneyness denote observations. The S&P 
500 index options are traded in CBOE. Its expiration months are three near-term months followed by three additional months from the March quarterly cycle., and 
the longest maturity for our observations is 723 days. Therefore, by the term to maturity, we classified these observations as short-term (<30 days), medium-term 
(30-60 days), and long-term (≧60 days). By the moneyness, we classified these observations as deep out-of-the-money (DOTM) if S/K 0.94; ≦ out-of-the-money 
(OTM) if S/K∈[0.94,0.97); at-the-money 1 (ATM1) if S/K∈[0.97,1); at-the-money 2 (ATM2) if S/K∈[1,1.03); in-the-money (ITM) if S/K∈[1.03,1.06); and deep 
in-the-money (DITM) if S/K>1.06. The data period is from 20 October 2004 to 30 June 2005. S is the price of the SPX and K is the strike price of SPX options. 

 
  All  Call  Put  
 Moneyness Maturity  Maturity  Maturity  
 S/K <30 30-60 60≧  Subtotal <30 30-60 60≧  Subtotal <30 30-60 60≧  Subtotal 

DOTM 0.94≦  
65.1301 83.5214 88.5615  0.1628 0.4002 0.8683  130.0973 166.6426 176.2546  

668 1852 1992 4512 334 926 996 2256 334 926 996 2256 

OTM 0.94-0.97 
27.4918 29.8519 33.4532  0.6334 2.9607 7.2748  54.3503 56.7430 59.6316  

782 1290 842 2914 391 645 421 1457 391 645 421 1457 

ATM1 0.97-1 
13.6321 20.3251 27.0631  4.5939 11.5286 19.8819  22.6703 29.1216 34.2442  

940 1294 1110 3344 470 647 555 1672 470 647 555 1672 

ATM2 1-1.03 
14.2759 21.7983 29.6033  22.8446 30.6625 39.0762  5.7072 12.9341 20.1303  

876 1086 842 2804 438 543 421 1402 438 543 421 1402 

ITM 1.03-1.06 26.9440 31.2917 38.2495  52.1228 56.4900 65.0060  1.7651 6.0934 11.4929  
806 888 552 2246 403 444 276 1123 403 444 276 1123 

DITM >1.06 
109.4576 131.7505 151.3518  218.6059 262.5436 301.1628  0.3092 0.9574 1.5408  

3346 4992 6008 14346 1673 2496 3004 7173 1673 2496 3004 7173 
Subtotal  7418 11402 11346 30166 3709 5701 5673 15083 3709 5701 5673 15083 
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4 Empirical Results 

This study follows two steps to assess the hedging performance of writing a SPX 

futures call option using two hedging schemes under three S&P 500 index processes. 

First, based on the parameters above, this study uses the S&P 500 index, U.S. 

Treasury-bill rates, the SPX futures, the SPX options and the VIX futures of day t to 

construct the hedging portfolio. Next, we calculate the hedging error of day t + n, where 

n is the available trading dates till SPX futures call option’s expiry, and also rebalance 

the hedging portfolio. Since the quotes of each futures option are not all available for 

each day until its expiry, we only take rebalance on the day with available quote data 

after day t. These steps are repeated for each futures option contract expiring in 

February quarterly cycle on every trading date with quote data available in our sample. 

The hedging performance is shown in Tables 3 and 4. We define the absolute 

hedging error as the mean of absolute hedging errors and define the average hedging 

error as the mean of hedging errors. We illustrate the hedging errors in points and each 

point represents $250. In Table 3, under the BSM model, the range of hedging errors of 
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HS1 is from 1.63 points (DOTM short-term) to 42.42 points (DITM long-term) and the 

hedging errors of HS2 is from 8.26 points (OTM short-term) to 115.71 points (DITM 

long-term). For all moneyness-maturity categories, HS1 is better than HS2 and 

short-term SPX futures calls have smaller errors.  

For the SV model, the range of hedging errors is from 0.12 points (DOTM 

short-term) to 49.58 points (DITM long-term) for HS1 and it is from 7.08 points (OTM 

short-term) to 77.92 points (ATM1 medium-term) for HS2. We can also find that HS1 of 

SV outperforms HS2 of SV and the short-term hedging errors of HS1 are smaller.  

The range of hedging errors of HS1 in the SVJ model is from 0.13 points (DOTM 

short-term) to 45.29 points (DITM long-term). The range of hedging errors of HS2 in 

the SVJ model is from 6.11 points (OTM short-term) to 71.65 points (ATM1 

medium-term). Therefore, the absolute hedging errors of HS1 are less than HS2.  

Hence, the results indicate that the forward-start strangle portfolio is a more 

efficient instrument to hedge forward volatility risk than the VIX futures. Next, we can 

find out that the absolute hedging errors of the SVJ model are less than that of the SV 
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model. It represents the random price jump feature commonly exists in the SPX futures 

option. However, this result seems not to be consist with those of Bakshi et al. (1997) 

and Bakshi and Kapadia (2003). The parameter of jump-frequency intensity Jλ  in 

Bakshi et al. (1997) is 0.59, i.e. one year and half for a price jump to occur. Their 

hedging portfolio is rebalanced daily or every five days. Hence, they think the reason 

for the SV model dominates the SVJ model is the chance for a price jump to occur is 

small in the daily or five-day rebalancing period. Other than the uncertain rebalance 

frequency in our empirical work,9 the parameter Jλ  of our empirical work is 2.1651 

and larger than that of Bakshi et al. (1997). Our empirical result also shows that the SVJ has 

better hedging performance than SV. Therefore, their reason does not hold for our empirical 

result. We think it is because the SPX futures options are American-style in this study, 

while SPX options are European-style for the prior research. Since the traders with 

American-style options positions have early-exercise choice and thus can take caution 

to prevent any loss from the potential jump events than the ones with European-style 
                                                 
9 There are in total 169 unique SPX futures options contracts over our hedging period, 20 October 
2004−30 June 2005. Among data, there are 18 unique contracts can be daily rebalanced. The maximum 
rebalancing period is 26 days for only one unique contract (with May-2005 maturity at its first trading 
date, 8 March 2005). On average, the rebalancing period is 4.44 days. 
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options. Thus, American-style option buyers (sellers) even favor (hate) volatility risk 

than the ones with European-style options. In addition, given the possibility of price 

jumps, the specification of SVJ can provide more accurate parameter estimates than SV. 

Thus, the delta-vega-neutral strategy can be constructed in a more effective way under 

SVJ than SV. Thus, it is not surprising for our results showing that SVJ outperforms SV 

in terms of hedging efficiency.  

About the effect of the maturity, by comparing with the medium- and long-term 

options, most of the absolute hedging errors of short-term options are smaller. Except 

for the HS2 strategy under ATM1 and ATM2, the absolute hedging errors of 

medium-term are smaller than long-term, i.e. the absolute hedging errors commonly 

increase with maturity. This result consists with Psychoyios and Skiadopoulos (2006) in 

the case of ITM and OTM target options. They also examine the relationship between 

the maturity and the difference between hedging schemes. The difference decreases with 

maturity in case of ITM and OTM, and increases with maturity in case of ATM. In our 

result, except for the HS2 scheme in the case of ATM1 and ATM2 target options, the 
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absolute hedging error increases dramatically from short-term to medium- and 

long-term, and the difference between HS1 and HS2 increases.  

In terms of the moneyness effect, Psychoyios and Skiadopoulos (2006) think the 

options perform best for ATM and worse for ITM, the difference is minimized for ATM 

and maximized for ITM. Our empirical result shows that the absolute hedging errors of 

HS1 increase with moneyness, except for the category of ATM2 long-term. However, 

the relationship between the absolute hedging errors of HS2 and the moneyness is 

uncertain. Therefore, the difference between HS1 and HS2 across moneyness is 

uncertain. 
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Table 3 
Absolute Hedging Errors 

The numbers in this table denote the points of absolute hedging errors ($250 per point): 
( )

( 1)1
| ( ) |

M r t M lM t
t l tt l

HE t l t e Δ −−
+ − ΔΔ =

+ Δ ×∑ . The hedging error between time t and time t t+ Δ  is defined as 
( )

t
HE t t+ Δ . The hedging period is from 20 October 2004 to 30 June 2005. The futures option contracts 
listed at CME are 4 quarterly and 2 serial, and the longest maturity for our observations is 120 days. 
Therefore, by the term to maturity, we classified these observations as short-term (<30 days), 
medium-term (30-60 days), and long-term ( 60 days≧ ). By the moneyness, we classified these 
observations as deep out-of-the-money (DOTM) if F/K 0.94; ≦ out-of-the-money (OTM) if 
F/K∈[0.94,0.97); at-the-money 1 (ATM1) if F/K∈[0.97,1); at-the-money 2 (ATM2) if F/K∈[1,1.03); 
in-the-money (ITM) if F/K∈[1.03,1.06); and deep in-the-money (DITM) if F/K>1.06. F is the price of the 
SPX futures and K is the strike price of S&P500 futures options. 
 

Moneyness   Maturity 
F/K   <30 30−60 60≧  

DOTM 

HS1 BSM 1.63  1.91  2.83  
 SV 0.12  0.77  3.47  
 SVJ 0.13  0.80  3.51  
HS2 BSM 23.95  54.29  58.53  
 SV 18.45  23.95  29.01  
 SVJ 11.22  19.13  22.33  

OTM 

HS1 BSM 2.31  3.54  3.21  
 SV 0.68  7.21  7.88  
 SVJ 0.68  6.96  7.63  
HS2 BSM 8.26  64.31  66.83  
 SV 7.08  23.91  26.33  
 SVJ 6.11  21.92  24.65  

ATM1 

HS1 BSM 4.39  15.87  17.24  
 SV 3.44  7.18  8.16  
 SVJ 3.37  6.15  7.75  
HS2 BSM 40.96  92.75  104.61  
 SV 19.71  77.92  58.54  
 SVJ 15.59  71.65  29.69  

ATM2 

HS1 BSM 10.52  10.38  10.65  
 SV 9.41  20.33  11.217  
 SVJ 5.04  6.95  8.616  
HS2 BSM 14.91  32.42  108.54  
 SV 13.32  25.21  18.925  
 SVJ 12.01  22.38  16.641  

ITM 
 

HS1 BSM 12.40  24.89  NA 
 SV 13.95  27.33  NA 
 SVJ 13.58  26.20  NA 
HS2 BSM 29.48  63.54  NA 
 SV 18.06  44.53  NA 
 SVJ 16.46  28.92  NA 

DITM 

HS1 BSM 26.42  NA 42.42  
 SV 29.01  NA 49.58  
 SVJ 28.87  NA 45.29  
HS2 BSM 38.51  NA 115.71  
 SV 24.40  NA 71.13  
 SVJ 23.80  NA 50.61  
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Theoretically, if a portfolio is perfectly hedged, it should earn the risk-free rate, 

and the average hedging errors should be close to zero. In this study, the hedging error is 

defined as the changes of the hedged portfolio minus the risk-free return. Table 4 reports 

the average hedging errors. If the number is greater (less) than zero, it means that the 

strategy gets more (less) profits than risk-free rate. Oppositely, the hedging performance 

through all hedging periods is less than risk-free rate. The average hedging error of 

HS1−SVJ strategy is the smallest in most moneyness-maturity categories. Noticeably, 

HS1 scheme is superior to HS2 scheme for the BSM model. The BSM model assumes 

the volatility of underlying asset is constant. As a result, the HS2−BSM strategy only 

considers price risk and the weights of this strategy is the vega of the futures option. 

The price changes of the VIX futures will not be explained. However, there are not only 

price risks of the SPX futures option but also risk exposure of the VIX futures. That will 

let this strategy incurs additional risk exposure and incurs losses.  

Compared with SV model, most hedging performance of the SVJ model is 

smaller. It is consistent with the results in Table 3 and represents the existence of the 
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random price jump feature for SPX futures options. Still, the hedging performance of 

HS1 is better than HS2, i.e. the forward-start strangle portfolio is more efficient than the 

VIX futures. The average hedging error of HS2 is negative under short-term. However, 

it is uncertain for the medium- and long-term categories. Under the short-term 

categories, the HS1 gets reverse results. Psychoyios and Skiadopoulos (2006) think that 

the volatility is more stable in long-term than short-term. According to BSM, the 

options have greater vega if the moneyness close to 1. Therefore we think that HS1 still 

dominates HS2, i.e. the forward-start strangle portfolio can hedge the forward vega risk 

more efficient than VIX futures. This conclusion is consistent with Psychoyios and 

Skiadopoulos (2006), stating that volatility options are not better hedging instrument 

than standard options if the target options are standard options. They argue that 

volatility options may be a useful hedging tool for other type of target options or exotic 

options. Similarly, compared to the forward-start strangle portfolio, the VIX futures get 

worse hedging performance for our target instrument, i.e. the American-style futures 

call option, may not necessarily indicate it is not a good instrument for hedging forward 
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volatility risk. 
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Table 4 
Average Hedging Errors 

The numbers in this table denote the points of absolute hedging errors ($250 per point): 
( )

( 1)1
( )

M r t M lM t
t l tt l

HE t l t e Δ −−
+ − ΔΔ =

+ Δ ×∑  

The hedging error between time t and time t t+ Δ  is defined as ( )
t

HE t t+ Δ . The hedging period is from 
20 October 2004 to 30 June 2005. The futures option contracts listed at CME are 4 quarterly and 2 serial, 
and the longest maturity for our observations is 120 days. Therefore, by the term to maturity, we classified 
these observations as short-term (<30 days), medium-term (30-60 days), and long-term ( 60 days≧ ). By 
the moneyness, we classified these observations as deep out-of-the-money (DOTM) if F/K 0.94; ≦

out-of-the-money (OTM) if F/K∈[0.94,0.97); at-the-money 1 (ATM1) if F/K∈[0.97,1); at-the-money 2 
(ATM2) if F/K∈[1,1.03); in-the-money (ITM) if F/K∈[1.03,1.06); and deep in-the-money (DITM) if 
F/K>1.06. F is the price of the SPX futures and K is the strike price of S&P500 futures options. 
 

Moneyness   Maturity 
F/K   <30 30−60 60≧  

DOTM 

HS1 BSM 0.88  -0.40  -1.89  
 SV 0.01  0.01  1.65  
 SVJ 0.01  0.00  1.66  
HS2 BSM -23.23  -32.48  -57.88  
 SV 2.70  -2.36  5.34  
 SVJ -1.52  -1.85  2.85  

OTM 

HS1 BSM 1.06  -3.18  -3.58  
 SV 0.21  -3.00  2.84  
 SVJ 0.23  -3.03  2.77  
HS2 BSM -70.419  -13.72  -43.17  
 SV -1.64  3.39  -5.32  
 SVJ -1.09  3.98  -2.59  

ATM1 

HS1 BSM 1.46  -5.41  -5.60  
 SV 1.02  -6.85  -6.48  
 SVJ 1.03  -6.71  -5.21  
HS2 BSM -33.58  -19.66  -68.35  
 SV -4.45  -14.80  11.30  
 SVJ -2.03  -13.98  9.44  

ATM2 

HS1 BSM 4.21  -15.32  -7.51  
 SV 4.42  -15.60  -8.46  
 SVJ 4.31  -12.49  -8.50  
HS2 BSM -14.30  -30.01  -108.44  
 SV -8.84  -16.50  19.93  
 SVJ -6.72  -3.82  12.67  

ITM 

HS1 BSM 9.79  -17.80  NA 
 SV 11.09  -20.40  NA 
 SVJ 10.87  -19.38  NA 
HS2 BSM -29..37  -62.76  NA 
 SV -20.51  28.01  NA 
 SVJ -18.41  19.87  NA 

DITM 

HS1 BSM 26.42  NA -42.42  
 SV 29.01  NA -49.58  
 SVJ 28.87  NA -45.29  
HS2 BSM -38.51  NA -57.20  
 SV 24.40  NA -51.34  
 SVJ 23.80  NA -50.61  
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5 Conclusions 

This study intends to compare the hedging efficiency of the forward-start strangle 

portfolio and the VIX futures. Since the vega risk of the SPX futures options is related 

to forward volatility between option’s expiry and underlying futures’ expiry, this study 

chooses this option as our target asset. However, the short position on the SPX futures 

option still has delta risk. For our empirical work, we construct a delta-vega-neutral 

hedging strategy and use strangle and VIX futures as instruments. In terms of forward 

volatility risk, the SPX futures and the forward-start strangle portfolio are used to 

construct three hedging strategies (HS1−BSM, HS1−SV and HS1−SVJ), the SPX 

futures and the VIX futures are used to construct the other three hedging strategies 

(HS2−BSM, HS2−SV and HS2−SVJ). The empirical results show that the SVJ model 

gets better hedging performance, i.e. incorporating random price jump feature may help 

improve the hedging performance of the SV model. The result shows that the random 

price jump feature exists in futures options. In terms of the effect of maturity to the 

hedging performance, if the target futures options are short-term (the term to maturity is 
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less than 30 days), most of these strategies will get better hedging performance and the 

HS1 all gets more profits than risk-free return. That indicates that both forward-start 

strangle portfolio and VIX futures are volatility risk hedging instrument for the 

short-term options. The moneyness is negatively related to the hedging performance, i.e. 

the hedging error increases with the moneyness.  

HS1 dominates HS2 in all moneyness-maturity categories. That is, the hedging 

errors of the forward-start strangle portfolio are mostly less than those of the VIX 

futures strategy. Hence, comparing with the VIX futures strategies, we think that the 

forward-start strangle portfolio is more efficient to hedge forward volatility risk. The 

option writers of the futures options can use the forward-start strangle portfolio as the 

instrument to hedge the forward volatility of short-term options. Besides, if the option 

writes use the SVJ model to determine the weights of hedging instruments, they will get 

better hedging performance. 
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Appendix A. Pricing SPX Futures Options under Constant Volatility 

Following Black-Scholes-Merton, we assume that the underlying stock of futures 

follow a geometric Brownian motion process; that is, 

tSttt dSdtrSdS ,ωσ+=  (A1) 

where σ  is the volatility of the underlying stock, and tS ,ω  is a Brownian motion 

under the risk-neutral measure Q. The process of the futures on this stock is given by 

tStt dFdF ,ωσ=  (A2) 

Using the martingale theory, the time-t price of a European-style futures option with 

strike K  and expiry 1T  is derived as 
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where A1  is an indicator function having the value of 1 if KFT >
1

 and 0 otherwise;  
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where )(⋅φ  and )(⋅N  are the probability density function and cumulative density 

function of a standardized normal distributed random variable, respectively.  

Further, the delta of the forward-start strangle portfolio is  

1 2 1 1 2 2 2 1

1 2 1 1 2 2 2 1

1 2 1 1 2 2 2 1
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where ( , )T KΔ is the BSM delta that equals 1( )N d  for call and 1( )N d –1 for put with 

tTtTKSd t −−+−= σσ /]2/)(ln[ln 2
1 . The vega of the forward-start strangle 

portfolio is 
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where ),( KTCυ  is the BSM vega, equal to ( 1)tS T t N d− . 
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Appendix B. Pricing SPX Futures Options under Stochastic-Volatility 

Following Heston (1993), the underlying stock of futures follows a geometric 

Brownian motion and the instantaneous variance tν  of the underlying stock is driven 

by a mean reverting squared root process; that is, 

tStttt dSdtrSdS ,ων+=  (B1) 

tttt ddtd ,)( νννν ωνσνκθν +−=  (B2) 

where tS ,ω  and t,νω  are risk-neutral Brownian motions correlated by 

),( ,, ttS ddcorrdt νωωρ = . Using the martingale method, the time-t price of a 

European-style futures option with strike K  and expiry 1T  is given by 
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where A1  is an indicator function having the value of 1 if KFT >
1

, or equivalently 
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The characteristic functions for the SV model are given as follows 
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22 )1( ])1([ νννν σϕϕρσϕκξ +−+−= iii   

22* )1( )( νννν σϕϕϕρσκξ −−−= iii   

Next, the delta of the futures options is 

1
)(

2)(1)(
1

)()(

2
)(

1
)(

)()(

)(
)()(

)()()(

1

112121

112
11

12

112

1122

             

             

][)(             

   with   
)(

)(             

)(
)()()(

Π′=

⎥
⎦

⎤
⎢
⎣

⎡
′∂

Π′∂
−

′∂
Π′∂

+Π′=

′∂
Π′−Π′∂

=
′∂

∂
=

=′
∂

′∂
′∂

∂
=

∂
∂

=
∂
∂

=
∂

∂

−−

−−−−−−

−−−
−−−−

−
−−

−−−

tTr

t

tTr

t
t

TTrTTrtTr

t

tTr
t

TTr
tTr

t

ttTr

TTr
tttTrTTr

t

t

t

t

tTrTTr
t

t
tTr

t

t

t

t

e

S
Ke

S
Seee

S
KeSee

S
FCe

eSS
eeS

S
S

FC
eeS

FC
eS

FC
F

FC

 (B7) 

The vega of the futures options is 
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Further, according to put-call parity the delta of the forward-start strangle portfolio is 
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The vega of the forward-start strangle portfolio is 
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However, the SPX futures option is American-style option. Therefore, referred to Bates 
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(1996), the European-style futures option is converted to American-style one: 
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ν  is the expected average variance over the lifetime of the option conditional on no 

jumps: 
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*
cy , the critical spot price/strike price ratio for immediate exercise of calls, is given 

implicitly by 
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where FTyCTyC ccF ∂∂= /)1;,,()1;,,( ** νν . The delta and the vega of the American-style 

futures option are given as follows: 
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Appendix C. Pricing SPX Futures Options under Diffusion-Jump and 
Stochastic Volatility (SVJ) 

The SVJ model of Bates (1996) and Bakshi et al. (1997) assumes that the 

underlying asset price of futures follows a diffusion-jump process with a mean-reverting 

squared root stochastic volatility, as specified in equations (4) and (7). The pricing 

equation of European-style futures option and risk-neutral probabilities under the SVJ 

model are the same to (B3) and (B4), respectively. The only difference is the 

characteristic functions. The characteristic functions for the SVJ are given as follows: 
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where Jλ  is the frequency of the jumps per year and *κ  is percentage mean jump size. 

Then, the delta of the American-style futures options is 
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The vega of the American-style futures options is 
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Further, the greeks of forward-start strangle portfolio in the SVJ are equivalent to (B9) 

and (B10). The only different is the characteristic functions. For the same reason, we 

turn the European-style option to American-style one. The pricing equations of 

American call and put options are the same to (B11), and the only difference is the 

equation of q to follow 
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where 1)2/exp( 2* −+= JJ σμκ  and Jσ  is the standard deviation of )1ln( tJ+ . 

 

Appendix D. Pricing VIX Futures under the Diffusion-Jump and 
Stochastic Volatility (SVJ) SPX Price Process 

The time-t fair value of VIX futures expiring at T, denoted as )(FVIX Tt , is given 

in the CBOE website by  

)]}(F[var)]([E{1)(F annualized-deVIX,varVIX TTPT T
Q
tT

Q
tt −+= τ

τ
 (D1) 

where 30/365=τ  and Q is the risk-neutral probability measure. )]([E var τ+TPT
Q
t  is 

the forward price of de-annualized variance in the 30 days after the futures expiration 

where 2var VIX)( TT TP ττ =+ , and )]([var annualized-deVIX, TFT
Q
t  is the concavity adjustment. 

The adjustment subtracts the variance of the futures price at expiration, which can also 

be expressed as the cumulative daily variance of VIX futures from the current date to 

expiration. Since )(annualized-deVIX, TFT  is the de-annualized price of the VIX futures at 

expiry T, one has =+= )()( varannualized-deVIX, τTPTF TT τtVIX . Thus the variance of 

)(annualized-deVIX, TFT  is equivalent to 
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The fair value of the VIX futures provided by the CBOE becomes, 
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From the approximation of Brockhaus and Long (2000), Bates (2006) and Lin (2007), 

who use the second-order Taylor expansion for the square root of latent affine stochastic 

processes, the current VIX futures is worth theoretically 

2/32

2
2VIX

)]VIX(E[8
)VIX(var)VIX(E)VIX(E)(F

T
Q
t

T
Q
t

T
Q
tT

Q
tt T

×
−≡=  (D4) 

where })]VIX(E[8/{)VIX(var 2/322
T

Q
tT

Q
t ×  is the convexity adjustment relevant to the 

VIX futures. Thus, to calculate the VIX futures one needs both )VIX(E 2
T

Q
t  and 

)VIX(var 2
T

Q
t .  

Hence, different dynamics for the SPX index price S will result in various 

expressions for VIX squared and thus different theoretical formulas for the VIX futures 

price. The stochastic volatility model with price jumps (SVJ) is the most general model 

considered in this paper. Its risk-neutral processes of ),(ln νS  are given in equations (4) 
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and (7). Referred to Lin (2007), the VIX squared under the SVJ model is expressed by, 

)(VIX 1
2

2
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ζζ ba tt ++≡  (D5) 

where 11 =ζ , )(2 *
2 JJ μκλζ −= , 365/30=τ , ν

τκ
τ κν /)1(  −−= ea , and 

ντντ κτθ /)( ab −= . Under the SVJ model, the mean and variance of 2VIXT  conditional 

on 2VIXt  are computed as 
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By substituting )VIX(E 2
T

Q
t  and )VIX(var 2

T
Q
t  in equation (D4) with the ones 

above, the fair price of the VIX futures expiring at T under the SVJ model is obtained, 

and the parameter vector is },,,,,,{ jjJ σμλρσθκ ννν=Φ . The vega of the VIX futures 

under the SVJ model is thus given by 
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where ταζν τ //)VIX(E 1
2

tTT
Q
t a −=∂∂  and 2

1
2 )/(/)VIX(var τζν τaC tTT

Q
t −=∂∂ .  

The volatility specification of the SV model, introduced by Heston (1993), 

captures important stylized features of the stock return dynamics: mean-reversion, 

stochastic volatility and volatility asymmetry. The SV model obtains as a special case of 

the general model with jumps restricted to zero ( 0=ttdNJ ), and thus 02 =ζ . Hence 

the fair value of the VIX futures under the SV model is given by equation (D4) with the 

parameter vector },,,{ ρσθκ ννν=Φ . The vega of the VIX futures for the SV model is 

obtained by replacing 2ζ  with zero in equation (D8). Further, under the constant 

volatility of BSM, the VIX squared is the constant volatility: 

22 1VIX σν
τ

τ
=⎟

⎠
⎞⎜

⎝
⎛= ∫

+t

T uT du  (D9) 

Therefore, the price of the VIX futures under BSM is 

σ== )(VIXE)(FVIX
T

Q
tt T  (D10) 

, and the vega of the VIX futures under BSM is 

2

VIX

2
1)(F
σν

σ
ν

=
∂
∂

=
∂

∂ Tt  (D11) 

 



-51- 

References 

Aït-Sahalia, Yacine and Andrew W. Lo, 1998, Nonparametric estimation of state-price 

densities implicit in financial asset prices, Journal of Finance 53, 499−548. 

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 1997, Empirical performance of 

alternative option pricing models, Journal of Finance 52, 5, 2003−2049. 

Bakshi, Gurdip, and Nikunj Kapadia, 2003, Delta-hedged gains and the Negative 

market volatility risk premium, Review of Financial Studies 16, 527−566. 

Barone-Adesi, Giovanni, and Robert Whaley, 1987, Efficient analytic approximation of 

American option values, Journal of Finance 42, 301-320. 

Bates, David, 1996, Jumps and stochastic volatility: exchange rate processes implicit in 

Deutsche Mark options, Review of Financial Studies 9, 1, 69−107. 

Bates, David S., 2006, Maximum likelihood estimation of latent affine processes, 

Review of Financial Studies 19, 909−965. 

Black, Fischer, and Myron Scholes, 1973, The pricing of options and corporate 

liabilities, Journal of Political Economy 81, 3, 637−654. 



-52- 

Boyle, Phelim P., and David Emanuel, 1980, Discretely adjusted option hedges, Journal 

of Financial Economics 8, 259−282. 

Brenner, Menachem, and Dan Galai, 1989, New financial instruments for hedging 

changes in volatility, Financial Analysts Journal 45, 4, 61−65. 

Brenner, Menachem, Ernest Y. Ou, and Jin E. Zhang, 2004, Hedging volatility risk, 

Working paper, Stern School of Business, NYU and University of Hong Kong. 

Broadie, Mark, Mikhail Chernov, and Michael Johannes, 2007, Model specification and 

risk premia: Evidence from futures options, Journal of Finance 62, 1453−1490. 

Broadie, Mark, Jerome Detemple, Eric Ghysels, and Oliver Torres, 2000, 

Nonparametric estimation of American options exercise boundaries and call prices, 

Journal of Economic Dynamics and Control 24, 1829−1857. 

Brockhaus, Oliver and Douglas Long, 2000, Volatility swaps made simple, Risk 13, 

92−95. 

Peter Carr, Peter, and Dilip Madan, 2002, Towards a theory of volatility trading, 

Chapter in Volatility, Robert Jarrow, ed., pp. 417−427, Risk Publications. 



-53- 

Chaput, J. Scott, and Louis H. Ederington, 2005, Volatility trade design, Journal of 

Futures Markets 25, 243−279. 

Heston, Steven, 1993, A closed-form solution for options with stochastic volatility with 

applications to bond and currency options, Review of Financial Studies 6, 2, 

327−343. 

Lin, Yueh-Neng, 2007, Pricing VIX Futures: Evidence from Integrated Physical and 

Risk-Neutral Probability Measures, Journal of Futures Markets 27, 1175−1217. 

Mwanga, Gasper Godson, and Jean-Claude Ndogmo, 2005, Hedging of financial 

derivatives and portfolio insurance, Working paper, African Institute for 

Mathematical Sciences and Department of Mathematical, University of Western 

Cape. 

Neuberger, Anthony, 1994, The log contract, Journal of portfolio management 20, 2, 

74−80. 

Psychoyios, Dimitris, and George Skiadopoulos, 2006, Volatility options: hedging 

effectiveness, pricing, and model error, Journal of Futures Markets 26, 1, 1−31. 



-54- 

Rebonato, Riccardo, 1999, Volatility and correlation: in the pricing of equity, FX, and 

interest-rate options, (John Wiley, Chichester, England; New York). 

Vishnevskaya, Anastasia, 2004, Essays in option pricing: vega-hedged gains and the 

volatility risk premium, Working paper, University of Virginia. 

 


