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Abstract

We investigate cross-market trading dynamics in futures contracts written on seem-
ingly unrelated commodities consumed by a common industry. On the Tokyo Com-
modity Exchange, we find such evidence in natural rubber (NR), aluminium (AL) and
gasoline (GA) futures markets, which are exposed to Japan’s prominent automobile
industry. Our results indicate that i) for shorter dynamics, NR and GA volatility both
influence AL volatility; GA volume affects NR volatility and volume; the GA market
is immune to both NR and AL trading activities; ii) for longer dynamics, AL vol-
ume affects both NR volume and GA volatility; NR volume influences GA volume.
These results are robust to lag-specifications, volatility measures, alternative measures
of trading activity and an alternative multivariate specification in full BEKK-GARCH.
Further analysis, which benchmarks against the silver futures market, TOCOM index
and TOPIX transportation equipment index, confirm that our main results are driven
by a common industry exposure, and not a commodity market factor. Our study offers
new insights into how commodity and equity markets relate at an industry level, and
provide multi-commodity hedging implications for automobile companies.

JEL classification: G14, G15.

Key words: volatility, volume, cross-market, trading dynamics, VAR, commodity fu-
tures.
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1 Introduction

Cross-market information flow is well-documented in the literature. The empirical support

for such linkages between markets is generally robust over time and across asset classes.

Indeed, it is important to model such inherent information flow to better understand the

nature of existing cross-market trading dynamics. Regulatory bodies apply such knowledge to

monitor and alter the nature of such information flows to curb excessive volatility spill-overs.

Fund managers incorporate cross-border linkages between financial markets to formulate

investment strategies and portfolio formation. Firms incorporate covariations across relevant

markets in corporate hedging policies.

Interestingly, existing studies on cross-market information flow generally fall into one of

two categories. The first category constitutes a conceptually clear linkage between markets

that are either fundamentally identical e.g. cross-listed stocks, similar/competing derivative

contracts, or technically distinct but linked by arbitrage e.g. spot-futures-options. While

the strong empirical support for such linkages is not surprising, it is paramount to provide

detailed scholarly documentations for various combinations of markets. The second cate-

gory contains studies that examine markets which are empirically linked ex-post, but with

fundamental linkages that are not immediately obvious ex-ante e.g. international equity or

currency markets, gold and silver1, crude oil and equity. These empirical linkages are some-

times explained using behavioral or reputational channels. Despite an unclear fundamental

justification, the careful empirical examination of such linkages is relevant to practition-

ers since, if they persist in the data, would need to be acknowledged and documented. We

provide a non-exhaustive list of studies from both categories in Figure 1.

INSERT FIGURE 1

We have two related objectives in this paper. First, we propose a simple structural system

to demonstrate cross-elasticity among commodities that share a common and non-trivial

exposure, in this case the automobile industry. Price-quantity interactions within the system

1This case was highlighted to us in a CBOT futures research symposium, where Professor Bill Fung
question the motivation to test for cointegration between gold and silver, given that gold is a storage of
value that the reserve banks of most countries hold as foreign reserves, and is not normally regarded as a
substitute for silver.
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can be triggered by either an industry demand-shock that transmits across complementary

inputs2 or a supply-shock in commodity i that, by affecting the common industry, spill

over to other complementary commodities3. Second, we empirically test for the presence of

cross-market volatility (price) and volume (quantity) transmission effects across seemingly

unrelated commodities. Specifically, we examine the Tokyo Commodity Exchange (TOCOM)

futures contracts written on commodities that are consumed by the automobile industry:

natural rubber (NR) used in the manufacturing of tires; aluminium (AL) used in making

engine parts and constitutes an increasingly make-up of a car’s body4; gasoline (GA) used to

power internal-combustion engines. We choose TOCOM since Japan is the top automobile

manufacturing country in the world, as shown in Figure 2, and it is home to world-class

automobile companies5. In addition, TOCOM offers futures trading in all three underlying

commodities. Ideally, a cross-market study should be restricted to the same or very similar

market microstructure environment to avoid any technically-induced lead-lag dynamics.6

INSERT FIGURE 2

Our study is driven by four motivations. Our prime motivation stems from the litera-

ture’s focus on markets that are either fundamentally similar or empirically linked without

offering a clear economic reasoning. Our cross-market study on commodity futures written

on a soft, a metal and a fuel is based on a simple economic argument. If a set of commodities

constitute essential inputs pertaining to a common output, then despite of physical dissim-

ilarities, idiosyncratic seasonality and production cycles, they would also share a common

industry exposure. If the common exposure is non-trivial, then industry-specific informa-

tion would directly transmit across input commodities. Information specific to commodity

2E.g. An exogenous shock that increases automobile sales volume will increase the demand for comple-
mentary input commodities NR, PA and GA.

3E.g. An exogenous downward supply shock in gasoline will, by causing a downturn in the automobile
industry, reduce the demand for NR and PA.

4Japanese and European car manufacturers typically employ a higher aluminium content to lower produc-
tion cost since aluminium is easier to manipulate than steel. It also saves up to 95% of energy and emissions
from primary production since aluminium is easy to recycle. It also achieves better fuel efficiency since alu-
minium is one-third the density of steel. The comprise in safety is countered by their renowned emphasis
and innovation in cutting-edge safety technology e.g. ABS, ETC, crush-zones, safety cages, air-bags etc.

5E.g. Toyota, Honda, Nissan, Mitsubishi, Mazda, Subaru, Suzuki, Isuzu.
6For example, if NR is floor-traded on Exchange A but GA is screen-traded on Exchange B at the same

time, then any cross-market trading dynamics could be induced by dissimilar trading platforms rather than
information effects.
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i would indirectly transmit to other complementary commodities. Either way, these effects

are empirically manifested in cross-commodity return-volatility-volume dynamics.

Second, most existing studies examine commodity futures traded on NYMEX, CBOT

and/or LME. Studies on Japanese commodity futures markets are limited. This is despite

TOCOM being ranked sixth overall in global commodity futures trading volume in 2006.

It is also the largest commodity exchange in Japan, handling 83% of all commodity futures

trading volume (in nominal value). More relevant to this study is the fact that TOCOM is

the third largest exchange in fuel-base futures trading, second largest in metal-base futures

trading and hosts the world’s largest natural rubber futures market.

Third, unlike a financial security, it is awkward to identify a commodity’s spot market,

which often straddles across multiple farming, processing and trading centers.7 Following

Tirole’s (1991) definition of a market8, the trading center, which entails the interaction be-

tween producers and consumers, is a suitable spot market. Unfortunately, there are easily

more trading centers for a commodity than (say) for a stock. Producers and consumers at

one trading are often unclear as to which trading center(s) performs price discovery for NR

(Singapore, Shanghai or Tokyo), AL (London, Shanghai or New York) and GA (London,

Dubai or Texas). It is well-entrenched that futures price leads stock price9. With TOCOM

as the largest commodity exchange of the world’s top automobile producing country, we spec-

ulate that the NR, AL and GA contracts a vital price discovery role, both in Asia-Pacific and

globally.10 From there, the investigation of cross-market trading dynamics becomes pertinent.

Lastly, understanding the nature of cross-market trading dynamics in related commodities

is relevant for the proper setting of regulatory and hedging policies. Fujihara and Mougoue

(1997) state that a better understanding of linear and non-linear volume-volatility causal

relationships across petroleum futures markets is helpful to evaluate the effectiveness of reg-

7Take NR for example. Its farming/processing centers are in Thailand, Indonesia and Malaysia, but its
trading centers are in Singapore, Shanghai and Tokyo.

8According to Tirole (1991), a market is a social arrangement that allows buyers and sellers to interact
and discover information for the purpose of carrying out a voluntary exchange of goods or services.

9See Garbade and Silber (1983), Kawaller et al (1987) and Stoll and Whaley (1990). Such information
externality is often attributed to lower transaction costs (Brorson 1991), higher leverage and liquidity in
futures markets (Subrahmanyam 1991).

10A senior researcher of the Shanghai Futures Exchange (SHFE) commented that most Chinese NR traders
often refer to some weighted-average of SHFE and TOCOM NR futures prices as their benchmark.
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ulatory constraints such as daily price and position limits. Evidence of cross-market trading

dynamics in related commodity futures has implications for jointly setting price and posi-

tion limits across trading in such related commodities on a futures exchange. The presence of

cross-market trading dynamics has similar implications for hedging errors if inherent covaria-

tions across related commodities are not formally considered.11 Our study provides evidence

of covariations among seemingly unrelated commodity futures markets.

Our main results show that NR and GA lag-1 volatility both influence AL volatility; GA

volume affects NR volatility and volume; the GA market is immune to both NR and AL

trading activities. AL lag-2 volume affects both NR volume and GA volatility; NR volume

influences GA volume. These results are robust to lag-specifications, volatility measures and

other trading activity measures. They reveal significant short-term cross-market dynamics

between NR and AL, and from GA to NR and AL. There is also evidence of feedback

effects from AL to both NR and GA, as well as from NR to GA. The latter, which has

the highest trading volume among the three commodities, is immune to NR and AL lag-

1 dynamics. However, NR and (especially) AL both provide feedback effects in volume to

GA at lag-2, lag-5 and even lag-10. Interestingly, AL and GA volatility are not affected by

their own-market lag-1 volumes. Instead, AL volatility is affected by both NA and GA lag-1

volatility, while GA volatility is affected by AL lag-2 volume. From our analysis to determine

the nature of the latent common exposure, results across VAR, BEKK-GARCH, PCA and

VMA estimations have all attributed evident cross-market trading dynamics in NR, AL and

GA to their common and non-trivial industry exposure, and not a commodity market factor.

The preceding results are generated from a four-stage empirical analysis. First, we present

preliminary results with correlation tables, stationarity, Granger-causality, and lag-specification

tests. These provide some insight into own- and cross-market dynamics in the return, volatil-

ity and volume variables of the three commodities. Second, we estimate a six-equation VAR

to test the significance of own-market and cross-market volatility-volume variables among the

NR, AL and GA contracts. We focus on results that are robust to different lag specifications,

volatility measures and sub-samples. Third, we check if evidence of cross-market trading dy-

11For example, a car manufacturer attempting to minimize exposure to NR, AL and GA would typically
compute hedge ratios to set optimal positions in individual commodity contract. This could generate hedging
errors if covariations across commodities are non-trivial.
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namics (if any) indicated by the VAR results are consistent with i) other measures of trading

activity, namely, price reversals and variance ratios and ii) an alternative system estima-

tion that formally models conditional volatility transmission effects, namely, tri-variate full

BEKK-GARCH (1,1). Since we do not include volume in our GARCH estimation, they are

not presented as main results.12 In contrast, the price-quantity structural system we propose

in the next section is more consistent with a VAR specification of cross-market volatility-

volume interactions. Fourth, we contemplate the possibility that any evident cross-market

interactions among NR, AL and GA is simply due to the presence of a commodity market

factor. The latter implies interactions across all commodities to varying degrees.

We perform various tests to determine the nature of the common exposure. We conduct

VAR and BEKK-GARCH estimations for pairwise comparisons between each of NR, AL,

GA and the silver (SL) futures contract. Here, we assume that SL has a trivial (if any)

exposure to the automobile industry.13 If volume-volatility interactions is indeed driven by

a common industry exposure rather than commodity market factor, we should not find any

significant evidence of cross-market interactions from the pairwise estimations. Next, we

perform two rounds of principal components analysis (PCA), with SL added to the second

round, to understand the nature of the first principal component that is explaining variances

across commodity returns. Lastly, we separately use the TOPIX Transportation Equipment

(TE) index (proxy for industry exposure) and TOCOM index (proxy for commodity market

factor) to extract residual return/volatility for NR, AL and GA. These are subsequently

employed in two sets of vector moving average (VMA) estimations. The VMA with fewer

significant variables corresponds to the more relevant index, since the more relevant index is

more adequate at explaining cross-market interactions.

The rest of the paper is organized as follow. The model and estimation are outlined in

section 2. Institutional details, data and results are discussed in section 3. Section 4 offers

implications on multi-commodity hedging and policy-setting. Section 5 concludes.

12Schwert (1989) identifies fluctuations in trading activity as a key explanation for time varying volatility.
Lamoureux and Lastrapes (1990) report that volume provides incremental explanatory power when modeling
GARCH effects. Wu and Xu (2000) argue that information processing by capital markets is manifested in
volatility and trading volume.

13While Audi made headlines a few years ago for delivering to a prince of the UAE an Audi A8 whose
outer body is made entirely out of pure silver, suffice to say, pure silver-bodied cars are not in the production
lines of any Japanese car manufacturers.
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2 Model and estimation

In this section, we outline our conceptual argument for possible price-quantity interactions

among complementary commodities that are consumed by a common industry. This leads

to our empirical methodology to investigate possible cross-market trading linkages between

commodity futures markets.

2.1 A commodity price-quantity structural system

We convey our idea with a general structural system that entails price-quantity inter-

actions between commodity inputs i (where i=N,A,G in natural rubber, aluminium and

gasoline respectively) and automobile output y. In equation (1), consider a set of three input

commodity prices Pi with their corresponding global stockpiles Qi. Faced with Pi, automobile

manufacturers exhibit a set of cost-minimizing input demand qi for the three commodities

in order to produce output level Qy. Assume an unobservable production technology factor

Φ affects the entire system.

Pi = fi(Qy,Φ;Qi) + ξPi

qi = gi(Qy,Φ;Pi) + ξqi

Qy = h(Pi,Φ;Py) + ξy (1)

The specification of equation (1) is based on the following assertions. First, the prices

charged by commodity suppliers are affected by automobile output. The quantity of each

commodity consumed by the automobile industry depends on output level. The latter, in

turn, is influenced by its selling price Py as well as commodity input costs. Since the actual

interaction within the structural system is unknown, the individual equations are specified

with unknown functional forms {fi, gi, h}. In addition, denote {ξPi , ξqi , ξy} as the corre-

sponding residuals to indicate that i) natural rubber, aluminium and gasoline are not the

only commodities relevant to the automobile industry; ii) there exists relevant exogenous

factors other than Φ and iii) commodity-specific effects e.g seasonality and production cycle.

Despite the lack of an analytical form, equation (1) does convey the idea of automobile

output and production technology as common factors that induce price-quantity interactions
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across seemingly unrelated futures contracts written on a soft, a metal and a fuel commodity.

The reduced form of the structural system is presented in equation (2). If automobile output

is affected by commodity input prices, and if each commodity input price relates to both the

quantity consumed by the automobile industry as well as global stockpile, then the price and

quantity of related commodities Pj 6=i, qj, Qj would all enter the price equation of commodity

i. Similarly, the industry demand for a given input commodity qi is affected, through Qy, by

the price and quantity of related commodities Pj, qj 6=i, Qj.

To note, we have three reasons to focus on an industry-specific quantity qi rather than

global stockpile Qi. First, we are unaware of reliable daily data on Qi for the three com-

modities. Second, qi better reflects trading demand by commodity speculators and hedging

demand by car makers, which is suitably analyzed using futures data. Third, if we focus on

Qi, then Pi would correspond to commodity spot prices. This introduces complications as

commodity spot markets are less well-defined, while a cross-market study ideally involves

markets that operate under the same or similar trading environment.

Pi = f ∗i (Py,Φ;Pj 6=i, qj, Qj) + ξ∗Pi

qi = g∗i (Py,Φ;Pj, qj 6=i, Qj) + ξ∗qi (2)

Equation (2) demonstrates price-quantity interactions among commodities that share a

common industry exposure. In economic terms, a common yet dominant industry exposure

implies non-trivial cross-elasticity that induce price-quantity interactions among related com-

modities. In finance terms, a common industry exposure implies non-zero return-volatility-

volume covariance structures across related commodities. Co-movement due to a common

industry exposure induces contemporaneous covariation. But the presence of market fric-

tions and slow information diffusion documented in Grinblatt and Moskowitz (1999) suggest

lead-lag responses among related commodities to the common industry exposure. In time

series terms, this implies the presence of Granger-causality and cross-market return-volatility-

volume dynamics, which can be examined using multivariate time-series systems estimation.

2.2 Empirical methodology

We consider various empirical representations of equation (2) to test for cross-market
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trading dynamics in related commodity futures markets. Denote pit as the commodity i

daily closing price and rit = Ln( pit
pit−1

) as the daily return. We apply volatility σit = |rit| and

Yen-volume vit to proxy the price-quantity variables discussed in the previous section. With

different contract multipliers, units of measurement, and contract size alterations during the

sample period14, we construct our volume variables in Yen rather than number of contracts

to facilitate a more standardized comparison of quantity across markets.

Stationarity, autocorrelation and causality features

First, we examine the correlation matrix and autocorrelation functions of the variables

of various commodities. We perform Augmented Dickey Fuller (ADF) stationarity tests and

pairwise Granger Causality tests to acquire some preliminary results on the own-market and

cross-market dynamics in the volatility-volume variables.

VAR estimation

In this paper, although we perform multivariate GARCH (1,1) estimation to analyze

cross-market volatility transmission, it does not formally incorporate volume effects in the

estimation. The role of volume is well-documented in the literature, both theoretically15

and empirically16. In commodities markets, Clark (1973) identifies a positive casual volume-

volatility relation in cotton futures. Cornell (1981) finds positive contemporaneous volume-

volatility relations in a comprehensive study covering using daily data on 17 commodities

futures contracts. Bessembinder and Seguin (1993) provide similar findings that are robust

across currency, metal, agriculture and financial futures contracts. Malliaris and Urrutia

(1998) formalize and empirically document price-volume relationships for a series of agri-

cultural futures contracts. Ciner (2002) examines the informativeness of volume in affecting

volatility and return for platinium, gold and rubber futures traded on TOCOM. The study

14The NR contract size is 10,000kg prior to 26th Jan 2005, after which it was downsized to 5,000kg.
15See Admati and Pfleiderer (1988), Foster and Viswanathan (1990, 1993), Wang (1994).
16See Gallant, Rossi and Tauchen (1992), Gannon (1994).
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finds lagged volume is relevant for predicting absolute return.

σit = β0i +
∑
j

S∑
s=1

(β1ijsσjt−s + β2ijsvjt−s) + u1it

vit = γ0i +
∑
j

S∑
s=1

(γ1ijsσjt−s + γ2ijsvjt−s) + u2it (3)

We estimate a six-equation VAR model in equation (3) to test for potential cross-market

volume-volatility transmission effects among NR, AL and GA. The presence of a common

industry exposure and time-varying technology exposure implies possible heteroskedastic-

ity and contemporaneous covariance in the cross-equation residuals u1it, u2it. Accordingly,

we estimate equation (3) using seemingly unrelated regression (SUR) procedure.17 In the

empirical section, we discuss a series of diagnostic tests to determine the appropriate lag

specification to estimate the six-equation VAR. This is vital since VAR estimates are often

case-sensitive to the specified lag structure.18

Robustness checks

In this section, we outline a series of robustness checks. First, the NR futures contract

underwent two contract alterations in Jan 2005: i) the contract was moved from the tra-

ditional Itayose batch trading system19 to the computerized continuous trading system on

4th Jan 2005; ii) the contract was downsized from 10,000kg to 5,000kg on 26th Jan 2005.

Webb (1995) suggests that the Itayose system, which is a modified version of the Walrasian

market adopted by Japanese commodity futures exchanges, generates prices that are less

’noisy’ than their open outcry floor-traded US counterparts. We perform a sub-sample anal-

17The SUR or Zellner’s method, estimates the parameters of the system, accounting for heteroskedasticity
and contemporaneous correlation in the cross-equation residuals. The estimates of the cross-equation co-
variance matrix are based on the unweighted system’s parameter estimates. We check that the full-sample
results are generally consistent between SUR and full-information maximum likelihood estimation.

18However, we are mindful of not over-fitting the model. For every lag, there will be 6 lagged exogenous
volume and volatility variables for each equation, or a total of 36 coefficients to estimate for the entire
system. E.g. A VAR (2) will involve estimating 6*6*2=72 coefficients, excluding constant and other exogenous
variables.

19Under this method, there are five trading rounds for the NR contract that occur at designated times
during a trading day: two in the morning at 9:45 and 10:45, and three in the afternoon at 13:45, 14:45
and 15:30. The exchange staff will begin a trading round by announcing a provisional price to the floor.
Floor members respond by submitting buy or sell orders. These orders are consolidated and analyzed by
the exchange staff. The provisional price is subsequently adjusted according to the net buying pressure. The
process is repeated until a price that matches all buy and sell orders is identified. As such, the NR market
will only generate five market-clearing trade prices in a given trading day.
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ysis pre and post end-of-Jan 2005 to test whether structural changes in the NR market affect

cross-market information flow in related commodities.

Second, we examine if our VAR results are robust to an alternative volatility measure.

As true volatility is unobservable, empirical results may be sensitive to the chosen volatility

measure. The Parkinson (1980) and Garman and Klass (1980) critique of the squared return

variance σ2
it = r2

it or absolute return volatility σit = |rit| rests on the intuition that both

the opening price poit and closing price pit are snapshots of the return generating process. In

contrast, the day t high price phit and low price plit require continuous monitoring during the

course of trading to establish their values. This is an important consideration given the NR

contract migrated to computerized trading in Jan 2005. We investigate if using a volatility

measure based on more continuously observed prices phit and plit would affect the relevance

of σNRt in cross-market dynamics, particularly in the post Jan 2005 sub-sample.

The Parkinson (1980) high-low volatility is σHLit =

√
Ln(

phit
plit

)2/4Ln(2). Garman and Klass

(2007) extend both the σHLit measure and their own volatility measure in Garman and Klass

(1980) to derive an analytical scale-invariant20 volatility estimator σGKit , shown below, that

incorporates all four daily prices {poit, phit, plit, pit}. They proceed to show that a composite

volatility measure σ∗it in equation (4), a weighted-average of the overnight price change and

σGKit , is eight times more efficient that the commonly used σit measure. The parameter f

denotes the proportion of a day when the market is closed.21 The σ∗it measure encompasses

a richer set of publicly accessible daily prices and should provide insight into commodity

futures trading activity. We present VAR results based on both σit and σ∗it.

σGKit =

√
1

2
Ln(

phit
plit

2

)− (2Ln(2)− 1)Ln(
pit
poit

)2

σ∗it =

√
0.12

f
Ln(

poit
pit−1

)2 + (
0.88

1− f )(σGKit )2 (4)

Third, we investigate if our VAR results are consistent with results based on other mea-

20This is an attractive property since the time interval between phit and plit varies randomly from one
trading day to the next.

21If the difference between the market closing time yesterday (pit−1) and opening time today (poit) is 18
hours, then f=0.75.
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sures of trading activity. In this paper, we apply both the Stoll and Whaley (1991) price

reversals and Hasbrouck and Schwartz (1988) variance ratios. Both are commonly used mea-

sures of a market’s price discovery. While VAR results could indicate the presence of cross-

market trading dynamics in related commodities, it may not always provide a clear indication

of the pecking-order of information flow across markets. If there is evidence that lagged vol-

ume/volaitlity in (say) gasoline is significant in the volume/volaitlity of related commodities,

this should be consistent with results from analyzing price reversals and variance ratios.

rnightit = Ln(
poit
pcit−1

); rdayit = Ln(
pcit
poit

)

Revnightit =

{
1, if rnightit > (≤)0 and rdayit−1 ≤ (>)0

0, otherwise.

Revdayit =

{
1, if rdayit > (≤)0 and rnightit ≤ (>)0

0, otherwise.

(5)

Kim and Rhee (1997) propose that price reversals indicate a market’s ability to adjust

from overreaction to new information. They interpret price continuation as a sign of delayed

price reaction, which indicates poor price discovery ability. Outlined in equation (5), the

night and day price reversals Revnightit , Revdayit are indicator variables conditional on the signs

of sequential previous day return rdayit−1, overnight return rnightit and following day return rdayit .

These are calculated from opening and closing prices poit, p
c
it.

Revnightit =
∑
s=1,2

∑
j

(β1sjσjt−s + β2sjvjt−s) + u1it

Revdayit =
∑
s=1,2

∑
j

(γ1sjσjt−s + γ2sjvjt−s) + u2it (6)

In addition to a direct comparison of the proportion of continuations and reversals for

each market, we perform a probit estimation in equation (6) to test if the night and day price

reversals exhibited by a commodity market i are influenced by the lag-1 volatility-volume

variables across all three commodity markets. We analyze for both the entire sample period

and between sub-samples to separately consider the NR contract downsizing.
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Hasbrouck and Schwartz (1988) propose that the variance ratio V Rit reflects the signal-

to-noise mix embedded in a market’s trading activity, and is inversely related to the level of

noise trading. As the name suggests, the T-period variance ratio V RT
it in equation (7) is the

ratio of a long-term variance V ar(rTit) divided by a short-term variance V ar(rit) standardized

for the time horizon. Noise trading induces a persistent bias in the temporary component

of volatility. This is more easily captured by the shorter horizon volatility measure, which

causes a downward bias in a V Rit value below 1. The more severe the level of noise trading

is in a market, the smaller will be its variance ratio.

V RT
it =

V ar(rTit)

T × V ar(rit)

V RT
it =

∑
j

(γijvjt−1) + uit (7)

Our preliminary analysis indicate significant dynamics at the 2nd, 5th and 10th lags. As

such, we consider both V R5
it and V R10

it . Specifically, we investigate if V Rit is influenced by

lagged trading volume of all three commodity markets. We estimate V RT
it as a 3-equation

system using generalized method of moments (GMM). With the VAR, we apply SUR es-

timation to allow for contemporaneous correlation in the residuals of related commodities

induced by a common industry exposure. Given that V RT
it is an interval measure22 and it

proxy the level of noise-trading, a more general system-estimation method that is robust to

unknown autocorrelation and/or heteroskedasticity in the residuals is more suitable. As with

price reversals, we perform both full and sub-sample estimations.

Full BEKK-GARCH estimation

We estimate a tri-variate full BEKK-GARCH (1,1) to analyze the underlying conditional

covariance structures of related commodity futures markets. The model is presented in equa-

tion (8). Engle and Kroner (1995) propose the BEKK-GARCH model as an empirically con-

venient representation to estimate a system of equations. They show that by construction,

the BEKK-GARCH guarantees a positive definite conditional variance-covariance matrix Ht

under very weak conditions. This is essential when utilizing an optimization algorithm like

22The explanatory variable covers across 5 time-series observations, which is estimated against daily volume
variables.
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maximum likelihood estimation (MLE).

The estimation involves extracting a set of i zero-mean residuals εit from the return

equations rit. Denote Ωt−1 as the information set embedded in past values of εit, such that

εit|Ωt−1 ∼ N(0, Ht), where Ht is the 3x3 conditional variance-covariance matrix. Since the

estimation involves expressing each element of Ht in terms of lagged values of squared or

cross-products of εt and lagged values of Ht elements, the estimation of Ht is conditional on

Ωt−1. C0 is a 3x3 upper triangular matrix of constants; coefficient matrices A and G corre-

spond to the residual variance-covariance matrix of ARCH terms εt, and lag-1 conditional

variance-covariance matrix of GARCH terms Ht−1. To note, both Ht and εt are symmetric.

rit = φi0 +
S∑
s=1

(φisrit−s) + θiMONt + εit, where i=N,A,G; εit|Ωt−1 ∼ N(0, Ht)

Ht =



hNNt hNAt hNGt
hANt hAAt hAGt
hGNt hGAt hGGt


 ; εt =




ε2
Nt εNtεAt εNtεGt

εAtεNt ε2
At εAtεGt

εGtεNt εGtεAt ε2
Gt




C0 =



c11 c12 c13

0 c22 c23

0 0 c33


 ; A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ; G =



g11 g12 g13

g21 g22 g23

g31 g32 g33




Ht = C ′0C0 + A′εt−1A+G′Ht−1G (8)

It can be easily shown that matrix multiplication on Ht in equation (8) yields six equa-

tions: hNNt, hAAt, hGGt, hNAt, hNGt, hAGt. But unlike restricted versions e.g. diagonal BEKK-

GARCH, the full BEKK-GARCH provides a richer interaction amongst lagged squared and

cross-product of residuals {εNt, εAt, εGt} i.e. ARCH terms and elements of Ht−1 i.e. GARCH

terms in each of the six conditional variance and conditional covariance equations. The es-

timation of equation (8), which allows covariance terms to enter the conditional variance

equations, is paramount to our current analysis of cross-market dynamics in possibly related

NR, AL and GA markets. Involving all three markets in the same estimation framework

promotes consistency when comparing with VAR estimation results. This is despite the

computational challenges involved in estimating a tri-variate full BEKK-GARCH.

Industry exposure or commodity market factor

14



In recent years, soaring prices and increasing volatility have seen the rise of commodity as

a stand-alone asset class in the investment community. In our final analysis, we address the

possibility that any cross-market trading dynamics among NR, AL and GA is simply due to

some overall commodity market factor. We perform two sets of tests to acquire more insight

into the latent exposure that is responsible for cross-market interactions (if any) among NR,

AL and GA. The first set involves TOCOM’s silver (SL) futures market. The second involves

the TOCOM index M23 and TOPIX Transportation Equipment (TE) Index I24 to proxy for

exposures to the commodity market portfolio and automobile industry respectively.

First, we undertake VAR and BEKK-GARCH estimations for pairwise comparisons be-

tween each of NR, AL and GA against SL. We assume that silver has a trivial (if any)

exposure to the automobile industry. If a non-trivial commodity market factor exists, then

we should find cross-market interactions among all commodities. But if volume-volatility in-

teractions are driven by a common industry exposure, then there should be limited evidence

of cross-market interaction from the various pairwise estimations.

In addition, we conduct two rounds of principle components analysis (PCA) to detect the

presence (if any) of a dominant first component that is driving return variability across the

three commodities. The first round involves PCA on {rNt, rAt, rGt} to acquire some insight

on the first principle component and the relevance of each commodity to various compo-

nents. In the second round, we include rSt in the PCA. The three-market PCA will draw

out the presence (if any) of a dominant first component that explains variability across

{rNt, rAt, rGt}. While the three-market PCA confirms the presence of a latent common ex-

posure, the four-market PCA will provide insight into the nature of that exposure. If the

first principal component from the three-market PCA corresponds to an industry exposure,

then the inclusion of SL will cause the variance explained by the first principal component

to drop. The value corresponding to silver in the first eigenvector should also be trivial. The

variance explained by the second principle component will increase, and silver’s weight in

23The TOCOM Index is a value-weighted index based on the prices of all the underlying commodities that
TOCOM derivative contracts are written on. This includes platinum, gold, silver, palladium, aluminum,
gasoline, kerosene, crude oil, gas oil, and rubber. As it covers every market division (precious metals, non-
ferrous metal, fuel and soft), the TOCOM Index provides an overall representation of TOCOM as a whole.

24In brief, the TOPIX index series divides constituent stocks listed on the Tokyo Stock Exchange into 33
categories according to industrial sectors as defined by the Securities Identification Code Committee (SICC).
The SICC is Japan’s national securities coding system.
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the second eigenvector will be significantly larger than those of NA, AL or GA.

Second, we perform a quasi vector-moving-average (VMA) estimation25 on the residuals

of NR, AL and GA after adjustments for a common exposure. We separately consider rit

and σit. The latter is used to elaborate. Corresponding to the VAR estimation, the idea

here is to substitute the lagged variables of commodity j 6= i in σit (e.g. σAt−1 and σGt−1 in

the σNt equation) with σIt−1, under the assumption that an industry exposure drives cross-

market interactions. As there ceases to be any link between the σNt, σAt, σGt equations, they

are estimated as single equations. In equation (9), the industry-adjusted residual volatility

{vINt, vIAt, vIGt} extracted from the first round single equation regressions are used in a

second round quasi-VMA estimation. The process is repeated to estimate a quasi-VMA of

{vMNt, vMAt, vMGt} after adjustments for a commodity market factor σMt.

σit = α0 +
K∑

k=1

(αkσit−k + βkIσIt−k) + vIit ∀i = N,A,G

σNt = vINt +
S∑
s=1

(φ1svINt−s + γ1svIAt−s + δ1svIGt−s)

σAt = vIAt +
S∑
s=1

(φ2svINt−s + γ2svIAt−s + δ2svIGt−s)

σGt = vIGt +
S∑
s=1

(φ3svINt−s + γ3svIAt−s + δ3svIGt−s) (9)

If cross-market interactions among NA, AL and GA are mainly driven by a common

industry exposure rather than a commodity market factor, this will be revealed from the

two sets of VMA estimation. When we estimate {vINt, vIAt, vIGt} as a system using σIt

to filter cross-market interactions, we should not find evident cross-market dynamics among

{vINt, vIAt, vIGt}. Following on, since the commodity market factor is trivial, σMt is a less ade-

quate filter of cross-market interactions. As a common exposure remains in {vMNt, vMAt, vMGt},
this is manifested in relatively more evident cross-market interaction from the corresponding

VMA estimation. Conversely, if cross-market interactions among NA, AL and GA are driven

mainly by a commodity market factor, we would find less significant interactions among

{vMNt, vMAt, vMGt}, and comparatively more evident interactions among {vINt, vIAt, vIGt}.
25This is not a standard vector moving average (VMA) estimation since the residuals are not extracted

from a corresponding VAR estimation.

16



3 Background, data and results

3.1 Institutional details, data and sampling

Our daily data is downloaded directly from the TOCOM website. It contains opening,

high, low and closing prices, as well as volume and open interest for all contract cycles. The

main contractual specifications are provided in Table 1. Introduced in Jul 1999, GA is the

newest among the three commodity contracts. As such, our sample period between 4th Jan

2000 and 31st Jul 2007 is chosen to allow half a year for market participants to adapt to the

GA contract, with Jul 2007 correspond to the latest data that is available.

INSERT TABLE 1

The three commodity contracts are traded on a computerized platform from 4th Jan

2005. The morning session runs from 9:00 to 11:00 and the afternoon session runs from 12:30

to 15:30. The opening trade for each session is determined by the Ita-Awase method, where

orders across different prices on both sides of the market are accumulated, and the opening

price is set in such a way as to maximize the total number of contracts that can be traded.

The Zaraba method, or continuous double-auction system, applies for the rest of the session.

The daily closing price we employ is the closing price from the afternoon session.

Trading activity in most futures markets, including US commodities, tend to cluster

on the front (nearest-to-maturity) contract. In stark contrast, trading activity in Japanese

commodity futures is concentrated on the most deferred contract. Webb (1995) suggests

that this is due to Japanese speculators allowing more time for their longer maturity futures

positions to become profitable. When constructing each commodity’s time series sample from

various contract cycles, we use daily open interest as a guide to acquire a sense of the switch

dates when market participants migrate from one contract to the next.26 Specifically, we

identify the day(s) when open interest in contract cycle t starts to decline and open interest

in contract cycle t+ 1 starts to increase. We find that traders on TOCOM switch at the end

of the month, when the next contract cycle becomes available.27 The end-of-month switching

phenomenon on TOCOM is consistent across NR, AL and GA contracts.

26The appropriate switch date is an empirical question and is often contract-specific.
27For example, trading interest during Feb 2001 centers on the Jul 2001 contract. Towards the end of
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In Nov 2003, the AL contract cycle was extended to follow an even-month cycle up to 6

cycles ahead. In the months that follow, new AL contracts were conceived every month, and

traders continued to switch to the most deferred contract. Accordingly, the maturity of the

contract that attracts the most trading interest gradually extended out to a year.28 From

Apr 2004, contracts were rolled out every 2 months e.g. the most deferred contract during

Apr-May 2004 is the Feb 05 contract; the most deferred contract during Jun-Jul 2004 is the

Apr 2005 contract etc. This was taken into account in forming the AL sample.29

3.2 Preliminary results and diagnostic tests

In this section, we perform diagnostic tests to obtain preliminary results on some basic

time-series properties of key variables.

Descriptive statistics and stationary tests

Table 2 contains basic descriptive statistics in Panel A, correlation matrix of the variables

in Panel B, stationary test statistics in Panel C, and in Panel D, results relating to the

variables’ autocorrelation features.

INSERT TABLE 2

In Panel A, rNt, rAt and rGt all display slight negative skewness but with kurtosis close to

3 i.e. normally distributed. This is not surprising given the return series are based on daily

data over seven years. To note, both skewness and kurtosis for σ∗it are more extreme than

those of σit. This is expected given σ∗it is constructed from more extreme prices.

In Panel B, there is some correlation between rNt and rAt of 0.187, between rNt and rGt

of 0.154 and also between rAt and rGt of 0.182. Existing correlations between own-market

volatility and volume variables is also not surprising. However, the volatility-volume corre-

Feb 2001, open interest in the Jul 2001 contract starts to decline, but this is accompanied by the Aug 2001
contract open interest starting its climb.

28E.g. In Dec 2003, the Jun 2004 contract, which has a 7-month maturity, became available and attracted
the most trading interest; In Jan 2004, the Aug 2004 contract, which has an 8-month maturity, drew open
interest from the Jun 2004 contract; In Feb 2004, the Oct 2004 contract, which has a 9-month maturity,
drew open interest from the Aug 2004 contract etc.

29While the AL switching pattern is consistent, we did perform some sensitivity analysis based on pre and
post extension samples, but did not find any difference in results.
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lation for all three commodities is comparatively stronger between σ∗it and vit. For example,

the correlation between σNt and vNt is 0.214, while the correlation σ∗Nt and vNt increases

to 0.611. This, together with the basic statistical properties of the two volatility measures

in Panel A, justifies performing subsequent empirical analysis based on both volatility mea-

sures and focus on results that are consistent across both measures. In terms of cross-market

correlations, a strong relation is displayed between the volatility of NR and AL. NR trading

volume is also correlated with AL volatility. The correlation matrix indicates that GA does

not appear to co-vary with either NR or AL. We shall note if this preliminary observation

is consistent with subsequent VAR results.

In Panel C, as daily returns display near-zero mean and limited time-trend over a seven

year horizon, we apply ADF Test 130 on rit. Conversely, we apply ADF Test 3 on vit. Panel

A reveals that the mean of the volume series is non-zero. We also expect trading volume

to display a time trend as the markets establish themselves and gather liquidity over time.

Lastly, we apply ADF Test 2 on both σit and σ∗it. While there is no reason for volatility

to increase over time, the mean volatility should be greater than zero, especially for daily

futures prices. The test statistics in Panel C indicate that rit, σit, σ
∗
it and vit are all stationary.

In Panel D, we examine the variables’ autocorrelation features. rNt, rAt and rGt are all

serially uncorrelated. For the volatility variables, there is significance up to the 3rd lag, then

there is significance between the 5th to 7th lag for some volatility variables. Lastly, significance

is also exhibited at the 10th lag. For the volume variables, the partial autocorrelation function

(PACF) of vNt and vGt are significant up to the 3rd lag. However, the 10th lag is significant.

For vAt, autocorrelation extends up to the 5th lag. Autocorrelation in all volume and volatility

variables are insignificant beyond the 10th lag. The results in Panel D provide some insight

for determining the appropriate lag specification for VAR estimation.

Granger causality tests

Granger causality test results are reported in Table 3. The F-test statistic and p-value in

a given cell correspond to whether the row variable Granger-causes the column variable.31

30ADF Test 1 regress the returns series with neither intercept nor time trend; Test 2 includes an intercept
only; Test 3 includes both intercept and time trend.

31For example, in the last row, second-last column, the cell that contains a F-statistic of 2.03326 and a
p-value of 0.042 corresponds to the test of whether vGt Granger-causes vAt.
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INSERT TABLE 3

The volume-volatility causality relations offer some interesting observations. Table 3

shows that own-market volatility Granger-causes trading volume. This is consistent across all

three commodities for both σit and σ∗it. Conversely, for the case of AL and GA, own-market

trading volume does not Granger-cause both volatility measures. NR and GA volatility

Granger-cause AL volatility, but not AL volume. vGt Granger-causes both σNt and vNt. The

latter in turn Granger-causes both vAt and vGt. Lastly, vAt Granger-causes σGt and vNt. Later

on, we shall compare the results in Table 3 with with VAR estimation results.

Determining optimal lag specification

As VAR estimation constitutes our main results, the appropriate lag specification is a

pertinent consideration. To address this issue, we utilize standard techniques in model selec-

tion for each of σit and σ∗it to determine the appropriate lag specification. With futures daily

data, we conjecture that it is unlikely for volatility-volume dynamics to extend beyond two

weeks i.e. 10 lags. Indeed, in Panel D of Table 2, the PACF results reveal that autocorrelation

coefficients for all volatility and volume variables beyond the 10th lag are insignificant.32

INSERT TABLE 4

In this paper, we apply a three-step ‘top-down’ approach. First, we examine an array of

information criteria33 in Table 4a to ‘short-list’ lag specifications for further testing. Conflicts

exist between the various criteria. Across both panels, there is support for lag-2 by SIC and

HQC, and for lag-10 by the sequential LR-test. There is support for lag-5 from both FPR

and AIC in Panel A, although both criteria switch to lag-7 in Panel B.

Second, we sequentially back-test a VAR(12)34 at each lag based on Chi-square and Wald-

test statistics for individual variable and joint variables significance respectively. Reported in

Table 4b, we focus on lags that are highlighted in Table 4a. For both panels, most variables

32As such, we specify a maximum lag length of 12 in our diagnostic tests, which involves sequentially
trimming back the lag specification.

33These include log-likelihood, sequential likelihood ratio (LR) statistics, Akaike information criterion
(AIC), Schwarz information criterion (SIC), final prediction error (FPE) and Hannan-Quinn criterion (HQC).

34Under the assumption that any own- or cross-market dynamics in daily data do not extend beyond two
weeks i.e. 10 lags.
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are individually and jointly significant at lags 2 and 10. In Panel B, most lag-7 variables are

individually and jointly significant. Conversely, in Panel A, while lag-5 individual variables

are insignificant, they are jointly significant. Most of the lags in between the short-listed lags

are jointly insignificant e.g. lags 4, 6, 7, 8, 9, in Panel A; lags 4, 5, 6, 8, 9 in Panel B. It

appears that after lag 2, the relevance of subsequent lags declined, until spikes at lags 5/7,

then decline, only to spike again at lag 10. Further lags beyond lag-10 are all insignificant.

There is consistency between Tables 4a and 4b in suggesting that a formal likelihood ratio

(LR) test35 be conducted based on the following restrictions. For σit, we test between VAR(2)-

VAR(5), and if necessary, between VAR(5)-VAR(10). For σ∗it, between VAR(2)-VAR(7), and

if necessary, between VAR(7)-VAR(10). For σit, the LR-test fails to reject VAR(2), but

rejects VAR(10) in favor of VAR(5). In stark contrast, for the σ∗it measure, the LR-test

rejects VAR(2) in favor of VAR(7), which is in term rejected in favor of VAR(10). Given

daily futures data, the prevalence of the 10th lag could be due to day-of-the-week trading

regularities e.g. Monday and/or Friday effect. To address this possibility, we repeat all our

tests with Monday and Friday dummies. The support for a lag(10) specification persists.

Given the mixed outcome, we apply VAR estimation on all short-listed lags. Specifically,

we estimate both VAR(2) and VAR(2-10) based on σit and σ∗it. To note, VAR(2-10) denotes

a VAR(2) that includes only lag-10 variables36. In addition, we fit a VAR(2-5) using σit and

a VAR(2-7) using σ∗it. Interim lags are not included for three reasons: i) Table 4b indicates

that most interim lags between 2, 5 or 7, and 10 are insignificant; ii) including all lags for all

VAR specifications lead to a voluminous set of results that is awkward to present and discuss

and iii) we are concern with model over-fitting, especially with a six equation VAR(10). Our

focus will only be on results that are robust across these six VAR specifications.

3.3 VAR estimation results

35Following Hamilton (1994), the LR test statistic is calculated by estimating both the m-lag (null hy-
pothesis) restricted q-equation VAR and (m+l)-lag unrestricted VAR. For the restricted VAR, obtain a Txq
variance covariance matric R. Construct a q x q matrix Σ = R′R. Denote SLagm = |ΣT |. The process is
repeated for the unrestricted VAR to obtain SLagm+l. Compute the LR test statistic = T log( SLagm

SLagm+l
),

which is χ2 distributed with q2l degree of freedom.
36This is simply because a six-equation VAR (10) will generate 360 estimated coefficients!
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We report VAR(2) estimates in Table 5, VAR(2-10) estimates in Table 6, VAR(2-5) and

VAR(2-7) estimates in Table 7. To reiterate, results based on σit are presented in Panel A and

those based on σ∗it are presented in Panel B. Due to the voluminous results, our discussion

shall proceed as follow. First, we comment on results within each table, starting with own-

market dynamics, and proceeding to cross-market dynamics, if any. Next, we highlight results

that are robust across both panels of a given table. Finally, we highlight results that are

consistent across both VAR specifications and volatility measures.

INSERT TABLE 5

In Table 5, σNt−1, σAt−1, σGt−1 are significant in both their own-market volume and volatil-

ity equations. Both vAt−1 and vGt−1 are significant only in their corresponding volume equa-

tion. vNt−1 is significant in both σNt and vNt equations. σNt−2, σAt−2, σGt−2 are significant in

their corresponding volatility equations, while vNt−2, vAt−2, vGt−2 are also significant in their

corresponding volume equations. All the results discussed thus far are robust across both

panels. σNt−2 is significant in the vNt equation, but only in Panel A. Similarly, σGt−2 is signif-

icant in the vGt equation, but only in Panel B. Both vNt−2 and vGt−2 are significant in their

corresponding σNt and σGt equations, but only in Panel A. σAt−2 and vAt−2 are significant

in both σAt and vAt across both panels.

Next we discuss cross-market effects. For the NR market, σNt is influenced by vGt−1, while

vNt is affected by both vGt−1, vGt−2 and vAt−2. These are robust across panels. Both σNt and

vNt are also influenced by σAt−2, but only in Panel A. For the AL market, σAt is affected by

σNt−1 and σGt−1 for both panels. vAt is affected by σGt−1 for Panel B. The AL market also

appears to be influenced by vNt−2, although this is evident only in Panel A. Lastly, the only

cross-market variable that influence GA trading volume is σNt−2. Both σGt, vGt are affected

by σAt−2 in Panel B. σGt is affected by vAt−2 in Panel A. Thus far, the results do indicate the

presence of cross-market dynamics. Specifically, trading dynamics in the NR market seem to

be influence by lagged AL and GA volume effects. Conversely, the AL market is affected by

lagged NR and GA volatility effects. While the GA market volatility and volume processes

also exhibit evident own-market dynamics, it appears immune to cross-market dynamics

with vNt−2 the only variable that is significant in the GA volume equation in both panels.

22



INSERT TABLE 6

In Table 6, we present VAR(2-10) estimation results. Both own- and cross-market results

are largely consistent with those from VAR(2). E.g. across both panels, σNt−1, σAt−1, σGt−1

remain significant in both their own-market volume and volatility equations in both panels.

Both vAt−1 and vGt−1 are still significant only in their corresponding volume equation. vNt−1

is significant in both σNt and vNt equations. For the lag-10 variables, it is interesting to note

that across both panels, σNt−10, σAt−10, σGt−10 are significant in their corresponding own-

volatility equations, but not in their own-volume equations. Similarly, vNt−10, vAt−10, vGt−10

are significant in their corresponding own-volume equations, but not in their own-volatility

equations. Cross-market dynamics is exerted primarily by the GA market. Across both pan-

els, vGt−10 is significant in the vNt and vAt equations. σGt−10 is significant in both the NR and

AL volatility equations. Both σ∗Nt−10 and vNt−10 exert some influence on the σ∗Gt equation.

INSERT TABLE 7

In Table 7, we present VAR(2-5) and VAR(2-7) results in panels A and B respectively.

As with VAR(2-10), the own- and cross-market results for lag-1 and lag-2 variables are

generally consistent with those from VAR(2). Results for the lag-5 and lag-7 estimates are also

consistent with those from the lag-10 variables in VAR(2-10). In Panel A, σNt−5, σAt−5, σGt−5

are significant in their corresponding own-volatility equations, but not in their own-volume

equations. vNt−5, vAt−5, vGt−5 are significant in their corresponding own-volume equations,

but not in their own-volatility equations. Lag-7 volatility and volume variables in Panel B

exhibit the same patterns. Similar to Table 6, vGt−5 and vGt−7 are significant in both vNt and

vAt equations in the corresponding panels. The NR market is also found to exert cross-market

influence on AL, with vNt−5 and vNt−7 significant in the corresponding σAt equations.

INSERT TABLE 8

Lastly, we examine the robustness of VAR results across lag specifications and volatility

measures. Such a comparison is awkward given the sheer amount of results involved. Since

our interest is on the role that lagged exogenous variables play in each of the six volatility-

volume processes of the three commodities, we propose a simplified approach in Table 8,
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which we refer to as a VAR significance score-board. The values represent the number of

times that a given lagged exogenous variable is significant in a given equation from a given

VAR estimation. We isolate on lag-1 and lag-2 variables since they are present across all

six sets of VAR estimations. Accordingly, the maximum (minimum) score that a variable

could achieve is 6 (0).37 We regard a score of 5 or 6 as indication that a variable is robustly

significant. Similarly, a score of 0 or 1 would suggest that a variable is robustly insignificant.

As before, we shall discuss own-market trading dynamics, and then proceed to examine

cross-market dynamics. Table 8 shows that lag-1 volatility is significant in both own-market

volatility and volume equations. A maximum score of 6 is achieved across all three com-

modities. Conversely, lag-1 volume is robustly significant only in own-volume equations.

Interestingly, vAt−1 and vGt−1 are irrelevant in their own-market volatility equations, where

both scored zero. Lag-2 volatility variables are robustly significant in their own-volatility

equations, all achieving maximum scores. However, their significance is no longer robust in

the volume equations. σNt−2, σAt−2 and σGt−2 achieve corresponding scores of 3, 3, and 2

in the vNt, vAt and vGt equations. Lag-2 volume variables all scored 6 in their own-volume

equations. Their relevance in the own-market volatility equations is not robust, with vNt−2

and vGt−2 obtaining scores of 3 and 4. vAt−2 is the only exception, playing an important role

in its own-market volatility process with a score of 6.

For cross-market dynamics, σNt−1 and σGt−1 exert a robust and significant influence on

the σAt process, with both scoring 6. GA trading volume has a significant and robust impact

on NR, with vGt−1 scoring 6 in both σNt and vNt equations. Conversely, both σGt and vGt

processes appear to be immune to lag-1 cross-market dynamics from NR and AL, with all

their lag-1 variables scoring either 0 or 1. For lag-2 variables, the only evidence of cross-

market volatility is exhibited by σAt−2 on both NR and GA volatility-volume equations.

However, the results are not totally robust, with σAt−2 scoring 4 on the NR market and 2

on the GA market. Lag-2 volume variables provide more evidence of cross-market dynamics.

Again AL plays a prominent role, with vAt−2 scoring 6 in NR trading volume and 5 in GA

volatility. There is also evidence of NR trading volume affecting cross-market dynamics,

37For example, σNt−1 scored 6 in both the σNt and vNt equations. This means that lag-1 volatility for NR
is prevalent in its own-market volatility and volume equations across all three VAR specifications for both
volatility measures.
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with vNt−2 scoring 6 in the vGt equation. Although the results are not robust, vNt−2 seems

to influence the AL market, with scores of 4 and 2 in the σAt and vAt equations respectively.

In sum, VAR estimates reveal some interesting aspects of cross-market trading dynamics

in the three related commodity markets. The most surprising result is that vAt−1 and vGt−1

have completely no impact on σAt and σGt whatsoever.38 Instead, vAt−2 influences vNt and

σGt, and both in turn flow through to the σAt equation. Note also that cross-market dy-

namics experienced in NR and AL markets occur at lag-1, where GA plays an active role.

In contrast, cross-market dynamics experienced by the GA market occur at lag-2, and are

predominately exerted by NR and AL volume variables. Taken together, the results that

are robust do suggest the GA market is more responsive to news than NR and AL, influ-

encing both NR and AL at lag-1, but is itself immune to NR and AL lag-1 variables. The

AL market has no influence on NR and GA markets at lag-1, but subsequently provides

feedback effect in volume at lag-2, affecting both NR volume and GA volatility. NR is some-

what ‘in-between’; it exerts some influence, but only on AL at lag-1 and only on GA at lag-2.

3.4 Results from robustness checks

Sub-sample analysis

We re-estimate the VAR specifications in Tables 5, 6 and 7 based on sub-samples to

consider if results are affected by the NR contract’s downsizing and migration to TOCOM’s

computerized trading platform, both occurring in Jan 05.39 While estimation results between

the two sub-samples for some VAR specifications differ from those based on the full sample,

their corresponding VAR score-boards are similar to Table 8. Specifically, NR lag-1 volatility

remain influential in the AL volatility equation; vGt−1 plays an important role in both σNt and

vNt equations in both sub-samples; AL lag-2 trading volume still affects NR trading volume.

An overall result that is quite evident is the relatively stronger presence of cross-market

volume effects in the post Jan 05 sub-sample. An obvious reason for this would be the fact

that since Jan 05, all three commodities are effectively traded under the same computerized

38This is in sharp contrast to the series of bivariate VAR estimations of own-market volume and volatility
dynamics. In those results, which are available upon request, both lag-1 volume and volatility variables are
significant in both equations for each market for both volatility measures.

39Due to space constraint, they are not included in the paper, but are be available upon request.
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platform, which allows common information flow in related commodities to manifest more

easily into cross-market volatility-volume effects.

Price reversals results

First, we comment from direct observations of overnight and day price reversals. For the

entire sample, the NR market exhibits 47.1% overnight reversals and 48.1% day reversals; the

AL contract exhibits 50.6% overnight reversals and 52.8% day reversals; the GA contract

exhibits 48.6% overnight reversals and 54.1% day reversals. We examine the sub-sample

proportions for NA before and after the structural changes in Jan 05, as well as for the AL

contract before and after its contract cycle was doubled to 2 months in Nov 03. In both

cases, the sub-sample proportions are very similar to those of the entire sample.

INSERT TABLE 9

Results from probit estimation on price reversals are presented in Table 9. We make a

general observation that across both panels, there are more significant cross-market variables

than there are own-market variables. Specifically, in Panel A, there are four significant own-

market variables (σGt−1, vNt−1, σNt−2, vNt−2) and six significant cross-market variables: σNt−1

in RevnightAt ; σAt−1 in RevdayGt ; σGt−1 in RevdayNt ; vGt−1 in RevnightNt ; both σGt−2, vNt−2 in RevdayAt .

Similarly in Panel B, only three own-market variables are significant: σ∗Nt−1, vNt−1, vNt−2. In

contrast, seven cross-market variables are significant: both σ∗Nt−1, vNt−1 in RevnightAt ; vGt−1 in

RevnightNt ; σ∗Nt−1 in both RevnightAt , RevdayAt and vNt−2 in RevdayAt .

Next we focus on the cross-market variables which are significant in both panels and

contrast with their corresponding VAR scores in Table 8. First, lag-1 volatility for NR and

GA are both significant in affecting price reversals in the AL market. This is consistent with

σNt−1 and σGt−1 both scoring 6 in the σAt equation. Second, lag-1 trading volume for GA

is significant in NR overnight price reversal. This is again supported in Table 8 with vGt−1

scoring 6 in the σNt equation. Lastly, lag-2 NR trading volume affects the AL contract day

price reversal. In Table 8, vNt−2 scored 4 in the σAt equation.

Variance ratios results

Results from the analysis of weekly and fortnightly variance ratios are presented in Table
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10. We consider both lag-2 and lag-5 specifications for the GMM estimation of V R5
it in Panel

A. In Panel B, we fit both lag-2 and lag-10 specifications for V R10
it . The lag-5 and lag-10

dynamics are consistent with a weekly and fortnightly variance ratio. In addition, lag-2,

lag-5 and lag-10 specifications are supported from earlier diagnostic tests on the extent of

dynamics in the volume-volatility variables of the three commodities.

INSERT TABLE 10

First, we discuss results from a lag-2 specification across both panels. vGt−1 is significant

in both V R5
Nt and V R10

Nt. This is consistent with vGt displaying a VAR score of 6 in the σNt

equation in Table 8. Second, vAt−2 is significant in both V R5
Nt and V R10

Nt. Although vAt−2

scored zero in the σNt equation, it has a score of 6 in the vNt equation. We postulate that

the influence of vAt−2 on the NR variance ratios is being transmitted through volume effects

on volatility. Next we discuss results from lag-5 and lag-10 specifications. vAt−5 and vAt−10

are significant in the corresponding V R5
Nt and V R10

Nt equations. This is supported by results

in Tables 6 and 7, which indicate that longer dynamics in AL volume do seem to exert some

influence on the NR volatility process. vNt−5 being significant in the V R5
Nt equation, which

is consistent with the significance of vNt−5 in both the σAt and σ∗At equations in Table 7.

Lastly, vGt−10 is significant in the V R10
At equation, which is consistent with the significance

of vGt−10 in the σAt equation in Table 6.40

Full BEKK-GARCH results

From our diagnostic results in Table 1, all three commodity daily returns do not display

any significant autocorrelation, but they do exhibit a Monday effect. As such, the GARCH

return equations are specified to include only a constant with coefficient φi0 and Monday

dummy variable with coefficient θi.
41 While there is strong evidence of longer dynamics up to

lag-10 in the data, we are unable to consider beyond lag-1 in a tri-variate full BEKK-GARCH

estimation due to convergence problems.

INSERT TABLE 11
40Again, we examine the sub-sample proportions for NA before and after the structural changes in Jan

05, as well as for the AL contract before and after its contract cycle was doubled to 2 months in Nov 03. In
both cases, the significance of the cross-market variables is consistent with the full sample results.

41We have also tested for a Friday dummy variable, but it is not significant.
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The estimation results are presented in Table 11.42. To note, Panel A reports individual

coefficient estimates and their corresponding p-values. The results in Panel B are the com-

posite coefficients of ARCH and GARCH variables in each variance or covariance equation.

These composite coefficients are functions of the individual coefficients reported in Panel

A. As such, their values are calculated from values of the corresponding estimates reported

in Panel A. A composite coefficient is deemed significant if and only if all its individual

coefficients are significantly different from zero.43

The results are consistent with main findings based on VAR estimation. First, GARCH

results are consistent with VAR results of short-run dynamics between the NR and AL

markets. The variable εNt−1εAt−1 is significant in all but the hGGt equation, and hNAt−1 is

the only variable that is significant across all three covariance equations. Second, GARCH

results also support the finding that AL has limited impact on both NR and GA in the

short-run. ε2
At−1 is significant only in the hAAt equation, while hAAt−1 is significant in the

hAAt and hAGt equations. Conversely, AL itself is heavily influenced by both NR and GA.

Third, GARCH results also reveal the influence that GA imposes on both NA and AL, with

εNt−1εGt−1 significant in all but the hNAt equation. Unlike the VAR results, we do find some

influence from NR onto GA, with both ε2
Nt−1 and εNt−1εGt−1 significant in the hGGt equation.

We are unable to ascertain if the AL exerts any feedback effect in longer dynamics i.e. lag-5

or lag-10 in the GARCH framework.

Industry exposure or commodity market factor

First, we report VAR, BEKK-GARCH and PCA results from comparisons against silver.

In Table 12, we report VAR(2) volume-volatility estimation results between NR-SL, AL -SL

and GA-SL in panels A, B and C. respectively.44 We could investigate cross-market volume-

volatility interaction by estimating an eight-equation VAR that includes all four commodities.

42The results are generated from maximum likelihood estimation assuming multivariate normal distribu-
tions. The MLE algorithm for the full BEKK-GARCH model is programmed in Mathlab.

43For example, the coefficient for εNt−1εGt−1 in the hGGt equation is 2a13a33. Since a13 = 0.05412 and
a33 = 0.2515, hence the value of the composite coefficient is 0.02723. And since both a13, a33 are significant,
the composite coefficient is also significant. This is denoted with a *.

44To note, we also estimate VARs with different lag specifications and volatility measures, but the results
are similar. Due to space constraint, we report only results for a VAR(2) based on the absolute return
measure of volatility.
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But for consistency, we focus on pairwise comparisons for both VAR and BEKK-GARCH.45

INSERT TABLE 12

With the exception of σSt−2 in the vNt equation, the VAR results clearly indicate an

absence of cross-market volume-volatility interaction between NR and SL in Panel A, and

between GA and SL in Panel C. There is some evidence of cross-market interaction between

the two metal futures markets. Both σSt−1 and σSt−2 are significant in the σAt equation.

Additionally, σAt−2 and vSt−2 are significant in the σSt and vSt equation respectively.

INSERT TABLE 13

In Table 13, we report bivariate full BEKK-GARCH estimation results. These are very

similar to results from the preceding VAR estimation. In Tables 13a and 13c, only the own-lag

ARCH and GARCH terms are significant in the corresponding equations. But the bivariate

estimation of AL and SL in Table 13b shows that every single ARCH and GARCH term

is significant in the hSSt equation. In the conditional covariance equation, other than the

own-lag variables, hASt is also affected by both ε2AAt−1 and hAAt−1. In contrast, the hAAt

equation is only influenced by its own-market lag variables ε2AAt−1 and hAAt−1. The results

in Table 13b do suggest that the AL market affects the SL market, but not vice-versa. Thus

far, VAR and BEKK-GARCH estimation do not suggest any interaction between NR-SL

and between GA-SL. While cross-market interaction between the two metal futures AL and

SL is interesting, any further analysis is beyond the scope of our paper.

INSERT TABLE 14

Next, we discuss PCA results in Table 14. The three-market PCA reveals that the first

principal component explains 98.7% of the variances across {rNt, rAt, rGt}. The weights in

the first eigenvector are similar across NR, Al and GA. When SL is included in the PCA, the

variance explained by the first principal component dropped to 74.15%. While the weights

45We are unable to estimate a four-market full BEKK-GARCH, which will involve the specification of four
conditional variance and six conditional covariance equations.
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corresponding to NR, AL and GA in the first eigenvector remain stable, the weight attributed

to SL is around 10% of the other three weights, which is trivial. To follow, the second principal

component now explains 24.94% of variances across {rNt, rAt, rGt, rSt}, compared to 1.29%

in the first PCA. This is entirely associated with SL, whose weight in the second eigenvector

is ten times larger than the other three weights.

INSERT TABLE 15

Lastly, we discuss VMA results. To note, we report the analysis based on lag-1 and lag-2

return variables in single-equation estimations, and accordingly, a quasi-VMA(2) specifica-

tion based on residual returns.46 While the corresponding results based on residual volatility

are not as clear-cut, they are consistent with the results in Table 15. VMA estimates based on

commodity market adjusted returns are presented in Panel A, while Panel B report estimates

based on industry-adjusted returns.

When rMt−1, rMt−2 are used as filters to extract {vMNt, vMAt, vMGt}, cross-market inter-

action remains evident in the VMA estimation. Except vMNt−2 in rAt and vMAt−2 in rNt, the

remaining 10 cross-market variables are significant in Panel A. When rIt−1, rIt−2 are used as

filters to extract {vINt, vIAt, vIGt} for the VMA estimation, the results in Panel B are in stark

contrast to those in Panel A. In fact, with the exception of vIAt−1 in the rGt equation, the

remaining 11 cross-market variables in Panel B are all insignificant. Interestingly, all own-

market lagged returns are significant across both panels, despite the inclusion of own-market

lagged returns in single equation estimations.

For VMA estimation based on residual volatility,47 7 out of 12 cross-market variables are

significant in Panel A. But in Panel B, only 2 variables are significant. While VMA results

based on σit are not as clean-cut as those based on rit, there is consistency between the two

measures in terms of more evident cross-market interaction in Panel A relative to Panel B.

46Again, we checked with different lags, but the overall main finding is consistent.
47These results are available upon request.
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4 Hedging and regulatory implications

We offer some implications of our main finding for multi-commodity hedging and policy-

setting. We believe both issues warrant investigation, but as separate papers.

Hedging multi-commodity risk

Using futures fi to hedge against an underlying spot si involves calculating the risk-

minimizing optimal hedge ratio (OHR) h∗i =
σisf
σ2
if

, where σisf is the spot-futures return

covariance and σ2
if is the futures return variance. h∗i measures the sensitivity between si and

fi. For a static hedge, h∗i is time-invariant i.e. the position is fixed for the duration of the

hedging period. In contrast, a dynamic hedge recognizes h∗i = h∗it i.e. time-varying hedge

ratio, due to variance and/or covariance changing during the hedging period. The hedging

literature is devoted to evaluating the hedging performance of i) different techniques/models

for forecasting σisft and/or σ2
ift, for a given hedging instrument; ii) similar competing hedging

instruments, for a given technique/model for forecasting σisft, σ
2
ift.

Our main finding has implications for both aspects. The first aspect focuses on extract-

ing more information from data on (say) fNi and sNi to improve the modeling and hence

forecasting of h∗Nt+1 for the purpose of hedging against natural rubber exposure. Short-run

cross-market interactions between NR and GA, and longer-run influence of AL on NR and

GA imply potential improvements from harnessing incremental information embedded in

inherent covariations between NR, AL and GA are formally modeled. The second aspect in-

volves two contrasting angles: a) the hedging performance of an array of substitute hedging

instruments for a given exposure; b) the performance of a given hedging instrument on an

array of similar exposures i.e. cross-hedging48. Our study on complementary commodities

adds a third angle. Consider a car manufacturer who is exposed to NR and AL in terms of

material costs, and GA in terms of transport/assembly costs and output sales volume. The

hedging literature offers guidance on substitute contracts that differ in contractual specifi-

cations and/or trading platforms.49 as well as a list of factors to consider in cross-hedging50.

48E.g. A Japanese sushi-rice farmer using Thai jasmine-rice futures contracts.
49E.g. NR contract in Singapore (SICOM), AL contract in Shanghai (SHFE) and GA contract in New

York.
50E.g. using crude oil futures instead of GA futures to hedge falling car sales; using (SICOM) technically-

specified rubber futures in addition to NR futures to improve hedging performance against NR exposure
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In most studies, either the hedging instrument or exposure is fixed. But a car manu-

facturer is simultaneously exposed to multiple commodities. In the absence of commodity

covariance, a car manufacturer can separately hedge against commodity-specific risks brought

on by NR, AL and GA, and set positions based on commodity-specific variance-covariance

matrices. But if non-trivial covariations exist among complementary commodities, setting

positions on a commodity-by-commodity basis leads to hedging errors. We provide an ana-

lytical demonstration in the appendix.

Multi-commodity policy-setting

The main finding in this paper offers policy-setting implications for margin requirements,

price limits and position limits. Studies on margin requirements and price limits in the 1990s

are motivated by the October 1987 Wall Street crash. The usual suspects include speculative

traders, index arbitragers and portfolio insurers. A huge debate followed questioning the

role of such contractual features in curbing speculative trading and excessive volatility, and

whether they should merely be altered in response to the changing nature of market volatility.

Our findings are not relevant to the debate on whether these contractual features should

be proactive or reactive to volatility. However, our findings are relevant to the extent that

an established relation, of debatable nature, exists between margin requirement (or price

limit) and volatility. As with multi-commodity hedging, setting margins on a commodity-

by-commodity basis may be inappropriate if the volatility of commodity i contains both

commodity-specific and common commodity components. Put differently, given evident co-

variation among complementary commodities, it may be more appropriate for a commodity

exchange to set its margin policy based on a set of related commodities rather than on a

commodity-by-commodity basis. To follow, covariation across related commodities necessar-

ily implies covariation in margin alterations on such related commodity contracts.

Position limits consider the risk exposure of a commodity-specific position. But if more

prominent hedgers are engaged in multi-contract hedging in commodities used to produce a

common output, and if there is evident co-movement across these related commodities, then

the setting and alteration of position limits should not be a commodity-specific consideration.

etc.
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5 Concluding remarks

In this paper, we put forth a simple economic argument for potential cross-market trading

dynamics in seemingly unrelated commodities that share a common and non-trivial indus-

try exposure. Using the reduced-form of a price-quantity structural system, we apply VAR

estimation to empirically investigate the relevance of cross-market volatility-volume trans-

mission effects in the NR, AL and GA futures markets of TOCOM, all of which are exposed

to Japan’s renowned automobile industry.

Our main findings, which survived stringent robustness tests and model specifications,

document short-run cross-market dynamics between NR and AL, and from GA to NR and

AL. GA itself is relatively immune to NR and AL short-run trading dynamics. Instead,

cross-market effects experienced by GA is felt in longer dynamics, mainly through NR and

AL volume, particularly the latter. Interestingly, σALt and σGAt are not affected by their

own lagged volume. Instead, σALt is affected by σNAt−1, while σGAt is affected by vALt−2.

Our results provide strong and robust evidence of a common industry exposure, and not

commodity market factor, that is driving cross-market trading dynamics in futures contracts

on complementary commodities .

A few avenues for future research are evident. The idea in this paper can be easily ex-

panded to accommodate various sets of commodities that constitute (say) raw materials to

an array of industries, which can be represented by various market sub-indices e.g. construc-

tion and material sub-index with metal-based futures contracts. A recent paper by Hong,

Torous and Valkanov (2007) document strong evidence of some industries, including metal

and petroleum, leading the overall stock market by up to two months. Their findings are

robust across US and eight major non-US stock markets. In conjunction with evidence doc-

umented in this paper, an interesting question to ask is whether there is evidence of trading

activity in a ‘leading’ industry, such as metal and petroleum, being influenced by trading

activity in related metal- and fuel-based futures markets, and the implications in terms of a

profitable trading strategy. That question is currently being investigated.
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Appendix

Here we provide an analytical demonstration of possible hedging errors generated from
ignoring non-trivial covariance between related commodities. For brevity, we present a case
involving NR and AL, suppressing all time subscripts. The algebra can be easily expanded
to encompass all three commodities.

Case 1: Risk-minimizing hedge ratio: Natural Rubber

A NR farmer wishing to minimize the variability of his overall position will take up
NR futures to hedge against exposure of his produce. The variance of his overall position
V ar(SN − hNFN) is given by

σ2
1 = σ2

Ns + h2
Nσ

2
Nf − 2hNσNsf

∂σ2
1

∂hN
= 2hNσ

2
Nf − 2σNsf = 0

h∗N =
σNsf
σ2
Nf

(10)

Case 2: Risk-minimizing hedge ratios: Natural Rubber and Aluminium

A car manufacturer wishing to minimize the variability of its overall input cost will take
up NR and AL futures to hedge against rising commodity prices. The variance of its overall
position is V ar(SN−hNFN)+V ar(SA−hAFA)+Cov[(SN−hNFN)(SA−hAFA)].51 We show
below that multi-commodity hedging based on h∗N and h∗A i.e. commodity-by-commodity, is
valid only when there is no relation between NR and AL. For example, when NR futures and
AL spot covariance σNfAs and NR and AL futures covariance σNAf are both zero, hN reduces
to the single-commodity setting h∗N . The case for hA reducing to h∗A is similarly described.

σ2
2 = (σ2

Ns + h2
Nσ

2
Nf − 2hNσNsf ) + (σ2

As + h2
Pσ

2
Af − 2hAσAsf )

+ σNAs + hNhAσNAf − hNσNfAs − hAσNsAf

∂σ2
2

∂hN
= 2hNσ

2
Nf − 2σNsf + hPσNAf − σNfAs = 0

hN = h∗N +
σNfAs − hPσNAf

2σ2
Nf

∂σ2
2

∂hA
= 2hAσ

2
Pf − 2σAsf + hNσNAf − σNsAf = 0

hA = h∗A +
σNsAf − hNσNAf

2σ2
Af

(11)

51Strictly speaking, the payoff should be (hNFN − SN ), and is the opposite of a farmer’s position. But
since this does not affect the subsequent results, we keep the same order for consistency.
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Table 1: TOCOM commodity futures contract specifications 

 

 Natural rubber (NR) Aluminum (AL) Gasoline (GA) 

Listing date 12th Dec 1952 7th Apr 1997 5ht July 1999 

Underlying asset Ribbed smoked sheet (RSS) No. 3 
Min 99.7% purity; 

Max iron content: 0.20% 
Max silicon content: 0.10% 

JIS K2202 grade 2 
Max sulfur content: 10 ppm 

Trading platform 
and hours 

Before 4th Jan 05: Itayose  
After 4th Jan 05:  

Computerized continuous trading 
9am ~11:00 am; 

12:30pm~3:30pm. 

Computerized continuous trading 
9am ~11:00 am; 

12:30pm~3:30pm 

Computerized continuous trading 
9am ~11:00 am; 

12:30pm~3:30pm. 

Delivery months 
 

Monthly contract cycles traded up to 6 
consecutive months ahead 

2 month cycles; 
even months up to 1 year ahead 

Monthly contract cycles traded up to 
6 consecutive months ahead 

Contract size Before 26th Jan 05: 10,000 kilogram (kg) 
After 26h Jan 05: 5,000 kg 5,000 kg 50 kiloliters (kl) 

Minimum tick 0.1 Yen/kg 0.1 Yen/kg 10 Yen/kl 

Price and position 
limit 

Current month: 200 
2nd month: 600 

3rd month: 1600 
Others: 3,000/contract month 

Current month: 400 
2nd month: 800 

Others: 2,400/contract month 

Current month: 250 
2nd month: 500 

Others: 1,500/contract month 

Last trading 
Day 

4th business day before end of 
contract month 

3rd business day before end of 
contract month 

25th day of the month that precedes 
the delivery month 

Settlement Physical delivery Physical delivery Physical delivery 

Margin 
requirement 

Front contract: 112,500 
Others: 75,000 yen 

Front contract: 112,500 
Others: 75,000 

Front contract: 202,500 
Others: 135,000 



Table 2: Descriptive statistics and diagnostic tests 

Panel A: Descriptive statistics on key variables 
 

Variables Mean Median Max Min Std dev Skewness Kurtosis 

N tr  0.000717 0.001226 0.069996 -0.07004 0.018731 -0.11069 3.428933 

A tr  0.000354 0.000559 0.034382 -0.03385 0.010375 -0.05379 3.201277 

G tr  0.000521 0.00111 0.042925 -0.06484 0.015959 -0.275 3.031389 

Ntσ  0.014596 0.011848 0.07004 0 0.011756 1.179036 4.556793 

Atσ  0.008041 0.006379 0.034382 0 0.006563 1.046979 3.590174 

Gtσ  0.012528 0.010029 0.064844 0 0.009896 0.880516 3.651368 

*
Ntσ  0.017531 0.015254 0.080279 0.001707 0.010568 1.510866 6.414017 

*
Atσ  0.008786 0.007865 0.044135 0.000994 0.004547 1.985095 10.90106 

*
Gtσ  0.016895 0.015127 0.087813 0.000628 0.008091 1.467108 7.381439 

N tv  1418354 889446.3 9335033 83140.6 1368246 1.909705 7.316232 

A tv  83282.66 62101.1 789132.4 433.875 75888.74 2.245733 11.71777 

G tv  2346197 2028430 12360033 57684.8 1596371 1.616203 7.428491 

 
Panel B: Correlation matrix of key variables 

 
 N tr  A tr  G tr  Ntσ  Atσ  Gtσ  *

Ntσ  *
Atσ  *

Gtσ  N tv  A tv  G tv  

N tr  1            

A tr  0.187 1           

G tr  0.154 0.182 1          

Ntσ  -0.007 -0.006 -0.007 1         

Atσ  -0.033 0.021 -0.007 0.1035 1        

Gtσ  0.028 0.0003 -0.077 0.046 0.097 1       
*
Ntσ  -0.0499 -0.006 0.009 0.363 0.164 0.032 1      
*
Atσ  -0.006 -0.054 0.0141 0.109 0.368 0.057 0.202 1     
*
Gtσ  -0.025 -0.043 -0.069 0.037 0.064 0.174 0.055 0.082 1    

N tv  -0.024 0.010 0.003 0.214 0.221 -0.017 0.611 0.237 -0.087 1   

A tv  0.053 0.018 0.0312 0.043 0.221 -0.005 -0.115 0.247 0.049 -0.159 1  

G tv  -0.001 -0.006 0.010 -0.081 -0.029 0.147 -0.083 -0.067 0.351 -0.059 -0.045 1 

 
 



Panel C: Augmented Dickey Fuller (ADF) tests on key variables 

Variable N tr  
Test 1 

A tr  
Test 1 

G tr  
Test 1 

N tv  
Test 3 

A tv  
Test 3 

G tv  
Test 3 

t-stat -43.14 -43.17 -41.82 -3.89 -10.6 -12.60 
p-value (0.000)** (0.000)** (0.000)** (0.012)* (0.000)** (0.000)** 

Max lag 0 0 0 23 3 2 

Variable Ntσ  
Test 2 

Atσ  
Test 2 

Gtσ  
Test 2 

*
Ntσ  

Test 2 

*
Atσ  

Test 2 

*
Gtσ  

Test 2 

t-stat -11.9526 -15.9668 -11.9636 -6.64727 -8.8477 -10.66 
p-value (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** 

Max lag 5 3 5 6 6 4 

**: Significant at 1% level 
*: Significant at 5% level 
 

Panel D: Autocorrelation features of key variables 

 N tr   A tr   G tr   N tv   A tv   G tv  

Lags PACFa Q-statb  PACF Q-stat  PACF Q-stat  PACF Q-stat  PACF Q-stat  PACF Q-stat 

1 -0.002 0.01  -0.003 0.017  0.029 1.53  0.861* 1380**  0.612* 697**  0.584* 634** 

2 -0.027 1.402  -0.001 0.018  -0.005 1.567  0.207* 2558**  0.317* 1307**  0.251* 1111**

3 -0.011 1.63  -0.027 1.40  0.017 2.11  0.167* 3642**  0.19* 1852**  0.14* 1496**

5 -0.024 3.68  -0.037 5.23  -0.034 4.99  0.105* 5607**  0.062* 2702**  0.041 1944**

10 -0.007 11.38  0.019 8.36  -0.03 12.6  0.086* 9893**  -0.008 4347**  0.065* 2554**

15 0.03 15.48  -0.029 12.4  0.007 21.7  0.01 13714**  -0.034 5504**  0.033 3038**

                  

 Ntσ   Atσ   Gtσ   *
Ntσ   *

Atσ   *
Gtσ  

Lags PACF Q-stat  PACF Q-stat  PACF Q-stat  PACF Q-stat  PACF Q-stat  PACF Q-stat 

1 0.091* 15.44**  0.16* 47.5**  0.11* 22.44**  0.503* 471**  0.313* 182**  0.297* 164** 

2 0.141* 56.3**  0.149* 102**  0.099* 44.8**  0.27* 856**  0.212* 337**  0.207* 307** 

3 0.109* 87.7**  0.09* 134**  0.129* 85.4**  0.219* 1240**  0.157* 476**  0.177* 454** 

5 0.097* 153**  0.059* 197**  0.082* 151**  0.087* 1910**  0.054* 737**  0.11* 748** 

10 0.042 273**  0.083* 308**  0.068* 290**  0.056* 3452**  0.032 1211**  0.036 1191**

15 0.025 365**  0.045 381**  0.041* 374**  0.005 4796**  -0.002 1554**  0.015 1560**

*Significance at the 5% level; **Significance at the 1% level 
aIf the PACF lies within the 95% confidence interval range (-0.04547, 0.04547), it is not significant 
bQ(k) is the Ljung-Box test statistics of joint significance for the first to the kth order autocorrelation, and is χ2-distributed. 

 



Table 3: Pairwise Granger-Causality F-test statistics 

 N tr  A tr  G tr  Ntσ  Atσ  Gtσ  *
Ntσ  *

Atσ  *
Gtσ  N tv  A tv  G tv  

N tr  ~ 0.38783a 0.84872 6.12197 1.10597 1.425 2.10868 1.94088 1.22077 4.82909 0.82908 0.81598 
 ~ (0.910)b (0.547) (0.000)** (0.356) (0.191) (0.040)* (0.050)* (0.288) (0.000)** (0.563) (0.574) 

A tr  1.06725 ~ 0.75877 0.99376 1.43468 1.06306 0.53339 3.98074 2.23137 1.20134 1.9935 1.0162 
 (0.382) ~ (0.622) (0.434) (0.187) (0.385) (0.810) (0.000)** (0.029)* (0.299) (0.050)* (0.418) 

G tr  1.28347 0.34948 ~ 0.73243 0.29266 0.58019 0.42945 1.08752 1.22066 0.53805 0.86194 1.109 
 (0.254) (0.931) ~ (0.644) (0.957) (0.773) (0.884) (0.369) (0.288) (0.806) (0.536) (0.354) 

Ntσ  1.24111 0.80883 1.56759 ~ 2.0455 0.45852 14.5072 2.06582 0.94141 8.92361 0.79404 1.23093 
 (0.277) (0.580) (0.141) ~ (0.046)* (0.865) (0.000)** (0.044)* (0.473) (0.000)** (0.592) (0.282) 

Atσ  0.61282 1.8243 1.97848 0.89375 ~ 0.55615 2.59479 12.6472 1.14079 0.81849 4.64746 0.79132 
 (0.746) (0.079) (0.050)* (0.510) ~ (0.792) (0.012)* (0.000)** (0.334) (0.572) (0.000)** (0.595) 

Gtσ  1.25389 0.45694 0.67876 0.77663 2.36061 ~ 0.98963 1.9512 20.1462 0.56812 1.18726 7.07777 
 (0.270) (0.866) (0.690) (0.607) (0.018)** ~ (0.437) (0.037)* (0.000)** (0.782) (0.307) (0.000)** 

*
Ntσ  0.81022 0.69139 0.52486 1.77079 4.29133 1.07677 ~ 2.80229 1.17334 5.77136 2.94302 1.79574 

 (0.579) (0.679) (0.816) (0.089) (0.000)** (0.376) ~ (0.007)** (0.315) (0.000)** (0.004)** (0.048)* 
*
Atσ  1.70622 0.6486 1.39265 1.35201 5.51991 1.30441 1.62946 ~ 0.71155 2.41352 3.01268 0.22762 

 (0.103) (0.716) (0.204) (0.222) (0.000)** (0.244) (0.123) ~ (0.662) (0.018)* (0.004)** (0.979) 
*
Gtσ  0.37215 1.50109 1.10087 0.40046 1.925 5.50054 1.76593 2.15386 ~ 1.33277 1.6087 9.66218 

 (0.919) (0.162) (0.360) (0.902) (0.048)* (0.000)** (0.041)* (0.036)* ~ (0.231) (0.128) (0.000)** 

N tv  0.67073 1.04107 0.34084 2.94703 6.24237 1.41202 6.79408 2.90545 1.55396 ~ 2.14425 2.50301 
 (0.697) (0.400) (0.935) (0.004)** (0.000)** (0.196) (0.000)** (0.005)** (0.145) ~ (0.036)* (0.015)* 

A tv  0.62556 0.54861 0.31961 1.33306 0.45193 2.37078 1.03662 0.49244 0.75688 2.03326 ~ 1.23896 
 (0.735) (0.798) (0.945) (0.230) (0.869) (0.021)* (0.403) (0.841) (0.624) (0.042)* ~ (0.278) 

G tv  0.76091 0.47711 1.99771 2.35807 1.78676 0.86711 1.57401 1.50104 0.89891 3.48794 1.40969 ~ 
 (0.620) (0.852) (0.042)* (0.021)* (0.046)* (0.532) (0.139) (0.162) (0.506) (0.001)** (0.197) ~ 

a     The direction of causality tested runs from the row variable to the column variable. E.g. the result here correspond to the test of whether N tr  Granger-causes A tr . 
b     p-values in parentheses 
**: Significant at 1% level 
*:   Significant at 5% level 

 



 
Table 4a: Information criteria for lag specification  
 

 Panel A: Absolute return measure of volatility  Panel B: Composite measure of volatility 

Lag Log- 
Likelihood LR FPE AIC SIC HQC  Log-

Likelihood LR FPE AIC SIC HQC 

0 -62708.96 NA 1.25E+22 67.910 67.928 67.917  -60912.21 NA 1.79E+21 65.964 65.982 65.971 

1 -60552.26 4297.048 1.26E+21 65.614 65.739 65.660  -58413.66 4978.153 1.24E+20 63.298 63.424 63.344 

2 -60240.59 618.946 9.36E+20 65.315 65.548* 65.341*  -58101.48 619.967 9.23E+19 62.999 63.220* 62.963* 

3 -60125.52 227.792 8.59E+20 65.230 65.570 65.355  -57935.06 329.417 8.01E+19 62.858 63.238 62.983 

4 -60073.35 102.915 8.44E+20 65.212 65.660 65.377  -57843.87 179.914 7.55E+19 62.798 63.246 62.993 

5 -60021.48 101.999 8.30e+20* 65.195* 65.751 65.400  -57798.4 89.421 7.47E+19 62.788 63.344 63.019 

6 -59986.51 68.551 8.31E+20 65.196 65.860 65.441  -57750.39 94.098 7.38E+19 62.775 63.438 63.050 

7 -59956.37 58.874 8.36E+20 65.202 65.974 65.487  -57706.52 85.686 7.31e+19* 62.766* 63.537 63.085 

8 -59926.9 57.378 8.42E+20 65.209 66.088 65.533  -57684.13 43.589 7.42E+19 62.781 63.660 63.105 

9 -59898.76 54.591 8.49E+20 65.218 66.204 65.582  -57646.34 73.328 7.41E+19 62.779 63.765 63.143 

10 -59865.26 64.801* 8.51E+20 65.221 66.315 65.624  -57618.26 54.304* 7.47E+19 62.788 63.882 63.191 

11 -59850.81 27.844 8.72E+20 65.244 66.446 65.687  -57602.05 31.258 7.63E+19 62.809 64.011 63.252 

12 -59827.15 45.454 8.83E+20 65.257 66.567 65.740  -57580.43 41.530 7.76E+19 62.825 64.134 63.307 

 
*: lag order selected by the corresponding criterion 

 



 
Table 4b: Chi-square and Wald statistics from lag exclusion test 
 

 Panel A: Absolute return measure of volatility  Panel B: Composite measure of volatility 

Lag Ntσ  Atσ  Gtσ  Ntv  Atv  Gtv  Joint  *
Ntσ  *

Atσ  *
Gtσ  Ntv  Atv  Gtv  Joint 

1 10.227 24.076 6.282 721.946 201.343 310.729 1364 
 

100.079 59.663 30.818 645.165 182.017 296.213 1386.378 
 (0.115)a (0.001)** (0.392) (0.000)** (0.000)** (0000)** (0.000)**  (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** 

2 19.766 26.667 14.445 33.551 70.300 58.035 228.989 
 

15.532 27.092 25.582 10.994 65.705 47.249 198.215 
 (0.003) (0.000)** (0.025) (0.000)** (0.000)** (0.000)** (0.000)**  (0.017) (0.000)** (0.000)** (0.089) (0.000)** (0.000)** (0.000)** 

3 7.783 17.594 17.116 5.919 31.008 27.365 116.664 
 

23.802 19.068 20.691 10.499 31.602 37.080 140.412 
 (0.254) (0.007)** (0.009)** (0.432) (0.000)** (0.000)** (0.000)**  (0.001)** (0.004)** (0.002)** (0.105) (0.000)** (0.000)** (0.000)** 

4 7.631 10.446 16.520 2.943 3.955 3.091 43.562 
 

9.583 35.430 35.372 9.335 3.462 15.943 104.532 
 (0.266) (0.107) (0.011)* (0.816) (0.683) (0.797) (0.181)  (0.143) (0.000)** (0.000)** (0.156) (0.749) (0.140) (0.216) 

5 11.073 5.228 12.201 7.844 9.325 5.576 56.538 
 

5.493 4.472 13.850 10.000 4.633 4.260 39.819 
 (0.086) (0.515) (0.058) (0.250) (0.156) (0.472) (0.016)*  (0.482) (0.613) (0.031)* (0.125) (0.591) (0.641) (0.303) 

6 12.017 3.892 10.947 2.734 6.538 6.849 46.953 
 

26.642 15.905 3.454 7.573 6.521 5.728 57.264 
 (0.061) (0.691) (0.090) (0.841) (0.365) (0.335) (0.104)  (0.000)** (0.413) (0.750) (0.271) (0.367) (0.454) (0.140) 

7 6.181 5.893 10.992 7.128 7.795 2.205 38.134 
 

14.675 13.157 6.855 17.148 8.601 2.338 57.455 
 (0.403) (0.435) (0.088) (0.309) (0.253) (0.899) (0.372)  (0.022)* (0.041)* (0.335) (0.008)** (0.197) (0.886) (0.013)* 

8 8.049 11.846 7.259 1.781 9.231 3.169 45.991 
 

6.646 10.039 6.637 6.528 5.808 4.892 37.014 
 (0.235) (0.065) (0.297) (0.938) (0.161) (0.787) (0.123)  (0.354) (0.123) (0.355) (0.366) (0.445) (0.557) (0.421) 

9 3.568 1.040 16.281 5.384 15.182 1.840 43.719 
 

7.166 5.167 5.957 8.437 8.547 6.600 43.488 
 (0.734) (0.984) (0.012)* (0.495) (0.018)* (0.933) (0.176)  (0.305) (0.523) (0.428) (0.207) (0.201) (0.359) (0.182) 

10 4.647 14.714 12.603 12.631 5.988 7.868 58.687 
 

13.559 3.295 3.660 22.363 15.513 1.267 61.701 
 (0.589) (0.022)* (0.049)* (0.049)* (0.421) (0.248) (0.010)*  (0.035)* (0.771) (0.723) (0.001)** (0.016)* (0.973) (0.004)** 

11 3.549 3.996 3.946 5.422 2.518 6.184 26.865 
 

6.423 5.394 8.710 2.433 0.807 3.295 28.938 
 (0.737) (0.677) (0.682) (0.490) (0.866) (0.402) (0.865)  (0.377) (0.494) (0.190) (0.875) (0.991) (0.771) (0.792) 

12 5.141 9.122 3.362 13.745 10.381 3.890 45.617 
 

8.718 7.141 4.425 13.979 4.878 4.300 41.677 
 (0.525) (0.166) (0.762) (0.032)* (0.109) (0.691) (0.130)  (0.190) (0.308) (0.619) (0.029)* (0.559) (0.635) (0.237) 

 

a     p-values in parentheses 
**: Significant at 1% level 
*:   Significant at 5% level 

 
 



Table 5: VAR (2) estimation results 

Panel A: Absolute return measure of volatility 

 c D1 Nt-1σ  At-1σ  Gt-1σ  Nt-1v  At-1v  Gt-1v  Nt-2σ  At-2σ  Gt-2σ  Nt-2v  At-2v  Gt-2v  

Ntσ  0.012 0.001 0.076 0.027 -0.001 0.000 0.000 0.000 0.116 0.085 0.011 0.000 0.000 0.000 
 (0.000)a** (0.179) (0.001)** (0.533) (0.978) (0.007)** (0.869) (0.015)* (0.000)** (0.041)* (0.683) (0.000)** (0.659) (0.169) 

Ntv  133452 -86590 8725k 3593k -1403k 0.650 0.084 0.025 -8474k 6416k 2359439 0.228 -0.742 -0.025 
 (0.013)** (0.022)* (0.000)** (0.157) (0.378) (0.000)** (0.755) (0.043)* (0.000)** (0.011)* (0.142) (0.000)** (0.005)** (0.035)* 

Atσ  0.003 0.000 0.036 0.092 0.042 0.000 0.000 0.000 -0.002 0.091 0.005 0.000 0.000 0.000 
 (0.000)** (0.445) (0.006)** (0.000)** (0.006)** (0.945) (0.924) (0.842) (0.848) (0.000)** (0.733) (0.000)** (0.005)** (0.512) 

Atv  27369 57.519 -53548 813350 -86807 0.000 0.390 0.000 -100226 -432119 -28745 -0.004 0.329 0.001 
 (0.000)** (0.986) (0.648) (0.000)** (0.522) (0.861) (0.000)** (0.816) (0.386) (0.044)* (0.834) (0.040)* (0.000)** (0.326) 

Gtσ  0.010 0.002 0.013 0.059 0.088 0.000 0.000 0.000 -0.011 0.051 0.085 0.000 0.000 0.000 
 (0.000)** (0.004)** (0.515) (0.111) (0.000)** (0.823) (0.493) (0.576) (0.593) (0.167) (0.000)** (0.203) (0.012)* (0.009)** 

Gtv  829231 -108791 -1372k -1928k 19923k 0.063 -0.671 0.412 -3898k -983k -1533k -0.117 -0.402 0.250 
 (0.000)** (0.122) (0.593) (0.683) (0.000)** (0.147) (0.178) (0.000)** (0.123) (0.834) (0.609) (0.006)** (0.415) (0.000)** 

 

Panel B: Composite measure of volatility 

 c D1 *
Nt-1σ  *

At-1σ  *
Gt-1σ  Nt-1v  At-1v  Gt-1v  *

Nt-2σ  *
At-2σ  *

Gt-2σ  Nt-2v  At-2v  Gt-2v  
*
Ntσ  0.007 -0.001 0.237 0.101 0.048 0.000 0.000 0.000 0.183 0.029 0.013 0.000 0.000 0.000 
 (0.000)** (0.022)* (0.000)** (0.043)* (0.011)* (0.000)** (0.811) (0.027)* (0.000)** (0.560) (0.658) (0.451) (0.122) (0.827) 

Ntv  212296 -95981 
-

5113682 11323k -644202 0.699 0.051 0.027 -361808 1054511 -961371 0.200 -0.685 -0.028 
 (0.001)* (0.013)* (0.012)* (0.004)** (0.780) (0.000)** (0.857) (0.041)* (0.858) (0.789) (0.680) (0.000)** (0.014)* (0.046)* 
*
Atσ  0.004 0.000 0.024 0.219 0.052 0.000 0.000 0.000 -0.004 0.166 0.004 0.000 0.000 0.000 
 (0.000)** (0.049)* (0.045)* (0.000)** (0.000)** (0.257) (0.469) (0.126) (0.740) (0.000)** (0.796) (0.294) (0.039)* (0.994) 

Atv  34115 257.510 -343091 -674647 489853 0.003 0.415 -0.001 -177470 -840651 138168 -0.003 0.323 0.001 
 (0.000)** (0.936) (0.042)* (0.041)* (0.011)* (0.115) (0.000)** (0.198) (0.294) (0.011)* (0.476) (0.188) (0.000)** (0.412) 
*
Gtσ  0.008 -0.001 0.022 0.044 0.226 0.000 0.000 0.000 0.049 0.116 0.177 0.000 0.000 0.000 
 (0.000)** (0.008)** (0.328) (0.315) (0.000)** (0.190) (0.623) (0.658) (0.029)* (0.008)** (0.000)** (0.219) (0.809) (0.303) 

Gtv  1192139 -118722 -5474k 7904107 -25182k 0.058 -0.535 0.483 11041k 14520k -8395k -0.186 -0.735 0.247 
 (0.000)** (0.0490)* (0.137) (0.272) (0.000)** (0.209) (0.294) (0.000)** (0.003)** (0.043)* (0.047)* (0.000)** (0.148) (0.000)** 

a p-values in parentheses 
**: Significant at 1% level 
*: Significant at 5% level 



Table 6: VAR (2-10) estimation results 
Panel A: Absolute return measure of volatility  

 c Nt-1σ  At-1σ  Gt-1σ  Nt-1v  At-1v  Gt-1v  Nt-2σ  At-2σ  Gt-2σ  Nt-2v  At-2v  Gt-2v  Nt-10σ  At-10σ  Gt-10σ  Nt-10v  At-10v  Gt-10v  

Ntσ  0.011 0.074 0.018 0.004 0.000 0.000 0.000 0.102 0.090 0.016 0.000 0.000 0.000 0.065 -0.032 -0.021 0.000 0.000 0.000 
 (0.000)a** (0.002)** (0.675) (0.884) (0.011)* (0.532) (0.023)* (0.000)** (0.040)* (0.570) (0.000)** (0.939) (0.291) (0.006)** (0.472) (0.444) (0.691) (0.023)* (0.384) 

Ntv  103k 9123k 2441k -879k 0.597 0.371 0.032 -7627k 4808k 2135k 0.180 -0.507 -0.013 39791 -3019k -950k 0.143 -0.380 -0.022 
 (0.096) (0.000)** (0.329) (0.576) (0.000)** (0.171) (0.008)** (0.000) ** (0.045)* (0.178) (0.000)** (0.047)* (0.286) (0.976) (0.226) (0.544) (0.000)** (0.110) (0.030)* 

Atσ  0.003 0.034 0.085 0.037 0.000 0.000 0.000 -0.004 0.087 0.003 0.000 0.000 0.000 -0.004 0.072 0.029 0.000 0.000 0.000 
 (0.000)** (0.008)** (0.000)** (0.014)* (0.927) (0.770) (0.662) (0.771) (0.000)** (0.843) (0.000)** (0.013)* (0.206) (0.728) (0.003)** (0.045)* (0.741) (0.257) (0.084) 

Atv  24605 -91126 827k -119k 0.002 0.362 0.000 -1739k -334k -5632 -0.004 0.302 0.001 189k 33312 153k -0.002 0.089 -0.002 
 (0.000)** (0.437) (0.000)** (0.382) (0.415) (0.000)** (0.892) (0.136) (0.123) (0.967) (0.046)* (0.000)** (0.225) (0.102) (0.877) (0.258) (0.152) (0.000)** (0.038)* 

Gtσ  0.008 0.013 0.064 0.076 0.000 0.000 0.000 -0.010 0.053 0.075 0.000 0.000 0.000 0.001 0.017 0.103 0.000 0.000 0.000 
 (0.000)** (0.535) (0.035)* (0.001)** (0.760) (0.383) (0.461) (0.618) (0.153) (0.001)** (0.163) (0.015)* (0.022)* (0.944) (0.638) (0.000)** (0.886) (0.589) (0.110) 

Gtv  674k -1426k -578k 1950k 0.077 -0.871 0.401 -3649k 228447 -1807k -0.110 -0.495 0.236 -1346k -5544k 3029k -0.008 0.679 0.075 
 (0.000)** (0.579) (0.903) (0.000)** (0.038)* (0.039)* (0.000)** (0.153) (0.962) (0.547) (0.011)* (0.327) (0.000)** (0.596) (0.241) (0.307) (0.796) (0.131) (0.000)** 

 

Panel B: Composite measure of volatility  

 c *
Nt-1σ  *

At-1σ  *
Gt-1σ  Nt-1v  At-1v  Gt-1v  *

Nt-2σ  *
At-2σ  *

Gt-2σ  Nt-2v  At-2v  Gt-2v  *
Nt-10σ  *

At-10σ  *
Gt-10σ  Nt-10v  At-10v  Gt-10v  

*
Ntσ  0.005 0.224 0.094 0.034 0.000 0.000 0.000 0.165 0.024 -0.007 0.000 0.000 0.000 0.101 -0.022 0.071 0.000 0.000 0.000 
 (0.000)** (0.000)** (0.041)* (0.250) (0.000)** (0.569) (0.047)* (0.000)** (0.635) (0.805) (0.987) (0.205) (0.743) (0.000)** (0.647) (0.010)* (0.170) (0.835) (0.213) 

Ntv  147k -5562k 9857k -383k 0.648 0.369 0.033 -1156k -643k -2179k 0.148 -0.395 -0.013 1877k 3425k 1410k 0.139 -0.588 -0.024 
 (0.039)* (0.005)** (0.012)* (0.867) (0.000)** (0.192) (0.016)* (0.564) (0.869) (0.345) (0.000)** (0.158) (0.357) (0.325) (0.367) (0.514) (0.000)** (0.016)* (0.030)* 
*
Atσ  0.003 0.022 0.206 0.047 0.000 0.000 0.000 -0.007 0.154 -0.003 0.000 0.000 0.000 0.010 0.093 0.019 0.000 0.000 0.000 
 (0.000)** (0.046)* (0.000)** (0.001)** (0.197) (0.425) (0.155) (0.590) (0.000)** (0.848) (0.571) (0.045)* (0.835) (0.413) (0.000)** (0.024)* (0.948) (0.655) (0.671) 

Atv  30988 -368k -614k 401033 0.004 0.386 -0.001 -267k -871k 53222 -0.002 0.297 0.001 281k -319k 412629 -0.002 0.097 -0.003 
 (0.000)** (0.032)* (0.046)* (0.038)* (0.046)* (0.000)** (0.316) (0.115) (0.008)** (0.785) (0.355) (0.000)** (0.204) (0.042)* (0.321) (0.164) (0.282) (0.000)** (0.005)** 
*
Gtσ  0.007 0.012 0.038 0.206 0.000 0.000 0.000 0.043 0.109 0.166 0.000 0.000 0.000 0.056 0.006 0.092 0.000 0.000 0.000 
 (0.000)** (0.594) (0.395) (0.000)** (0.409) (0.677) (0.733) (0.047)* (0.013)* (0.000)** (0.497) (0.770) (0.499) (0.009)** (0.885) (0.000)** (0.012)* (0.874) (0.261) 

Gtv  1054k -5928k 9000k -2496k 0.077 -0.697 0.471 11066k 16061k -7486k -0.175 -0.846 0.231 689k -4137k -2420k -0.024 0.591 0.086 
 (0.000)** (0.108) (0.215) (0.000)** (0.103) (0.183) (0.000)** (0.003)** (0.026)* (0.038)* (0.000)** (0.013)* (0.000)** (0.846) (0.556) (0.545) (0.486) (0.189) (0.000)** 

a       p-values in parentheses 
**: Significant at 1% level 
*:   Significant at 5% level 



Table 7: VAR (2-5) and VAR (2-7) estimation results 
Panel A: Absolute return measure of volatility for VAR (2-5) 

 c Nt-1σ  At-1σ  Gt-1σ  Nt-1v  At-1v  Gt-1v  Nt-2σ  At-2σ  Gt-2σ  Nt-2v  At-2v  Gt-2v  Nt-5σ  At-5σ  Gt-5σ  Nt-5v  At-5v  Gt-5v  

Ntσ  0.010 0.064 0.022 0.002 0.000 0.000 0.000 0.106 0.075 0.009 0.000 0.000 0.000 0.089 -0.024 0.027 0.000 0.000 0.000 
 (0.000)a** (0.007)** (0.617) (0.949) (0.006)** (0.491) (0.035)* (0.000)** (0.088) (0.748) (0.001)** (0.799) (0.596) (0.000)** (0.582) (0.336) (0.270) (0.012)* (0.095) 

Ntv  110K 8587k 1971k -1221k 0.607 0.321 0.035 -7452k 5740k 2308k 0.159 -0.519 -0.010 -1777k 1330k -434k 0.142 -0.350 -0.028 
 (0.063) (0.000)** (0.434) (0.439) (0.000)** (0.238) (0.003)** (0.000)** (0.022)* (0.148) (0.000)** (0.042)* (0.445) (0.186) (0.595) (0.785) (0.000)** (0.173) (0.011)** 

Atσ  0.003 0.032 0.083 0.042 0.000 0.000 0.000 -0.001 0.090 0.006 0.000 0.000 0.000 -0.002 0.029 -0.001 0.000 0.000 0.000 
 (0.000)** (0.014)* (0.001)** (0.005)** (0.667) (0.734) (0.678) (0.950) (0.000)** (0.706) (0.001)** (0.044)* (0.302) (0.904) (0.033)* (0.926) (0.046)* (0.043)* (0.619) 

Atv  246k -891k 893k -767k 0.002 0.351 0.000 -165k -327k -465k -0.002 0.280 0.002 142k -456k 219k -0.003 0.136 -0.002 
 (0.000)** (0.446) (0.000)** (0.570) (0.329) (0.000)** (0.814) (0.152) (0.127) (0.733) (0.308) (0.000)** (0.048) * (0.218) (0.227) (0.106) (0.031)* (0.000)** (0.045)* 

Gtσ  0.009 0.015 0.056 0.076 0.000 0.000 0.000 -0.001 0.044 0.076 0.000 0.000 0.000 -0.018 -0.007 0.093 0.000 0.000 0.000 
 (0.000)** (0.464) (0.133) (0.001)** (0.858) (0.555) (0.512) (0.945) (0.233) (0.001)** (0.039)* (0.014)* (0.030)* (0.377) (0.848) (0.000)** (0.036)* (0.755) (0.434) 

Gtv  833k -965k -408k 200k 0.079 -0.832 0.400 -366k 768k -720k -0.095 -0.751 0.225 -367k -8042k -207k -0.032 0.696 0.067 
 (0.000)** (0.708) (0.932) (0.000)** (0.033)* (0.104) (0.000)** (0.150) (0.871) (0.811) (0.035)* (0.151) (0.000)** (0.147) (0.048)* (0.489) (0.352) (0.150) (0.001)* 

 

Panel B: Composite measure of volatility for VAR (2-7) estimation 

 c *
Nt-1σ  *

At-1σ  *
Gt-1σ  Nt-1v  At-1v  Gt-1v  *

Nt-2σ  *
At-2σ  *

Gt-2σ  Nt-2v  At-2v  Gt-2v  *
Nt-7σ  *

At-7σ  *
Gt-7σ  Nt-7v  At-7v  Gt-7v  

*
Ntσ  0.005 0.204 0.022 0.040 0.000 0.000 0.000 0.166 0.097 0.057 0.000 0.000 0.000 0.139 -0.029 0.000 0.000 0.000 0.000 
 (0.000)** (0.000)** (0.498) (0.046)* (0.000)** (0.730) (0.032)* (0.000)** (0.003)** (0.005)** (0.775) (0.029)* (0.684) (0.000)** (0.369) (0.987) (0.219) (0.040)* (0.945) 

Ntv  160k -6810k 2521k -1045k 0.667 0.321 0.036 -1563k 5006 1563k 0.144 -0.669 -0.018 504k 159k 240k 0.113 -0.063 -0.030 
 (0.010)* (0.001)** (0.325) (0.516) (0.000)** (0.246) (0.003)** (0.434) (0.049)* (0.336) (0.000)** (0.015)* (0.137) (0.009)** (0.950) (0.882) (0.000)** (0.800) (0.004)** 
*
Atσ  0.004 0.044 0.084 0.043 0.000 0.000 0.000 -0.004 0.086 0.002 0.000 0.000 0.000 -0.017 0.018 0.009 0.000 0.000 0.000 
 (0.000)** (0.022)* (0.001)** (0.005)** (0.465) (0.806) (0.515) (0.851) (0.000)** (0.914) (0.003)** (0.008)** (0.180) (0.347) (0.036) * (0.551) (0.046)* (0.834) (0.104) 

Atv  260k -4001k 858k -716k 0.002 0.350 0.000 -257k -322k 2217 -0.002 0.285 0.001 249k -366k 152k -0.001 0.142 -0.001 
 (0.000)** (0.018)* (0.000)** (0.597) (0.320) (0.000)** (0.940) (0.125) (0.133) (0.987) (0.308) (0.000)** (0.230) (0.122) (0.449) (0.263) (0.425) (0.000)** (0.007)** 
*
Gtσ  0.007 0.032 0.055 0.069 0.000 0.000 0.000 0.084 0.050 0.068 0.000 0.000 0.000 0.044 -0.011 0.078 0.000 0.000 0.000 
 (0.000)** (0.282) (0.138) (0.003)** (0.990) (0.542) (0.787) (0.004)** (0.177) (0.004)** (0.027)* (0.002)** (0.029)* (0.114) (0.767) (0.001)** (0.414) (0.119) (0.246) 

Gtv  6977k -9599k -1363k 19321k 0.118 -0.790 0.407 8439k -451k -1441k -0.154 -0.653 0.235 -3062k -3446k 2263k -0.020 0.503 0.051 
 (0.000)** (0.010)* (0.774) (0.000)** (0.012)* (0.125) (0.000)** (0.023)** (0.924) (0.633) (0.001)** (0.201) (0.000)** (0.932) (0.464) (0.450) (0.566) (0.274) (0.009)** 

a       p-values in parentheses 
**: Significant at 1% level 
*:   Significant at 5% level 



  
Table 8: VAR significance score-board 

 Nt-1σ  At-1σ  Gt-1σ  Nt-1v  At-1v  Gt-1v  Nt-2σ  At-2σ  Gt-2σ  Nt-2v  At-2v  Gt-2v  

Ntσ  6^ 0 2 6 0 6 6 4 1 3 0 0 

Ntv  6 0 0 6 0 6 3 4 0 6 6 2 

Atσ  6+ 6 6 0 0 0 0 6 0 4 6 0 

Atv  2 6 2 1 6 0 0 3 0 2 6 1 

Gtσ  0 1 6 0 0 0 1 2 6 2 5 4 

Gtv  1 0 6 1 1 6 1 2 2 6 1 6 

^: These scores represent the number of times that a given lagged exogenous variable is significant in a given VAR estimation. We consider three different VAR 
specifications for each of the two volatility measures. Accordingly, the maximum score that a variable can achieve is 6. We consider these as the super-robust 
results.  
+: Blue (Red) denotes cells corresponding to own-market (cross-market) effects. Cross-market cells that achieve scores of less than 3 are ignored.  
 

 

 

 

 

 

 



Table 9: Probit regressions results of price reversals against lagged volatility and volume variables 

Panel A: Absolute return measure of volatility 

 Nt-1σ  At-1σ  Gt-1σ  Nt-1v  At-1v  Gt-1v  Nt-2σ  At-2σ  Gt-2σ  Nt-2v  At-2v  Gt-2v  
night
NtRev  -3.4897 5.5463 1.0541 0.0000 0.0000 0.0000 12.0217 -6.6471 -3.4659 0.0000 0.0000 0.0000 

 (0.164)a (0.249) (0.720) (0.788) (0.356) (0.049)* (0.000)** (0.163) (0.249) (0.593) (0.561) (0.735) 
day
NtRev  2.9855 -2.5705 1.2872 0.0000 0.0000 0.0000 -0.8371 -0.5509 -4.1024 0.0000 0.0000 0.0000 

 (0.228) (0.590) (0.658) (0.020)* (0.490) (0.973) (0.738) (0.908) (0.172) (0.027)* (0.899) (0.501) 
night
AtRev  4.7587 -0.1655 -5.5798 0.0000 0.0000 0.0000 -0.4426 -4.5562 -0.6065 0.0000 0.0000 0.0000 

 (0.050)* (0.972) (0.048)* (0.129) (0.224) (0.349) (0.859) (0.338) (0.840) (0.479) (0.246) (0.317) 
day
AtRev  -3.2356 4.0193 -3.8353 0.0000 0.0000 0.0000 2.2829 6.7086 9.7368 0.0000 0.0000 0.0000 

 (0.194) (0.401) (0.191) (0.413) (0.336) (0.439) (0.362) (0.161) (0.001)** (0.047)* (0.214) (0.225) 
night
GtRev  2.9142 -7.0520 3.1433 0.0000 0.0000 0.0000 1.3767 -0.2144 -2.2000 0.0000 0.0000 0.0000 

 (0.240) (0.138) (0.282) (0.446) (0.935) (0.771) (0.580) (0.964) (0.461) (0.886) (0.924) (0.935) 
day
GtRev  -1.1071 -14.1673 8.2751 0.0000 0.0000 0.0000 1.0516 4.3379 3.1269 0.0000 0.0000 0.0000 

 (0.658) (0.003)** (0.005)** (0.603) (0.322) (0.507) (0.676) (0.365) (0.298) (0.660) (0.484) (0.835) 
 

Panel B: Composite measure of volatility 

 *
Nt-1σ  *

At-1σ  *
Gt-1σ  Nt-1v  At-1v  Gt-1v  *

Nt-2σ  *
At-2σ  *

Gt-2σ  Nt-2v  At-2v  Gt-2v  
night
NtRev  8.9438 1.6943 -1.8482 0.0000 0.0000 0.0000 -1.8674 -3.7828 0.3246 0.0000 0.0000 0.0000 

 (0.016)* (0.814) (0.660) (0.255) (0.468) (0.015)* (0.615) (0.600) (0.939) (0.836) (0.490) (0.774) 
day
NtRev  -5.0564 -4.2777 -6.4189 0.0000 0.0000 0.0000 -0.0099 10.6600 1.5818 0.0000 0.0000 0.0000 

 (0.176) (0.553) (0.133) (0.004) ** (0.847) (0.466) (0.998) (0.142) (0.710) (0.028)* (0.723) (0.789) 
night
AtRev  -4.4730 2.6688 -5.3400 0.0000 0.0000 0.0000 7.9772 -4.4474 0.4711 0.0000 0.0000 0.0000 

 (0.224) (0.712) (0.049)* (0.655) (0.342) (0.521) (0.031)* (0.535) (0.911) (0.436) (0.252) (0.659) 
day
AtRev  -6.5368 -2.0810 2.4017 0.0000 0.0000 0.0000 7.3810 3.1792 -1.2384 0.0000 0.0000 0.0000 

 (0.049)* (0.772) (0.565) (0.047)* (0.185) (0.377) (0.050)* (0.658) (0.770) (0.033)* (0.392) (0.574) 
night
GtRev  4.2619 0.7867 -6.4557 0.0000 0.0000 0.0000 0.5954 0.7525 -1.9817 0.0000 0.0000 0.0000 

 (0.253) (0.913) (0.127) (0.330) (0.955) (0.279) (0.873) (0.917) (0.642) (0.834) (0.783) (0.852) 
day
GtRev  -4.0004 3.1225 4.7586 0.0000 0.0000 0.0000 3.8965 0.5145 -4.5188 0.0000 0.0000 0.0000 

 (0.280) (0.664) (0.268) (0.474) (0.731) (0.628) (0.301) (0.943) (0.289) (0.420) (0.255) (0.671) 
a p-values in parentheses 
**: Significant at 1% level 
*: Significant at 5% level 



Table 10: GMM estimation of variance ratios against lagged volume variables 

Panel A: Ratio between weekly variance and daily variance 

 c Nt-1v  At-1v  Gt-1v  Nt-2v  At-2v  Gt-2v   c Nt-1v  At-1v  Gt-1v  Nt-5v  At-5v  Gt-5v  
5
NtVR  0.874212 2.04E-07 -3.95E-07 -1.3E-08 -4.68E-08 -7.75E-07 2.51E-08  1.00330 2.66E-07 -8.58E-07 -3.32E-09 -1.43E-07 -4.06E-07 -1.56E-08 

 (0.000)a** (0.007)** (0.461) (0.035)* (0.490) (0.049)* (0.632)  (0.000)** (0.006)** (0.125) (0.917) (0.047)* (0.032)* (0.636) 

5
AtVR  0.659386 -5.58E-08 2.8E-06 -3.05E-08 1.17E-07 -6.61E-07 8.61E-09  0.77592 5.84E-08 2.93E-06 -3.08E-08 -2.63E-08 -1.32E-06 -3.95E-09 

 (0.000)** (0.531) (0.015)* (0.225) (0.346) (0.455) (0.718)  (0.000)** (0.364) (0.005)* * (0.193) (0.045)* (0.027)* (0.903) 

5
GtVR  1.071641 1.31E-07 1.41E-06 2.1E-07 -6.6E-08 -1.35E-06 -1.61E-07  1.29992 7.68E-08 1.49E-06 1.91E-07 -2.27E-08 -1.9E-06 -2.16E-07 

 (0.000)** (0.425) (0.434) (0.023)* (0.689) (0.322) (0.046)*  (0.000)** (0.440) (0.330) (0.008)** (0.835) (0.519) (0.000)** 

                

Panel B: Ratio between fortnight variance and daily variance 

 c Nt-1v  At-1v  Gt-1v  Nt-2v  At-2v  Gt-2v   c Nt-1v  At-1v  Gt-1v  Nt-10v  At-10v  Gt-10v  
10
NtVR  0.798688 1.51E-07 -1.32E-07 -2.77E-08 -6.19E-08 -1.23E-06 1.78E-08  0.83862 8.67E-08 -5.53E-07 1.26E-09 1.31E-08 -6.55E-07 -4E-08 

 (0.000)** (0.011)* (0.765) (0.030)* (0.249) (0.001)** (0.589)  (0.000)** (0.227) (0.192) (0.969) (0.873) (0.023) * (0.658) 

10
AtVR  0.484982 -3.27E-08 9.74E-07 -1.07E-08 6.58E-08 4.92E-07 1.14E-08  0.39431 -2.75E-08 1.58E-06 -1.12E-08 8.17E-08 -3.76E-07 4.73E-08 

 (0.000)** (0.427) (0.147) (0.678) (0.245) (0.349) (0.678)  (0.000)** (0.237) (0.021)* (0.513) (0.697) (0.443) (0.043)* 

10
GtVR  0.757591 1.91E-07 -5.58E-08 1.04E-07 -1.04E-07 -2.58E-07 -6.91E-08  0.84987 4.93E-08 -1.03E-07 9.73E-08 5.96E-08 -1.08E-07 -1.18E-07 

 (0.000)** (0.235) (0.956) (0.050)* (0.508) (0.786) (0.205)  (0.000)** (0.421) (0.900) (0.014)* (0.370) (0.873) (0.002)** 

a        p-values in parentheses 
**: Significant at 1% level 
*:   Significant at 5% level 

 

 

 

 

 



Table 11: Tri-variate Full BEKK-GARCH (1,1) estimation results 

Panel A: BEKK-GARCH coefficient estimates 
 0Nφ  Nθ  11c  12c  13c  11a  12a  13a  11g  12g  13g  LogL 

 0Aφ  Aθ   22c  23c  21a  22a  23a  21g  22g  23g  15906.13 

 0Gφ  Gθ    33c  31a  32a  33a  31g  32g  33g    

 0.0007 0.00253 0.002945 0.000143 -0.00046 0.23298 -0.01327 0.054124 0.957261 0.006383 -0.02561   
 (0.084)a (0.022)* (0.000)** (0.619) (0.555) (0.000)** (0.152) (0.041)* (0.000)** (0.0486)* (0.095)   

 0.00014 0.00066 ~ 0.000616 -0.00242 0.088529 0.10705 -0.013248 -0.015763 0.99018 0.038446   
 (0.529) (0.268) ~ (0.0634) (0.139) (0.012)* (0.000)** (0.241) (0.106) (0.000)** (0.002)**   

 0.00046 0.0022 ~ ~ 0.001311 -0.02445 0.09573 0.25154 0.010459 -0.00165 0.94823   
 (0.182) (0.022)* ~ ~ (0.656) (0.163) (0.004)** (0.000)** (0.131) (0.6839) (0.000)** 

  
 

Panel B: Composite coefficient values and significance for each ARCH and GARCH term 
 c 2

Nt-1ε  2
At-1ε  2

Gt-1ε  Nt-1 At-1ε ε  Nt-1 Gt-1ε ε  At-1 Gt-1ε ε  NNt-1h  AAt-1h  GGt-1h  NAt-1h  NGt-1h  AGt-1h  

NNth  0.00001b 0.05428 0.00784 0.00060 0.04125 -0.01139 -0.00433 0.91635 0.00025 0.00011 -0.03018 0.02002 -0.00033 
 *c *  * *   *      

AAth  0.00000 0.00018 0.01146 0.00018 -0.00284 -0.00035 0.00284 0.00004 0.98045 0.00148 0.01264 -0.00002 -0.04857 
   * * *  * * * * *  * 

GGth  0.00001 0.00293 0.00916 0.06327 -0.01036 0.02723 -0.04816 0.00066 0.00000 0.89914 -0.00197 -0.00328 0.07291 
  *  *  * *   *   * 

NAth  0.00000 -0.00309 0.00948 -0.00032 0.02377 0.00341 -0.00144 0.00611 -0.01561 -0.00002 0.94776 -0.00152 0.01038 
     *   *   *   

NGth  0.00000 -0.00570 -0.00848 -0.00615 -0.01751 0.05728 0.02461 0.01001 -0.00061 0.00992 0.03721 0.90744 -0.01454 
    * * * *    * *  

AGth  0.00000 -0.00072 -0.01025 0.00333 0.00706 -0.00262 0.02566 -0.00016 0.03807 -0.00157 -0.02511 0.00609 0.93885 
    * *  *  *  * * * 

a        p-values in parentheses; **: Significant at 1% level; *:   Significant at 5% level 
a: The coefficients in each of the six equations are functions of the coefficient estimates reported in Panel A. As such, the composite coefficient values are calculated from values of the 
corresponding estimates reported in Panel A.  
b: A composite coefficient is deemed significant if and only if all its individual coefficients are significantly different from zero. E.g. The coefficient for the variable 

Nt-1 Gt-1ε ε  in 
G G th  is 2a13a33. 

Since a13 and a33 are both significant, Nt-1 Gt-1ε ε  is also significant. These composite coefficients are denoted with *. 



Table 12: VAR (2) estimation results 
Panel A: Natural rubber and silver 

 c Nt-1σ  Nt-2σ  Nt-1v  Nt-2v  St-1σ  St-2σ  St-1v  St-2v  

Ntσ  0.0105 0.0886 0.1223 0.0000 0.0000 -0.0035 0.0403 0.0000 0.0000 
 (0.000) a **  (0.000)** (0.000)** (0.007)** (0.000)** (0.908) (0.185) (0.350) (0.451) 

Ntv  94341.6500 8966968 -8649994 0.6630 0.2238 -1594790 638625 0.1393 -0.0534 
 (0.012)* (0.000)** (0.000)** (0.000)** (0.000)** (0.358) (0.000)** (0.225) (0.636) 

Stσ  0.0066 -0.0468 -0.0045 0.0000 0.0000 0.1474 0.1015 0.0000 0.0000 
 (0.000)** (0.102) (0.802) (0.110) (0.408) (0.000)** (0.000)** (0.297) (0.000)** 

Stv  21015.9500 -292767 -269647 -0.0016 0.0050 2223103 -549636 0.5156 0.2135 
 (0.005)** (0.281) (0.315) (0.726) (0.269) (0.000)** (0.114) (0.000)** (0.000)** 

 
Panel B: Aluminum and silver 

 c At-1σ  At-2σ  At-1v  At-2v  St-1σ  St-2σ  St-1v  St-2v  

Atσ  0.0047 0.1165 0.1139 0.0000 0.0000 0.0425 0.0657 0.0000 0.0000 
 (0.000)** (0.000)** (0.000)** (0.564) (0.064) (0.012)* (0.000)** (0.381) (0.128) 

Atv  25533.9400 705601 -528436 0.4000 0.3341 -130067 -220744 -0.0086 0.0005 
 (0.000)** (0.001)** (0.014)* (0.000)** (0.000)** (0.390) (0.149) (0.387) (0.963) 

Stσ  0.0067 0.0635 0.1097 0.0000 0.0000 0.1458 0.0942 0.0000 0.0000 
 (0.000)** (0.061) (0.001)** (0.178) (0.059) (0.000)** (0.000)** (0.427) (0.000)** 

Stv  13499.6300 937983 595920 0.0663 -0.1393 2056432 -668046 0.5120 0.2238 
 (0.065) (0.060) (0.230) (0.209) (0.008)** (0.000)** (0.050)* (0.000)** (0.000)** 

 
Panel C: Gasoline and silver 

 c Gt-1σ  Gt-2σ  Gt-1v  Gt-2v  St-1σ  St-2σ  St-1v  St-2v  

Gtσ  0.0088 0.0912 0.0912 0.0000 0.0000 0.0626 0.0140 0.0000 0.0000 
 (0.000)** (0.000)** (0.000)** (0.810) (0.008)** (0.114) (0.586) (0.131) (0.673) 

Gtv  513637 19933962 -2049215 0.4182 0.2526 74642 576195 0.1134 0.0985 
 (0.000)** (0.000)** (0.493) (0.000)** (0.000)** (0.982) (0.860) (0.600) (0.643) 

Stσ  0.0062 -0.0156 0.0154 0.0000 0.0000 0.1660 0.1191 0.0000 0.0000 
 (0.000)** (0.466) (0.474) (0.494) (0.400) (0.000)** (0.000)** (0.338) (0.000)** 

Stv  6955.4740 630877 -595967 0.0031 0.0010 2211607 -493817 0.5132 0.2178 
 (0.398) (0.440) (0.059) (0.201) (0.678) (0.000)** (0.152) (0.000)** (0.000)** 

 

a        p-values in parentheses; **: Significant at 1% level; *:   Significant at 5% level 



Table 13: Bivariate Full BEKK-GARCH (1,1) estimation results 
Panel A: BEKK-GARCH coefficient estimates Panel B: Composite coefficients and significance of ARCH and GARCH term 

 0Nφ  11c  12c  11a  12a  11g  12g           

 0Sφ  ~ 22c  21a  22a  21g  22g   c 2
Nt-1ε  2

St-1ε  Nt-1 St-1ε ε  NNt-1h  SSt-1h  NSt-1h  

Panel A: Natural rubber and silver (Log-likelihood = 10292.1) 

 0.0005 0.0036 0.0000 0.2686 0.0228 0.9409 -0.0067 
 

NNth  0.0000b 0.0722 0.0004 0.0112 0.8853 0.0001 0.0141 
 (0.188)a (0.000)**  (0.000)** (0.216) (0.000)** (0.120)   * c *   *   

 0.0002  -0.0001 0.0208 0.1755 0.0075 0.9854 
 

SSth  0.0000 0.0005 0.0308 0.0080 0.0000 0.9710 -0.0133 
 (0.399)  (0.719) (0.466) (0.000)** (0.284) (0.000)**     *   *  

        
 

NSth  0.0000 0.0061 0.0036 0.0476 -0.0063 0.0074 0.9271 
             *   * 

Panel B: Aluminum and silver (Log-likelihood = 11501.4) 

 0.0002 0.0009 0.0000 0.1586 -0.0527 0.9820 0.0273 
 

AAth  0.0000 0.0251 0.0003 0.0056 0.9642 0.0000 -0.0013 
 (0.459) (0.000)**  (0.000)** (0.031)* (0.000)** (0.000)**   * *   *   

 0.0003  -0.0015 0.0176 0.2713 -0.0007 0.9529 
 

SSth  0.0000 0.0028 0.0736 -0.0286 0.0007 0.9080 0.0520 
 (0.302)  (0.000)** (0.179) (0.000)** (0.885) (0.000)**   * * * * * * * 

        
 

ASth  0.0000 -0.0084 0.0048 0.0421 0.0268 -0.0006 0.9357 
           *  * *  * 

Panel C: Gasoline and silver (Log-likelihood = 10583.6) 

 0.0005 0.0036 0.0000 0.2686 0.0228 0.9409 -0.0067 
 

GGth  0.0000 0.0722 0.0004 0.0112 0.8853 0.0001 0.0141 
 (0.188) (0.000)**  (0.000)** (0.216) (0.000)** (0.120)   * *   *   

 0.0002  -0.0001 0.0208 0.1755 0.0075 0.9854 
 

SSth  0.0000 0.0005 0.0308 0.0080 0.0000 0.9710 -0.0133 
 (0.399)  (0.719) (0.466) (0.000)** (0.284) (0.000)**     *   *  

        
 

GSth  0.0000 0.0061 0.0036 0.0476 -0.0063 0.0074 0.9271 
             *   * 

 

a        p-values in parentheses; **: Significant at 1% level; *:   Significant at 5% level 
b: The coefficients in each of the three equations in Panel B are functions of the coefficient estimates reported in Panel A. As such, the composite coefficient values are calculated from values of the 
corresponding estimates reported in Panel A.  
c: A composite coefficient is deemed significant if and only if all its individual coefficients are significantly different from zero. E.g. The coefficient for the variable ASt-1h  in the 

S S th  equation is 

1 2 2 22 g g . While
2 2g  is significant, 

1 2g  is not significant, such that ASt-1h  is insignificant in the 
S S th  equation. The composite coefficients that are significant are denoted with a *. 



Table 14: Results from principal components analysis based on sample correlation matrix 
Round 1: NR, AL and GA 

 Component 1 Component 2 Component 3  Variable Eigen-vector 1 Eigen-vector 2 Eigen-vector 3 
Eigen-value 2.9612 0.0388 0.00029  Ntr  -0.5735 -0.8189 -0.0194 
Variance 
Proportion 0.9871 0.0129 0.00001  Atr  -0.5791 0.4221 -0.6975 

Cumulative 
Proportion 0.9871 0.9999 1  Gtr  -0.5794 0.3888 0.7163 

Round 2: NR, AL, GA and SL 
 Component 1 Component 2 Component 3 Component 4  Variable Eigen-vector 1 Eigen-vector 2 Eigen-vector 3 Eigen-vector 4 

Eigen-value 2.9662 0.997 0.0364 0.0002  Ntr  -0.5722 0.0701 -0.817 0.0199 

Variance 
Proportion 0.7415 0.2494 0.0091 0.0000  Atr  -0.5787 0.0083 0.4229 0.6972 

Cumulative 
Proportion 0.7415 0.9909 0.9999 1  Gtr  -0.5790 0.0094 0.3888 -0.7166 

      Str  0.0505 0.9975 0.0503 -0.0004 
 

Table 15: System estimation of common exposure adjusted returns  
Panel A: Adjustment for commodity market factor 

 Mitυ  1MNtυ −  2MNtυ −  1MAtυ −  2MAtυ −  1MGtυ −  2MGtυ −  

Ntr  1.0003 0.0252 -0.0207 -0.0149 0.0009 -0.0527 0.0177 
 (0.000)** (0.000)** (0.000)** (0.000)** (0.721) (0.000)** (0.000)** 

Atr  1.0013 0.0026 -0.0007 -0.0086 0.0403 0.0300 -0.0193 
 (0.000)** (0.005)** (0.471) (0.000)** (0.000)** (0.000)** (0.000)** 

Gtr  1.0017 0.0191 0.0139 0.0567 0.0351 0.0021 0.0309 
 (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.503) (0.000)** 

 
Panel B: Adjustment for industry exposure 

 Iitυ  1INtυ −  2INtυ −  1IAtυ −  2IAtυ −  1IGtυ −  2IGtυ −  

Ntr  1.0000 0.0126 -0.0174 -0.0007 0.0023 0.0002 -0.0002 
 (0.000)** (0.000)** (0.000)** (0.766) (0.301) (0.910) (0.914) 

Atr  0.9999 0.0021 -0.0005 0.0039 0.0332 -0.0021 -0.0019 
 (0.000)** (0.211) (0.731) (0.152)** (0.000)** (0.283) (0.316) 

Gtr  0.9999 0.0013 0.0001 0.0083 -0.0006 0.0179 0.0385 
 (0.000)** (0.370) (0.970) (0.001)** (0.809) (0.000)** (0.000)** 

a        p-values in parentheses; **: Significant at 1% level; *: Significant at 5% level 



Figure 1: Categorization of the existing literature on cross-market studies 
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Figure 2: Top 20 motor vehicle producing countries in 2006 (million units) 
 
Country 1 2 3 4 5 6 7 8 9 10 11 12 
Japan  11.48m 
United States  11.26m 
PR China   7.19m 
Germany   5.82m 
S.Korea   3.84m 
France   3.17m 
Spain   2.78m 
Brazil    2.61m 
Canada    2.57m 
Mexico    2.05m 
India    1.94m 
UK    1.65m 
Russia    1.51m 
Thailand   1.306m 
Italy   1.21m 
Turkey   0.99m 
Belgium    0.88m 
Czech. Rep   0.86m 
Iran   0.82m 
Poland   0.72m 
Reference: World motor vehicle production by country 2005-2006 OICA 
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