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Abstract

Accurate forecasting volatility is a matter of considerable interest in financial
volatility research, particularly in studies of portfolio allocation, option pricing, and
risk management. This article investigates/compares the ability to conduct one-day-
ahead volatility forecasts in Korean and Australian index futures markets utilizing three
volatility models, including GARCH, IGARCH, and FIGARCH. The FIGARCH
model is more adequately equipped to capture the long memory property than are the
GARCH and IGARCH models. Additionally, the FIGARCH model provides superior
performance in one-day-ahead volatility forecasts. The results provided in this paper
show that the FIGARCH model should prove useful in forecasting the long memory

property in index futures markets.
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1. Introduction

Over the past two decades, the forecasting ability of conditional volatility models is a
matter of considerable interest to financial researchers and practitioners, as volatility can be
employed in the measurement of risk. Many studies addressing forecasting volatility stylized
factors have focused on underlying stock markets via the use of popular generalized
autoregressive conditional heteroskedasticity (GARCH) models (see Poon and Granger, 2003,
for an excellent survey).

By way of contrast, the topic of forecasting volatility is a relatively new genre in index
futures markets (Hourvouliades, 2007; Kung and Yu, 2008; Martin, 2002; Noh and Kim,
2006; Vipul and Jacob, 2007). Index futures contracts have undoubtedly been one of the most
successful instruments in the recent financial market environment. The most crucial role of
index futures contracts involves their functions as a mechanism by which risks and volatility
in the underlying stock market can be managed. Investors and financial market participants
can hedge against adverse short-term price movements via arbitrage trading, through the
linked trading of stocks in both the spot and futures markets. Nevertheless, they may still
experience some long-term market risks, and thus may require a more accurate method of
forecasting volatility in index futures markets.

Recently, financial economists have paid a great deal of attention to persistence or long
memory in the volatility of futures contracts (Dark, 2004; Tang and Sheih, 2006). “Long
memory” means that shocks to conditional variance die at a hyperbolic rate, which is slower
than the exponential rate of decay associated with shocks in the “short memory” GARCH
models (Baillie, 1996). Such a long memory feature is a crucial component for market risk
management, investment portfolios, and the pricing of derivative securities, as its presence

reflects the predictability of futures volatility. Furthermore, long memory fractionally



integrated GARCH (FIGARCH) models tend to provide more accurate out-of-sample
forecasts than do the stationary GARCH and non-stationary IGARCH models (Lux and
Kaizoji, 2007, Vilasuso, 2002).

The principal objective of this paper was to discover the best forecasting ability model in
the volatility of two futures markets, namely the KOSPI 200 futures of Korean Exchange
(KRX) and the SPI futures of the Sydney Futures Exchange (SFE). Taking into consideration
the long memory property that characterizes futures markets, we have employed the GARCH,
IGARCH, and FIGARCH models, and have evaluated the performance of their one-day-
ahead forecasts using a wide array of forecasting error statistics. Our analysis provides us
with insights into persistence and a good forecasting model in the volatility of futures markets.

The remainder of this paper is organized as follows. Section 2 discusses the FIGARCH
model framework and presents the forecasting error statistics. Section 3 provides the
statistical characteristics of the sample data and the estimation results. The final section,

Section 4, contains some concluding remarks.

2. Model framework

2.1. FIGARCH medel

In accordance with the work of Engle (1982), consider the time series y, and the
associated prediction error £, =y, —E, [y,], in which E, [] is the expectation of the
conditional mean on the information set at time 7—1. The standard GARCH model of

Bollerslev (1986) is as follows:

& =z0,, 2 ~N(0]), (1)
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ol=0+ a(L )gtz + ﬂ(L)O-tZ > (2)
where w > 0, L denotes the lag or backshift operator, and « (L) =a,L+a,l’++a AL

and ﬁ(L)E BlL+ B +e+ f,0F . Assuming that o, >0 for all i, the GARCH (p,q)

model in Equation (2) can be rewritten in the form of an ARMA(maX{ , q}, q) model:
L) = o+ 1= L) 3)

where v, =¢’ - o/ and ¢(L)= [l—a(L)— [)’(L)]. The {v,} process, which is interpreted as
innovations for the conditional variance, has a zero mean, and is serially uncorrelated.
Assuming that all the roots of ¢(L) and [1— ﬁ(L)] lie outside of the unit root circle, the
covariance stationary GARCH model is a short memory model, because a volatility shock
decays at a rapid geometric rate. On the other hand, when the autoregressive polynomial
[1 - a(L)— P (L)] has a unit root, then the GARCH ( j22 q) process has a unit root in conditional
variance. The corresponding IGARCH model of Engle and Bollerslev (1986) is given as

follows:
ML -L)e} = 0 +[1- (L), 4)

However, the IGARCH model does not allow for modeling long memory in the volatility
process, as volatility shocks in the IGARCH meodel never die out. That is, the IGARCH
model is characterized by infinite memory. In order to overcome this problem, the FIGARCH
model of Baillie, Bollerslev, and Mikkelsen (1996) can be obtained by replacing the
difference operator in Equation (4) with the fractional differencing operator. The

FIGARCH ( p.d, q) model is given as follows:

HLN-L) &t =0 +[1-B(L),, (5)



where 0<d <1 is the fractional difference parameter. The FIGARCH model provides
greater flexibility for the modeling of the conditional variance, as it accommodates the
covariance stationary GARCH model when & =0, and the IGARCH model when d =1, in
special cases. For the FIGARCH model in Equation (5), the persistence of shocks to the
conditional variance or the degree of long memory 1s measured by the fractional differencing
parameter, ¢ . Thus, the attraction of the FIGARCH model is that, for O0<d <1, it is
sufficiently flexible to allow for an intermediate range of persistence.

The parameters of the FIGARCH model can be estimated via non-linear optimization
procedures in order to maximize the logarithm of the Gaussian likelihood function. Under the

assumption that the random variable z, ~ N (0,1), the log-likelihood of Gaussian or normal

distribution (L can be expressed as follows:

MNorm )

Ly = —%g[ln(27r)+ ln(of)+ zf], (6)

in which 7' is the number of observations. The estimation procedure of the FIGARCH model

requires a minimum number of observations. This minimum number is associated with the
truncation order of the fractional differencing operator (I—L)d. In accordance with the

standard procedure in the relevant literature, the truncation order of the infinite (1 - L)d 1s set

to 1,000 lags, as follows:

(i-ry =w§wi(rkl—)}6(l_)d)ﬁ . (7)

k=0

2.2. Forecasting evaluation



In accordance with the relevant literature (Brailsford and Faff, 1996; Brooks and Persand,
2003; Degiannakis, 2004), daily ex post volatility (variance) is measured by the squared

returns as follows:
el =r’ (8)

At time period {, the one-day ahead forecasting is calculated by the above three models
which is estimated with one year of day trading data, for a total of 250 observations. The
estimation period is then rolled forward via the addition of one new day and the dropping of
the most distant day. In this fashion, the sample size utilized in the estimation of the models
remains at a fixed length (2646 observations for the KOSPI 200 futures; 2452 observations
for the SPI futures) and the forecasts do not overlap.

In order to measure forecast accuracy, we calculate the root mean squared errors ( RA/SE),
the heteroskedasticity-adjusted RMSE ( HRMSE' ) and the logarithmic loss errors ( L. ) of the

volatility forecasts, as follows:

250 2
RVSE = iz[ Y], ©)
1 - O_z 2 1/2
HRMSE = -3 [|1-—2* , (10)
25045 o,

250 o’
L= 5| f (11)
250%| | o2,

in which 7' is the number of forecast data points, and G;’t denotes the volatility forecast for

day t, whereas Git signifies actual volatility on day #. Smaller forecasting error statistics

reflect the superior forecasting ability of a given model.
Although the above statistics of forecast errors are useful for the comparison of estimated

models, they do not provide statistical tests of the difference between the two models. Rather
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than comparing the forecasting error statistics of different forecasting models, it is important
to determine whether any reductions in forecasting errors are statistically significant.
For this reason, Diebold and Mariano (1995) developed a test of forecast accuracy for two

sets of forecasts. Having generated 7, % -steps-ahead forecasts from different forecasting

models, the forecaster has two sets of forecast errors ¢, and e,,, in which t=12K .n.
Using g(eu) as a function of the forecasting errors, the hypothesis of equal forecast accuracy

can be represented as E[di]=0 , in which d, =g(eu)— g(ezgt) and £ is the expectation

operator. The mean of the difference between the forecasting errors d = ' Z; d, has an

approximate asymptotic variance of

V(c_z’jz nl[;/o +2hi 4, (12)

k=1

where y, 1s k -th autocovariance of d,, which can be estimated as:

;/: n' Z [dr - c_z’J(d” - c_‘lj. (13)

t=k+1

The Diebold and Mariano (1995) test statistic for testing the null hypothesis of equal

forecast accuracy 1s :
DM = V[d] d, (14)

in which DM has an asymptotic standard normal distribution under the null hypothesis. In
this paper, the DAf test is calculated from a loss differential on the basis of the RMSE,

HRMSE and LL of different forecasting models.



3. Empirical results

3.1. Data

The sample data in this study consists of the daily stock index closing prices in the two
index futures contracts: the KOSPI 200 futures and the SPI futures. First, the KOSPI 200
futures contract is predicated on the underlying KOSPI 200, which is a capitalization-
weighted index of the stock prices for 200 companies listed on the KRX. The daily sample
data of the KOSPI 200 futures contract encompasses the period between May 3, 1996 and
July 31, 2007, obtained from the KRX database.

Second, the SPI futures contract is a major speculative and hedging instrument written on
the All Ordinaries Index, which in turn represents the top 300 or so market capitalized stocks
traded on the Australian Stock Exchange (ASX). The daily sample data of the SPI futures
contract commences on January 2, 1996 to September 5, 2006, and was sourced from the

Datastream database.

Figure 1. The dynamics of daily sample returns: (a) KOSPI 200 futures, (b) SPI futures
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All sample prices are converted into daily nominal percentage return series for futures

prices, L.e., 1 = IOOIn(B /PH) for t=12,K .7, where r, 1s the return for futures prices at
time ¢, £ 1s the current price, and F,_, is the previous day’s price. Figure 2 plots the

dynamics of returns for both of the futures returns. Descriptive statistics for the return series
of futures prices are summarized in Table 1. All sample returns evidence a similar pattern of
results. The sample mean of returns is quite small, and the corresponding variance of returns
is significantly higher. Both the skewness and kurtosis statistics in the table show that the
return distribution is not normally distributed. Likewise, the Jarque-Bera (J-B) statistics also

reject the null hypothesis of normality in the distribution of the sample return series.

Table 1. Descriptive statistics for sample futures price returns

Series KOSPI 200 futures SPI futures

Number of observations 2896 2702
Mean (%) 0.027 0.030
Standard deviation (%) 2.340 0.918
Minimum -10.53 -6.053
Maximum 9.531 7.625
Skewness -0.002 -0.084
Kurtosis 4.894 8.994

Jarque-Bera 432.81 [0.000] 4048.61 [0.000]

0,(24) 2205.9 [0.000] 344.29 [0.000]

Notes: The Jarque-Bera statistic tests for the null hypothesis of normality in sample returns distribution. The
Box-Pierce statistic o, (24) for the squared return series for up to 24™ order serial correlation. P-values are

given in baskets.

We also assess the null hypothesis of a white-noise process for sample returns employing

the Box-Pierce test statistics for the squared returns QS(24). According to the calculated



values of the O, (24) statistics shown in Table 1, the null hypothesis of no serial correlation is

rejected. Thus, significant evidence exists for serial dependence in the squared returns.

Prior to testing for the long memory property in volatility, both of the sample return series
are subjected to two unit root tests--PP (Phillips-Peron) and KPSS (Kwiatkowski, Phillips,
Schmidt, and Shin) tests--in order to determine whether stationarity or integration should be
considered for each set of daily data. These tests differ with regard to the null hypothesis. The

null hypothesis of the PP test asserts that a time series contains a unit root, / (l) process,

while the KPSS test has the null hypothesis of stationarity, / (O) process.

Table 2. Unit root tests for sample returns

1, ](1) H,: I(O)
Zit,) z(t.) n ;
KOSPI 200 . e
futures 52.16(20) 52.21(22) 0.283(20) 0.047(21)
SPfatures 5732018y STIIAYSE 010000)  0.06320)

Notes: (1) z{:,) and Z{(r, Jare the Phillips-Perron adjusted t-statistics of the lagged dependent variable in a
regression with intercept only, and intercept and time trend included, respectively. Mackinnon’s 1% critical
values for z{t,) and Z{(z, ) are -3.44 and 3.96. (2) 5, and 5_are the KPSS test statistics based on residuals

from regression with an intercept only, and intercept and time trend, respectively. The critical values for 7,

and p_are 0.739 and 0.216 at the 1% significance level. Numbers in parentheses represent the lag of periods
of the tests. *** indicates rejection at the 1% significance level.

The empirical results of the unit root tests for all sample returns are provided in Table 2.
For the PP test, the large negative values observed in all cases support the rejection of the null
hypothesis of a unit root at a significance level of 1%, whereas the statistics of the KPSS test
show that all return series are insufficient to reject the null hypothesis of stationarity, thereby
implying that they are stationary processes. Thus, the futures return series are stationary and

are appropriate for subsequent tests in this study.
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Table 3. Estimation results from Lo’s R/S analysis

Actual volatility

Returns (squared returns)
KOSPI 200 futures 1.115[0.700] 3.551 [0.005]**
SPI futures 1.107 [0.700] 2.000 [0.025]%*

Note: The critical value of Lo’s modified R/S analysis is 2.098 at the 1% significance level. P-values are given
in baskets. ** indicates rejection at the 5% significance level.

The results of Lo’s R/S test statistic for daily returns and squared returns are provided in
Table 3.1 With regard to the returns, the value of the modified R/S statistic supports the null
hypothesis of short memory, thereby implying little evidence of long memory on the level of
returns. However, the volatility shows strong evidence of long memory, thereby indicating
that its autocorrelation function decays at a hyperbolic rate, rather than an exponential rate,

over the longer lags.

3.2. Long memory of futures volatility

In this section, we proceed with the estimation of GARCH class models described by
Equations (1) ~ (5) in order to capture the long memory property in the volatility of the two
futures returns. ° This section also compares the performance of the GARCH (1,1) .
IGARCH (l,l), and FIGARCH (l,l) models with regard to the capture of the long memory
property in volatility.

Table 4 reports the estimation results of these models. This table also provides a set of

diagnostic tests: (1) The Box-Pierce (O statistic tests the 7.i.d. series of squared standardized

' To save space, Lo’s modified R/S analysis specifications are not presented here. See Lo (1991} for more
details.

% The estimation results in this study have been produced using the quasi-maximum likelihood estimation
method of Bollerslev and Wooldnidge (1992).
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residuals. If the conditional variance equations are specified correctly, then the () statistic
should support the null hypothesis of the i.7.d. series. (2) The lowest values of the Schwarz-
Bayesian information criterion (SIC) indicate the best model amongst the GARCH, IGARCH,
and FIGARCH models. (3) The LM ARCH statistic described by Engle (1982) is utilized to
test for the presence of remaining ARCH effects in the residuals. The ARCH (10) statistic
tests the joint significance of lagged squared residuals up to the 5™ order. (4) The likelihood
ratio statistic (LR) tests for the lincar constraints d =0 (GARCH model) and d =1

(IGARCH model).

Table 4. Estimation results of the FIGARCH model

Series KOSPI 200 futures SPI futures
GARCH IGARCH FIGARCH | GARCH IGARCH FIGARCH
P 0.052 0.053 0.058 0.050 0.051 0.049
(0.035) (0.035) (0.035)% | (0.016)*** (0.017)¥** (0.016)***
o 0.032 0.025 0.062 0.017 0.007 0.190
(0.012)%**  (0.010)**  (0.035)* | (0.011)* (0.005)  (0.057)y%x*
y 0.074 0.077 0.146 0.075 0.077 0.511
! (0.012)%**%  (0.013)*%* (0.044)*** | (0.026)%** (0.028)***  (0.214)**
0.922 0.612 0.906 0.389
P (0.012)%** 1-0.077 (0.061)*** | (0.034)+** 1-0.077 (0.233)*
J ] 0.484 ] ] 0.221
(0.061 )% (0.036)%**
In(Z) -5730.46  -5730.97  -5717.51 | -3090.17  -3095.38  -3068.90
SIC 4343323 4340733 4336514 | 2.533262  2.534329  2.519092
0.(24) 21.15 21.86 13.15 32.70 36.57 13.87
g [0.511] [0.468] [0.929] [0.066] [0.026] [0.906]
1.389 1.383 0.613 4.136 4.410 0.969
ARCHE) [0.223] [0.227] [0.690] [0.000] [0.000] [0.435]
IR tost 25.90 26.92 42.54 52.96
[0.000] [0.000] [0.000] [0.000]

Notes: Standard errors are in parentheses below corresponding parameter estimates. In(7) is the value of
maximized Gaussian log likelihood and ARCH (35) represents the t-statistics of ARCH test statistic with lags
5. The LR test statistics, R = 2'[MLH _ MLr]= where pg, and A, denote the maximum log-likelihood
values of the unrestricted FIGARCH model and restricted GARCH and IGARCH models, respectively. The
numbers in brackets are p-values. *, ** and *** indicate rejection at the 10%, 5% and 1% significance levels,
respectively.
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As is shown in the estimation results of the GARCH (1,1) model shown in Table 4, the

estimated values of the persistence coefficient (£, + ¢, ) using both futures return series are

quite close to unity, a fact which favors the IGARCH (1,1) specification. As the IGARCH (1,1)
model nests the GARCH (1,1) model, the estimates of the IGARCH (l,l) model are quite
similar to those of the GARCH (l,l) model. Consequently, there is minimal difference
between the GARCH (1,1) model and the IGARCH (1,1) model for both of the futures prices.
According to the lowest values of both the information criteria and the insignificance of
o (24), ARCH (5) at the bottom of Table 4, the FIGARCH (1,1) model appears to be superior
to the GARCH (1,1) and IGARCH (1,1) models in the description of volatility persistence for

both of the futures returns. For example, the estimates of the long memory parameter o
(0.484 for the KOSPI 200 futures; 0.221 for the SPI futures) reject the null hypotheses of the

GARCH model (a’ = 0) and the IGARCH model (d = 1), and the LR statistics also reject the
null hypothesis. Thus, the FIGARCH (l,d,l) model most accurately represents the long

memory property in the conditional variance of both of the futures markets.

Consequently, this finding implies that volatility is highly persistent, and also that
volatility models including GARCH and IGARCH provide misleading results in the
estimation and forecasting of futures price volatility. Furthermore, the presence of long

memory conflicts directly with the validity of the weak form efficiency of futures markets.

3.3. In-sample error statistics

The in-sample error statistics for the KOSPI 200 futures and SPI futures contracts are

summarized in Table 5. These statistics are employed as model selection criteria. Due to the
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lowest values of all error statistics, the FIGARCH model provides the most accurate forecasts
in in-sample analysis. In addition, the DA test verifies that the FIGARCH model
outperforms other models (GARCH and IGARCH models) to assess the long memory
property in the in-sample period. According to Figure 2, which plots the actual volatility and
the volatility or conditional variance of the FIGARCH model, the FIGARCH model very

closely tracks the actual volatility.

Table 3. In-sample error statistics

Series Models RMSE DM HRMSE DM 194 DM
KSOSOPI FIGARCH  5.818 - 50.47 - 1.252 -
futures  IGARCH 5046  -6.19%% 53.11 -4.26%% 1292 -536%%

GARCH 5.881 -3.15%*% 52.05 -2.93%% 1275 -9.99%*

SPI

FIGARCH 0.911 - 34.15 - 1.218 -
futures

IGARCH 0.971 -7.46%*% 37.21 -4.81%% 1287 -15.09%*
GARCH 0.931 -3.09%% 35.44 -2.96%*  1.244  -T7.11%*

Note: The values in bold refer to the lowest for the RMSE | HRMSE and LL error statistics. The DA test
statistic 1s used to evaluate the null hypothesis that the forecasting accuracy of the FIGARCH model 1s the
same as either the GARCH or IGARCH model. ** indicates that the null hypothesis of the DAS test is
rejected at the 5% significance level.

Figure 2. The conditional variance of FIGARCH model: (a) KOSPI 200 futures, (b) SPI
futures
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3.4. Forecasting the volatility of futures returns

In the preceding sections, although the FIGARCH model appears to fit the futures price
data well, a crucial question remains: does this model do as good a job in volatility
predictions as do the other models? Thus, this section evaluates one-day-ahead volatility
forecasts and compares the accuracy of the volatility forecasts.

Figure 3 illustrates the one-day-ahead volatility forecasts estimated from the GARCH

(l,l), IGARCH (l,l), and FIGARCH (l,l) models. Although the one-dav-ahead volatility

forecasts from the three models are quite similar to each other, both sub-figures demonstrate
that the volatility forecasts from the FIGARCH model tend to follow the actual volatility
quite closely. In particular, the volatility forecast of the FIGARCH model evidences more
sensitive peaks and curves corresponding to the movement of actual volatility than do other
models.

Table 6 summarizes the results of the one-day-ahead volatility forecast error statistics.
Three error statistics support the notion that the FIGARCH model, which allows for long
memory in the conditional variance, is superior to the GARCH and IGARCH models. In
addition, the values of the DA{ test statistics are negative, and significantly reject the null

hypothesis, thereby implying that the FIGARCH model outperforms the other forecasting

15



models. As a result, the long memory FIGARCH model generates more accurate one-day-

ahead volatility forecasts than do the other short memory models.

16



Figure 3. Comparison the one-day-ahead volatility forecasts from the GARCH (1,1),
IGARCH (1,1) and FIGARCH (1,1) models: (a) KOSPI 200 futures, (b) SPI futures
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Table 6. One-day-ahead volatility forecasts

Series Models  RMSE DM HRMSE DM 194 DM
KSOSOPI FIGARCH 1.159 - 69.19 - 1.447 -

futures ~ IGARCH 1205  3.57% 7532 3.15%% 1535  -12.94%x
GARCH 1214  -424%% 7692  2.70% 1552  -16.41%*

SPI

FIGARCH 0.816 - 280.60 - 1.275
futures

IGARCH  0.877  -4.10%* 350.63 -2.24%% 1.471 -17.02%%*

GARCH 0.849  -3.04%* 335.63 -2.21%% 1.410 -13.99%*

Note: The values in bold refer to the lowest for the RASE , HRMSE and LL error statistics. The DA test
statistic is used to evaluate the null hypothesis that the forecasting accuracy of the FIGARCH model is the
same as either the GARCH or I[GARCH model. ** indicates that the null hypothesis of the DM test is rejected
at the 5% significance level.

4. Conclusions

In this article, we have attempted to delineate a good volatility model with the ability to

forecast and identify volatility stylized facts, and in particular volatility persistence or long
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memory, in Korean and Australian futures markets. In this context, we assess the long
memory property in the volatility of futures contracts, using three conditional volatility
models--namely the GARCH, IGARCH, and FIGARCH models. The FIGARCH model is
better equipped to capture the long memory property than are the GARCH and IGARCH
models. More importantly, the FIGARCH model provides superior performance in one-day-
ahead volatility forecasts. Thus, we conclude that the FIGARCH model should prove useful
to financial economists, policy markers, and financial analysts who are interested in modeling

and forecasting the dynamics of futures volatility.
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