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Abstract To quantify the aggregate losses from operational risk, we employ actuarial risk
model, i.e. we consider compound Cox model of operational risk to deal with stochastic nature
of its frequency rate in reality. A shot noise process is used for this purpose. A compound
Poisson model is also considered as its counterpart for the case that operational loss frequency
rate is deterministic. As the loss amounts arising due to mismanagement of operational risks are
extremes in practice, we assume the loss sizes are Loggamma, Fréchet and truncated Gumbel. We
also use an exponential distribution for the case of non-extreme losses. Employing loss distribution
approach, we derive the analytical/explicit forms of the Laplace transform of the distribution of
aggregate operational losses. The Value at Risk (VaR) and tail conditional expectation (TCE, also
known as TailVaR) are used to evaluate the operational risk capital charge. Fast Fourier transform
is used to approximate VaR and TCE numerically and the figures of the distributions of aggregate
operational losses are provided. Numerical comparisons of VaRs and TCEs obtained using two
compound processes are also made respectively.

Keywords: Operational risk; total loss; the compound Poisson/Cox process; shot noise process;
loss distribution; VaR; tail conditional expectation (TCE); Fast Fourier transform.

1. Introduction

A capital charge for operational risk is required to the financial institutions. The Basel Commit-
tee for Banking Supervision (2006) defines operational risk as follows: “The risk of losses resulting
from inadequate or failed internal processes, people and systems or from external events”. A list
of loss event types (level 1) of operational risks is shown in Table 1.1 that is adopted from Annex
9 of Basel Committee on Banking Supervision (2006).
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Table 1.1

Event-Type Category (Level 1) Definition

Internal fraud

Losses due to acts of a type intended to defraud,
misappropriate property or circumvent regulations,
the law or company policy, excluding diversity/
discrimination events, which involves at least one
internal party

External fraud
Losses due to acts of a type intended to defraud,
misappropriate property or circumvent law, by a
third party

Employment Practices and
Workplace Safety

Losses arising from acts inconsistent with
employment, health or safety laws or agreement,
from payment of personal injury claims, or from
diversity/discrimination events

Clients, Products & Business
Practices

Losses arising from an unintentional or negligent
failure to meet a professional obligation to specific
clients (including fiduciary and suitability
requirements), or from the nature or design of a
product

Damage to Physical Assets
Losses arising from loss or damage to physical
assets from natural disaster or other events

Business disruption and system
failures

Losses arising from distruption or sysytem
failures

Execution, Delivery & Process
Management

Losses from failed transaction processing or process
management, from relations with trade
counterparties and vendors

The collapse of Britain’s Barings Bank in February 1995 is perhaps the quintessential tale of
operational risk management gone wrong. A similar even more severe failure came to light in the
last few weeks at the French bank Societe Generale. Both failures were completely unexpected.
Over the course of days, Barings, Britain’s oldest merchant bank, went from apparent strength to
bankruptcy. In both cases the failure and upheaval was caused by the actions of a single trader.
The estimated loss for Barings was £700million while first estimates of the Societe Generale loss
are around $US 7bn.

To quantify the aggregate losses from operational risk, in this paper we use an actuarial risk
model (Cramér 1930; Bühlmann 1970; Gerber 1979; Grandell 1976, 1991; Beard et al. 1984 and
Asmussen 2000). Considering one line of business, let Xi, i = 1, 2, · · · , be the loss amounts from
type k operational risk, which are assumed to be independent and identically distributed with
distribution function H (x) (x > 0), then the total loss arising from type k operational risk up to
time t is defined by

L
(k)
t =

NtX
i=1

Xi, (1.1)

where k = 1, 2, · · · , d and Nt is the total number of losses up to time t. We assume that the process
Nt and the sequence {Xi}i=1,2,··· are independent each other. The grand total loss is hence given
by
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Lt =
dX

k=1

L
(k)
t . (1.2)

According to the Basel II Advanced Measurement Approach (AMA) guidelines, the financial
institutions may use the Value at Risk (VaR or the q-quantile) as a risk measure to decide the
capital amount required for next t years’ operational risk, i.e.

VaR99.9%(Lt).

However to obtain the VaR99.9%(Lt), it requires to derive the joint distribution of the total loss

random vector
³
L
(1)
t , L

(2)
t , · · · , L(d)t

´
, which is a challenging task. Accordingly, the Basel II AMA

guidelines propose to use
dX

k=1

VaR99.9%(L
(k)
t ) (1.3)

for a capital charge and consider a diversification effect under appropriate correlation assumptions,
i.e.

VaR99.9%(Lt) = VaR99.9%

Ã
dX

k=1

L
(k)
t

!
≤

dX
k=1

VaR99.9%(L
(k)
t ). (1.4)

This assumptions must be made persuadable to the local regulators. Numerous papers have looked
at the modelling of operational losses arising from several sources and their dependence. The work
by Nešlehová et al. (2006) and the paper by Chavez-Demoulin et al. (2006) contain numerous
models to this effect. The three issues they address are:

Issue 1: The operational loss distribution is extremely heavy-tailed.

Issue 2: The operational loss arrival time is irregular and there exists a tendency to
increase over time.

Issue 3: The problem of modelling the dependence between various operational risk
sources that may lead to a reduction of the calculated risk capital.

For simplicity, in this paper, we ignore the correlation assumptions, i.e. we assume that L(k)t ,
k = 1, 2, · · · , d are independent each other but not identical. In order to calculate the each
component of (1.3), i.e. VaR99.9%(L

(k)
t ), we need to calculate the distribution of the total loss, i.e.

P
³
L
(k)
t ≤ l

´
.

However the calculation of P
³
L
(k)
t ≤ l

´
in general is difficult and it cannot be derived explicitly. So

in Section 2 we derive the explicit and analytical expressions of the Laplace transforms of the dis-
tributions of the total loss L(k)t and invert their Fast Fourier transforms to calculate VaR99.9%(L

(k)
t )

numerically in Section 4. We also calculate the tail conditional expectation defined by

E
n
L
(k)
t | L(k)t ≥ VaR99.9%(L

(k)
t )
o

(1.5)

as a coherent risk measure (Artzner et al. 1999) and calculate

dX
k=1

E
n
L
(k)
t | L(k)t ≥ VaR99.9%(L

(k)
t )
o

(1.6)
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as capital amount required for next t years’ from all types of operational risk.
As examined in Moscadelli (2004) that losses arisen from the mismanagement of operational risk

are heavy-tailed in practice, in Section 2 we employ Loggamma, Fréchet and truncated Gumbel as
loss size distributions to deal with this issue. We also use an exponential distribution for the case
of non-heavy-tail losses. A discussion on the techniques of extreme value theory; see for instance,
Embrechts et al. (1997). To concern irregular arrival of operational losses and its tendency to
increase over time, we use the Cox process with shot noise intensity λt for the loss arrival process
Nt. A homogeneous Poisson process with loss frequency λ is also examined as its counterpart. In
Section 3, we present the expressions for initial probabilities of the total loss and the expressions for
initial value of its densities, which are required to improve the accuracy of the distributions of the
total loss inverting the Fast Fourier transforms. We compare simulated numerical values of VaRs
and TCEs obtained using compound Poisson and compound Cox model respectively in Section 4.
Section 5 contains some concluding remarks.

2. The Laplace transform of the distribution of total loss

In order to evaluate the risk measures of VaR and TCE, it is necessary for us to calculate the
distribution of total loss. However it is difficult to derive it explicitly. Hence for that purpose,
we consider using the Laplace transform as it can be inverted to calculate relevant risk measures
of (1.3) and (1.6) numerically.

2.1. Homogeneous Poisson process
As we can see in Table 1.1, fraud, business disruption, execution error and system failure etc.

are primary events. In order to measure the occurrence of operational losses out of these primary
events, we need a counting process to deal with deterministic or stochastic nature of their arrival
rates in practice. Therefore it is natural to use point processes to consider series of operational
losses. The simplest one is using a homogeneous Poisson process that has deterministic frequency.

Assuming that the loss arrival process Nt follows a homogeneous Poisson process with loss
frequency λ and that L(k)0 = 0, the Laplace transform of the the distribution of total loss L(k)t is
given by

E
n
e−νL

(k)
t

o
= exp

h
−λt

n
1− ∧

m(ν)
oi

, (2.1)

where ν ≥ 0 and
∧
m(ν) =

∞Z
0

e−νxdH(x) <∞. (2.2)

As it has been known that losses arisen from the operational risk are extremes in practice
(Moscadelli, 2004), in this paper we consider three heavy-tailed distributions, i.e. a Loggamma,

h(x) =
βα

σ2Γ (α)

½
ln

µ
x

σ2
+ 1

¶¾α−1µ x

σ2
+ 1

¶−β−1
, x > 0, σ2 > 0, β > 0 and α > 0, (2.3)

a Fréchet,

h(x) =
ς

σ3

µ
x

σ3

¶−ς−1
exp

(
−
µ
x

σ3

¶−ς)
, x ≥ 0, σ3 > 0 and ς > 0, (2.4)
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and a truncated Gumbel,

h(x) =
exp {exp (ζ/η)}

exp {exp (ζ/η)}− 1
1

η
exp

½
−x− ζ

η
− exp

µ
−x− ζ

η

¶¾
, x ≥ 0, ζ > 0 and η > 0. (2.5)

If the loss amounts arising due to mismanagement of operational risk are not extremes, we may
consider using an exponential for loss size distribution, i.e.

h(x) =
1

σ1
exp

µ
− 1
σ1

x

¶
, x ≥ 0, σ1 > 0. (2.6)

Using (2.2)-(2.6), we can easily obtain the corresponding expressions for the Laplace transform
of the distribution of total loss L(k)t , i.e.

E
n
e−νL

(k)
t

o
= exp

⎡⎣−λt+ λt

αΓ (α)

∞Z
0

exp
n
−νσ2

³
exp(β−1z1/α)− 1

´
− z1/α

o
dz

⎤⎦ , (2.7)

where z =
n
β ln

³
x
σ2
+ 1
´oα

,

E
n
e−νL

(k)
t

o
= exp

⎧⎨⎩−λt+ λt

∞Z
0

exp
³
−νσ3z−1/ς − z

´
dz

⎫⎬⎭ , (2.8)

where z =
³

x
σ3

´−ς
,

E
n
e−νL

(k)
t

o
= exp

∙
−λt+ λt

½
exp {exp (ζ/η)}

exp {exp (ζ/η)}− 1

¾
exp (−νζ)Γ(νη + 1; eζ/η)

¸
= exp

½
−λt+ λtc−νσ4

1− e−c
Γ(νσ4 + 1; c)

¾
(2.9)

where η = σ4, c = eζ/η, Γ(φ;ϕ) ≡
φR
0

zφ−1e−z dz, z = exp
³
−x−ζ

η

´
and

E
n
e−νL

(k)
t

o
= exp

½
−λt

µ
σ1ν

1 + σ1ν

¶¾
. (2.10)

2.2. Shot-noise Cox process
To deal with stochastic nature of operational loss arrival in practice, we consider a Cox process

as an alternative point process. The Cox process provides flexibility by letting the intensity not
only depend on time but also allowing it to be a stocastic process. Therefore the Cox process
can be viewed as a two step randomisation procedure. A process λt is used to generate another
process Nt by acting its intensity. That is, Nt is a Poisson process conditional on λt which itself
is a stochastic process.

Losses arising from the mismanagement of operational risks depend on the intensity of primary
events. One of the processes that can be used to measure the impact of primary events is the shot
noise process. Some works of insurance application using shot noise process and a Cox process
with shot noise intensity can be found in Klüppelberg & Mikosch (1995), Dassios & Jang (2003)
and Jang & Krvavych (2004). The shot noise process is particularly useful in loss arrival process
as it measures the frequency, magnitude and time period needed to determine the effect of primary
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Figure 1: Graph illustrating shot noise process

events. As time passes, the shot noise process decreases as more and more losses are figured out.
This decrease continues until another event occurs which will result in a positive jump in the shot
noise process. Therefore the shot noise process can be used as the parameter of a Cox process to
measure the number of operational losses, i.e. we will use it as an intensity function to generate a
Cox process. We will adopt the shot noise process used by Cox & Isham (1980):

λt = λ0e
−δt +

MtX
i=1

Yie
−δ(t−Si)

where:

· λ0 is the initial value of λt that is carried on from primary events incurred previously;
· {Yi}i=1,2,··· is a sequence of independent and identically distributed random variables
with distribution function G (y) (y > 0) and E (Y ) <∞ (i.e. magnitude of contribution
of primary event i to intensity);

· {Si}i=1,2,··· is the sequence representing the event times of a Poisson process with
constant intensity ρ;

· δ is the rate of exponential decay.

Some events such as internal fraud, may take much longer to materialise than others so the decay
rate may not be exponential. It is assumed to be of this form for a matter of convenience, i.e.
closed-form expressions of final results are easily derived. We also make the additional assumption
that the Poisson process Mt and the sequences {Yi}i=1,2,··· and {Xi}i=1,2,··· are independent of each
other. Figure 1 illustrates shot noise process.

Now let us assume that the loss arrival process Nt follows a Cox process with its intensity λt.
Figure 2 illustrates a Cox process with shot noise intensity.

Similar to a homogeneous Poisson process for Nt, the Laplace transform of the the distribution
of total loss L(k)t is given by
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Figure 2: Graph illustrating the Cox process with shot noise intensity
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E
n
e−νL

(k)
t | λ0

o
= E

h
exp

n
−
n
1− ∧

m(ν)
o
Λt

o
| λ0

i
, (2.11)

where λ0 is assumed to be known. The equation (2.11) suggests that the problem of finding
the Laplace transform of distribution of L(k)t , is equivalent to the problem of finding the Laplace

transform of distribution of Λt =
tR
0

λsds, the aggregated process.

Assuming that jump size of primary event follows an exponential distribution, i.e. g (y) =
b exp(−by), y > 0, b > 0 and λt is stationary, the explicit expression of (2.11) is given by

E
n
e−νL

(k)
t

o
=

⎛⎝δb+
n
1− ∧

m(ν)
o¡
1− e−δt

¢
δbe−δt

⎞⎠
bρ

δb+ 1−∧m(ν)
− ρ
δ

. (2.12)

For details of the above expression, we refer the reader to Dassios and Jang (2003). We omit
the corresponding expressions for the Laplace transform of the distribution of total loss L(k)t using
(2.3)-(2.6) as they can be easily obtained.

If {Yi}i=1,2,···, which are the magnitude of contribution of primary event to intensity λt, are high,
we need to consider heavy-tailed distributions for jump size of primary event G (y). It causes higher
number of operational loss consequently and eventually the financial institutions need to prepare
higher operational risk capital charge as the risk measures of VaR and TCE become higher. This
primary event jump size measure G (y) also can be related with loss size measure H (x) if there
exists dependence between them, e.g. the higher the magnitude of contribution of primary event is,
the higher losses from the operational risk arise. Compared to (2.1), the above Laplace transform
provides the financial institutions with more flexibility in operational risk modelling as it contains
stochastic intensity with three parameters of δ, ρ and G (y).

3. Total loss distribution via the Fast Fourier transform

In order to calculate the risk measures of (1.3) and (1.6), we invert the Fast Fourier transforms
from the Laplace transforms of L(k)t obtained in Section 2. For details on how to invert the Fast
Fourier transform, we refer you Heston (1993), Duffie et al. (2000), Castleman (1996), Gonzalez
and Woods (2002) and Gonzalez et al. (2004). Before we show the calculations of risk measures
in Section 4, we present the expressions for initial probabilities of total loss and the expressions for
initial value of its densities. These are required to improve the accuracy of the distributions of the
total loss inverting the Fast Fourier transforms.

If we let ν →∞ in (2.1), we have the expression for initial probability of total loss, i.e.

P
³
L
(k)
t = 0

´
= e−λt. (3.1)

Regardless of loss size distributions, we have the same initial probability of total loss when the loss
arrival process Nt follows a homogeneous Poisson process with loss frequency λ. If we set

lim
ν→∞

ν exp
h
−λt

n
1− ∧

m(ν)
oi

,

we have the expression for initial value of the density of total loss, i.e.

f
³
L
(k)
t = 0

´
= λte−λth (0) , (3.2)

where f
³
L
(k)
t

´
is the density function of total loss.
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Based on (3.2), we can easily obtain the expressions for initial probabilities of total loss, i.e. for
an exponential loss size,

f
³
L
(k)
t = 0

´
=

λte−λt

σ1
, (3.3)

for a Loggamma loss size

f
³
L
(k)
t = 0

´
=

⎧⎪⎨⎪⎩
0, α > 1

λtβe−λt

σ2
, α = 1

∞, α < 1

⎫⎪⎬⎪⎭ , (3.4)

for a Fréchet loss size

f
³
L
(k)
t = 0

´
= 0, (3.5)

and for a truncated Gumbel loss size

f
³
L
(k)
t = 0

´
=

λtc

(ec − 1) eλtσ4
. (3.6)

Similarly, if we let ν →∞ in (2.11), we have the expression for initial probability of total loss,
i.e.

P
³
L
(k)
t = 0

´
=

µ
δbe−δt

1− e−δt + δb

¶ ρ
δ(1+δb)

, (3.7)

Regardless of loss size distributions, we also have the same initial probability of total loss when the
loss arrival process Nt follows the Cox process with shot noise intensity λt. If we set

lim
ν→∞

ν

⎛⎝δb+
n
1− ∧

m(ν)
o¡
1− e−δt

¢
δbe−δt

⎞⎠
bρ

δb+ 1−∧m(ν)
− ρ
δ

,

we have the expression for initial value of the density of total loss, i.e.

f
³
L
(k)
t = 0

´
=

h (0) ρ

1 + δb

µ
δbe−δt

1− e−δt + δb

¶ ρ
δ(1+δb)

×
½µ

b

1 + δb

¶
ln

µ
1− e−δt + δb

δbe−δt

¶
+

1− e−δt

δ (1− e−δt + δb)

¾
. (3.8)

Based on (3.8), we can easily obtain the expressions for initial probabilities of total loss, i.e. for
an exponential loss size,

f
³
L
(k)
t = 0

´
=

ρ

σ1 (1 + δb)

µ
δbe−δt

1− e−δt + δb

¶ ρ
δ(1+δb)

(3.9)

×
½µ

b

1 + δb

¶
ln

µ
1− e−δt + δb

δbe−δt

¶
+

1− e−δt

δ (1− e−δt + δb)

¾
,

for a Loggamma loss size
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f
³
L
(k)
t = 0

´
=

⎧⎪⎪⎨⎪⎪⎩
0, α > 1

βρ
σ2(1+δb)

³
δbe−δt

1−e−δt+δb

´ ρ
δ(1+δb)

½³
b

1+δb

´
ln
³
1−e−δt+δb
δbe−δt

´
+ 1−e−δt

δ(1−e−δt+δb)

¾
, α = 1

∞, α < 1

⎫⎪⎪⎬⎪⎪⎭ ,

(3.10)
for a Fréchet loss size

f
³
L
(k)
t = 0

´
= 0, (3.11)

and for a truncated Gumbel loss size

f
³
L
(k)
t = 0

´
=

cρ

σ4 (ec − 1) (1 + δb)

µ
δbe−δt

1− e−δt + δb

¶ ρ
δ(1+δb)

(3.12)

×
½µ

b

1 + δb

¶
ln

µ
1− e−δt + δb

δbe−δt

¶
+

1− e−δt

δ (1− e−δt + δb)

¾
.

Figure 3-6 are the distributions of total loss with respect to a Poisson process and to a Cox
process for Nt respectively, where loss size distributions are Exponential, Loggamma, Fréchet and
truncated Gumbel. It shows that the distributions of total loss with respect to a Cox process have
heavier tail than their counterparts with respect to a Poisson process. It will become apparent by
numerical values of VaRs and TCEs in Example 4.1-4.4.

Since we derive the probability densities for total loss numerically via the Fast Fourier transform,
all values of the probability densities in Figure 3-6 are approximated values except the first point,
f
³
L
(k)
t = 0

´
and P

³
L
(k)
t = 0

´
. These two values are calculated using the explicit formulae above.

The first point, f
³
L
(k)
t = 0

´
is usually distorted after the Fast Fourier transform so we replace

these distorted values with the values obtained from the explicit formulae of f
³
L
(k)
t = 0

´
.

4. Calculating risk measures

Now with two risk measures, i.e.

VaRq(L
(k)
t ) = inf

n
l ∈ R : P (L

(k)
t > l) ≤ 1− q

o
(4.1)

and

TCEq(L
(k)
t ) = E

n
L
(k)
t | L(k)t ≥ VaRq(L

(k)
t )
o
=
E
h
L
(k)
t I

n
L
(k)
t ≥ VaRq(L

(k)
t )
oi

(1− q)
(4.2)

where I (·) is the indicator function, let us illustrate their numerical values from the inversion of
the Fast Fourier transforms.

The parameter values used to simulate Nt and calculate the above risk measures are

λ = 10, ρ = 4, b = 1, δ = 0.4 and t = 1.
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Figure 3: The distribution of total loss with respect to Poisson/Cox process with Exponential loss
size distribution
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Figure 4: The distribution of total loss with respect to Poisson/Cox process with Loggamma loss
size distribution
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Figure 5: The distribution of total loss with respect to Poisson/Cox process with Fréchet loss size
distribution
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Figure 6: The distribution of total loss with respect to Poisson/Cox process with truncated Gumbel
loss size distribution
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We use the above parameter values that provide us with the same means of total loss regardless of
the specification of the loss arrival process Nt to see the differences of the VaRs and TCEs due to
the tails of the loss size distributions, i.e.

EPoisson
n
L
(k)
t

o
= ECox

n
L
(k)
t

o
.

In order to make the computing easier, we also choose

EExponential (X) = ELoggamma (X) = EFréchet (X) = Etruncated Gumbel (X) =
√
π,

i.e.

σ1 = σ2

½µ
β

β − 1

¶α

− 1
¾
= σ3 Γ

µ
1− 1

ς

¶
= σ4

½
(ln c)− 1

1− e−c

Z c

0
(ln y) e−ydy

¾
=
√
π (4.3)

and

σ1 =
√
π and σ2 = σ3 = σ4 = 1.

From (4.3), we have the relationship for the parameters, i.e.

µ
β

β − 1

¶α

=
√
π + 1, β > 1 and α ≥ 1,

Γ

µ
1− 1

ς

¶
=
√
π, ς > 1,

(ln c)− 1

1− e−c

Z c

0
(ln y) e−ydy =

√
π.

Using Matlab, the VaRs and TCEs for each loss size distribution with respect to a Poisson/a
Cox process are shown in Table 4.1-4.8.

Example 4.1: Exponential
The calculations of the two risk measures as capital charges from type k operational risk up to

time t when loss size follows an exponential are shown in Table 4.1 and 4.2, where V ar (X) = π.

Table 4.1: Poisson process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 49.5368 53.3579

0.99 39.8691 44.1164

0.95 32.1210 36.8966

0.9 28.3286 33.4675

0.5 16.8305 23.9688

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
= 20π

Table 4.2: Cox process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 57.9834 63.0779

0.99 45.2875 50.8550

0.95 35.3129 41.4676

0.9 30.5114 37.0697

0.5 16.4034 25.1592

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
= 90.45

Table 4.1 and 4.2 show that there is no significant increase in two risk measures respectively by
changing Nt from a homogenous Poisson process to a shot-noise Cox process as loss size measure
H (x) is an exponential which is not a heavy-tailed distribution. It also shows that TCEs are
slightly higher than VaRs regardless of the loss arrival process Nt.

Example 4.2: Loggamma
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The calculations of the two risk measures as capital charges from type k operational risk up to
time t when loss size follows a Loggamma are shown in Table 4.3 and 4.4, where α = 1, β =

√
π+1√
π

and V ar (X) =∞.

Table 4.3: Poisson process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 337.2020 1017.4245

0.99 99.0571 246.1027

0.95 43.7821 97.4792

0.9 31.3680 67.0061

0.5 11.9483 28.2826

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
=∞

Table 4.4: Cox process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 378.9434 1018.9412

0.99 100.9566 247.8994

0.95 45.5266 99.3334

0.9 32.7244 68.7072

0.5 11.7146 28.9562

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
=∞

Table 4.3 and 4.4 show that there is significant increase in two risk measures respectively by
changing Nt from a homogenous Poisson process to a shot-noise Cox process as loss size measure
H (x) is a Loggamma which is a heavy-tailed distribution. It also shows that TCEs are much
higher than VaRs regardless of the loss arrival process Nt.

Example 4.3: Fréchet
The calculations of the two risk measures as capital charges from type k operational risk up to

time t when loss size follows a Fréchet are shown in Table 4.5 and 4.6, where ς = 2 and V ar (X) =∞.

Table 4.5: Poisson process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 118.9029 218.5851

0.99 51.6413 82.8136

0.95 33.4748 48.0499

0.9 28.0027 39.2087

0.5 15.8570 24.2760

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
=∞

Table 4.6: Cox process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 121.1252 220.5757

0.99 55.1842 85.8063

0.95 36.5327 51.3762

0.9 30.2885 42.1960

0.5 15.5337 25.4611

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
=∞

Similar to Loggamma case, we can see in Table 4.5 and 4.6 that two risk measures increase
respectively by changing Nt from a homogenous Poisson process to a shot-noise Cox process. It
also shows that TCEs are higher than VaRs regardless of the loss arrival process Nt.

Example 4.4: Truncated Gumbel
The calculations of the two risk measures as capital charges from type k operational risk up to

time t when loss size follows a truncated Gumbel are shown in Table 4.7 and 4.8, where c = 2.97957
and V ar (X) = 1.51625.

Table 4.7: Poisson process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 43.5250 46.4355

0.99 36.0213 39.3241

0.95 29.8658 33.6550

0.9 26.7942 30.9191

0.5 17.1443 23.1380

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
= 46.58

Table 4.8: Cox process

q VaRq(L
(k)
t ) TCEq(L

(k)
t )

0.999 53.0242 57.3668

0.99 42.1127 46.9002

0.95 33.4607 38.7967

0.9 29.2596 34.9745

0.5 16.6829 24.4921

where E
n
L
(k)
t

o
= 10

√
π, V ar

n
L
(k)
t

o
= 74.19
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Table 4.7 and 4.8 show that there is no significant increase in two risk measures respectively by
changing Nt from a homogenous Poisson process to a shot-noise Cox process. It also shows that
TCEs are slightly higher than VaRs regardless of the loss arrival process Nt. Interestingly, the
values of two risk measures are lower than their counterparts calculated using exponential loss size
distribution in Example 4.1 when q ≥ 0.9. When q = 0.5, the VaRs/TCEs are slightly higher/lower
than their counterparts calculated using exponential loss size distribution in Example 4.1.

5. Conclusion

We used a compound Cox process to model total losses arising from operational risk to accom-
modate stochastic nature of their frequency rates in practice. The shot noise process was used
as an intensity of a Cox process as the number of losses arising from operational risk depends on
the frequency and magnitude of primary events and time period needed to determine the effect of
primary events. We also examined a compound Poisson process as it counterpart.

To deal with an issue raised by Moscadelli (2004) that the losses arisen from the mismanagement
of operational risk are heavy-tailed in practice, we considered Loggamma, Fréchet and truncated
Gumbel as loss size distributions. We also used an exponential distribution for the case of non-
heavy-tail losses.

As it is difficult to calculate the distributions of total loss, we derived their Laplace transforms
and inverted their Fast Fourier transforms numerically to calculate relevant risk measures, i.e. VaR
and TCE. We presented the expressions for initial probabilities of the total loss and the expressions
for initial value of its densities, which were used to improve the accuracy of the distributions of the
total loss inverting the Fast Fourier transforms We also compared simulated numerical values of
VaRs and TCEs obtained using compound Poisson and compound Cox model respectively.

We examined four different loss size distributions with two counting processes to treat the issues
faced by the practitioners in bank and financial institutions. Risk measures considered to obtain
the operational risk capital charge were VaRs and TCEs. We hope that what we presented in this
paper provides the practitioners with feasible models to measure operational risk capital charge
with flexibility using real data available. There are several approaches to model interdependence
between operational loss processes, e.g. linear correlation or copula-based non-linear correlation.
For simplicity, we assumed no dependence between operational risk types so we leave it as a further
research.
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