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To improve the empirical performance of the Black-Scholes model, alternative models have
been proposed to address the leptokurtic feature of the asset return distribution, volatility smile,
and the effects of the volatility clustering phenomenon. However, the analytical tractability of
the option valuation remains problematic for most of the alternative models. In this paper,
we propose a Markov jump diffusion model that can not only incorporate both the leptokurtic
feature and volatility smile but also present the economic features of volatility clustering. To
evaluate the price of derivatives, we apply Lucas’s general equilibrium framework to provide
closed-form formulas for option and futures prices. When the jump size follows a specific dis-
tribution, such as a lognormal distribution or a default probability, we devise explicit analytic
formulas for the equilibrium prices. Through these formulas, we illustrate the effect of jumps on
implied volatility and volatility surface via stochastic intensity as well as sensitivity analysis in
stock option prices.
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1. INTRODUCTION

The characterization of the arbitrage-free dynamics of stocks and interest rates in the presence of
both jumps and diffusion has been developed by many authors in the financial literature. Some
examples include option pricing with Poisson-type jumps (cf. Merton, 1976; Naik and Lee, 1990,
and Kou, 2002), the pricing of interest rate derivatives (cf. Duffie, Pan, and Singleton, 2000, and
Jarrow and Madan, 1995, 1999), and the marked point process framework (cf. Björk, Kabanov,
and Runggaldier, 1997, and Glasserman and Kou, 2003). Empirical evidence and estimation
methods for jump diffusion models can be found in Chernov and Ghysels (2000), Pan (2002),
and Eraker (2004), among others. A good summary of jump processes and option prices can be
found in Chapter 11 of Shreve (2004). The motivation for including jumps along with diffusion
models is also explained in the above articles and the references therein.
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In the general framework of the marked point process developed by Björk, Kabanov, and
Runggaldier (1997), the arbitrage and the completeness theory were investigated, and the ex-
istence and uniqueness of a martingale measure was proved. Further developments for interest
rates were made by Glasserman and Kou (2003), allowing randomness in jump sizes and de-
pendence between jump sizes, jump times, and interest rates. They also proved option pricing
formulas via the arbitrage theory in the setting of Poisson-type jump diffusion models, to which
some clear option price formulas for stock market have been established by Merton (1976), Naik
and Lee (1990), and Kou (2002). Although the Poisson-type jump diffusion model can reveal
the empirical phenomena of both the leptokurtic feature and the volatility smile, it is unable to
explain the volatility clustering observed in empirical studies, due to the independent increment
assumption for both the diffusion and the jump. The primary goal of this paper is to bridge
this gap. We propose a Markov jump diffusion model, specified in (2.5), for a stock log return
distribution. It can not only capture the empirical features, including leptokurtic phenomena,
volatility smile/surface and volatility clustering but also provide fully expressed option pricing
formulas in the framework of Lucas’s general equilibrium setting. When the jump size follows a
specific distribution, such as a lognormal distribution or a default probability, we devise explicit
analytic formulas of the equilibrium prices for European call option and futures.

0 50 100 150 200 250 300 350 400 450 500
98

100

102

104

106

108

110

112

114

116

Jump 

Figure 1: The dynamic process of the underlying asset price under a jump diffusion model

There are two other aspects to be studied in the Markov jump diffusion model beyond
the motivation of capturing empirical phenomena and that of having closed-form option price
formulas. First, the arrival rates of new information, good or bad news, are different from the
“abnormal” vibrations of the asset price that are dependent on the current situation. In the
jump diffusion model, as described in Merton (1976) and Kou (2002), the abnormal vibrations
in price occur only due to the arrival of important information about the stock that has more
than a marginal effect on price. The Markov jump diffusion model with two states, the so-called
switched jump diffusion model, depends on the status of the economy, such as expansion or
contraction. In Figures 1 and 2, we compare the dynamic processes of the asset price under a
jump diffusion model and a switched jump diffusion model. In the jump diffusion model, the
jump rate is averaged in the years as shown in Figure 1. On the other hand, in the switched
jump diffusion model, the jump rates are different in different states as shown in Figure 2. The
jump rates are large in one state and small in the other.

Second, the jump diffusion model as well as the Markov jump diffusion model can be used
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Figure 2: The dynamic process of the underlying asset price under a switched jump diffusion
model

to describe defaultable risk in a financial market. This provides further motivation for including
jumps. In the jump diffusion model, there is a positive probability (default probability) of
immediate ruin, i.e., if the Poisson event occurs, the stock price falls to zero (cf. Samuelson,
1973; Merton, 1976, and Duffie and Singleton, 1999). In the switched jump diffusion model, we
describe the risk with two different probabilities. There are high and low default probabilities
of immediate ruin, and the jump rates are modeled by a two-state Markov modulated Poisson
process.

The remainder of this paper is organized as follows. In Section 2, we introduce the structure
of the model, and make the necessary assumptions in a general equilibrium framework. In
Section 3, we explore the empirical phenomena of the switched jump diffusion model, which
includes the leptokurtic and volatility clustering features. In Section 4, we first present a general
equilibrium framework of Lucas (1978) in the Markov jump diffusion model; we then provide a
formula for European call option price under the Markov jump diffusion model with a general
jump size distribution. In particular, a closed-form solution is given in the case of a default risk
and a lognormal jump size distribution. Further, using the closed-form option price formula, we
study numerical analysis for implied volatility and volatility surface. A sensitivity analysis of
the parameters to the option price is conducted as well. The conclusions are provided in Section
5. An essential point in this study is that we obtain the new transition probability for the new
Markov jump diffusion model. All proofs are provided in the Appendices.

2. GENERAL FRAMEWORK OF THE MODEL

We consider the general equilibrium framework of Lucas (1978) in a frictionless market, where
there is a representative consumer in a rational expectations economy that maximizes an objec-
tive function of the form

max
c
E

[∫ ∞

0

U(c(t), t)dt

]
, (2.1)

where E is the unconditional expectations operator and U(c(t), t) is the utility function, which is
continuously differentiable, strictly concave, and strictly increasing in consumption process c(t).
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Throughout this paper, for simplicity, we consider the power utility function. The assumptions
are listed as follows.

Assumption 1. The power utility function. Let the utility function be

U(c, t) =





e−θt c

a

a
if 0 < a < 1,

e−θt log c if a = 0,
(2.2)

where θ is the positive discount rate and a is the risk aversion parameter.

We assume that there are predictable, locally bounded, and self-financing feasible trading
strategies under the nonnegative wealth constraint at all times. For the agent, predictable
trading strategies is an informational constraint to choose portfolios at any time t based only
on the available information before t. Under locally bounded trading strategies, the cumulative
mean and variance of the investor’s portfolio remains finite in finite time so that the stochastic
integral for wealth is well defined. In the case of self-financing trading strategies, the portfolio
wealth at time t could be equal to the initial value of the portfolio plus trading gains, net of the
value of consumption between 0 and t. For the nonnegative wealth constraint, we rule out the
liability of the portfolio (borrowing without repayment) so that the agent’s wealth is sufficiently
high to cover it, as shown in Dybvig and Huang (1988), Naik and Lee (1990), and Kou (2002);
this eliminates all arbitrage opportunities in an equilibrium price system.

There exists an exogenous endowment process denoted by δ(t) that is available to the in-
vestor. If δ(t) is Markovian, it can be shown (cf. Stokey and Lucas, 1989) that the rational
expectations equilibrium price of the security p(t) must satisfy the Euler equation

p(t) =
E(Uc(δ(T ), T )p(T )|Ft)

Uc(δ(t), t)
, for all T ∈ [t, T0], (2.3)

where Uc is the partial derivative of U with respect to c, and T0 denotes a finite liquidation
date of the security. Instead, in equilibrium, the investor finds it optimal to simply consume the
exogenous endowment, δ(t), i.e., c(t) = δ(t) for all t ≥ 0. Under Equation (2.2), or for more
general utility functions, the rational expectations equilibrium price in Equation (2.3) becomes

p(t) =
E(e−θT (δ(T ))a−1p(T )|Ft)

e−θt(δ(t))a−1
. (2.4)

Assumption 2. The stochastic differential equation of the endowment. Under the physical mea-

sure P, the endowment follows a Markov jump diffusion model,

dδ(t)

δ(t−)
= µ1(t)dt+ σ1dW1(t) + d




Φ(t)∑

n=1

(Ỹn − 1)


 , (2.5)

where δ(t−) denotes the endowment at time t−, δ(t) denotes the endowment at time t, the drift

µ1(t) is the instantaneous return of δ(t) at time t, the volatility σ1 of the stock price is assumed

to be constant, W1(t) is assumed to be a one-dimensional standard Wiener process under the
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physical measure P, Φ(t) is a Markov modulated Poisson process with a finite state X ; further,

Ỹn is a sequence of jump sizes when the jump event occurs and is assumed to be independent for

the sequence, where the endowment is from δ(t−) to Ỹnδ(t−).

The resulting sample path for the endowment process will be continuous except at finite
points in time, where jumps occur with the new information and the jump rate depends on
the status of the economy. The drift term is a deterministic function of time in (2.5), and the
volatility is assumed to be a constant. This setting extends the previous work by Naik and Lee
(1990) and Kou (2002), in which case Φ(t) = N(t) is a Poisson process and µ1(t) = µ1 is a
constant. We refer to a Markov jump diffusion model as a switched diffusion model when there
are only two states in the underlying Markov chain. Under the general equilibrium framework,
we consider the possibility that asset prices are influenced by an exogenous endowment through
a series of correlated noise, which is characterized by the Brownian motion and jump size.

Assumption 3. The stochastic differential equation of the underlying asset price. The price of

an underlying asset S(t) also follows a Markov jump diffusion model, defined as

dS(t)

S(t−)
= µ(t)dt+ σdW (t) + d




Φ(t)∑

n=1

(Yn − 1)


 (2.6)

= µ(t)dt+ σ

(
ρdW1(t) +

√
1 − ρ2dW2(t)

)
+ d




Φ(t)∑

n=1

(Ỹ b
n − 1)


 , (2.7)

where W2(t) is a Brownian motion independent of W1(t), ρ is the constant correlation coefficient

of the underlying asset and the endowment, the drift µ(t) is the instantaneous return of S(t) at

time t, σ denotes the constant volatility of the asset; further, {Yn} is a sequence of jump sizes

when the jump event happens, which is connected through a power function b ∈ (−∞,∞), where

Yn = Ỹ b
n , and Φ(t) is the same Markov modulated Poisson process as the endowment process.

We observe that the same Markov modulated Poisson process Φ(t) affects both the en-
dowment process and the asset price process, and the jump sizes are related through a power
function, where power b ∈ (−∞,∞) is an arbitrary constant, Yn = Ỹ b

n . The Markov jump
diffusion model can be embedded in the rational expectations equilibrium requirement under a
Markovian assumption of the Brownian motion and the jump size in Section 4.

The Markov modulated Poisson process Φ(t) forms a particular class of doubly stochastic
Poisson processes where the underlying state is governed by a homogeneous Markov chain (cf.
Last and Brandt, 1995). We particularly consider a series of nonnegative numbers {λ1, λ2, · · · , λI},
where λi denotes the intensity of the doubly stochastic Poisson process Φ if the underlying
Markov chain X(t) is at state i for time t. In this case, {X(t), {Pi : i ∈ X}} is a Markov jump
process on the state space X = {1, · · · , I}, with transition rate Ψ(i, j) defined as

Ψ(i, j) =






α(i, j), i 6= j,

−
∑

j,j 6=i

α(i, j), otherwise, (2.8)

for i, j ∈ X . This Φ is called the Markov modulated Poisson process. In other words, the
conditional distribution of a point process Φ is P -almost surely equal to the distribution of a

5



Poisson distribution with the intensity function t→ λX(t). In other words,

P (Φ(t) = n|X) =
(
∫ t

0
λX(s)ds)

n

n!
exp[−

∫ t

0

λX(s)ds] P − a.s. (2.9)

From the Markovian structure of X(t), we can obtain the joint probability of X(t) and Φ(t) via
the Laplace inverse transform, which is given by Pij(n, t) := Pi(X(t) = j,Φ(t) = n) := P (X(0) =
i, X(t) = j,Φ(t) = n) at time t with initial X(0) = i for n ∈ Z+. Define Ψ := (Ψ(i, j)) and
P (n, t) := (Pij(n, t)), and denote Λ as an I × I diagonal matrix with diagonal elements λi. For
0 ≤ z ≤ 1, define

P ∗(z, t) =
∞∑

n=0

P (n, t)zn (2.10)

with P (n, 0) = (1{n=0}Dij), where Dij = 1, if i = j and 0, otherwise. Hence, P ∗(z, 0) = (Dij).
By using Kolmogorov’s forward equation, the derivative of P (n, t) becomes

d

dt
P (n, t) = P (n, t)(Ψ − Λ) + 1{n≥1}P (n− 1, t)Λ.

Further, its unique solution is
P ∗(z, t) = e[Ψ−(1−z)Λ]t, (2.11)

where

eA :=

∞∑

n=0

1

n!
An,

for any (I × I)-matrix A and A0 := (Dij). Using the Laplace inverse transform (2.10) and the
solution (2.11), we obtain the joint distribution of X and Φ at the time t as

P (n, t) =
∂n

n!∂zn
P ∗(z, t)|z=0. (2.12)

To compute (2.11), we use the numerical inversion method proposed by Abate and Whitt (1992),
which presents a version of the Fourier-series method for numerically inverting the probability
generating function, and obtain a simple algorithm with a convenient error bound from the
discrete Poisson summation formula.

Assumption 4. Jump size distribution. We define ζ
(l)
1 := E(Ỹ l − 1) and assume that

ζ
(a−1)
1 <∞, (2.13)

ζ
(a+b−1)
1 <∞, (2.14)

E(

Φ(t)∏

n=0

Ỹ a−1
n ) =

∞∑

n=0

I∑

i=1

I∑

j=1

(ζ
(a−1)
1 + 1)nπiPij(n, t) <∞, for all t > 0, (2.15)

and

E(

Φ(t)∏

n=0

Ỹ a+b−1
n ) =

∞∑

n=0

I∑

i=1

I∑

j=1

(ζ
(a+b−1)
1 + 1)nπiPij(n, t) <∞, for all t > 0, (2.16)
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where πi denotes the stationary distribution at state i, and a ∈ [0, 1) and b ∈ (−∞,∞) are

defined in Equations (2.2) and (2.7), respectively.

The assumption of (2.13) and (2.14) implies that the means of the jump sizes are finite
for the endowment and the asset prices under the first derivative of the power utility function.
Equations (2.15) and (2.16) guarantee that the means of the jump sizes in the Markov modulated
Poisson process are finite under the first derivative of the power utility function.

Two specific jump size distributions are considered in the following sections. First, we take
the immediate ruin as the jump event occurs (cf. Samuelson, 1973, and Merton, 1976). In other
words, if the Markov modulated Poisson event occurs, the stock price falls to zero. Thus,

Ỹ b
n =

{
0, if event occurs,

1, if event does not occur.
(2.17)

Next, the random variable Ỹ b
n is assumed to have a lognormal distribution as the jump event

occurs. Let σ2
y denote the variance of the logarithm of Ỹ1, and µy the mean of the logarithm of

Ỹ1. Note that Assumption 4 is satisfied in both cases.

Assumption 5. The discount rate θ of the utility function. The discount rate θ should be suffi-

ciently large such that

θ > −(1 − a)µ1(t) +
1

2
σ2

1(1 − a)(2 − a) + η̃(t), for t ∈ [0, T ], (2.18)

where η̃(t) := d log{E[

Φ(t)∏

n=1

Ỹ a−1
n ]}/dt.

This assumption guarantees that the term structure of the deterministic interest rate is
positive; this will be discussed in detail in Section 4. Note that when λ1 = λ2 = . . . = λI = λ

and as η̃(t) = d log{E[

Φ(t)∏

n=1

Ỹ a−1
n ]}/dt = λζ

(a−1)
1 , Assumption 5 reduces to θ > −(1 − a)µ1(t) +

1
2
σ2

1(1 − a)(2 − a) + λζ
(a−1)
1 , and the parallel assumption appears in Kou (2002).

Assumption 6. The deterministic interest rate. Let B(t, T ) be the price of a zero-coupon bond

with maturity date T . We assume that the interest rate

r(t) = lim
T→t

−d log(B(t, T ))

dT
(2.19)

is a deterministic function of t. Therefore,

B(t, T ) = e−
R T

t
r(s)ds. (2.20)

Note that in Assumption 3, the asset return contains the risk premium from the Brownian
motion and the Markov jump risk, which is the function of t. In an equilibrium setting, we
need to establish the relationship between the asset return and the interest rate; therefore, the
interest rate is assumed to be a deterministic function of time in Assumption 6. The details are
presented in Section 4.
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3. EMPIRICAL PERFORMANCE

3.1 Leptokurtic features

Recall that S(t) is defined in Equation (2.6). Solving this stochastic differential equation of
the asset price yields the dynamics of the asset price as follows:

S(t) = S(0) exp

{∫ t

0

(µ(s) − 1

2
σ2)ds+ σW (t)

} Φ(t)∏

n=1

Yn. (3.1)

By using Equation (3.1), if the time interval ∆t is small as in the case of daily observations, the
return can be approximated by ignoring the terms with an order higher than ∆t and by using
the expansion ex ≈ 1 + x+ x2/2. The dynamic return of the asset for a small ∆t is given by

∆S(t)

S(t)
≈ (µ(t) − 1

2
σ2)∆t+ σ(W (t+ ∆t) −W (t)) +

Φ(t+∆t)∑

n=Φ(t)

log Yn +
1

2
σ2(W (t+ ∆t) −W (t))2

≈ µ(t)∆t+ σZ
√

∆t+

Φ(t+∆t)∑

n=Φ(t)

log Yn,

where Z is the standard normal random variable. The probability of the Markov modulated
Poisson process Φ(t) with one jump from time t to t+ ∆t is

I∑

i=1

I∑

j=1

πiP (X(t) = i, X(t+ ∆t) = j,Φ(t+ ∆t) = 1) =

I∑

i=1

I∑

j=1

πiPij(1,∆t).

In addition, the probability of having more than one jump is o(∆t).

If the probability of one jump is smaller than o(∆t), then we can ignore the multiple jumps
and obtain

Φ(t+∆t)∑

n=Φ(t)

log Yn ≈





log Yn, with probability
I∑

i=1

I∑

j=1

πiPij(1,∆t),

0, with probability 1 −
I∑

i=1

I∑

j=1

πiPij(1,∆t).

The return, in Equation (3.1), can be approximately rewritten as

∆S(t)

S(t)
≈ µ(t)∆t+ σZ

√
∆t+HV, (3.2)

where H is a Bernoulli random variable with P (H = 1) =

I∑

i=1

I∑

j=1

πiPij(1,∆t), P (H = 0) =

1 −
I∑

i=1

I∑

j=1

πiPij(1,∆t), and V = log Y is a normal random variable with mean µy = E(log Y )

8



and variance σ2
y = var(log Y). Note that excluding the last term in Equation (2.6) reduces it

to the classical model of the geometric Brownian motion, with the return ∆S(t)/S(t) being
characterized approximately by a normal density.

The probability density of
∆S(t)

S(t)
is given by

f(x) = (1 −
I∑

i=1

I∑

j=1

πiPij(1,∆t))
1

σ
√

∆t
φ(
x− µ(t)∆t

σ
√

∆t
)

+(

I∑

i=1

I∑

j=1

πiPij(1,∆t))
1√

σ2∆t+ σ2
y

φ(
x− µ(t)∆t− µy√

σ2∆t+ σ2
y

),

(3.3)

where φ(·) is the standard normal density function. The mean of
∆S(t)

S(t)
is

E(
∆S(t)

S(t)
) = µ(t)∆t+ µy(

I∑

i=1

I∑

j=1

πiPij(1,∆t)), (3.4)

and the variance

var(
∆S(t)

S(t)
) = σ2∆t+ σ2

y(

I∑

i=1

I∑

j=1

πiPij(1,∆t))

+µ2
y(

I∑

i=1

I∑

j=1

πiPij(1,∆t))(1 − (

I∑

i=1

I∑

j=1

πiPij(1,∆t)).

(3.5)

An important feature of this asset pricing density is that as compared to the normal density
with identical mean and variance, it has a higher peak around the mean and two heavier tails;
in short, this asset pricing density has the leptokurtic feature. Moreover, the density is not
symmetric if the mean jump size µy is not zero; in fact, it is skewed to the left if µy > 0. These
features have been favored by many empirical investigations.

We now consider the density of the discrete return in a switched jump diffusion model and
compare the difference of this density with the normal density. In Equation (3.3), we consider
the normal density with mean (3.4) and variance (3.5). Figure 3.1 compares the overall shapes
of the two densities, Figure 3.2 details the shapes around the peak areas, and Figures 3.3 and
3.4 show the left and right tails. The dotted line is used for the normal density, and the solid
line is used for the switched jump diffusion model with probability density function f(x). The
parameters used in this case are as follows; the state I = 2, ∆t = 1 day = 1/250 year, σ = 20%
per year, µ(t)∆t = 0.06% per year, λ1 = 10 per year, λ2 = 1 per year, the transition rate
α1 = 0.9, α2 = 0.1, the jump size µy = −2%, and the jump volatility σy = 2%.

It appears that the jump parameters used are quite reasonable for a U.S. stock market. If
the Markov chain remains at state 1, there are approximately 10 jumps per year with an average
jump size of −2% and a jump volatility of 2%; if the Markov chain remains at state 2, there is
approximately one jump per year with an average jump size of −2% and a jump volatility of
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Figure 3: The dynamic process of the underlying asset price under a switched jump diffusion
model

2%. The transition rate is α1 = 0.9 of leaving state i for i = 1, 2, and α2 = 0.1. The leptokurtic
feature is highly evident under the switched jump diffusion model. The peak of the density f(x)
is approximately 30.9, whereas that of the normal density is approximately 29. The density f(x)
also has heavier tails than the normal density, particularly for the left tail, which could reach
−10%, while the normal density is basically confined within −6%, as shown in Figures 3.1 to
3.4. Additional numerical plots suggest that the feature of the higher peak and heavier tails
becomes more significant if either |µy| (the jump size),

∑I
i=1

∑I
j=1 πiPij(1,∆t) (the transition

probability), or σy (the jump volatility) increases.

3.2 Volatility clustering

A volatility clustering phenomena explored by Mandelbrot (1963) essentially implies that
large values of volatility are usually followed by large values and that small values are followed
by small ones. The GARCH models (Bollerslev, Chou, and Kroner, 1992; Engle, 1995) were
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Figure 4.1 Autocorrelation of daily returns in the switched jump diffusion model
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Figure 4.2 Autocorrelation of daily squared returns in the switched jump diffusion model

Figure 4: Clustering phenomenon under the switched jump diffusion model

among the first to produce the volatility clustering phenomenon. For a GARCH model,
{

rt = σtεt

σ2
t = a0 + a1σ

2
t−1 + a2ε

2
t

(3.6)

the squared volatility depends on the squared volatility in the last period and the squared
residual in the current. The model is covariance stationary if a1 + a2γ2 < 1, given the finite
second moment E(ε2

t ) = γ2; then, the stationary volatility is

σ2
t =

a0

1 − a1 − a2γ2
. (3.7)

Assuming E(ε4
t ) = γ4 <∞, the unconditional fourth moment of the return for the model exists

if and only if a2
2γ4 + 2a1a2γ2 + a2

1 < 1. According to this assumption, the k-th autocorrelation
of the squared return is

(a2γ2 + a1)
k a2γ2(1 − a2

1 − a1a2γ2)

(1 − a2
1 − 2a1a2γ2)

,

leading to positive autocorrelation in the volatility process with a rate of decay governed by
a2γ2 + a1 given the assumptions a2

2γ4 + 2a1a2γ2 + a2
1 < 1 and a1 + a2γ2 < 1. The closer a2γ2 + a1

is to 1, the slower will be the decay of the autocorrelation of σt.
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Cont (2005) investigates several economic mechanisms that have been proposed to explain
the origin of this volaitlity clustering in terms of the behavior of market participants and the
news arrival process. To apply the view of Cont (2005), a mechanism of heterogeneous arrival
rates of information is proposed for the origin of volatility clustering in Markov jump diffusion
models. Consider the case of a two-state Markov modulated Poisson process, a switched jump
diffusion model, and rewrite Equation (2.6) in discrete time as follows:

R(t) =






µ(t)∆t+ σ∆tZ(t) +

N1(∆t)∑

n=1

log Yn, if X(t) = 1,

µ(t)∆t+ σ∆tZ(t) +

N2(∆t)∑

n=1

log Yn, if X(t) = 2,

(3.8)

where Z(t) ∼ N(0, 1), log Yn ∼ N(µy, σ
2
y), N1(∆t) is the Poisson process with jump rate λ1∆t in

the interval time ∆t when the Markov chain X(t) remains at state 1, and N2(∆t) is the Poisson
process with jump rate λ2∆t in the interval time ∆t when the Markov chain X(t) remains at
state 2. Note that p11 (p22) is the transition probability from state 1 (2) to state 1 (2) in the
interval of time ∆t. ∆t may vary between a minute or seconds for tick data to several days.
For example if ∆t = 1 day, R(t) denotes the return of one day. To simplify the notations,
denote Vn, µ, σ, N1, and N2 as log Yn, µ(t)∆t, σ∆t, N1(∆t) and N2(∆t), respectively. Let

ξ̂(t) = (1{X(t)=1}, 1{X(t)=2})
′, V̂ (t) = (

N1∑

n=1

Vn,

N2∑

n=1

Vn)′, where 1 denotes the indicator function

and ′ denotes the transpose. In a matrix form, R(t) = µ+ σZ(t) + ξ̂′(t)V̂ (t).

According to the matrix form, the autocorrelation function of the return is computed as

ρk =
(p11 + p22 − 1)k(λ1 − λ2)

2µ2
y

(1−p11)(1−p22)
(2−p11−p22)2

(1−p11)
(2−p11−p22)

λ1σ2
y + (1−p22)

(2−p11−p22)
λ2σ2

y + σ2
. (3.9)

See Appendix A in details. When the jump rates are equal (λ1 = λ2), or p11 + p22 = 1, or the
mean of the jump size is zero (µy = 0), the autocorrelation function of the return is uncorrelated.
Further, we let µy = 0 and µ = 0; then, the autocorreltation function of the squared return will
be

ρ∗k =
(p11 + p22 − 1)k(1 − p11)(1 − p22)(λ1 − λ2)

2σ4
y

(2 − p11 − p22)2E
, (3.10)

where

E = 2σ4 + 4σ2σ2
y(

λ1(1 − p22)

(2 − p11 − p22)
+

λ2(1 − p11)

(2 − p11 − p22)
)

+σ4
y(

λ1(1 − p22)

(2 − p11 − p22)
+

λ2(1 − p11)

(2 − p11 − p22)
− 2λ1λ2(1 − p11)(1 − p22)

(2 − p11 − p22)2
).

The autocorrelation of the squared return is positive with a rate of decay governed by p11+p22−1.
The closer p11 + p22 − 1 is to 1, the slower will be the decay of the autocorrelation of squared
return. In other words, the feature of volatility clustering is a significant when p11 + p22 is close
to 2. Consider the equation of the dynamic return (3.8) with parameters λ1 = 0.02, λ2 = 0.2,

12



σ = 0.2√
250

, p11 = 0.999, p22 = 0.999, µ = 0, µy = 0, and σy = 0.05. The autocorrelation function
of the squared return decays very slowly in Figure 4.2, while the autocorrelation function of the
returns are almost zero in Figure 4.1.

4. OPTION PRICING: THEORY AND NUMERICAL ANALYSIS

4.1 General equilibrium for a Markov jump diffusion model

Suppose Assumptions 1-6 hold. In this subsection, we study the relationship of the deter-
ministic interest rate, the discount rate, and the return of endowment in Lucas’s equilibrium
setting. In addition, we obtain a risk neutral probability measure that depends on the utility
function (2.2).

Proposition 1 (1) The relationship of the deterministic interest rate and the endowment re-

turn in equilibrium is given by

r(t) = θ + (1 − a)µ1(t) −
1

2
σ2

1(1 − a)(2 − a) − η̃(t) > 0 for all t ∈ [0, T ]. (4.1)

(2) Recall that δ(t) follows Equation (2.5) at time t. Let Z(t) := e
R t
0
(r(s)−θ)dsUc(δ(t), t) =

e
R t
0
(r(s)−θ)ds(δ(t))a−1. Then, Z(t) is a martingale under P at time t, and

dZ(t)

Z(t−)
= −η̃(t)dt+ σ1(a− 1)dW1(t) + d




Φ(t)∑

n=1

(Ỹ a−1
n − 1)


 . (4.2)

Using Z(t), one can define a new probability measure dP∗/dP := Z(t)/Z(0). Under P
∗,

the Euler equation defined in (2.4) holds if and only if the asset price satisfies

S(t) = E∗(B(t, T )S(T )|Ft), for all T ∈ [t, T0]. (4.3)

Furthermore, the rational expectations equilibrium price of an European option with payoff

ψs(T ) at maturity T is given by

ψs(t) = E∗(B(t, T )ψs(T )|Ft)), for all t ∈ [0, T ]. (4.4)

The proof of Proposition 1 is provided in Appendix B.

Remarks: 1. If λ1 = λ2 = . . . = λI = λ, then η̃(t) = λζ
(a−1)
1 is a constant. Let Z(t) :=

ertUc(δ(t), t). Then, Equation (4.1) reduces to

r = θ + (1 − a)µ1 −
1

2
σ2

1(1 − a)(2 − a) − λζ
(a−1)
1 > 0,

and Equation (4.2) reduces to

dZ(t)

Z(t−)
= −λζ (a−1)

1 dt+ σ1(a− 1)dW1(t) + d




N(t)∑

n=1

(Ỹ a−1
n − 1)



 .
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This is the general equilibrium setting for jump diffusion models. cf. Kou (2002).

2. If αk → 0 for some given k ∈ X and αi → ∞, where {i : i 6= k, i ∈ X}, then

η̃(t) = λkζ
(a−1)
1 , and the results in Remark 1 still hold.

Theorem 1 Model (2.6) or (2.7) satisfies the equilibrium requirement (2.4) for the zero-coupon

bond and the asset price if and only if

µ(t) = r(t) + σ1σρ(1 − a) − η∗(t)

= θ + (1 − a)(µ1(t) − 1
2
σ2

1(2 − a) + σ1σρ) − η∗(t) − η̃(t),
(4.5)

where η∗(t) = d log



E∗(

Φ∗(t)∏

n=1

Ỹ ∗b
n )



/dt. If (4.5) is satisfied, then under P
∗, the equilibrium model

of the asset price is

dS(t)

S(t−)
= r(t)dt− η∗(t)dt+ σdW ∗(t) + d




Φ∗(t)∑

n=1

(Ỹ ∗b
n − 1)


 . (4.6)

Here, under P
∗, W ∗(t) is a new Brownian motion, Φ∗(t) is a new Markov modulated Poisson

process with transition probability given by

Qij(m, t) =
(ζ

(a−1)
1 + 1)mPij(m, t)

∞∑

n=0

I∑

i=1

I∑

j=1

(ζ
(a−1)
1 + 1)nπiPij(n, t)

,
(4.7)

and {Ỹ ∗
n , n ≥ 0} are i.i.d. random variables with P

∗-probability density function

feY ∗(y) =
1

(ζ
(a−1)
1 + 1)

ya−1feY (y).

The proof of Theorem 1 is provided in Appendix B.

Remarks: 3. Owing to the Markovian structure of the diffusion and Φ(t), which is also an
essential aspect of Lucas’s equilibrium setting, Φ∗(t) is still a Markov modulated Poisson process
with transition probability Qij(m, t). Therefore, it is an equilibrium model. Note that Pij(m, t)
remains the same in the new transition probability Qij(m, t) of (4.7), and the change is only
affected by the moments of the jump size. This is also coherent with a generalization of the
Girsanov theorem, as in Björk, Kabanov, and Runggaldier (1997), that a changing measure cor-
responds to a change of drift for the underlying Brownian motion and a change of the stochastic
intensity for the Markov modulated Poisson process.

4. If λ1 = λ2 = . . . = λI = λ, then η∗(t) = λ(ζ
(a+b−1)
1 − ζ

(a−1)
1 ) is a constant. Hence, under

P
∗, Equation (4.6) reduces to

dS(t)

S(t−)
= r(t)dt− λ(ζ

(a+b−1)
1 − ζ

(a−1)
1 )dt+ σdW ∗(t) + d




N∗(t)∑

n=1

(Ỹ ∗b
n − 1)



 , (4.8)
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where N∗(t) is the new Poisson process. This is the general equilibrium setting for jump diffusion
models. cf. Kou (2002).

5. If αk → 0 for some k ∈ X and αi → ∞, where {i : i 6= k, i ∈ X}, then the new Markov

modulated Poisson process reduces to the new Poisson process with jump rate λk(ζ
(a−1)
1 + 1).

Hence, η∗(t) = λk(ζ
(a+b−1)
1 − ζ

(a−1)
1 ), and the results in Remark 4 still hold.

Corollary 1 Suppose family Y of the distributions of the jump size Ỹ for the endowment process

δ(t) satisfies

Ỹ b ∈ Y and
1

ζ
(a−1)
1 + 1

· ya−1feY (y) ∈ Y , (4.9)

then the jump sizes for the asset price S(t) under P, and the jump sizes for S(t) under the

rational expectations risk neutral probability P
∗ all belong to the same family Y.

4.2 Option pricing formulas

In this subsection, we will derive the European call option price formula as well as a formula
for a European call option on a futures contract using the results in Section 4.1. The European
put option price formula can be obtained through put-call parity.

Denote C(·, ·, ·, ·, ·) as the Black-Scholes option price formula that includes five parameters,

namely, the asset price S(0) at time 0, strike price K, maturity T , interest rate 1
T

∫ T

0
r(t)dt, and

volatility σ. Further, denote B(0, T ) as the bond price in Assumption 6, S(T ) is the asset price
at time T . Then

C(S(0), K, T,
1

T

∫ T

0

r(t)dt, σ) = S(0)N(d(+)) −Ke−
R T
0 r(t)dt

N(d(−)),

where d(±) =
ln( S(0)

KB(0,T )
) ± 1/2σ2T

σ
√
T

. Let T ∗ be the delivery date, and denote the futures price

F (t, T ∗) as

F (t, T ∗) = e
R T∗

t
r(s)dsS(t) =

S(t)

B(t, T ∗)
, (4.10)

and define L(T ) = e−
R T
0

η∗(t)dt.

Theorem 2

(1) From Equation (4.4), the European call option is given by

MJc(0) =
∞∑

m=0

(
E∗(C(S(0)L(T )Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|Φ∗(T ) = m)
I∑

i=1

I∑

j=1

πiQij(m,T )

)
,

(4.11)
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where Ṽ b
m =

m∏

n=1

Ỹ ∗b
n .

(2) The European call option on a futures contract is given by

MJc
F (0) =

∞∑

m=0

(
E∗(C(F (0, T ∗)L(T )Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|Φ∗(T ) = m)

I∑

i=1

I∑

j=1

πiQij(m,T )

)
.

(4.12)

The proof of Theorem 2 is provided in Appendix C.

We present three degenerated cases of Equations (4.11) and (4.12) as follows.

Corollary 2

(1) If b→ 0 or Ỹ b → 1 with probability 1, then the pricing formulas (4.11) and (4.12) reduce

to the corresponding Black-Scholes formulas

MJc(0) → C(S(0), K, T,
1

T

∫ T

0

r(t)dt, σ), (4.13)

MJc
F (0) → C(F (0, T ∗), K, T,

1

T

∫ T

0

r(t)dt, σ). (4.14)

(2) When λ1 = λ2 = . . . = λI = λ, then the pricing formulas (4.11) and (4.12) reduce to the

Merton’s formulas (cf. Merton, 1976) with jump rate λ(ζ
(a−1)
1 + 1), as given below:

Jc(0) =
∞∑

m=0

(
E∗(C(S(0)e−λ(ζ

(a+b−1)
1 −ζ

(a−1)
1 )T Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|N∗(T ) = m)

e−λ(ζ
(a−1)
1 +1)T (λ(ζ

(a−1)
1 + 1)T )m

m!

)
, (4.15)

Jc
F (0) =

∞∑

m=0

(
E∗(C(F (0, T ∗)e−λ(ζ

(a+b−1)
1 −ζ

(a−1)
1 )T Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|N∗(T ) = m)

e−λ(ζ
(a−1)
1 +1)T (λ(ζ

(a−1)
1 + 1)T )m

m!

)
, (4.16)

where N∗(T ) is the new Poisson process with jump rate λ(ζ
(a−1)
1 + 1).

If λ = 0, then (4.15) and (4.16) reduce to the Black-Scholes formulas (4.13) and (4.14).

(3) If αk → 0 for some k ∈ X , and αi → ∞ for i ∈ X and i 6= k, then the pricing formulas

(4.11) and (4.12) reduce to (4.15) and (4.16) with intensity λk.
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When the jump size follows a default or a lognormal distribution, we provide explicit formulas
for (4.11) and (4.12) in Corollaries 3 and 4, respectively.

Corollary 3 Suppose that the jump size follows a positive default probability as Equation (2.17).

(1) The price of the European call option is

MJc
1(0) = C(S(0), K, T,

1

T

∫ T

0

(r(t) − Tη1(t))dt, σ), (4.17)

where η1(t) = d log

(
I∑

i=1

I∑

j=1

πiQij(0, t)

)
/dt.

(2) The price of the European call option on a futures contract is given by

MJc
F,1(0) = C(F (0, T ∗), K, T,

1

T

∫ T

0

(r(t) − Tη1(t))dt, σ). (4.18)

Note that when λ1 = λ2 = . . . = λI = λ, the pricing formulas (4.17) and (4.18) reduce to

the Merton’s formulas with jump rate λ(ζ
(a−1)
1 + 1), as given below:

Jc
1(0) = C(S(0), K, T,

1

T

∫ T

0

r(t)dt+ λ(ζ
(a−1)
1 + 1), σ), (4.19)

Jc
F,1(0) = C(F (0, T ∗), K, T,

1

T

∫ T

0

r(t)dt+ λ(ζ
(a−1)
1 + 1), σ). (4.20)

In particular, if λ = 0, Equations (4.11) and (4.12) reduce to the Black-Scholes formulas (4.13)
and (4.14), respectively. If αk → 0 for k ∈ X and αi → ∞ for i ∈ X and i 6= k, then the pricing

formulas (4.17) and (4.18) reduce to (4.19) and (4.20), respectively, with jump rate λk(ζ
(a−1)
1 +1).

We now consider two assets. One is the underlying asset that follows a diffusion model

dS2(t)

S2(t)
= µ2(t)dt+ σdW (t), (4.21)

and the other is that which follows a Markov jump diffusion model with the default probability
as

dS(t)

S(t−)
= µ(t)dt+ σdW (t) + d




Φ(t)∑

n=1

(Yn − 1)


 , (4.22)

where Y = Ỹ b satisfies Equation (2.17). In equilibrium, the deterministic return is µ2(t) =

r(t) + σ1σρ(1 − a), and the European call option price formula is C(S(0), T,K, 1
T

∫ T

0
r(t)dt, σ)

in the asset given by (4.21). In the asset expressed in (4.22), the deterministic return is
µ(t) = r(t) + σ1σρ(1 − a) − η1(t), where η1(t) < 0. Therefore, we have µ(t) > µ2(t) for all
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t > 0 in equilibrium, i.e., the second asset has the higher risk premium from the jump risk.
Hence, in the Markov jump diffusion model, the European call option price formula Equation
C(S(0), T,K, 1

T

∫ T

0
(r(t) − Tη1(t))dt, σ), with η1(t) < 0, will be higher than that of the asset

(4.21) with no jump. In particular, if λ1 = λ2 = · · · = λ, the return of the asset (4.22) is

µ(t) = r(t)+σ1σρ(1−a)+λ(ζ
(a−1)
1 +1) > µ2(t), and C(S(0), T,K, 1

T

∫ T

0
r(t)dt+λ(ζ

(a−1)
1 +1), σ)

> C(S(0), T,K, 1
T

∫ T

0
r(t)dt, σ). As shown in Merton (1973, 1976), the option price is an in-

creasing function of the interest rate; therefore, the option on a stock with a positive default
probability is more valuable than the one that has no default probability.

Corollary 4 If the jump size follows a lognormal distribution with location parameter µy and

scale parameter σ2
y, then the following holds:

(1) The European call option price is given by

MJc
2(0) =

∞∑

m=0

(
C(S(0), K, T,

1

T

∫ T

0

r(m, t, T )dt, σ(m))

I∑

i=1

I∑

j=1

πiQ
∗
ij(m,T )

)
, (4.23)

where the deterministic interest rate r(m, t, T ) = r(t)−Tη2(t)+mγ of the jump m times with the

parameter γ = µy + 1
2
σ2

y , and the variance of the asset price σ2(m) = σ2 +mσ2
y/T with jump m

times, Q∗
ij(m,T ) is the new transition probability of the jump m times from the state i at time 0 to

the state j at time T , denoted as Q∗
ij(m,T ) = (ζ + 1)mPij(m,T )/

∞∑

n=0

I∑

i=1

I∑

j=1

(ζ + 1)nπiPij(n, T ),

and the predictable process is η2(t) = d log

( ∞∑

n=0

I∑

i=1

I∑

j=1

(ζ + 1)nπiPij(n, t)

)
/dt.

(2) The European call option price on a futures contract is given by

MJc
F,2(0) =

∞∑

m=0

(
C(F (0, T ∗), K, T,

1

T

∫ T

0

r(t,m, T )dt, σ(m))

I∑

i=1

I∑

j=1

πiQ
∗
ij(m,T )

)
. (4.24)

Note that if ζ → 0 or µy → 0 and σ2
y → 0, the pricing formulas (4.23) and (4.24) reduce to

the Black-Scholes model expressed in (4.13) and (4.14), respectively.

4.3 Volatility smile and surface

The implied volatility should be constant, provided the Black-Scholes model is correct. How-
ever, volatility has a “smile” feature in many empirical phenomenon. In this subsection, we
illustrate that the Markov jump diffusion model can produce a “volatility smile” in a real data
set in the options market. The underlying asset is the IBM stock, priced at 62.66 on February
1; the maturity date is July 19, and the bond price is 0.9851 on February 1 according to the
U.S. Treasury Bill. The exercise price and call value is obtained from the historical data. If we
obtain the applicable parameter λ1 = 10, λ2 = 5, α1 = 0.9, α2 = 0.1, µy = −0.02, and σy = 0.02
from the stock data, then we can show the “volatility smile” in Figure 5.1 using the option data
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Figure 5.1 Implied volatility under the switched jump diffusion model
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Figure 5.2 Volatility surface under the switched jump diffusion model

Figure 5: “Volatility smile” and “volatility surface” under the switched jump diffusion model

and the pricing formula in Corollary 4, under the switched jump diffusion model with lognormal
distribution for the jump size.

Similarly, we can show the volatility surface against both maturity and strike in a three-
dimensional plot. In other words, we can consider σ(S, t) as a function of S and t. Figure 5.2
displays the price data of the IBM stock with five different maturity days. The call options were
traded on March 15, 2002 with nine strikes of 100, 105, 110, 115, 120, 125, 130, 135, and 140.
This implied surface represents the constant value of volatility that assigns each traded option
a theoretical value equal to the market value. The time dependence in the implied volatility
can be viewed as the time dependence of the volatility of the underlying asset. σ(S, t) deduced
from volatility surface at a specific time t∗ can be considered as it the local volatility surface.
This local volatility surface can be regarded as the market’s view of the future value of volatility
when the asset price is S at time t.

We should emphasize that the examples presented in Figures 5.1 and 5.2 are not empirical
tests of the switched jump diffusion model; they are only illustrations to show that the model
can produce a close fit to the empirical phenomenon.
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4.4 Sensitivity analysis

The option price depends on several parameters in a Markov jump diffusion model shown
in Equation (4.24) when the jump size follows a lognormal distribution. It would be helpful
to understand the impact of each changing parameter on the option price. Table 1 reports
the sensitivity of the parameters for the Markov jump diffusion model to the option prices. The
parametric values listed in the table are the stock prices with small perturbation, a 10% increase,
for the indicated parameter, with all other parameters fixed.

Table 1: Sensitivity analysis of the parameters to option prices

Base valuation Perturbed NIM
12.6040 Parameter SJc Difference
α1 1.1 12.5998 -0.0042
α2 1.1 12.6072 0.0032
λ1 5.5 12.6220 0.0180
λ2 1.1 12.6044 0.0004

− lnB(t, T ) 0.022 12.6721 0.0681
σ 0.22 13.0057 0.4017
µy -0.022 12.6230 0.0190
σy 0.022 12.6168 0.0128
T 0.55 12.8726 0.2686

The parameters of the base valuation are S(0) = 100, K = 90, T = 0.5,
α1 = 1, α2 = 1, λ1 = 5, λ2 = 1, − ln(B(0, 0.5)) = 0.02, σ = 0.2,
µy = −0.02, and σy = 0.02 and are truncated by 15. SJc is the option
price when the parameters increase by 10%, and “Difference” denotes the
difference in the option price between the base valuation and SJc when
the parameters increase by 10%.

In Table 1, the volatility σ has the most significant effect, although it is fixed and known
in most time periods. If parameter α1 increases by 10%, the Markov chain will leave state 1
rapidly such that the decrease in the jump rate reduces the option price, since the risk premium
decreases in the jump risk. Similarly, if α1 increases by 10%, the Markov chain will leave state
2 rapidly so that the increase in jump rate increases the option price. Regarding parameters λ1

and λ2, if one increases by 10% while the other one remains fixed, the increase in the jump rate
increases the option price. If the yield − lnB(t, T ) = 0.02 increases to − lnB(t, T ) = 0.022, then
the European option price increases. For the whole-time varying parameters such as λ1, λ2, α1,
α2, B(t, T ), µy, and σy, we observe that parameter σ has the most effect among the others.

5. CONCLUSIONS

In this paper, we propose a Markov jump diffusion model, which can capture the leptokurtic and
asymmetric features, volatility clustering, and the volatility smile. Under the general equilibrium
setting of Lucas for the Markov jump diffusion model, closed-form formulas of the prices for a

20



European option and a futures contract have been developed. When the jump size of a switched
jump diffusion model follows a lognormal distribution, we report numerical analysis in detail,
and provide a computation method via the numerical inversion method to calculate the option
prices.

For simplicity, in order to issue the formulas of (4.23) and (4.24) for the European call and
futures with a lognormal jump size in a Markov jump diffusion model, we must estimate the
parameters in the discrete time model, as indicated by Equation (3.8). We can apply the EM
(expectation and maximization) algorithm to maximum likelihood methods to estimate these
parameters. In the future, we will develop the EM algorithm in order to estimate and test the
empirical performance for the Markov jump diffusion model in order that it will be convenient
to value European options.

An exact closed-form formula provides useful insight into European option pricing in the
Markov jump diffusion model. It not only explains the impact of regime switching in the jump
rate on option pricing but also sheds light on analytical approximation, where it accelerates the
computation of European option pricing in the Markov jump diffusion model. It has a number
of further applications. For instance, it can be used to compute hedge ratios and implied Markov
jump diffusion model parameters, i.e., to calibrate the parameters using the implied volatility
surface. The approximation approach can facilitate empirical studies on index options, which
are, in many cases, European in style. This feature is worthy of further exploration and may
have many other applications.

APPENDIX A: Volatility Clustering in the Switched Jump Diffusion Model

Let λ1 6= λ, µy 6= 0, and p11 + p22 6= 0. The autocorrelation function of the return is

ρk =
cov(R(t), R(t− k))√

var(R(t))
√

var(R(t− k))

=
cov(µ+ σZ(t) + ξ̂′(t)V̂ (t), µ+ σZ(t− k) + ξ̂′(t− k)V̂ (t− k))√

var(R(t))
√

var(R(t− k))

=
cov(ξ̂′(t)V̂ (t), ξ̂′(t− k)V̂ (t− k))√

var(R(t))
√

var(R(t− k))
. (A.1)

To evaluate (A.1), we first compute var(R(t)) = var(µ+ σZ(t) + ξ̂′(t)V̂ (t)). Note that

var(µ+ σZ(t) + ξ̂′(t)V̂ (t)) = σ2 + var

(
1{X(t)=1}

N1∑

n=1

Vn + 1{X(t)=2}

N2∑

n=1

Vn

)

= σ2 +
(1 − p22)

(2 − p11 − p22)
λ1σ

2
y +

(1 − p11)

(2 − p11 − p22)
λ2σ

2
y +

(1 − p11)(1 − p22)

(2 − p11 − p22)2
(λ1 − λ2)

2µ2
y.(A.2)
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Next, we compute cov(ξ̂′(t)V̂ (t), ξ̂′(t− k)V̂ (t− k)), which equals

= E

(
(1{X(t−k)=1}

N1∑

n=1

Vn + 1{X(t−k)=2}

N2∑

n=1

Vn))(1{X(t)=1}

N1∑

n=1

Vn + 1{X(t)=2}

N2∑

n=1

Vn

)

−E(1{X(t−j)=1}

N1∑

n=1

Vn + 1{X(t−k)=2}

N2∑

n=1

Vn)E(1{X(t)=1}

N1∑

n=1

Vn + 1{X(t)=2}

N2∑

n=1

Vn).(A.3)

To compute (A.3), denote Mk
ij as the k-period-ahead transition probabilities from i to j, and

let νi, i = 1, 2, be the eigenvalues of the transition matrix

P =

[
p11 1 − p11

1 − p22 p22

]
.

A simple calculation yields that ν1 = 1, ν2 = −1 + p11 + p22, and

Mk
ii =

(1 − pjj) + νk
2 (1 − pii)

(2 − p11 − p22)
and Mk

ij =
(1 − pii) − νk

2 (1 − pii)

(2 − p11 − p22)
, for i 6= j.

By making use of a similar calculation as that in Hamilton (1994, p.683), we have

(A.3) = νk
2 (λ1 − λ2)

2µ2
y

(1 − p11)(1 − p22)

(2 − p11 − p22)2
. (A.4)

Putting equations (A.2) and (A.4) into equation (A.1), we obtain

ρk =
cov(ξ̂′(t)V̂ (t), ξ̂′(t− k)V̂ (t− k))√

var(R(t))
√

var(R(t− k))

=

(p11 + p22 − 1)k(λ1 − λ2)
2µ2

y

(1 − p11)(1 − p22)

(2 − p11 − p22)2

σ2 +
(1 − p22)

(2 − p11 − p22)
λ1σ

2
y +

(1 − p11)

(2 − p11 − p22)
λ2σ

2
y +

(1 − p11)(1 − p22)

(2 − p11 − p22)2
(λ1 − λ2)

2µ2
y

.

If the ∆t is very small, the autocorrelation function of the return is almost uncorrelated. In
particular, if we let µy = 0; then the autocorrelation function of the return will be uncorrelated.
Further, we let µ = 0, then the autocorrelation of function of the squared return will be

ρ∗k =
cov(R2(t), R2(t− k))√

var(R2(t))
√

var(R2(t− k))

=
cov((µ+ σZ(t) + ξ̂′(t)V̂ (t)2, (µ+ σZ(t− k) + ξ̂′(t− k)V̂ (t− k))2)√

var(R2(t))
√

var(R2(t− k))

=
cov((ξ̂′(t)V̂ (t))2, (ξ̂′(t− k)V̂ (t− k))2)√

var(R2(t))
√

var(R2(t− k))

=
(p11 + p22 − 1)k(1 − p11)(1 − p22)(λ1 − λ2)

2σ4
y

(2 − p11 − p22)2A
, (A.5)

22



where

var((R(t))2) = var((σZ + ξ̂′(t)V̂ (t))2)

= 2σ4 + 4σ2σ2
y(

λ1(1 − p22)

(2 − p11 − p22)
+

λ2(1 − p11)

(2 − p11 − p22)
)

+σ4
y(

λ1(1 − p22)

(2 − p11 − p22)2
+

λ2(1 − p11)

(2 − p11 − p22)
− 2λ1λ2(1 − p11)(1 − p22)

(2 − p11 − p22)
) = A

and

cov(R2(t), R2(t− k)) = cov(σZ(t) + ξ̂′(t)V̂ (t))2, (σZ(t− k) + ξ̂′(t− k)V̂ (t− k))2)

= cov(ξ̂′(t)V̂ (t))2, ξ̂′(t− k)V̂ (t− k))2)

=
(p11 + p22 − 1)k(1 − p11)(1 − p22)

(2 − p11 − p22)2
(λ1 − λ2)

2σ4
y

APPENDIX B: General Equilibrium for Markov Jump Diffusion Models

Proof of Proposition 1.

(1) Since B(T, T ) = 1, Equation (2.4) yields

B(t, T ) = e−θ(T−t)E((δ(T ))a−1)|Ft)

(δ(t))a−1
. (B.1)

By making use of

(
δ(T )

δ(t)
)a−1 = exp{(a− 1)

∫ T

t

(µ1(s) −
1

2
σ2

1)ds+ σ1(a− 1)(W1(T − t))}




Φ(T−t)∏

n=1

Ỹ a−1
n



 ,

E(




Φ(T−t)∏

n=1

Ỹ a−1
n


 |Ft) = E(E(E(E(

(
m∏

n=1

Ỹ a−1
n

)
|X(0) = i, X(t) = j,Φ(T − t) = m))))

=

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, T − t),

we have

B(t, T ) = exp
{
−(T − t)θ +

∫ T

t
(a− 1)(µ1(s) − 1

2
σ2

1)ds+ 1
2
σ2

1(a− 1)2(T − t)
}

×
(

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, T − t)

)

= exp{−
∫ T

t
r(s)ds}.
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Taking the logarithm, differentiating T , and limiting T → t, we get

r(t) = θ + (1 − a)µ1(t) −
1

2
σ2

1(1 − a)(2 − a)

− lim
T→t

d log

(
I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, T − t)

)

dT

= θ + (1 − a)µ1(t) −
1

2
σ2

1(1 − a)(2 − a) − lim
T→t

d log


E(

Φ(T−t)∏

n=1

Ỹ a−1
n )




dT

= θ + (1 − a)µ1(t) −
1

2
σ2

1(1 − a)(2 − a) − lim
T→t

d log


E(

Φ(T−t)∏

n=1

Ỹ a−1
n )




dT − t

dT − t

dT

= θ + (1 − a)µ1(t) −
1

2
σ2

1(1 − a)(2 − a) − η̃(t) > 0,

where η̃(t) = d log
(
E(
∏Φ(t)

n=1 Ỹ
a−1
n )

)
/dt = d log

(∑I

i=1

∑I

j=1

∑∞
n=0(ζ

(a−1)
1 + 1)nπiPij(n, t)

)
/dt or

e−
R t
0

η̃(s)ds = 1/
(∑I

i=1

∑I

j=1

∑∞
n=0(ζ

(a−1)
1 + 1)nπiPij(n, t)

)
.

(2) Note that Equation (B.1) implies that

e−
R T
t

r(s)ds = E(Uc(δ(T ), T )/Uc(δ(t), t)|Ft). (B.2)

By making use of Assumption 2 and Equation (4.1), we have

Z(t) = (δ(0))a−1 exp{
∫ t

0

(r(s) − θ)ds+ (a− 1)

∫ t

0

(µ1(s) − 1/2σ2
1)ds+ σ1(a− 1)W1(t)}




Φ(t)∏

n=1

Ỹ a−1
n





= (δ(0))a−1 exp{−
∫ t

0

η̃(s)ds− 1

2
σ2

1(a− 1)2t+ σ1(a− 1)W1(t)}




Φ(t)∏

n=1

Ỹ a−1
n


 ,

from which Equation (4.2) follows. Next, we need to prove that Z(t) is a martingale. Given
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0 < u < t,

E(Z(t)|F(u))

= E((δ(0))a−1 exp{−
∫ t

0

η̃(s)ds− 1

2
σ2

1(a− 1)2t+ σ1(a− 1)W1(t)}




Φ(t)∏

n=1

Ỹ a−1
n


 |F(u))

= (δ(0))a−1 exp{(−
∫ u

0

η̃(s)ds)}




Φ(u)∏

n=1

Ỹ a−1
n




I∑

k=1

E(exp{(−
∫ t

u

η̃(s)ds)}




Φ(t)∏

n=Φ(u)+1

Ỹ a−1
n



 , X(u) = k|F(u))

= Z(u)

I∑

k=1

E(exp{(−
∫ t

u

η̃(s)ds)}




Φ(t)∏

n=Φ(u)+1

Ỹ a−1
n



 , X(u) = k|F(u))

= Z(u)

(∑I

i=1

∑I

k=1

∑∞
n=0(ζ

(a−1)
1 + 1)nπiPik(n, u)

)

(∑I
i=1

∑I
j=1

∑∞
n=0(ζ

(a−1)
1 + 1)nπiPij(n, t)

)
(

I∑

j=1

∞∑

m=0

(ζ
(a−1)
1 + 1)mPkj(n, t− u)

)
.

= Z(u).

Hence, Z(t) is martingale. Now, by Equations (2.4) and (B.2), we have

ϕs(t) =
E(Uc(δ(T ), T ))

Uc(δ(t), t)
= e−

R T
t

r(s)dsE(
Z(T )

Z(t)
ϕs(T )|Ft) = B(t, T )E∗(ϕs(T )|Ft).
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Proof of Theorem 1.

By using the Girsanov theorem for the Markov jump diffusion model (see Björk, Kabanov,
and Runggaldier, 1997) we obtain, under P

∗, W ∗
1 (t) := W1(t)−σ1(a−1)t as a Brownian motion.

Further, under P
∗ the transition probability of Φ∗(t) = m given X(0) = i and X(t) = j is

Qij(m, t) =
(ζ

(a−1)
1 + 1)mPij(m, t)∑I

i=1

∑I

j=1

∑∞
n=0(ζ

(a−1)
1 + 1)nπiPij(n, t)

,

and Ỹ ∗
n has the probability density f ∗

eY (y) = 1
(ζa−1

1 +1)
ya−1feY (y).

We compute the pricing measure via exponential embedding for given Φ(t) = m, X(0) = i
and X(t) = j as follows:

dP∗(W ∗
1 (t),Φ∗(t) = m,X(0) = i, X(t) = j, Ỹ ∗

1 , · · · , Ỹ ∗
m)

= exp{−1
2
σ2

1(a− 1)2t−
∫ t

0
η̃(s)ds+ σ1(a− 1)W1(t)}

(
m∏

n=1

ya−1
n

)

·dP(W1(t),Φ(t) = m,X(0) = i, X(t) = j, Ỹ1, · · · , Ỹm)

= exp{−1
2
σ2

1(a− 1)2(t) + σ1(a− 1)W1(t)}dP(W1(t))

·

(
m∏

n=1

ya−1
n

)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

dP(Φ(t) = m,X(0) = i, X(t) = j, Ỹ1, · · · , Ỹm)

=
1√
2πt

exp{−(W1(t) − σ1(a− 1)t)2

2t
}

·

(
m∏

n=1

ya−1
n

)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

dP(Φ(t) = m,X(0) = i, X(t) = j, Ỹ1, · · · , Ỹm).

Then, the new Brownian motion will be W ∗
1 (t) := W1(t) − σ1(a − 1)t, and we integrate the

Brownian motion to obtain

dP∗(Φ∗(t) = m,X(0) = i, X(t) = j, Ỹ ∗
1 , · · · , Ỹ ∗

m)

=

(
m∏

n=1

ya−1
n

)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

dP(Φ(t) = m,X(0) = i, X(t) = j, Ỹ1, · · · , Ỹm).
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For the jump sizes, note that {Ỹ1, · · · , Ỹm} are i.i.d. random variables; therefore,

dP∗(Φ∗(t) = m,X(0) = i, X(t) = j, Ỹ ∗
1 , · · · , Ỹ ∗

m)

=
1

(ζ
(a−1)
1 + 1)

y
(a−1)
1 feY (y1) · · ·

1

(ζ
(a−1)
1 + 1)

y(a−1)
m feY (ym)

· (ζ
(a−1)
1 + 1)m

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)

n
πiPij(n, t)

dP(Φ(t) = m,X(0) = i, X(t) = j).

We integrate the behavior of Ỹn to obtain

dP∗(Φ∗(t) = m,X(0) = i, X(t) = j)

=
(ζ

(a−1)
1 + 1)m

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

dP(Φ(t) = m,X(0) = i, X(t) = j)

=
(ζ

(a−1)
1 + 1)mPij(m, t)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

.

Therefore, the new transition probability will be

Qij(m, t) =
(ζ

(a−1)
1 + 1)mPij(m, t)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

.

Further, the dynamics of S(t) are given by

dS(t)

S(t−)
= µ(t)dt+ σ{ρdW1(t) +

√
1 − ρ2dW2(t)} + d




Φ(t)∑

n=1

(Ỹ b
n − 1)




= {µ(t) + σ1σρ(a− 1)}dt+ σ{ρdW ∗
1 (t) +

√
1 − ρ2dW2(t)} + d




Φ(t)∑

n=1

(Ỹ b
n − 1)


 .

Since

E∗(




Φ∗(t)∏

n=1

Ỹ ∗b
n


 |Ft) = E∗(E∗(E∗(E∗(

(
m∏

n=1

Ỹ ∗b
n

)
|X(0) = i, X(t) = j,Φ(t) = m))))

=

I∑

i=1

I∑

j=1

∞∑

n=0

(
(ζ

(a+b−1)
1 + 1)

(ζ
(a−1)
1 + 1)

)nπiQij(n, t),
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we have

η∗(t) =

d log{E∗(




Φ∗(t)∏

n=1

Ỹ ∗b
n



)}

dt
=

d log




I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a+b−1)
1 + 1)nπiPij(n, t)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)




dt
(B.3)

or e−
R t
0

η∗(s)ds =

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a−1)
1 + 1)nπiPij(n, t)

I∑

i=1

I∑

j=1

∞∑

n=0

(ζ
(a+b−1)
1 + 1)nπiPij(n, t)

.

Hence, under the new Markov jump diffusion model, the dynamic process of S(t) is

dS(t)

S(t−)
= {µ(t) + σ1σρ(a− 1) + η∗(t)}dt− η∗(t)dt+ σ{ρdW ∗

1 (t) +
√

1 − ρ2dW2(t)}

+ d




Φ∗(t)∑

n=1

(Ỹ ∗b
n − 1)



 . (B.4)

If S(t) satisfies (B.4) in the equilibrium setting (4.3), we must have µ(t)+σ1σρ(a−1)+η∗(t) =
r(t), from which (4.5) follows. On the other hand, if (4.5) are satisfied under the measure P

∗,
then the dynamics of S(t) are given by

dS(t)

S(t−)
= r(t)dt− η∗(t)dt+ σ{ρdW ∗

1 (t) +
√

1 − ρ2dW2(t)} + d




Φ∗(t)∑

n=1

(Ỹ ∗b
n − 1)



 ,

from which Equation (4.6) follows.

APPENDIX C: Option Pricing Formulas

Proof of Theorem 2.

(1) Under the measure P
∗, the dynamic process of the asset price S(t) in Equation (4.6)

becomes

S(T ) = S(0) exp{
∫ T

0

(r(t) − η∗(t) − 1/2σ2)dt+ σW ∗(T )}




Φ∗(T )∏

n=1

Ỹ ∗b
n


 , (C.1)

where W ∗(T ) is a normal random variable with mean 0 and variance T , and the jump sizes

Ỹ ∗
n are i.i.d. random variables from distribution feY ∗(y). Under the conditions of X(0) = i and
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X(T ) = j and given the conditional jump times Φ∗(T ) = m, Ṽ b
m =

∏m

n=1 Ỹ
∗b
n , and Z is the

standard normal distribution, we can rewrite (C.1) as

S(T ) = S(0) exp{
∫ T

0
(r(t) − η∗(t) − 1/2σ2)dt+ σ

√
TZ}Ṽ b

m

with transition probability Qij(m,T ).

Hence, under the rational expectations setting, the equilibrium price (4.4) of the call option
in the Markov jump diffusion model is

MJc(0) = E∗(B(0, T )(S(T )−K)+|F0)

= B(0, T )E∗((S(T )1{S(T )>K}|F0) −B(0, T )KE∗1{S(T )>K}|F0)

=

∞∑

m=0

(
B(0, T )E∗(S(T )1{S(T )>K}|X(0) = i, X(T ) = j,Φ(T ) = m)

−B(0, T )KE∗(1{S(T )>K}|X(0) = i, X(T ) = j,Φ(T ) = m)
I∑

i=1

I∑

j=1

πiQij(m,T )

)

=

∞∑

m=0

(
E∗E∗((S(0) exp{

∫ T

0

(η∗(t) − 1/2σ2)dt+ σ
√
TZ}Ṽ b

m

1
{Z<

ln(S(0)e
−

R T
0 η∗(t)dt eV b

m/K)+
R T
0 r(t)dt−1/2σ2T

σ
√

T
}
|Φ(T ) = m)) −Ke−

R T
0 r(t)dt

E∗E∗((1
{Z<

ln(S(0)e
−

R T
0 η∗(t)dt eV b

m/K)+
R T
0 r(t)dt−1/2σ2T

σ
√

T
}
|Φ(T ) = m))

I∑

i=1

I∑

j=1

πiQij(m,T )

)

=

∞∑

m=0

(
E∗(S(0)L(T )Ṽ b

m1
{Z<

ln(S(0)L(T ) eV b
m/K+

R T
0 r(t)dt+1/2σ2T

σ
√

T
}
|Φ∗(T ) = m)

−B(0, T )KE∗(1
{Z<

ln(S(0)L(T ) eV b
m/K)+

R T
0 r(t)dt−1/2σ2T

σ
√

T
}
|Φ∗(T ) = m)

I∑

i=1

I∑

j=1

πiQij(m,T )

)

=

∞∑

m=0

(
E∗(S(0) exp{−

∫ T

0

η∗(t)dt}Ṽ b
mN(d∗(+)) − B(0, T )KN(d∗(−))|Φ∗(T ) = m)

I∑

i=1

I∑

j=1

πiQij(m,T )

)

=

∞∑

m=0

(
E∗(C(S(0)L(T )Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|Φ∗(T ) = m)

I∑

i=1

I∑

j=1

πiQij(m,T )

)
.
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Here, C(S(0)L(T )Ṽ b
m, K, T,

1
T

∫ T

0
r(t)dt, σ) is the option price in the Black-Scholes formula

with the stock price S(0)L(T )Ṽ b
m, the strike price K, the maturity day T , the deterministic

interest rate r(t), and the volatility of the stock price σ. Define E∗ as the expectation operator

under the distribution Ṽ b
m, and

d∗(±) =
log
(
S(0)L(T )Ṽ b

m/K
)

+
∫ T

0
r(t)dt± 1/2σ2T

σ
√
T

.

(2) Using Equations (4.10) and (4.4), we obtain

E∗(B(0, T )(F (T, T ∗))) = E∗(B(0, T )(
S(T )

B(T, T ∗)
−K)+)

=
1

B(T, T ∗)
E∗(B(0, T )(S(T )− B(T, T ∗)K)+)

=
1

B(T, T ∗)

∞∑

m=0

(
E∗(S(0) exp{−

∫ T

0

η∗(t)dt}Ṽ b
mN(d∗F (+)) −B(0, T )B(T, T ∗)KN(d∗F (−))

|Φ∗(T ) = m)
I∑

i=1

I∑

j=1

πiQij(m,T )

)

=

∞∑

m=0

(
E∗(C(F (0, T ∗)L(T )Ṽ b

m, K, T,
1

T

∫ T

0

r(t)dt, σ)|Φ∗(T ) = m)

I∑

i=1

I∑

j=1

πiQij(m,T )

)
,

where

d∗F (±) =
log
(
S(0)L(T )Ṽ b

m/(KB(0, T ∗))
)

+
∫ T

0
r(t)dt± 1/2σ2T

σ
√
T

=
log
(
F (0, T ∗)L(T )Ṽ b

m/K
)

+
∫ T

0
r(t)dt± 1/2σ2T

σ
√
T

.

This completes the proof.
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