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Abstract

Options are traded on all of the world’s major exchanges. Among
them, we study an important class of exotic options, power options, the
payoff depending on the price of the underlying asset raised to some power.
The feature of nonlinear payoffs of power options not only offer great
flexibility to investors but also apply to many applications. However, a
number of empirical studies have shown that the classical Black-Scholes
model has systematic biases across moneyness and maturity. We derive
semi-closed form solutions for the values of various power options under
Heston’s stochastic volatility model. The analytic solutions are derived
using stochastic calculus and the Fourier transform.

Keywords. option pricing, power options, stochastic volatility, Heston model.

1 Introduction

Based on no arbitrage arguments, Black and Scholes (1973) and Merton (1973)
derived a partial differential equation for the valuation of European stock op-
tions. The Black-Scholes (B-S) model assumed that the asset price follows a
geometric Brownian motion with a constant volatility. Because of its simplicity
and analytical tractability, B-S model has been widely used among practitioners
for pricing options.

However, a number of empirical studies have shown that the B-S model has
systematic biases across moneyness and maturity, see Fouque, Papanicolaou
and Sircar (2000), Lewis (2000) and references therein. One of major direction,
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to improve these deficiencies of the B-S framework, is to employ stochastic
volatility (SV) models due to random characteristics of the volatility. Various
SV models have been proposed and successful to reduce these biases, such as
Hull and White (1987), Scott (1987), Wiggins (1987), Stein and Stein (1991),
Heston (1993), and Melino and Turnbull (1990, 1991). Among them, we shall
focus on Heston’s SV model since it is analytically tractable and does not allow
negative volatility. Also it allows arbitrary correlation between underlying asset
return and its volatility.

Even though the success of SV models has been recognized among special-
ists, the values of exotic options under SV models have few analytic solutions.
We study an important class of exotic options, power options, i.e. the payoff de-
pending on the price of the underlying asset raised to some power. The feature
of nonlinear payoffs of power options not only offer great flexibility to investors
but also apply to many applications. As Tompkins (1999/2000) pointed out, the
leverage nature of power options are very useful for hedging of nonlinear price
risk and of changes in implied volatility. Tompkins (1999/2000) also mentioned
examples that the power option pays less than the package of several European
options to get the same level of payoff at expiry. The closed-form solution of the
power options under B-S model has been studied by Heynen and Kat (1996),
Tompkins (1999/2000), Wilmott (1998), and Esser (2003). Esser (2003) also
derived semi-closed form solutions of the power options in the case of an mean
reverting Ornstein-Uhlenbeck process as a volatility process. Macovschi and
Quittard-Pinon (2006) also mentioned the power options under Heston’s SV
models without detailed calculations of characteristic functions. Based on the
formulas of the power options, Macovschi and Quittard-Pinon (2006) introduced
polynomial options under some special assumptions.

We derive semi-closed form solutions for values of various types of power
options under Heston’s SV model. Inspired by Scott (1997), we use stochastic
calculus and the Fourier inversion formula to price the power options.

The paper is organized as follows: In Section 2, we describe the general
settings of Heston’s SV model. In Section 3 we drive semi-closed form solutions
for the values of power options and the valuation of various applications of power
options, such as capped power, powered options, and parabolic options. Finally
in Section 4 we summarize the results. All detailed proofs are presented in the
Appendix.

2 The Heston Stochastic Volatility Model

Let {St}t≥0 denote the price of the underlying asset on a probability space
(Ω,F ,P). Let us assume that the evolution of the underlying asset satisfies the
following stochastic differential equation:

dSt = µStdt+
√
vtStdWt, (1)
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where
√
vt is a volatility process and µ is a constant expected rate of return. We

assume that the process vt follows a mean-reverting square-root process, i.e.,

dvt = κ (θ − vt) dt+ σ
√
vtdZt, (2)

where θ is a constant long-run average of vt, κ is a constant rate of mean
reversion, σ is a constant volatility of volatility and these parameters satisfy

2κθ/σ2 > 1 (3)

to ensure that vt stays almost surely positive. Here Wt and Zt are two Brownian
motions with correlation coefficient ρ ∈ [−1, 1], i.e. dW tdZt = ρdt.

Based on no arbitrage principle, the value of any option U(s, v, t) satisfies
the following partial differential equation:

∂U

∂t
+

1
2
vs2

∂2U

∂s2
+ ρσvs

∂2U

∂s∂v
+

1
2
σ2v

∂2U

∂v2 + rs
∂U

∂s
− rU (4)

+
{
κ (θ − v)− Λ(s, v, t)σ

√
v
} ∂U
∂v

= 0 ,

where r > 0 is a constant riskless interest rate. Here Λ(s, v, t) is a market price
of volatility risk. Heston (1993) chose the market price of volatility risk to be
proportional to the volatility, i.e. Λ(s, v, t) = k

√
v for a constant k > 0. So,

the coefficient of ∂U
∂v in (4) becomes {κ (θ − v)− λv} where λ = kσ. The final

condition is
U(s, v, T ) = g(s),

where g(s) is a payoff function at expiry, T . For instance, European vanilla call
option has a payoff function g(s) = max(s−K, 0) with a given strike price K.

Under a risk-neutral martingale measure, Q, the equation (1) and (2) can
be written as

dSt = rStdt+
√
vtStdW t (5)

dvt = κ∗ (θ∗ − vt) dt+ σ
√
vtdZt,

where
κ∗ = κ+ λ, θ∗ =

κθ

κ+ λ
, dW tdZt = ρdt.

We use the stochastic differential equations (5) as the evolutionary model of the
underlying asset under Heston’s SV model. It is convenient to write

Wt = ρZt +
√

1− ρ2Ẑt, (6)

where Ẑt is a standard Brownian motion independent of Zt.

3



3 Power Options

Let us assume that the process {St}t≥0, the underlying asset price, follows the
stochastic differential equation (5) under the risk-neutral martingale measure,
Q. Consider a filtration {Ft}t≥0, where Ft in the smallest σ-algebra generated
by {Ws, Zs : s ≤ t}.

There are two main categories of power options: standard power option
and powered option. The standard power options have the payoff depending
on the price of the underlying asset raised to some power, while the powered
options have the standard payoff raised to some power. Macovschi and Quittard-
Pinon (2006) introduced some cases of polynomial payoffs including parabolic
and best options. The pricing formula of the standard power options derived in
Section 3.1 can be readily applied to those classes of polynomial payoffs. We first
derive the formula for standard power options in Section 3.1 and discuss powered
option in Section 3.2. The polynomial options are mentioned in Section 3.3.

3.1 Standard Power Options

The payoff of a standard power option is like a standard European option with
the price of the underlying asset raised to the power m > 0. Then under the
risk-neutral measure Q, the value of m-th power call option, Cmpower, can be
expressed as

Cmpower(St, vt, t) = EQ[e−r(T−t) max(SmT −K, 0)|Ft]

= EQ[e−r(T−t)SmT 1{SmT >K}|Ft]

−KEQ[e−r(T−t)1{SmT >K}|Ft] (7)

for a constant m > 0. Let us first fix a parameter K̂ by K̂ = K1/m depending on
a given constant m > 0 and a strike price K. Let us denote the first expectation
in (7) by

Cm(St, vt, t) := EQ[e−r(T−t)SmT 1{ST>K̂}|Ft], (8)

with a given constant m > 0. Using the above expressions, we can rewrite the
value of power option for a constant m > 0 by

Cmpower(St, vt, t) = Cm(St, vt, t)−KC0(St, vt, t),

where
C0(St, vt, t) = EQ[e−r(T−t)1{ST>K̂}|Ft].

In order to price various types of options incluing power options, we need to
compute the values of the expectation Cm in (8).

Using the techniques of stochastic calculus and the Fourier inversion formula,
we can compute the value of power options as follows.
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Theorem 3.1 Assume that the price of the underlying asset satisfies (5). Then
for a constant m satisfying the conditions in (18), the value of standard power
option can be written

Cmpower(St, vt, t) = Cm(St, vt, t)−KC0(St, vt, t)

where

Cm(St, vt, t) = e(m−1)r(T−t)−m ρ
σ (vt+κ

∗θ∗(T−t)) (9)
×Smt eAm(t,T ;ŝ1,ŝ2)vt+Bm(t,T ;ŝ1,ŝ2)F 1

m,

and C0(St, vt, t) = e−r(T−t)F 1
0 with the same K̂ as Cm. Here

F 1
m =

1
2

+
1
π

∫ ∞
0

Re

(
f1
m(φ)

exp(−iφ ln K̂)
iφ

)
dφ,

F 1
0 =

1
2

+
1
π

∫ ∞
0

Re

(
f1
0 (φ)

exp(−iφ ln K̂)
iφ

)
dφ

with K̂ = K1/m for m > 0, and for m ≥ 0

f1
m(φ) = eiφ(r(T−t)+x(t))−iφ ρσ (vt+κ

∗θ∗(T−t)) (10)
×e(Am(t,T ;s1,s2,γ)−Am(t,T ;ŝ1,ŝ2,γ̂))vt+Bm(t,T ;s1,s2,γ)−Bm(t,T ;ŝ1,ŝ2,γ̂),

where

Am(t, T ; s1, s2, γ) =
s2 (γ + κ∗) + s2e

γ(T−t) (γ − κ∗) + 2s1(eγ(T−t) − 1)
−s2(eγ(T−t) − 1)σ2 + γ − κ∗ + eγ(T−t) (γ + κ∗)

, (11)

and

Bm(t, T ; s1, s2, γ) =
2θ∗κ∗

σ2
ln
[

2γe(T−t)(γ+κ
∗)/2

−s2(eγ(T−t) − 1)σ2 + γ − κ∗ + eγ(T−t) (γ + κ∗)

]
(12)

with

s1 = (m+ iφ)(k
∗ρ
σ −

1
2 ) + 1

2 (m+ iφ)2(1− ρ2), s2 = (m+ iφ) ρσ
ŝ1 = m(k

∗ρ
σ −

1
2 ) + 1

2m
2(1− ρ2), ŝ2 = m ρ

σ

γ =
√
κ∗2 − 2s1σ2, γ̂ =

√
κ∗2 − 2ŝ1σ2.

(13)

Proof. We derive the valuation of the expectation Cm in (9). Let us first apply
the change of numeraire with the Radon-Nikodym derivative

dQ∗

dQ
= em

∫ T
0
√
vsdWs−

∫ T
0

1
2m

2vsds =: ξT . (14)

Since the asset price satisfies (5), we have

SmT = Smt exp

(
m

∫ T

t

(r − 1
2
vs)ds+m

∫ T

t

√
vsdWs

)

= Smt exp(mr(T − t)) exp

(∫ T

t

1
2
m(m− 1)vsds

)
ξT
ξt
.
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Therefore we can write

Cm(St, vt, t) = EQ[e−r(T−t)SmT 1{S(T )>K̂}|Ft]

= EQ
∗
[e(m−1)r(T−t)Smt e

∫ T
t

1
2m(m−1)vsds1{S(T )>K̂}|Ft]

= e(m−1)r(T−t)Smt E
Q∗

[e
∫ T
t

1
2m(m−1)vsds1{S(T )>K̂}|Ft]

Now let us define a measure Q1
m on FT such that for any A ∈ FT ,

EQ
1
m [1A] =

EQ
∗
[1A exp

(∫ T
t

1
2m(m− 1)vsds

)
|Ft]

EQ∗ [exp
(∫ T

t
1
2m(m− 1)vsds

)
|Ft]

.

Therefore we have

Cm(S, v, t) = e(m−1)r(T−t)Smt E
Q∗

[e
∫ T
t

1
2m(m−1)vsds1{S(T )>K̂}|Ft]

= e(m−1)r(T−t)Smt E
Q∗

[e
∫ T
t

1
2m(m−1)vsds|Ft]Q1

m(ST > K̂)

Let us denote the log of the stock price x(t) = lnS(t). Then applying Ito’s
formula, the the stochastic differential equation (5) can be written by

dx(t) = (r − 1
2
vt)dt+

√
vtdWt. (15)

We now define the characteristic function f1
m(φ) of xT underQ1

m by the following
conditional expectation

f1
m(φ) = EQ

1
m [eiφxT ]

=
EQ

∗
[exp

(∫ T
t

1
2m(m− 1)vsds+ iφxT

)
|Ft]

EQ∗ [exp
(∫ T

t
1
2m(m− 1)vsds

)
|Ft]

(16)

and the probability

F 1
m =: FQ

1
m = Q1

m(ST > K̂)

=
1
2

+
1
π

∫ ∞
0

Re

(
f1
m(φ)

exp(−iφ ln K̂)
iφ

)
dφ.

The value of f1
m(φ) in (16) have the formula (10) following Lemma 5.1 - 5.3 in

Appendix. Also from Lemma 5.3, we have for φ = 0

EQ
∗
[e
∫ T
t

1
2m(m−1)vsds|Ft] = e−m

ρ
σ (vt+κ

∗θ∗(T−t))eAm(t,T ;ŝ1,ŝ2,γ̂)vt+Bm(t,T ;ŝ1,ŝ2,γ̂).

Consequently we obtain

Cm(St, vt, t) = e(m−1)r(T−t)Smt E
Q∗

[e
∫ T
t

1
2m(m−1)vsds|Ft]Q1

m(ST > K̂)

= e(m−1)r(T−t)Smt e
−m ρ

σ (vt+κ
∗θ∗(T−t))

×eAm(t,T ;ŝ1,ŝ2,γ̂)vt+Bm(t,T ;ŝ1,ŝ2,γ̂)Q1
m(ST > K̂).

Therefore we conclude the theorem. 2
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Remark 3.2 As Kraft (2005, Proposition 5.1) proved, the characteristic func-
tions are well defined if

ŝ1 ≤ κ∗2

2σ2 and ŝ2 ≤ κ∗+γ̂
σ2 ,

Re(s1) ≤ κ∗2

2σ2 and Re(s2) ≤ κ∗+γ
σ2 ,

(17)

where s1, s2, γ, ŝ1, ŝ2, γ̂ are defined in (13). In other words, the power constant
m > 0 should satisfy the following two equations:

(1− ρ2)m2 + ( 2κ∗ρ
σ − 1)m− κ∗2

σ2 ≤ 0,
m ρ
σ ≤

κ∗+γ̂
σ2 .

(18)

Applying the above theorem, the value of other exotic options can be easily
computed. For instance, the gap call option can be computed

Gap call = EQ[e−r(T−t)(S(T )−K1)1{ST>K2}],

where K1,K2 are given constants, see Haug (2007). Note that the payoff from
this option can be negative, depending on the values of K1 and K2. Let us
denote K = K2 then we have the value of gap options:

Gap call = C1(St, vt, t)−K1C0(St, vt, t), (19)

where C0 and C1 are defined in Theorem 3.1.
Power options can lead to very high leverage and thus can cause very large

losses for the writer of these options. It is therefore common to cap the payoff,
min(max(SmT −K, 0), C), where a predefined constant C is the upper bound of
the payoff at expiry. For the closed-form solutions under B-S model see Esser
(2003), Haug (2007). The value of this option under Heston’s SV model has the
form

Capped power call = EQ[e−r(T−t) min(max(SmT −K, 0), C)|Ft]
= EQ[e−r(T−t)(SmT −K)1{SmT >K}|Ft]

− EQ[e−r(T−t)(SmT − (C +K))1{SmT >C+K}|Ft].

Using the result in Theorem 3.1, the value of the capped power option can be
computed as follows:

Corollary 3.3 Assume that the price of the underlying asset satisfies (5). Then
for a constant m satisfying the conditions in (18), the value of capped power
option can be written

Capped power call = C1
m(St, vt, t)−KC1

0 (St, vt, t)
− C2

m(St, vt, t) + (C +K)C2
0 (St, vt, t), (20)

where C1
m and C1

0 have the strike K̂ = K1/m like standard power option and
C2
m and C2

0 have the strike K̂ = (C +K)1/m for a constant m > 0.
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3.2 Powered Options

At maturity, a powered call option has the payoff max(ST−K, 0)m for a constant
m > 0 satisfying the conditions in (18). Then the value of powered call option
can be written

Powered call = EQ[e−r(T−t) max(ST −K, 0)m|Ft]
= EQ[e−r(T−t)(ST −K)m1{ST>K}|Ft]

=
m∑
j=0

(
m
j

)
(−1)jKjEQ[e−r(T−t)Sm−jT 1{ST>K}|Ft]

=
m∑
j=0

(
m
j

)
(−1)jKjCm−j(St, vt, t), (21)

where the functions Cm−j(St, vt, t) are defined in (9) for j = 0, ...,m.

3.3 Parabolic Options

We may extend the pricing formula of power options to ploynomial payoff such
as

max(R(ST )−K, 0),

where R(x) is a real polynomial. As Macovschi and Quittard-Pinon (2006)
showed closed-form formulas for some special cases when R(x)−K has exactly
n strictly positive roots, λ1, λ2, ..., λn such as λ1 < λ2 < ... < λn and R(x)−K
alternates its sign between two consecutive roots with R(x) − K ≤ 0 for 0 ≤
x ≤ λ1 (See Theorem 3 in Macovschi and Quittard-Pinon (2006)).

From the formula of Cm(St, vt, t) in (9), we can readily extend the pricng
formula to polynomial payoffs under Heston’s SV model. For instance consider
with degree 2, which introduced as parabolic option in Macovschi and Quittard-
Pinon (2006):

Parabolic call = EQ[e−r(T−t) max(h(ST −K1)(K2 − ST ), 0)|Ft]

where 0 < K1 < K2 and a constant h > 0. From the formula Cm(St, vt, t) in
(9), we have the value of parabolic option by

Parabolic call = h{C2
2 (St, vt, t)− C1

2 (St, vt, t)
+ (K1 +K2)(C1

1 (St, vt, t)− C2
1 (St, vt, t))}, (22)

where C1
1 and C1

2 have the strike K̂ = K
1/m
1 and C2

1 and C2
2 have the strike

K̂ = K
1/m
2 . One may set the constant h = 1/(K2 − K1) to standardize an

option. From the result in Theorem 3.1, other options introduced in Macovschi
and Quittard-Pinon (2006), such as best option, balloon option, can also readily
be extended to Heston’s SV model.

8



4 Conclusions

We derive the fast closed form solutions for the values of power options under
Heston’s stochastic volatility model. The semi-closed solutions are derived using
stochastic calculus and the Fourier transform.

5 Appendix

Lemma 5.1 Assume that the value of the underlying asset price satisfies (5).
Then for a constant m satisfying the conditions in (18),

EQ
∗
[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφxT

)
|Ft]

= eiφ(r(T−t)+x(t))−(m+iφ) ρσ (vt+κ
∗θ∗(T−t))EQ[es2v(T )+s1

∫ T
t
vsds|Ft], (23)

where

s1 = (m+ iφ)(
k∗ρ

σ
− 1

2
) +

1
2

(m+ iφ)2(1− ρ2), s2 = (m+ iφ)
ρ

σ
.

Proof. From the definition of the Radon-Nikodym derivative, ξT in (14), we
have

EQ
∗
[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφxT

)
|Ft]

= EQ[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφxT

)
ξT
ξt
|Ft]

= eiφxtEQ[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφ(xT − xt)

+m
∫ T

t

√
vsdWs −

∫ T

t

1
2
m2vsds

)
|Ft].

From the evolution of the asset price (15), we have

EQ[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφ(xT − xt) +m

∫ T

t

√
vsdWs −

∫ T

t

1
2
m2vsds

)
|Ft]

= EQ[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφ(

∫ T

t

r − 1
2
vsds+

∫ T

t

√
vsdWs)

+ m

∫ T

t

√
vsdWs −

∫ T

t

1
2
m2vsds

)
|Ft]

= eiφr(T−t)EQ[exp

(∫ T

t

−1
2

(m+ iφ)vsds+ (m+ iφ)
∫ T

t

√
vsdWs

)
|Ft]. (24)

9



Using the relation (6), we can write∫ T

t

√
vsdWs =

∫ T

t

√
vs

(
ρdZs +

√
1− ρ2dẐs

)
,

where Zs and Ẑs are independent Brownian motions. Introduce another filtra-
tion F̃t, the smallest σ-algebra generated by {Ws, s ≤ t, Zτ , τ ≤ T} then the
expectation in (24) can be written

EQ

[
E[exp(

∫ T

t

−1
2

(m+ iφ)vsds) exp((m+ iφ)
∫ T

t

√
vsdWs)|F̃t]|Ft

]

= EQ

[
exp

(∫ T

t

(−1
2

(m+ iφ)vsds

)
exp((m+ iφ)ρ

∫ T

t

√
vsdZs)

EQ[exp((m+ iφ)
√

1− ρ2

∫ T

t

√
vsdẐs)|F̃t]|Ft

]
.

Since we have∫ T

t

√
1− ρ2

√
vsdẐs ∼ N

(
0,
∫ T

t

(1− ρ2)vsds

)
,

and the independence of F̃t and Ẑ, we obtain

E

[
exp((m+ iφ)

√
1− ρ2

∫ T

t

√
vsdẐs)|F̃t

]
= exp

(
1
2

(m+ iφ)2(1− ρ2)
∫ T

t

vsds

)
.

Also from (5), we have

(m+ iφ)ρ
∫ T

t

√
vsdZs = (m+ iφ)

ρ

σ

(∫ T

t

dvs −
∫ T

t

k∗(θ∗ − vs)ds

)

= (m+ iφ)
ρ

σ
(v(T )− v(t)− k∗θ∗(T − t)) + (m+ iφ)

k∗ρ

σ

∫ T

t

vsds.

Consequently, we get

EQ
∗
[exp

(∫ T

t

1
2
m(m− 1)vsds+ iφxT

)
|Ft]

= eiφ(xt+r(T−t))−(m+iφ) ρσ (v(t)+k∗θ∗(T−t)EQ[es2v(T )es1
∫ T
t
vsds|Ft],

where

s1 = (m+ iφ)(
k∗ρ

σ
− 1

2
) +

1
2

(m+ iφ)2(1− ρ2), s2 = (m+ iφ)
ρ

σ
. (25)

2

The next Lemma 5.2 gives the concrete value of the expectation in the right
hand side of (23).
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Lemma 5.2 For complex values s1 and s2 satisfying (17), we have

EQ[es2v(T )+s1
∫ T
t
vsds|Ft] = eA(t,T )vt+B(t,T ), (26)

where the functions A(t, T ; s1, s2, γ) and B(t, T ; s1, s2, γ) satisfy

A(t, T ; s1, s2, γ) =
s2 (γ + κ∗) + s2e

γ(T−t) (γ − κ∗) + 2s1(e(T−t)γ − 1)
−s2(e(T−t)γ − 1)σ2 + γ − κ∗ + e(T−t)γ (γ + κ∗)

, (27)

and

B(t, T ; s1, s2, γ) =
2θ∗κ∗

σ2
ln
[

2γe(T−t)(γ+κ
∗)/2

−s2(e(T−t)γ − 1)σ2 + γ − κ∗ + e(T−t)γ (γ + κ∗)

]
(28)

with
γ =

√
k∗2 − 2s1σ2.

Proof. Let us define

y(vt, t, T ) = EQ[es2v(T )es1
∫ T
t
vsds|Ft].

Let us first assume that s1 and s2 are real values satisfying (17) i.e., s1 ≤
κ∗2/(2σ2), s2 ≤ (κ∗+

√
κ∗2 − 2s1σ2)/σ2. Then the process y is well-defined and

the Feynman-Kac stochastic representation theorem provides us that y is the
solution of the following partial differential equation

∂y

∂t
+ k∗(θ∗ − v)

∂y

∂v
+

1
2
σ2v

∂2y

∂v2
+ s1vy = 0 (29)

with an initial condition
y(v, T, T ) = es2v.

By analogy with Black-Scholes formula, we guess a solution of the form:

y(v, t, T ) = eA(t,T )v+B(t,T ).

By substituting the proposed value in (29), we obtain the following ordinary
differntial equations(ODEs) for A(t, T ) and B(t, T ):

A′ = k∗A− 1
2
σ2A2 − s1, A(0) = s2,

B′ = −k∗θ∗A, B(0) = 0.

The solution of the above Riccati equation can be written (27) for A(t, T ), for
example, see the analysis in Chesney, Elliott & Gibson (1993), Pitman and Yor
(1982). From an integration, we have (28) for B(t, T ).

Now consider complex values s1 and s2 satisfying

Re(s1) ≤ κ∗2

2σ2
, Re(s2) ≤

κ∗ +
√
κ∗2 − 2Re(s1)σ2

σ2
.
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Then the left hand side of (26) is well-defined and similarly we can show that
the equation (26) holds for complex values s1, s2 defined in (25). Therefore we
conclude the lemma. 2

From Lemma 5.1 and Lemma 5.2, we consequently obtain the following
formula:

Lemma 5.3 Assume that the value of the underlying asset price satisfies (5).
Then for a constant m satisfying the conditions in (18),

Q1
m(ST > K̂) =

1
2

+
1
π

∫ ∞
0

Re

(
f1
m(φ)

exp(−iφ ln K̂)
iφ

)
dφ. (30)

where

f1
m(φ) = eiφ(r(T−t)+x(t))−iφ ρσ (vt+κ

∗θ∗(T−t)) (31)
×e(Am(t,T ;s1,s2,γ)−Am(t,T ;ŝ1,ŝ2,γ̂))vt+Bm(t,T ;s1,s2,γ)−Bm(t,T ;ŝ1,ŝ2,γ̂).

Here the functions Am(t, T ; s1, s2, γ) and Bm(t, T ; s1, s2, γ) satisfy

Am(t, T ; s1, s2, γ) =
s2 (γ + κ∗) + s2e

γ(T−t) (γ − κ∗) + 2s1(e(T−t)γ − 1)
−s2(e(T−t)γ − 1)σ2 + γ − κ∗ + e(T−t)γ (γ + κ∗)

,

and

Bm(t, T ; s1, s2, γ) =
2θ∗κ∗

σ2
ln
[

2γe(T−t)(γ+κ
∗)/2

−s2(e(T−t)γ − 1)σ2 + γ − κ∗ + e(T−t)γ (γ + κ∗)

]
with

s1 = (m+ iφ)(k
∗ρ
σ −

1
2 ) + 1

2 (m+ iφ)2(1− ρ2), s2 = (m+ iφ) ρσ
ŝ1 = m(k

∗ρ
σ −

1
2 ) + 1

2m
2(1− ρ2), ŝ2 = m ρ

σ

γ =
√
κ∗2 − 2s1σ2, γ̂ =

√
κ∗2 − 2ŝ1σ2.

Proof. From the relation (16) in Theorem 3.1,

f1
m(φ) =

EQ
∗
[exp

(∫ T
t

1
2m(m− 1)vsds+ iφxT

)
|Ft]

EQ∗ [exp
(∫ T

t
1
2m(m− 1)vsds

)
|Ft]

.

Note that the expectation in the denomicator is the special case of the expec-
tation in numerator with φ = 0. This gives the values ŝ1 and ŝ2 from s1 and s2
respectively. Therefore we get

f1
m(φ) =

eiφ(r(T−t)+x(t))−(m+iφ) ρσ (vt+κ
∗θ∗(T−t))eAm(t,T ;s1,s2,γ)vt+Bm(t,T ;s1,s2,γ)

e−m
ρ
σ (vt+κ∗θ∗(T−t))eAm(t,T ;ŝ1,ŝ2,γ̂)vt+Bm(t,T ;ŝ1,ŝ2,γ̂)

= eiφ(r(T−t)+x(t))−iφ ρσ (vt+κ
∗θ∗(T−t))

×e(Am(t,T ;s1,s2,γ)−Am(t,T ;ŝ1,ŝ2,γ̂))vt+Bm(t,T ;s1,s2,γ)−Bm(t,T ;ŝ1,ŝ2,γ̂).

2
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