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Abstract

In this paper, we make use of a certain alternative numerical technique to solve the problem of pricing an

Asian option. Rogers and Shi (1995) have also looked at this problem and obtained bounds to the price.

In fact, the lower bound that they obtain are so close that it can be regarded as the true price itself.

However, they make use of a numerical integration technique to solve the problem. Now, this can be time

consuming and also might require sophisticated hardware and software. In this paper, we make use of a

simple expansion technique to solve he problem and avoid the numerical integration by replacing it with a

set of exact integrations. For the expansions, we use the algebraic package MAPLE.
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1 Introduction

In this paper, we try to price the Asian option directly through a set of exact integrals. The problem is

similar to the problem tackled by Rogers and Shi (1995). In fact, the lower bounds that they obtain are

so close that it can be regarded as the true price itself. However, they make use of a numerical integration

technique to solve the problem.

2 Problem Definition

Rogers and Shi assumes that at time t, the price of a risky asset St is given by

St = S0exp
(
σBt −

1
2
σ2t+ ct

)
, (1)
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where, Bt is a standard Brownian motion, σ2 is the instantaneous variance. Also, c is a constant. They

assume also that under an equivalent martingale measure c = r, the riskless interest rate (see Harrison

and Kreps (1979) and Harrison and Pliska (1981)). The problem that Rogers and Shi looked at is that of

computing the value of an Asian (call) option with maturity T and the strike price F written on the risky

asset St. Mathematically, this is the same as calculating

E(Y − F )+, (2)

where, Y is defined by

Y =
∫ T

0

Sudu. (3)

and St is defined by equation 1.

3 Calculations

Without loss of generality, we take t = 1. Like Rogers and Shi, we define the function of interest as

f(x) = (x− F )+ = max([x− F ], 0).

Here f is convex in nature and defined exactly in the same manner as by Rogers and Shi. We are interested

in finding

E(f(Y )),

where Y is defined by equation 3. We try to find a lower bound to the price of the option (similar to Rogers

and Shi), rather than calculating the price of option directly. We thus have

E(f(Y )) = E[E(f(Y )|Z)] ≥ E[f(E(Y |Z))], (4)

where, Z is the conditioning factor used. Rogers and Shi discusses some choice of Z from an empirical stand

point, but a more detailed discussion on the choice of Z is available in Basu (1999) - an outline is provided

in the Appendix at the end of this paper. We shall further assume that Z, the conditioning factor, is suitably

normalised. The conditioning factor used here is similar to the one used by Rogers and Shi with t = 1 and

is given by

Z =

∫ 1

0
Bsds√

Var(
∫ 1

0
Bsds)

,

where Var(
∫ 1

0
Bsds) = 1

3 .

The lower bound to the price of the option as calculated by Rogers and Shi is given by

E[E(f(Y |Z))] = E

{[
E

(∫ 1

0

exp
(
σBu −

1
2
σ2u+ ru

)
du|Z

)
− F

]+}
. (5)
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Thus, like Rogers and Shi, we are interested in finding

E

[∫ 1

0

exp
(
σBu −

1
2
σ2u+ ru

)
du|Z

]
. (6)

This is similar to the lower bound of the price as found by Rogers and Shi.

Now, to find the expectation as defined by equation (6), we first find the following.

E(Bu|Z) = kuZ, (7)

ku = Cov(Bu, Z) =
Cov(Bu,

∫ 1

0
Bsds)√

Var(
∫ 1

0
Bsds

=
√

3(u− u2

2
), (8)

Var(Bu|Z) = σ2(u− k2
u). (9)

Once we have these values, we are then interested in finding, conditionally on Z, the expected value of

E[
∫ 1

0

eσBu−
1
2σ

2u+rudu|Z] =
∫ 1

0

exp
(
ru+ σkuZ −

3
2
σ2(u− u2

2
)2
)
du

=
∫ 1

0

{
exp

(
ru+ σ

√
3
(
u− u2

2

)
Z − 3

2
σ2

(
u− u2

2

)2
)}

du.

Writing k = r
σ , we have the lower bound to the price of the asset, conditionally on Z, as∫ 1

0

{
exp

(
kσu+ σ

√
3
(
u− u2

2

)
Z − 3

2
σ2

(
u− u2

2

)2
)}

du =
∫ 1

0

g(k, σ, u, z)du say. (10)

Rogers and Shi performed a numerical integration at this stage in order to obtain the price of the option

conditionally on Z and then finally the expectation is taken over Z to obtain the final price of the option.

However, at this stage that we make use of an expansion argument and differ from the approach of Rogers

and Shi. This is done so as to allow us to avoid the numerical integrations involved.

We expand the exponential term, g(k, σ, u, z), in equation (10) in terms of σ, and retain terms up to the

fourth power of σ. Thus, we have, conditionally on Z = z,

g(k, σ, u, z) = g1(k, σ, u, z) +O(σ5),

where,

g1(k, σ, u, z) = 1 +
(
ku+

√
3zu− 1

2

√
3zu2

)
σ

+
{
−3

2
u2 +

3
2
u3 − 3

8
u4 +

1
2
k2u2 + ku2

√
3z − 1

2
ku3
√

3z +
3
2
z2u2 − 3

2
z2u3 +

3
8
z2u4

}
σ2

+
{
− 1

16
z3u6
√

3 +
3
8
z2u5k − 3

2
z2u4k +

3
8
z3u5
√

3 +
1
2
k2u3

√
3z − 1

4
k2u4

√
3z

+
3
2
z2u3k +

1
2
z3u3
√

3− 3
4
z3u4
√

3 +
1
6
k3u3 − 3

8
ku5 +

3
16

√
3zu6

−3
2
ku3 +

3
2
ku4 − 3

2

√
3zu3 +

9
4

√
3zu4 − 9

8

√
3zu5

}
σ3
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+
{
−9

4
z2u4 +

9
8
u4 − 9

4
u5 +

27
16
u6 − 3

4
k2u4 +

3
4
k2u5 − 3

16
k2u6 +

9
2
z2u5 +

3
16
z2u6k2 − 3

4
z2u5k2

+
3
16
ku7
√

3z − 3
2
ku4
√

3z +
9
4
ku5
√

3z − 3
16
z4u7 − 1

16
z3u7
√

3k − 9
8
ku6
√

3z − 3
4
z4u5+

9
16
z4u6 +

3
8
z4u4 − 3

4
z3u5k

√
3 +

3
8
z3u6k

√
3− 1

12
k3u5

√
3z +

1
2
z3u4k

√
3 +

1
6
k3u4

√
3z

+
3

128
z4u8 +

3
4
z2u4k2 − 27

8
z2u6 +

9
8
z2u7 − 9

64
z2u8 +

1
24
k4u4 +

9
128

u8 − 9
16
u7

}
σ4. (11)

Next we integrate out u from (11) and re-arrange the equation so that we have a polynomial in z. Thus, we

have ∫ 1

0

g1(k, σ, u, z)du =
1

105
σ4z4 +

(√
3[

93
4480

σ4k +
1
35
σ3]
)
z3

+
(
− 2

35
σ4 +

29
560

σ4k2 +
11
80
σ3k +

1
5
σ2

)
z2

+
(√

3[
5
24
σ2k +

1
3
σ +

3
40
σ3k2 − 279

4480
σ4k − 3

35
σ3 +

7
360

σ4k3]
)
z

+
(

1− 1
5
σ2 +

1
35
σ4 − 29

560
σ4k2 +

1
24
σ3k3 − 11

80
σ3k +

1
6
σ2k2 +

1
120

σ4k4 +
1
2
k

)
= g2(k, σ, z) say.

We are thus left with expressions in terms of k, σ and z. Treating k and σ as constants, or known values, we

thus have a 4th degree polynomial in z.

As stated earlier, we are interested in finding the lower bound to price of the option (as was Rogers and Shi)

given by

E(E(Y − F )+|Z) = E[g2(k, σ, z)− F ]+,

where F is the strike price of the option. Now, the strike price value is grouped with the coefficient of z0

in the polynomial g2(k, σ, z). The next thing that we need to do is to find the roots of this 4th degree

polynomial in z. Now, being a 4th degree polynomial, it can have at most 4 real roots. Let these be ρ1, ρ2,

ρ3 and ρ4. Without loss of generality, let us assume that

ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4.

Our objective is to calculate the price of the option in the region where the function E(Y −F |Z) is positive.

This is the area defined by the intervals (−∞, ρ1), (ρ2, ρ3) and (ρ4,∞). In case, the polynomial has some

imaginary roots, we ignore them and concentrate on the real roots only.

Let us define the coefficient of zj by aj for j = 0, 1, 2, 3, 4. Thus, we have,

a0 = 1− 1
5σ

2 + 1
35σ

4 − 29
560σ

4k2 + 1
24σ

3k3 − 11
80σ

3k + 1
6σ

2k2 + 1
120σ

4k4 + 1
2k − F,

a1 =
√

3[ 5
24σ

2k + 1
3σ + 3

40σ
3k2 − 279

4480σ
4k − 3

35σ
3 + 7

360σ
4k3],

a2 = − 2
35σ

4 + 29
560σ

4k2 + 11
80σ

3k + 1
5σ

2,
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a3 =
√

3[ 93
4480σ

4k + 1
35σ

3],

a4 = 1
105σ

4.

Knowing the values of r, σ and F, we know k = r
σ . Once we know the values of k, σ and F, we can easily

find the roots of the polynomial in z. Having obtained the value of ρ1, ρ2, ρ3 and ρ4 to calculate the value

of the option, we then need to calculate

4∑
j=0

∫ ρ1

−∞
ajz

j 1√
2π
e−

z2
2 dz +

4∑
j=0

∫ ρ3

ρ2

ajz
j 1√

2π
e−

z2
2 dz +

4∑
j=0

∫ ∞
ρ4

ajz
j 1√

2π
e−

z2
2 dz

=
4∑
j=0

aj

∫ ρ1

−∞
zj

1√
2π
e−

z2
2 dz +

4∑
j=0

aj

∫ ρ3

ρ2

zj
1√
2π
e−

z2
2 dz +

4∑
j=0

aj

∫ ∞
ρ4

zj
1√
2π
e−

z2
2 dz.

≥
4∑
j=0

aj

∫ ∞
ρ4

zj
1√
2π
e−

z2
2 dz. (12)

Here, aj is the co-efficient of zj and being independent of z can be taken outside the integral.

Since we are interested in the lower bound to the price, we look at

4∑
j=0

aj

∫ ∞
ρ4

zj
1√
2π
e−

z2
2 dz, (13)

where ρ4 is the largest of the real roots. Furthermore, in practice the contribution from

4∑
j=0

aj

∫ ρ1

−∞
zj

1√
2π
e−

z2
2 dz +

4∑
j=0

aj

∫ ρ3

ρ2

zj
1√
2π
e−

z2
2 dz,

is negligible and hence can be ignored. This fact is also reflected in the results obtained, as shown in the

tables (Tables 1 - 4).

Being interested in the lower bound of the price as given by equation (13), we are thus interested in the

following integrals; ∫ ∞
ρ

z0 1√
2π
e−

z2
2 dz = 1− Φ(ρ),∫ ∞

ρ

z
1√
2π
e−

z2
2 dz =

1√
2π
e−

ρ2

2 ,

∫ ∞
ρ

z2 1√
2π
e−

z2
2 dz =

ρe−
ρ2

2 +
√

2π(1− Φ(ρ))√
2π

,

∫ ∞
ρ

z3 1√
2π
e−

z2
2 dz =

2 + ρ2

√
2π

e−
ρ2

2 ,

∫ ∞
ρ

z4 1√
2π
e−

z2
2 dz =

ρ3e−
ρ2

2 + 3ρe−
ρ2

2 + 3
√

2π(1− Φ(ρ))√
2π

.

Finally, the only thing that remains to be done to calculate the value of the lower bound of the option is to

multiply the appropriate coefficients of z, aj (j = 0, 1,2,3,4) with the corresponding values of the integrals
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and add them up. To obtain an approximation to the price of the asset, all that needs to be done is to put

the strike price of the option at 0. Thus, in effect one needs to calculate

a0[1− Φ(ρ4)] + a1
1√
2π
e−

ρ24
2 + a2[

ρe−
ρ24
2 +
√

2π(1− Φ(ρ4))√
2π

] + a3[
2 + ρ2

4√
2π

e−
ρ24
2 ]

+a4[
ρ3
4e
− ρ

2
4
2 + 3ρ−

ρ24
2

4 + 3
√

2π(1− Φ(ρ4))√
2π

] = Ω(r, σ, F ) say. (14)

This is because k = r
σ and ρ is a function of k, σ and F.

The values obtained using this method is given in Tables 1 to 4. The values of σ and r as well as the strike

price b are exactly the same as the ones used by Rogers and Shi (1995). In fact, we also give the values of

the Asian option obtained by Rogers and Shi. We give the values which they denote by LB2 - according to

them, it is the closest approximation to the true price.

4 Conclusion and Remarks

The prices calculated by using this approach for the Asian options are exactly similar to the ones calculated

by using the conditioning factor approach - one can easily see that in the data shown in tables 1 - 4 where

the price obtained by this method is compared with the Rogers and Shi (using conditioning factor) price.

This method has a few distinct advantages. First of all, it is very fast and can provide output in real time

and does not need to perform any numerical integration. Secondly, and more importantly, all calculation in

this approach can be carried out on such simple machines as a programmable calculator. The only care that

needs to taken is to ensure that it has the facility to calculate the roots of a polynomial. Though the method

involves the calculation of the roots of a 4th degree polynomial, packages exist for it and can be done very

easily. Further, the alternative would be to make use of two numerical integrations and thus obtaining the

roots of the polynomial in z seems to be much better option.

This method can be easily extended to price zero coupon bonds as well as options on zero coupon bonds

(see Basu (1999) for further details).
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6 Tables

The following tables show the comparison of the values obtained by the alternative method of valuing an

Asian option as contrasted to the values obtained by Rogers and Shi (1995). The values obtained by the

alternative method is given as in the calculated price.

Table 1 : σ = 0.05

r Strike Price Calculated Price Rogers & Shi Price
0.05 95 7.178 7.178

100 2.716 2.716
105 0.337 0.337

0.09 95 8.809 8.809
100 4.308 4.308
105 0.958 0.958

0.15 95 11.094 11.094
100 6.794 6.794
105 2.744 2.744

Table 2 : σ = 0.1

r Strike Price Calculated Price Rogers & Shi Price
0.05 90 11.951 11.951

100 3.641 3.641
110 0.331 0.331

0.09 90 13.385 13.385
100 4.915 4.915
110 0.630 0.630

0.15 90 15.399 15.399
100 7.028 7.028
110 1.413 1.413
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Table 3 : σ = 0.2

r Strike Price Calculated Price Rogers & Shi Price
0.05 90 12.596 12.595

100 5.763 5.762
110 1.989 1.989

0.09 90 13.831 13.831
100 6.777 6.777
110 2.545 2.545

0.15 90 15.642 15.641
100 8.408 8.408
110 3.555 3.554

Table 4 : σ = 0.3

r Strike Price Calculated Price Rogers & Shi Price
0.05 90 13.952 13.952

100 7.944 7.944
110 4.070 4.070

0.09 90 14.983 14.983
100 8.827 8.827
110 4.695 4.695

0.15 90 16.512 16.512
100 10.208 10.208
110 5.728 5.728

7 Appendix: Choice of an appropriate conditioning factor

Earlier in the paper, we have used a conditioning factor argument to price the option - rather obtain the

lower bound to the price of the option. The motivation of using the conditioning factor approach was derived

from the use of a similar technique by Rogers and Shi to value an Asian option. Rogers and Shi have not

given any mathematical justification for the choice of the conditioning factor - they just state that they tried

a number of conditioning factors and the one used by them was found to perform the best. Here, we try to

provide a mathematical justification to the conditioning factor used - incidentally the one used in this paper

based on the justification that follows is similar to the one used by Rogers and Shi. We first try try to find

a general form of the conditioning factor for a general Gaussian distribution and then show the exact form

for the Brownian Motion case.
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Let us define

f(U) = [U −K]+ = max([U −K], 0) (15)

where U is a random variable and K is a constant (the strike price). Note that f is convex. In general, we

are interested in finding

E(f(U)];

and in particular, in the case of pricing of Rogers and Shi problem of valuing of Asian options,

U = X.

Further, X is as

X =
∫ 1

0

eσYsds

where {Ys, 0 ≤ s ≤ 1} is a stochastic process and σ is the instantaneous variance of the process Ys.

Using the fact that the unconditional expectation is the expected value of the conditional expectation and

also Jensen’s Inequality, we have

E[f(U)] = E[E{f(U)|Z}] ≥ E[f(E{U |Z})] (16)

where, Z is another suitably normalised random variable used for conditioning purposes.

The lower bound in the equation (16) is not guaranteed to be good. However, an estimate the error made

using the following argument. For any random variable U, we have,

0 ≤ E(U+)− E(U)+

=
1
2

(E(|U |)− |E(U)|)

≤ 1
2
E(|U − E(U)|)

≤ 1
2

√
Var(U).

This implies that for the Rogers and Shi case, we have

0 ≤ E
[
E([X −K]+|Z)− E([X −K]|Z)+

]
≤ 1

2
E
[√

Var([X −K]|Z)
]
. (17)

Further, using Cauchy - Schwarz inequality, we have from equation (17)

1
2
E
[√

Var([X −K]|Z)
]
≤ 1

2

√
E [Var([X −K]|Z)] =

1
2

√
E [Var(X|Z)]. (18)

Thus, in order to minimise the error made by using the lower bound as an approximation to the true value

as given in equation (16), we try to choose the conditioning factor Z such that

E [Var(X|Z)] (19)
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is minimised.

We now look at the exact form of the conditioning factor that minimises the expected value of the conditional

variance. We look at a general Gaussian process and try to obtain the conditioning factor that minimises

the expected conditional variance.

Let {Ys, 0 ≤ s ≤ 1} be a general Gaussian process, where Ys =
∫∞
−∞ L(s, u)dBu subject to the constraint

sup
s

(
∫ ∞
−∞

L2(s, u)du ≤ ∞). Also, let the conditioning variable, in general, be Z, where

Z =
∫ ∞
−∞

a(u)dBu, (20)

a(•) is so chosen that it satisfies the condition
∫∞
−∞ a2(u)du = 1. This condition ensures that the variance of

the conditioning factor is 1. Bu is a standard Brownian motion. We are interested in finding

E(
∫ t

0

eσYsds|Z) and Var(
∫ t

0

eσYsds|Z) (21)

where σ2 is the instantaneous variance of the process. For this, we require the following terms : E(Ys|Z),

Var(Ys|Z) and Cov(Ys, Yv|Z).

Our objective is to find Z such that E(Var(
∫ 1

0
eσYsds|Z)) minimum.

Now, for 0 ≤ s ≤ 1, we have

E(Ys|Z) = Z

∫ ∞
−∞

L(s, u)a(u)du (22)

Var(Ys|Z) =
∫ ∞
−∞

L2(s, u)du−
(∫ ∞
−∞

L(s, u)a(u)duds
)2

(23)

Cov(Ys, Yv|Z) =
∫ ∞
−∞

L(s, u)L(v, u)du−
∫ ∞
−∞

L(s, u)a(u)du
∫ ∞
−∞

L(v, u)a(u)du (24)

Thus, we can easily compute E(
∫ 1

0
eσYsds|Z) and E(

∫ 1

0
eσYsds

∫ 1

0
eσYvdv|Z). This will led us to the compu-

tation of Var(
∫ 1

0
eσYsds|Z) and then subsequently E(V ar(

∫ 1

0
eσYsds|Z)).

Simplifying, we thus get

E(V ar(
∫ 1

0

eσYsds|Z)) = A−B (25)

A =
[{∫ 1

0

∫ 1

0

{
exp

(
1
2
σ2

[∫ ∞
−∞

L2(s, u)du+
∫ ∞
−∞

L2(v, u)du
])

exp

(
σ2

∫ ∞
−∞

L(s, u)L(v, u)du
)}

dvds

}
and

B =
∫ 1

0

∫ 1

0

exp

{
1
2
σ2

[∫ ∞
−∞

L2(s, u)du+
∫ ∞
−∞

L2(v, u)du
]}

exp

{
σ2

∫ ∞
−∞

L(s, u)a(u)du
∫ ∞
−∞

L(v, u)a(u)du
}
dvds

Now to minimise the expected value of the conditional variance, we need to maximise the second term of

equation (25), given by B. This is because the other part of equation (25) does not involve any a(u) and
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hence is fixed for fixed values of σ. Further σ is assumed to be small, thereby allowing the linearisation to

be carried out. On linearisation of the integrand in B, we have∫ 1

0

∫ 1

0

{
1 +

σ2

2

(∫ ∞
−∞

L2(s, u)du+
∫ ∞
−∞

L2(v, u)du
)

+ σ2

∫ ∞
−∞

L(s, u)a(u)du
∫ ∞
−∞

L(v, u)a(u)du+O(σ4)
}
dvds.

(26)

Now, equation (26) contains some terms independent of a(s). These terms are fixed and hence B is maximised

by maximising the terms involving a(u) in equation (26). This is the same as maximising(∫ 1

0

∫ ∞
−∞

L(s, u)a(u)duds
)2

,

which is the same as maximising ∫ 1

0

∫ ∞
−∞

L(s, u)a(u)duds

subject to the constraint
∫∞
−∞ a2(s)ds = 1 , i.e. the variance of the conditioning factor is 1. On changing the

order of integration of the function to be maximised, we are required to maximise
∫∞
−∞

∫ 1

0
L(s, u)dsa(u)du

subject to the constraint
∫∞
−∞ a2(s)ds = 1. This implies that the optimal

a(u) ∝
∫ 1

0
L(s, u)ds : u ≤ 1

⇒ Z =
∫ ∞
−∞

a(u)dBu =
∫ ∞
−∞

∫ 1

0

L(s, u)dsdBu : u ≤ 1.

Finally, we use the theory described above to obtain the exact form of the conditioning factor Z when the

Gaussian process follows a Brownian Motion. Here,

L(s, u) =

 1 : 0 ≤ u ≤ s
:

0 : otherwise

Thus, we have, Z =
∫ 1

0

∫ 1

u
dsdBu =

∫ 1

0
(1− u)dBu =

∫ 1

0
Yudu, where {Yu, 0 ≤ u ≤ 1} is a Brownian Motion.
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