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Abstract

As an important economic index, interest ratesam®umed to be constant in the Black
and Scholes model (1973); however, they actuallgtélate due to economic factors. Using a
constant interest rate to evaluate derivatives stoahastic model will produce biased results.
This research derives the LIBOR market model withnp risk, assuming that interest rates
follow a continuous time path and tend to jump eésponse to sudden economic shocks. We
then use the LIBOR model with jump risk to priceQaanto Range Accrual Interest Rate
Swap (QRAIRS). Given that the multiple jump proesssare independent, we employ
numerical analysis to further demonstrate the erke of jump size, jump volatility, and jump
frequency on the pricing of QRAIRS. Our resultswhonegative relation between jump size,
jump frequency, and the swap rate of QRAIRS, bpositive relation between jump volatility
and the swap rate of QRAIRS. When new informatioerges, the resulting increase in jump
size reduces the value of LIBOR, which in turn losvéhe value of QRAIRS. Similarly, the
value of QRAIRS declines when the jump frequencyLBBOR increases. This is because
jump frequency is associated with higher unceryaiigk, and the market pays out a premium
for bearing such risk. On the other hand, when jurofatility increases, both parties must
agree to a higher swap rate because the floattegoeyer is subsidized by the fixed rate payer
for bearing risk.

Keywords: Stochastic model in continuous time ies¢rate, LIBOR market model, jump
risks, Quanto Range Accrual Interest Rate Swap (IBSA

* Corresponding author: Shin-Yun Wang, DepartmehtFHmnance, National Dong Hwa
University, 1, Sec. 2, Da-Hsueh Rd., Shou-Feng,9udlien, Taiwan. Tel: (03)863-3136; Fax:
(03)863-3130; e-mail: gracew@mail.ndhu.edu.tw.



Using aLIBOR Market Model with Jump Risk to
Price Quanto Range Accrual Interest Rate Swap

1. Introduction

Interest rates constitute an important economie@xindcand unexpected movement in
interest rates may cause changes in the pricinfinahcial assets. Therefore, interest rate
swaps are often used by investors to alter theposure to interest rate risk. Since interest
rate swaps are a major instrument in global finaneiarkets, the ability to price interest rate
derivatives accurately is of great importance.

First introduced by Vasicek (1977), the short ratedel following a mean reverting
process may produce negative interest rates. Toconee this disadvantage, Cox, Ingersoll
and Ross (1985) (CIR) introduce a model in whicpestations, risk aversion, investment
alternatives, and preferences about the timingoosamption all play a role in determining
bond prices. By further assuming that all interas¢ claims are priced contingent on only the
short rate, CIR derive an equilibrium pricing modkat relies on a continuous arbitrage
argument.

Ho and Lee (1986) are the first to incorporateiscaunt function into the pricing of
contingent claims. Given a term structure, theirdeloderives the subsequent stochastic
movement of the term structure such that the mowernsearbitrage-free. However, the short
rate movement is assumed to be constant, whichtseigua failure to derive an interest rate
that is always consistent with the market intenede. Therefore, Hull and White (1990)
incorporate the discount function into the Vasicekdel and relax the constant short rate
assumptions of Ho and Lee (1986) to derive the fanter equilibrium term structure model,

which is capable of determining a short rate predésat is consistent with the current term



structure of interest rateBurthermore, Ho and Lee (1986), and Hull and W(i®@90) apply
term structure equilibrium models to the pricing difcount bonds. In these models, all
discount bonds are priced relative to the stocbastort rate such that there are no arbitrage
opportunities in their trading. Researchers hawveesideveloped such long-term interest rate
models as the instantaneous forward rate modeltfkidarrow and Morton, 1992) and the
LIBOR market model (Brace, Gatarak and Musiela, 729%ll based on the no-arbitrage
condition.

Merton (1976) points out that since stock price atyics do not follow a continuous
sample path, they should be modeled as a “jumpfes® with a non-continuous sample path
that reflects the impact of the emergence of ingmdrtnew information. Later, research
increasingly focused on the interest rate jumpuditin model. Shikarawa (1991) employs a
pure jump model to price derivatives; Bjork, Kabarend Runggaldier (1997) extend the
Heath, Jarrow and Morton (1992) “drift conditiord tncorporate marked point process to
derive the instantaneous forward rate jump-diffasinodel. The jump size in the marked
point process is assumed to be drawn from a comtimdistribution with multiple jump
processes, each of which is associated with a aohgtmp value scaled by time-deterministic
jump volatility. Such a model allows for solvingrfa no-arbitrage condition and a risk-neutral
probability measurement. Glasserman and Kou (28@8jies the arbitrage-free dynamics of
interest rates in the presence of jumps and ddfusUsing their formulas, they demonstrate
the impact of jumps on the implied volatility oftamest rate swaps. Finally, following the
model of Bjork, Kabanov and Runggaldier (1997), a&&ila and To (2003) propose an
instantaneous forward rate jump-diffusion model.séming that multiple marked point
processes are independent and follow a PoissornegspdChiarella and To (2003) derive
no-arbitrage pricing of interest rate futures insk-neutral condition. Furthermore, they use

the full-information-likelihood function to provéné pricing accuracy of interest rate futures
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after incorporating the jump process.

The use of interest rate with jump risk is more gistent with real world observations
(e.g., the emergence of important economic infoiomadften results in discontinuous interest
rate movement). For example, China recently in@éamterest rates to cool down an
overheated economy that resulted from the maintnah low interest rates to lure foreign
investment. Figure 1 shows that movements in LIBf@&dn 1998 to 2005 did not follow a
smooth path and were discontinuous. Prior to Dee#rB, 1998, fluctuations in interest rates
tended to be small, ranging between 4.9% and S5Hi8@ever, interest rates suddenly jumped
to 7.25%~7.27% in late-December 1998, returninghtir previous level shortly thereafter.
Hence, movements in interest rates are often nob#mbut rather, discontinuous—they tend

to jump following unexpected world events.

Therefore, using a constant interest rate over mtimaous time period to evaluate
derivatives in a stochastic model will produce bsesults. The present research has two
objectives. We first derive the LIBOR market modéth jump risk assuming that interest
rates tend to jump in response to sudden econoacks. We then use this LIBOR model
with jump risk to price a Quanto Range Accrual tatd Rate Swap (QRAIRS). Given that the
multiple jump processes are independent of eacér,otte then employ numerical analysis to
demonstrate the impact of jump size, jump volatiéind jump frequency on the pricing of the
QRAIRS. Our results show a negative relation betwgenp size, jump frequency, and the
swap rate of QRAIRS, but a positive relation betv@emp volatility and the swap rate of

QRAIRS.

This paper proceeds as follows. QRAIRS and the masggumptions are introduced in
Section 2. Section 3 incorporates the interest jahp process to derive the LIBOR market

model with jump risk. The QRAIRS pricing model iBen derived to incorporate the



influence of jump size, jump volatility, and jumgefuency. Numerical analysis demonstrating
the relationship between swap rate and jump simapjfrequency, and jump volatility are

presented in Section 4. Section 5 details our amnah.
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Figurel. Weekly LIBOR: US Dollars

Data source: Economagic.com: Economic Time Sehigs;//www.economagic.com.

2. The Quanto Range Accrual Interest Rate Swap (QRAIRS) Contract

Consider a hypothetical 1-year QRAIRS initiated §n with a termination dateT,,
between counterparties A and B. We assume A admeeay B at a fixed interest rate per
annum on a notional principal amount df,$and in return B agrees to pay A the 3-Month
USD LIBOR rate on the same notional principal antottence A is the fixed-rate payer and
B is the floating-rate payer. We further assume thia agreement specifies that payments are
to be swapped every 3 months and that the intesiestK, is compounded annually. There are
four swaps each year. A schematic of this swapeageat is shown in Figure 2. If the LIBOR

falls within K; andKj;, A would pay B an amount equal td~%K/4. This is the interest on



the $ principal for 3 months at interest rdfe On the other hand, B would pay A interest on
the ¥ principal at the 3-month LIBOR rate. That is, B wa pay A an amount equal to
$FxaxN/D. K, represents interest rate flooK, is the interest rate cag denotes the
fixed rate;F is the notional principalN shows the total number of calendar days in theogeri

between swaps; and is the total number of calendar days in the yé8ee Table 1 and

Figure 2)
Table 1. The content of a Quanto Range AccruakésteRate Swap
Notional principal F
Currency USD ($)
Trade type Quanto Range Accrual Interest Rate Swap
Trade date T
Effective date T,
Termination date T,
Duration 1 year
Fixed rate payer A
Fixed rate K

Payments are to be swapped every 3 months;

Fixed rate payment dates there are four exchanges of payment.

Fixed rate count convention Actual/360
Reset date The first day of each trading date
Floating rate payer B

axg, N is the total number of calendar days in

Floating rate payment . )
Y pay the period between swags,is the total number

of calendar days in a year.

Quanto range accrual interest rate interva[ K, K,

Floating rate 3-Month USD LIBOR

K/4

v

A(fixed rate payer) B(floating rate payer)

A

axN/D

Figure 2. The contract form of QRAIRS



3. LIBOR Market Model with Jump Risk and the Pricing of QRAIRS

Merton (1976) argues that investors react swittlytte arrival of important information,
hence the sample path of stock prices does natfgdtie continuity property. To be sure,
stock price dynamics can be decomposed into twopoments: (1) The “normal” variations
in stock prices due to factors such as interest catanges, temporary imbalances between
supply and demand, and mild changes in the economilook. These factors often cause
small changes in stock prices, which can be modéled standard geometric Brownian
motion characterized by a constant variance per afniime and a continuous sample path.
This type of stock price change is called the ‘@sfbn” process. (2) “Abnormal” variations in
stock prices that result from the sudden emergehaaportant information, often resulting in
dramatic stock price changes. Typically, such imfation is specific to the firm or industry;
this type of price change is called a “jump” praces

The jump process is also applicable to interest tanges. In the next section, we
construct an instantaneous forward rate jump-difiusmodel based on the framework of
Bjork, Kabanov, and Runggaldier (1997). Assuminat timultiple marked point processes are
independent and follow the Poisson process, werparate the jump dynamics in the LIBOR
stochastic process such that the instantaneousafdrwate process ofif (t,T) can be

described as

df (LT) = @ (. Tt + o TIW () + 20 X TN, ), (1)

1st

2nd

where a represents the changes in the instantaneous fornate; o is the standard
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deviation of instantaneous forward ratdyV(t) stands for the Wiener process of forward rate
in t; dN;(t) is the i Poisson process with expected valdgit , where i=1,2,... 1 ;
h(t,x,T)is thei™ function of the forward rate variations, where1,2,... r; and random
variable x stands for the jump size of forward rate. Thetfesmponent of Eq. (1) is the
“normal” variation in interest rate caused by fastguch as a temporary imbalance between
the supply of and demand for deposits/loans, cgusmall changes in the instantaneous
forward rate. This component can be modeled byadstrd geometric Brownian motion. The
seconccomponent of Eqg. (1) is the “abnormal” variationimterest rate due to the emergence
of important new information about interest ratessulting in dramatic impact on the
instantaneous forward rate. The secoondiponent is the jump term of the interest rate

stochastic, which followsr independent Poisson processes.

Based upon Eg. (1), in the following subsections. wél) derive the no-arbitrage
condition of the LIBOR market model withindependent jump risks, assuming that the model
follows Brownian motion and jump processes; (2) convert the LIBOR market mdaeh a
risk-neutral measure to a forward measure; anddé3ive the pricing formula of QRAIRS

based upon the forward measure in the LIBOR mariaatel.

3.1. No-arbitrage condition and the stochastic process of LIBOR in risk-neutral probability

In this subsection, the no-arbitrage condition ofdbs is derived from the instantaneous
forward rate process. Based on this no-arbitragalition and the relationship between the
instantaneous forward rate and LIBOR, we then detine LIBOR market process under the

risk-neutral measure.

The relationship between the value of a zero coupmrd and the forward rate is given

by



B(t,T) = exp{—f fEu )du} |

where B(t,T) is the price of a default-free pure discount bornigerefore, it can be

considered equivalent to the value of $1 to beiveckat timeT. Let
B(t,T) = exp[—jtT feu )ju} = expV (tT)]

then

ov =d-[" f(tu)du= —[—f (t.tydt+ [ o (t,u)du}

PT

= f(t,t)dt —].(a(t,u)dt)du —]'(a(t,u)mW)du —Zjn t,x ,u)u@N. ¢) 2)

i=1 ¢

= f(t,t)dt—a (t,T)dt-o (t,T)dW—zrjh (t,x ,u)udN, ¢),

i=1 ¢t

Wherea*(t,T):LTa(t,u)du , U*(t,T):.[tTa(t,u)du . Based upon Bjork, Kabanov and
Runggaldier (1997), modified withindependent jump processes, we employ the 1t6 dtam

to derive the stochastic process value of the zeupon bond as follows

dB(t,T) = B(t,T)dx+% B(t,T)(dx)

: : ; ] 3)
+> [ expe] f €= €x - expef] f Cudu Jon, 1)
Substituting Eq. (1) into Eqg. (3), we obtain
dB(t,T) = B(t,T){R(t)—a* (t,T)+%[U* (t,T)]Z}dt-B(t T)Y ¢.T)YwW¢)
(4)

+Zr:epof (t,u)du}{ exp[—fh (X u idu}— ]adNi ().

i=1
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whereR(t) is the spot rate. Discounting the zero coupon btmdlerive a no-arbitrage
condition in risk-neutral probability, and substitiy the no-arbitrage condition into Eq. (1),

we obtain the forward stochastic process in theammtrage condition. First, we define the

discount factor D(t) as

D(t) = exp(—ﬁ R )du) :

Furthermore, D(t)B(t,T) follows the Martingale process. That is, if we adisnt the zero
coupon bond to timein the risk-neutral probability, the discountedcprwill be identical to
the current price at time implying the absence of arbitrage, hence the¢et@ must be equal

to zero. Therefore,

d[D(t)B(t, T)] =-D(t) B(t, )& (t, T)dW(t)

r T 5
+D(t)B(t—,T)Z{exp[—L h¢x u nu]— } 6N, € )-A%t ) ©
Incorporating the discount factor from Eq. (4),
d(D(t)B(t,T)) = D(t)B(t,T){(—a* (t,T)+%[a* ¢T)] )t-o ¢.T )dW(t)}
(6)

+D(t)B(t—,T)in:1:{exp[—LTh tx u ):iu}— }ou\li €).

Since under the no arbitrage condition the intereepqual to zero, comparing Eq. (5) and (6),

we obtain

@ (T) 5[0 T )]2+§{exp[-fh €x |- W0 6 I =o' (T P Oforallt, (7)
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whered(t) is the risk premium of the diffusion rate. Sinceleaero coupon bond in a term
structure must correspond to the no-arbitrage ¢mmdiin the risk-neutral probability,

differentiating Eq. (7) with respectTq the no-arbitrage condition is obtained as

@ T)+o T €T)=[ R ex Thexg [ h (x upui°t €3 =0 (T () forallt, (®)

wheref (x)is the probability distribution of stochastic vdriex . By substituting the no
arbitrage condition into Eq. (1), the instantanedoesward rate withr independent

jump-diffusion processes in risk-neutral probapibecomes

df ¢, T)=a(t,T)dt+o(t,T)EwW® (t)+zr:h %, T)N; ¢), €)

i=1

! ® T Q
where a(t,T)=o(t,T)o (t,T)—jO > hit.x ,T)exp{—jt h{xu ﬁu}/li f & dix
i=1
Similar to Brace, Gatarak and Musiela (1997), theclsastic process of LIBOR in
risk-neutral probability can be derived using tledéationship between instantaneous forward
rate and LIBOR. Therefore, the relationship betwkeward rate and LIBOR is given by

1+6L,t.T,)=exp[ " f €uYu (10)

where dL,(t,T,) stands for the compounded forward LIBOR (frgmto T, ,,) at time t, and

O is the constant interval measured in year. Le®@i(ig, T . ;) :JTTM f(t,u)du,
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T, +0
dz = L df (t,u)du

= [ o(t,u)upaw () + joz[ [t %,u du}dNi(t) F()dx
I (Gl ol T o

It follows that

4z = jTTn“”’df (t,u)du+izr=l: j:{exp[—fmh ¢ x u )Jlu}— ex;E—L "h(x u du}}Aithf £ X

+I:Z£UTT ht,x ,u)du}dNi O)f (x)dx.

According to the Itd formula and the jump stochagtrocess of Elliott (1982), the LIBOR

jump-diffusion process follows

oL, (t.T) =§expm T T HZT, T )1+%expz T T HZ T, T2 (T, T )]
(12)

+§%j:{expﬁ (F')]Eexp{f:wh ¢ x u )ju] - expl T° )]]ou\ji OF &Yx.

Substituting dZ(T,,T,,,) into Eq. (11) yields the jump-diffusion stochagtiocess of LIBOR

as

dL (tT.) :(1;[1+ 5L T, )]{[a* tTs)] ~0° €Tos )0 €T, } it
+%[1+ L, TI{0 €.T,s)-0 €T, )} dWe )
+Z£% j:[1+ S, (t.T,)] (12)
{exp[—f””h tx u )Jlu}— exp{—f"h (X u ()iu}}/lithf £ O
ST on e TN e [T R 6wt Jan, 0 o

12



From Brace, Gatarak and Musiela (1997), assumiagitheach probability measure the
stochastic process of LIBOR follows a lognormaltmlsition, the stochastic process of

LIBOR becomes

dL, (t,T,) = mL, & T,)dt +y, L, ¢ T, )dW® @)+ L, (.7, )dJ, @), (13)

where m, is the drift rate, y, is the diffusion rate, ang (t)is the jump rate of LIBOR.

Rearranging the diffusion rate component and comgétq. (12) with Eq. (13) we obtain

y.oL, (t,T.))

otT,)-0tT)= , 14
0T =0 CT)= 5 (14)
and
SL(t,T SLtT) T
U*(t,Tn+1)|:0'* (t,Tm_l)—O'* (t,Tn)]:y""—(’n)a-* (t,Tn)+ Va n( ) n) .
1+4L,(t.T,) 1+0L, ¢.T,)
If the interval fromt to u is smaller thad, i.e., t<u<t+J, U*(t,Tn)zo, then
2 2 n

yoL (T (T, + Ok (WTh) - g+ Ykl (L TL (LT (15)

1+0L,(T,) &  1+0L,¢T,)

Substituting Eq. (15) into Eq. (13), we obtain tHBOR jump-diffusion process as

13



_ 5 ynyden(t’Tn)Lk(LTk) Q
dLn(t,Tn)—L:Zm‘:) roL (T dt+y L (t, T)dW® (t)

DIHNIERNES) .

{exp[—f"”yh t.x u )Jlu}— exp{—f"h (x u ()iu}} AQdtf % 9ix
+§1;_15j0°°[1+ SL (T, )]{exp[ J7onex u)du}—l}dNi t)f (x)cx.

Rearranging the jump rate component, anélil@t) be the jump size function of LIBOR, then

%_[1+5Ln (t',Tn)}{exr{jTTth €xu )Jlu}— }= LCT, H &)

ol 1w

After transposing we obtain

e [ [hex w1
Hi(x) = {exD[Jwa o )du}_} -1=Y -1, (17)

where Y, stands for the jump ratio of LIBOR at tHe&jump, and Y 21,

exp['[TTﬂs f ¢,u)du +JTT+Jh([ X U )Jlu} -1

A eprTTﬂs f¢u )du} -1

Influenced by the movement of the forward rate fiorch(t,x,T), if jumps occur,

H(Y,)=Y, -1, if not, H(Y) =0, and the jump rate compound Poisson process of RIBO
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r Ni(t)

37 L TH, ()N, 00 (9 =L T,)AY S Hy (5), (18)

i=1 n=1
and

_ 0L (= TOH, (), 1+0L, (= T,)[1+ H, & )
© o 1+0L,(-T,) 1+0L¢-T,)

exp[ L” he,xu )Jlu}

Similar to the diffusion rate componentt fu<t+d, eprTu he,x u )ju} = 1. Using this

result to simplify the second term of Eq. (12), elain

n 1+oL, (t-.T,)
kiply 1+ 0L, (t_’Tk)[l+ Hy (% )]

[ HL (LT, A%t (x)dx. (19)

Substituting Eqg. (18) and Eq. (19) into Eqg. (12lgs the stochastic process of LIBOR with

risk-neutral probability as

dL (t,T.)= z": YV OL (L T)L (G T,)
e k:’7(1) 1+5Ln(t!Tn)

g I 1+0L, (t-.T,) o (20)
D HOOL=T) [ i o3 (x)dx}dt
LTI +LE-TAE 3 Hy (),

3.2. Forward measure of LIBOR market model

Because the stochastic process of LIBOR involvesym@arameters under risk-neutral
probability, it is difficult to price interest ratgerivatives incorporating multi-period LIBOR.
To simplify the model, we must transform the difus rate and jump rate parameters to the

last pricing period. To do so, we rearrange th&udion rate of Eq.(12) as

15



oL, (tT,) =<[1+0L, . T,)|[ 0" € T.s)-0 € T)][ 0 €T, Kt+dwe ¢)] .
1)

according to the theory of the transformation aflyability measure
WT*(t) = j; o (u,T +u)du+W(t),

then Eq. (21) becomes

dL,(t.T,) =%[1+ oL, ¢ T)[0 €.Tps)-0 €.T,) W™ ¢).

Similar to Brace, Gatarak and Musiela (1997), let
dW' (t) = o (t, T, )dt +dWC t),
dW' (t) = 0 (t, T, )dt + dWO(t).
Comparing these two functions, we obtain
dW" =[0'(t,T)) -0 (t.T,.,) dt +dw"™ (t),

If we substitute the ternj o’ (t,T;) - (t,T,,,) |from Eq. (14), then

t,T.)OL(t,T, .
dw’ :_wdt+dWTJ 1(»[).
1+0L(,T,)

Letting j =n, we obtain

dWTn - y(thn )5L(t!Tn ) dt + dWT,.,Jr1 (t)
1+0L(t,T,)

16
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Lettingj =n-1, then

y(t,T,)OL@,T
1+0LET,,)
y(t, T,)OL (T 1) _y@T,)OLET,)

- 19T )y g 1),
1+0L(,T ) 1+0LGET,)

dw™ = - 1) dt + dw™ (t)

Repeating this process, we have

T y(t, T)OL(t,T) T
dw ;1 T oLET) dt + dw ™ (t). (23)

Substituting Eq. (23) into Eq. (12), and unifyinget multiple-period Brownian motion

measures, we obtain

y(t,T)OL(L,T)
dL (T, )_—[1+5|_ tT[o tT..)-0 ¢.T,)] .Z@T(tl)dt} o0

= [1+5L CD|[0 €. T)=0 €Ty0)] W, 0).

According to Bjork, Kabanov and Runggaldier (19€W condition for transformingd® to

the last pricing period is

T+0
—J' h(t,x,u)du

/1T+(5:e ' /]Q’

In Eq. (16) the transformation processidf measure is

17



Mapex | ~[™htx u)du
%_[1+5Ln(t,Tn)]eL“ ! {e by e —1}1M+1dt

M +1

™AL x u)du ™t u)du
=Lpeor, T [1— e " }1 dt
o (25)
J.TMﬂh(t,& u)du
=-H(Y)L,(t-T,)e™ Ay 0t

M1+, (t- T, )@A+H ¢.))
=-HML=T)[] k> k A dt.
( |) n( n)k:m—1 1+5Lk (t_,Tk) M +1

Letting n=M and substituting Eq. (25) into Eq. (13), we obthie LIBOR market model of

forward rate measurement with jump risk as

dL, (t,T)=a,L, (t,T)dt+y L (t,T)dW, , t)+L,¢,T)dJ, ), (26)
where
g, =~ 3 UETAETIOLET)
k=n+1 1+ 5L(t,TI )
o M 1+0L, (=T, )[1+ H, ¢)]
- H ()L (t-,T K k ) f(x)dx,
Jy S OL T [] 5 Sy P (00
r o Ni(t)
dJ, () =d > Hy () (9.
i=1 n=1
Ifn=M, then
[0* tT.)-0 (t,TMH)] =0,
-H, ()ﬁ)l-n(t_!-rn)eITn+1 h(t')ﬂmdu/wﬂdt ==H_; (%)L,

Eq. (26) can be simplified as
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ALy, (6 T)/ Ly (=) = Yoo OOIWN ™ €)+ 63, @)= 7D o 06)4 ] (0 27)

3.3. The pricing model of Quanto Range Accrual Interest Rate Swap

The value of cash inflows for floating-rate payette maturity of QRAIRS is

4 a*Nq

QRAIRS(t,T,,T,,,) = [Z - ‘i%}‘ E
g=1 g=1

whereN, is the number of calendar days between swaps, lnd the fixed rate paid by the
fixed-rate payer. Assuming 30 trading days per in@md 3 months per period, the number of
trading days will be 90 per period. The pricing rabdf floating-rate payer in risk neutral

probability is thus

RAIRSET..T..)= > S BT, +1)x{ E? LA
Q (t, iy qﬂ)_qZ:;'; (t, q ) |:]{K2>L(Tq+l,Tq+1+I)>K1}il m

(28)

4
Y BT, S xF,
= 4

where g is the number of swaps in the trading periddjs the number of days between
swaps; B(t,T,)/B(t, T, +1)stands for the discount factor of Quanto Range éaicBond in a
Martingale processB(t,T,+1) is the value of the zero-coupon bond at termimatiX is
the agreed swap rateX =a/D measured in years from today. Eq. (28) can berdposed

as

19



B(t, T

g=1 I=1
4
> B(t,Tq)ZF

g=1

= F{ZZ B(t,T, +|)xi A'(M_t)/"jf”' -t) [N(d,;)~N(d,;)](29)

=11=1

BtT,) & K
B(t,T, +1) ZB(t’Tq)4}

g=1

= FX[A— B},

whereF x A is the floating rate interest received by the dixate payer. On the other haid,

X B is the fixed rate interest received by the flogtiate payer.

L(t, T, +1) L(t, T, +1)
e R UTIER: n T DT Lo oy
Kl 2 ] q d KZ 2 ] q
dl,ij = 1 Ooy =
\/aijZ(Tq +1 -t) \/aijz(Tq +1-t)

LT, +1)) = L, T, +1)ex i—AHmi T, +I —t)}lj @m )

Let the price of QRAIRS be equal to zero, thenfiked interest rateK (swap rate) is

B(t,T,)

0N, )~ Ny ) o) (30)

o —/l| (T+I_t)/‘| (T +|
' B(t, T, + +1)

24: B(t,T, +|)xz '
ZB(tT)q—lll I

4. Numerical Analysis

In this section, we use a numerical analysis toaletrate the relationship between swap
rate and jump size, jump frequency, and jump vithatof a QRAIRS. Assume a value for
QRAIRS equal to zero, a duration of contract of gear, 360 days in a year, and payments

swapped every 3 months—four swaps per year. Thexdst rate floor is 0% and the cap is
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2.5%, 3-month USD LIBOR is 1.8% at tinte0, the volatility of 3-month USD LIBOR is
0.05. Two independent jump processes are assumétkeipricing period. The first one is
induced by stronger information, which has a draenatfluence on the jump process of
LIBOR. On the contrary, the second is associatel weaker information. The corresponding
jump sizes are 0.0hf =0.01) and 0.5 (m, =0.5); the corresponding jump volatilities are
0.15 (s =0.15) and 0.45 §, =0.45); and the corresponding jump frequencies are 0.5
(A4,=0.5) and 1.5 @, =1.5), respectively. The value of the zero coupon baetlines

$0.0001 mark-to-market starting at $0.90.

4.1. The impact of jump size on the swap rate of QRAIRS

From Table 2, when jump sizesy and m, change (within an interval from O to 0.6),
the swap rate of QRAIRS will decrease with the éase of the expected value of jump size,
and the smaller the initial swap rate, the lessiafalle the QRAIRS will be. When evaluating
the LIBOR in risk-neutral probability, potentialmp size due to information emergence must
be eliminated in the initial pricing to ensure ahitrage-free condition. Therefore, when jump
size gradually increases due to information emargeithe initial value for LIBOR will
become smaller, as does the value of underlyingtg&isSince this is disadvantageous to the
floater, the value of QRAIRS will be smaller.

In addition, from Table 2, Figure 3, and Figure @, has greater impact on the swap

rate of the QRAIRS tharm , because jump sizen, >m,.

Table 2.  Jump size changes and the swap rate @RAIRS
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Changesin  The swap rate of QRAIR Changes in The swap rate of QRAIRS

jump sizem  corresponding to jump sizem, corresponding tm,
0.0 0.0237 0.0 0.0237
0.1 0.0228 0.1 0.0221
0.2 0.0220 0.2 0.0207
0.3 0.0213 0.3 0.0195
0.4 0.0206 0.4 0.0184
0.5 0.0201 0.5 0.0174
0.6 0.0195 0.6 0.0166

Note: Initial jump sizes arem =0.0land m, =0.5.

0.024

0.0235

0.023 -

0.0225 -

0.022 -

0.0215 -

Swap rate

0.021 -

0.0205 -

0.02

00195 L L L L L L I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Jump size M1

Figure 3. The relationship between jump sizg and the swap rate of the QRAIRS
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0.024

0.023 a

0.022 - a

0.021+ a

0.02 - a

Swap rate

0.019+ a

0.018 B

0.017+ a

0.016 | | | | | | |
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Jump size M2

Figure 4. The relationship between jump size and the swap rate of the QRAIRS

4.2. The impact of jump volatility on the swap rate of QRAIRS

From Table 3, when jump volatilities, and s, increase (within an interval from 0 to
0.3), the swap rate of QRAIRS also increases. iBhicause when jump volatility increases,
the total volatility of QRAIRS follows suit. Henahen jump volatility increases, both parties
of the QRAIRS must accept a higher swap rate bectnesfloating rate payer is subsidized by
the fixed rate payer for bearing risk. The highlee swap rate is, the higher the value of
QRAIRS will be.

Similarly, from Table 3, Figure 5, and Figure 6, has greater impact on the swap rate
of QRAIRS relative tos, becauses,>s. This result is consistent with our assumption

described earlier in this section.
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Table 3. Jump volatility changes and the swap cd@RAIRS

Changes in jump The swap rate of Changes in jump The swap rate of

volatility s QRAIRS corresponding  volatility s, QRAIRS corresponding
to s to s
0.00 0.0237 0.00 0.0237
0.05 0.0240 0.05 0.0245
0.10 0.0242 0.10 0.0252
0.15 0.0245 0.15 0.0259
0.20 0.0247 0.20 0.0265
0.25 0.0250 0.25 0.0271
0.30 0.0252 0.30 0.0276

Note: Initial jump volatilities ares =0.15, ands, =0.45.

0.0254

0.0252 - B

0.025 - B

0.0248 - B

0.0246 - B

0.0244 - B

Swap rate

0.0242 - B

0.024 - B

0.0238 - B

00236 L L L L L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jump Volatility S1

Figure 5. The relationship between jump volatdignd the swap rate of QRAIRS
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0.028

0.0275 R

0.027 |- R

0.0265 - R

0.026 - a

Swap rate

0.0255 - R

0.025 B

0.0245 - R

0.024 B

0.0235 | | | | |
0.45 0.5 0.55 0.6 0.65 0.7 0.75

Jump Volatility S2

Figure 6. The relationship between jump volatilisy and the swap rate of QRAIRS

4.3. The impact of jump frequency on the swap rate of QRAIRS

From Table 4, when jump frequency, (andj,) increases (within an interval from O to
0.45), the swap rate of QRAIRS decreases. Thidtrean be obtained from Eq. (29)—there
exists a negative relation between jump frequenicyand the swap rate of QRAIRS. From
probability theory, we know that given the frequeraf actual occurrence, the value of the
probability decreases when the expected valueePihisson distribution increases, which is
consistent with our QRAIRS pricing model. From awdstor’s viewpoint, the higher jump
frequency of LIBOR is associated with higher unaity risk, hence a decline in the value of
QRAIRS can be regarded as the additional markehiura for bearing risk.

Similarly, from Table 4, Figure 7 and Figure 8, has greater impact on the swap rate

of QRAIRS relative to A, because jump frequency,>A,.
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Table 4. Jump frequency changes and the swapf@&AIRS

Changes in jump The swap rate of Changes in jump The swap rate of
frequency}, QRAIRS corresponds to  frequency, QRAIRS corresponds to
/11 /12
0.0 0.0237 0.0 0.0237
0.1 0.0235 0.1 0.0216
0.2 0.0234 0.2 0.0195
0.3 0.0232 0.3 0.0178
0.4 0.0230 0.4 0.0159
0.5 0.0228 0.5 0.0136
0.6 0.0226 0.6 0.0119

Note: Initial jump frequencies ard, =0.5 and A, =1.5.

0.0238

0.0236 - a

0.0234 - a

0.0232 - a

0.023 - E

Swap rate

0.0228 - a

0.0226 - a

0.0224 ‘ ‘ ‘ ‘
0.5 0.6 0.7 0.8 0.9 1 11 1.2 1.3

lambdal

Figure 7. The relationship between jump frequentyand the swap rate of QRAIRS
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0.024

0.022 - :

0.02 - :

).018 - b

Swap rate

).016 - b

0.014 - :

0.012 :

001 L L L L
15 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

lambda2

Figure 8. The relationship between jump frequenty and the swap rate of QRAIRS

5. Conclusions

Interest rates constitute an important economiexndince the jump process of interest
rates is discontinuous in the event of sudden mé&tion emergence, we derive the LIBOR
market model with jump risk. Since interest raté®rm follow multiple independent jump
processes, it would be more accurate to use ouehtogrice the derivatives. To this end, we
use numerical analysis to illustrate the influerdejump size, jump volatility, and jump
frequency on the pricing of QRAIRS.

Numerical analysis shows that there is a negatelation between jump size, jump
frequency, and the swap rate of QRAIRS. Howevestdhs a positive relation between jump
volatility and the swap rate of QRAIRS, meaning lger the jump volatility, the higher the

value of QRAIRS. Furthermore, the stronger the LBB€lated information, the greater will
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be the impact of jump risk on QRAIRS. From the nuow® results, we know that increases in
jump size will decrease the value of LIBOR in timhe= 0. Since this is disadvantageous to the
floater, the value of QRAIRS will decrease. Simyarthe higher the jump frequency of
LIBOR, the greater the uncertainty risk, hence tldue of QRAIRS declines because
investors are paid with a premium to bear risk. tbe other hand, when jump volatility
increases, both parties must agree to a higher sat@pbecause the floating rate payer is

subsidized by the fixed rate payer for bearing.risk
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