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Abstract 

 

We examine optimal investment strategy of informed traders in a futures’ or equity 

market, where there are a more informed and a less informed trader, and many noise 

traders.  The less informed trader has an incentive to follow the more informed because 

of informational advantage.  The more informed can take advantage of that incentive by 

cheating the less informed and manipulating prices.  Then prices are kept away from 

their fundamental values more often, and the profits of the more and the less informed 

trader are increased and decreased, respectively.  Over time, both traders notice the 

other’s strategy, and a long run equilibrium is attained, in which the more informed mixes 

his sincere and cheating strategy, and the less informed mixes his trust and distrust 

strategy.  This model might be applicable to emerging markets, where foreign investors, 

local institutions, and local individuals are often regarded as more informed, less 

informed and noise traders, respectively. 
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1. Introduction 
 

Let us begin by recalling what happened to the Internet browser market in the late 

1990s when Microsoft newly launched its Internet Explorer (IE).  The market situation 

then was not very favorable to Microsoft since most customers had been using its 

powerful competitor, Netscape Navigator.  In addition, not many technology experts saw 

in IE much better quality as an Internet browser.  However, some market watchers like 

the Economist, an English weekly business magazine, predicted that it would be just a 

matter of time that IE would eventually dominate the browser market.  This expectation 

was fulfilled afterwards as all of us know.  How was IE able to defeat the Navigator to 

which most users had been used?  One reason could be the well-known bundling 

strategy of Microsoft, which sold the combined package of the Windows and IE as a 

single product.  Another reason might be the belief of Internet users that IE of Microsoft 

would eventually defeat the Navigator just as its Excel and Word had defeated their 

competitors before.  Given the belief that most Internet users would use the Internet 

Explorer in the future anyway, the optimal decision of Internet users was to switch from 

Navigator to IE. 

As this episode suggests, “belief” matters in markets, and market equilibriums could be 

affected partly by beliefs of market participants.  Securities or commodities markets are 

no exception.  For example, we saw the US stock markets plummeting when Alan 

Greenspan commented about “irrational exuberance” in 1996.  Also the price of silver 

rose sharply soon after Warren Buffet betted a substantial amount of money on it in the 

late 1990’s.  These examples imply that people trusted by others affect market prices of 

financial securities or commodities.  In an order-driven equity or futures market without 

market makers, investors are normally classified into informed and noise traders. 4  

Informed traders usually have not only superior information but also a superior reputation 

or others’ firm belief in them.  Given this, they might be able to affect or even 

manipulate market prices to maximize their profits by taking advantage of others’ belief 

in them.  This possibility, however, has not been addressed in depth by existing finance 

literature; the behavior of informed or noise traders have been approached mainly in 

terms of (asymmetric) information only.  In this paper, we classify informed traders into 

two groups, who are strongly informed and weakly informed ones, and examine how both 

groups optimally act to maximize their expected payoffs.  It is possible that, by taking 

advantage of market’s trusts in them, strongly informed traders make more profits than 

their superior information justifies. 

The weakly informed trader has an incentive to follow the strongly informed one 

                                           
4 For the time being, we assume that arbitrageurs are a subset of informed traders. 
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because of the superior information of the latter.  Also, the strongly informed trader has 

an incentive to cheat the weakly informed one if the former can enlarge his payoff by 

doing so.  Over time both investors notice the other’s incentive, and eventually a long 

run equilibrium is attained, where they both employ optimal mixed strategies.  And, 

throughout this whole process, their payoffs and stock prices hinge on what they believe 

and how they acts.  We also examine the case where the strongly informed trader has 

no more informational advantage.  In addition, throughout the paper, we suggest 

interpretations and implications of many lemmas to be proven mathematically. 

We organize the paper as follows.  We present the motives and purposes of this study 

in Section 2, and explain the setup of the model in Section 3.  Section 4 discusses 

informed traders’ trading strategies, price movements, and the characteristics and 

market implications of the long run equilibrium.  Section 5 concludes. 

 

2. The Motivation 
 

We have several motivations for this research.  First, we want to explain how people’s 

belief or reputation possibly influences market prices.  For instance, suppose a very 

renowned (institutional) investor like Warren Buffet buys 1,000 shares of company A, and 

many investors, institutional or individual, follow suit.  As a result, the share price rises 

from $100 to $150.  Are the price increase of $50 and his investment profit of $50,000 

purely attributable to his superior information on the intrinsic value of company A?  Or 

are they a result from other investors’ belief in him and following suit?  Or are they a 

result from both?  In this paper, we explore all of these possibilities; for example, the 

price increase and his profit might be attributable to people’s belief in him as a super 

informed investor.  This possibility has never been studied in depth, at least in the area 

of finance.  As a matter of fact, we have hardly found any papers which take the issue of 

belief or reputation, and market prices as a main subject in finance.5  In this sense, this 

paper might shed some light on the issue. 

Second, we want to explain different investors’ different behavior in a more realistic 

way.  As in DeLong et al. (1990a, 1990b), most behavioral finance or market 

microstructure literature presumes that there are two kinds of investors in terms of 

information, i.e. informed and noise traders.  But this dichotomy might be for the 

tractability of models, and in reality, there are investor groups in between, who are 

neither as irrational as noise traders nor as much informed as highly respected hedge 

funds.  Also, in an emerging market like Korea, Taiwan or China, investors are often 

                                           
5 The only exception was Landon and Smith (1998), which found that the market price of Bordeaux wine 

was a function of wine maker’s reputation. 
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classified into three categories: foreigners, local institutions, and local individuals.  In 

light of this, we construct a model in such a way that there are three kinds of investors in 

a stock market, who are strongly informed, weakly informed and noise traders. 

Third, we want to analyze investors’ behavior better in an order-driven stock market 

such as many Asian and European stock exchanges.  Apparently, many microstructure 

papers, including the seminal one by Kyle (1985), investigate market makers’ optimal 

behavior in a quote-driven market.  But, in order to analyze investors’ behavior in many 

Asian and European order-driven markets without market makers, it would be more 

effective to specifically model an order-driven market as in this paper. 

In order to build an acceptable model, we employ academic achievements of related 

fields, inside or outside the world of finance.  For example, we solve for optimal 

strategies of both informed traders, using a game theoretic concept, Nash equilibrium or 

perfect Bayesian equilibrium because this concept could explain better two different 

informed investors’ behavior in the presence of asymmetric information and asymmetric 

belief than does any other finance theory.  We also use, explicitly or implicitly, concepts 

such as “information cascade” by Bikhchandani, Hirshleifer, and Welch (1992), Banerjee 

(1992) or Welch(1992), and “herding,” which are (more) often found in economics 

literature (than in finance literature).6  By doing these, we try to build a realistic model, 

which could serve the purposes of this paper aforementioned.  

Last, as a matter of fact, a futures market might be more appropriate for this type of 

research than an equity market is.  This is because a futures’ “market equilibrium” price 

is always revealed at expiry.  Trades are competing in terms of who can predict a 

futures’ expiry price better, or in terms of information on a futures’ expiry price.  On the 

contrary, strictly speaking we do not know for sure when the fundamental value of a 

share of a stock is publicly revealed in the market.  In this sense, this research covers 

not only spot markets but also futures markets with the latter being more eligible. 

 

3. The Setup of the Model 
 

3.1 Spot and futures markets 

 

A futures’ price is usually affected by the no arbitrage principle.  In other words, a 

futures’ price usually moves within a band where arbitrage using both futures and spot 

prices are impossible.  This presumption, however, might become shaky when, in reality, 

carrying out arbitrage is not easy.  First of all, in many equity markets, short sales are 

                                           
6 Information cascade indicates a phenomenon that people buy or sell securities following others since 

the former believe that the latter have superior information. 
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very limited or even impossible, so spot-futures arbitrage is seriously restricted.  

Second, for some futures contracts, conducting arbitrage is subject to risks.  For 

example, replicating a stock index containing hundreds of stocks could be very risky due 

to tracking errors, market price impacts, liquidation risk, etc.  In this circumstance, 

arbitrage might not be literally risk-free, and might not affect futures’ prices greatly.  

Third, depending on how mature, developed or sophisticated futures markets or futures 

investors are, it is possible that not so many people are--or not so much money is--

involved in arbitrage transactions, causing arbitrage to be less powerful in determining 

futures’ prices.  For instance, when a futures market is relatively recently introduced, 

when investors do not know arbitrage transactions much, when investors are mostly 

interested in speculative trading of futures, not in arbitrage transactions, then futures 

prices could be much more affected by speculative trading rather than by arbitrage 

transactions.   

Another good reason for applying this research to a futures market is that a futures’ 

“market equilibrium” price is realized with probability one at expiry.  This is not always 

so when it comes to stock prices, although we assume in the paper that, at time T, the 

fundamental value becomes common knowledge.  A futures’ market could be even more 

eligible for this paper if we consider this point only.  After all, for the reasons 

aforementioned, our model on equity markets could be extended to futures markets when 

arbitrage does not affect futures prices greatly.  In this sense, although Pt in the paper 

denotes a stock price, it could mean a futures’ price, too, as long as the aforementioned 

conditions are satisfied.   

 

3.2 Information asymmetry 

 

Following is the summary of the notations to be used.  “Trader I” always means either 

“trader F” or “trader L.”   

 

① F, L;   F and L mean a strongly and a weakly informed trader, respectively. 

② Pt:    share price of stock P at time t 

③ θ:   the true, liquidation value of a share of P 

④ d:   the size of price impact when trading one share of P 

⑤ T:   the final stage of stock investment (investment horizon) 

⑥ sF, sI:   signals about θ received by F and L, respectively 

⑦ qL:   the precision of sL 

⑧ xF,k, xL,k:  the trading position of F and L in his k’th trade, respectively  

⑨ πF,k, πL,k:  F’s and L’s (expected) payoff from his k’th trade, respectively 
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⑩ P[ω]:   the probability of even ω 

 

In an order-driven stock market,7 there are three types of risk neutral traders, who 

are a strongly informed trader (F), a weakly informed trader (L), and many noise 

traders.8  We are interested in a particular stock named “P,” and Pt denotes the share 

price of P at time t.  The risk free rate is assumed to be zero for convenience.   

Between time 0 and time 1, F and L receive sF and sL, respectively, which are their 

private signals about “θ,” the true value of a share of P, and noise traders do not receive 

any signals.  Either informed trader can receive his signal earlier than, later than, or at 

the same time as, the other does.  The prior distribution of θ ∈ {1, 2, 3, 4} = {θ1, θ2, θ3, 

θ4} is common knowledge, and the nature chooses one (θ*) from the set.9  “θ = θ*” 

becomes common knowledge at time T (>6) so PT = θ*.  At time 0, θ* is expected to be 

equiprobably one of the four values, so the initial market price, P0, is 2.5. 

 

Assumption 1: The prior distribution of θ 

① θ ∈ {1, 2, 3, 4} ≡ {θ1, θ2, θ3, θ4} 

② P[θi] = ¼,  where i ∈ {1, 2, 3, 4} 

③ P0 = 2.5  

④ PT = θ, where T > 6. 

 

The precisions of the two signals about θ* are different.  sL correctly reveals whether 

θ* is above or below P0 (= 2.5), but reveals the exact value of θ* with probability qL (>½) 

only.  For instance, given θ* = 2, sL equals 2 with probability qL and 1 with probability 1-

qL as in Figure 1. 10   On the contrary, sF precisely reveals θ*, so sF = θ*.  This 

assumption of θ* as a perfect signal is made in an attempt to put an emphasis on F’s 

informational advantage over L.  The precisions of sF and sL are common knowledge 

between both traders, and Lemma 1 is derived in the Appendix (Proof 1).  

 

Assumption 2: The precisions of sF and sL 

① P[sL = θi|θi] = qL>½, ∀i 

② P[sL = θ2|θ1] = P[sL = θ1|θ2] = P[sL = θ4|θ3] = P[sL = θ3|θ4] = 1-qL 

                                           
7 Again, although not explicitly expressed, a stock market in this paper could be replaced with a futures’ 
market when the force of arbitrage is not strong in determining futures’ prices. 
8 We assume that there are no market makers in this order-driven market. 
9 θk means θ = k, where k = {1, 2, 3, 4}. 
10 This assumption of binary signals is popular as in Scharfstein and Stein (1990). 
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③ P[sF = θi|θi] = 1, ∀i 

 

Figure 1 States and signals 

      θ     (prob.) sL       θ     sF

θ1 (θ2) sL  = θ1 (θ2) θ i sF  = θ i

sL  = θ2 (θ1) ( i = 1, 2, 3, 4) 

θ3 (θ4) sL  = θ3 (θ4)

sL  = θ4 (θ3)

(1-qL)

qL

(1-qL)

qL

 
 

Lemma 1 Posterior probabilities and expected payoffs given sL   

① P[θi|sL = θi]   = qL > ½ 

② P[θ2|sL = θ1]  = P[θ1|sL = θ2] = P[θ4|sL = θ3] = P[θ3|sL = θ4] = 1-qL 

③ E[PT|sL=θ1] = 2-qL 

④ E[PT|sL=θ2] = 1+qL 

⑤ E[PT|sL=θ3] = 4-qL 

⑥ E[PT|sL=θ4] = 3+qL 

 

Whether F and L move sequentially or simultaneously, they can identify the other’s 

trading position after the trading.  By identifying the other’s order flow, either trader can 

update his belief in the other’s signal.  Noise traders trade for idiosyncratic reasons, and 

are not affected by others’ actions unless otherwise specified.  Ex ante, their trades 

average out, and, as a whole, do not affect Pt unless otherwise specified. 

Short sales are ruled out, and initially F and L have two shares of P.11  At a trading 

round, F and L either trade or hold a share based sF and sL.  They trade mostly at time 1, 

2, 3, or 4.  In our model, the exact value of T does not matter as long as T >6.  xF,k 

(xL,k) denotes the k’th trading position of F (L) so xF,k (xL,k) ∈ {-1, 0, 1}, where -1, 1 and 

0 mean selling, buying and holding a share, respectively.  Exogenous sequencing models 

usually assume that the more informed trader, F here, moves first, which might be 

endogenously derived as in Zhang (1997).  However, in reality, anyone could move 

earlier when he receives information earlier even if it is not very accurate.  Therefore 

we let either F or L move earlier than, or at the same time as, the other does, based on 

                                           
11 Short sales are usually not permitted or very limited, if any, in real world.  
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how early he obtains his signal.  

At any given price Pt, the excess demand for the shares by noise traders is expected 

to be 0 as assumed earlier.  Accordingly, if an informed trader enters a buy (sell) order 

given Pt, the excess demand for the share is 1 (-1), and the market cannot clear at Pt; it 

can only clear at a higher (lower) price than Pt.  We assume that he can buy (sell) a 

share at Pt + d (Pt – d) or the price impact is d.12  By the same token, if F and L 

simultaneously enter a buy (sell) order given Pt, the market-clearing share price will be 

Pt + 2d (Pt – 2d).  Meanwhile, the range of the two parameters, qL and d, will be 

determined in such a way that, given P0 = 2.5, either trader will optimally sell (buy) two 

shares when he thinks θ* = 1 (4), and one share when he thinks θ* = 2 (3).  That is, 

optimally they sell one share (two shares) if they receive a weakly (strongly) bad signal, 

and buy one share (two shares) if a weakly (strongly) good signal.  Finally, at T, θ* 

becomes common knowledge and PT = θ*. 

 

3.3 Herding 

 

Noise traders only know θ ∈ {1, 2, 3, 4}, trade for personal, idiosyncratic reasons, and, 

as a whole, do not affect prices.  But they do affect prices when they herd.  Then when 

do they herd or when should we assume they herd?  We set two conditions for herding.  

The first one is that they herd when Pt hits a critical threshold, which is to be announced.  

We set this condition as, in reality, stock prices do not move evenly when they plummet 

or skyrocket.  For instance, there usually is a firing or burning point for stock prices to 

soar.  A share price or a stock index hits up a critical point (or multiple points), and then 

most investors become belatedly over-confident and buy shares up and up.  This 

phenomenon is probably more prominent for a stock than for a stock index like the Dow.  

Similarly, when a share price plummets, it usually does not fall proportionately but, while 

falling, it hits a critical point down and the falling process is accelerated.  People might 

sell off shares for a loss-cut or out of panic when a share price hits a certain threshold 

down.   

The second condition for herding is that the critical point should not be very close to 

the current price, P0 = 2.5.  If it were close to P0, noise traders would herd too often, 

and the price would overshoot too frequently.  Now, taking the two conditions into 

consideration, we set the critical threshold as Pt = 2.5-4d (2.5+4d).  In other words, 

when Pt hits 2.5-4d (2.5+4d), noise traders start selling off (buying up) shares out of 

panic (out of euphoria), and Pt+1 will plummet to 1 (jump to 4), and stay at that level until 

                                           
12 Since a share in the model could amount to tens of thousands of shares in reality, d is not necessarily 

close to 0. 
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T.  This is because, once all noise traders believe in θ* = 1 (4), each of them will be 

willing to sell (buy) a share at any price greater (less) than θ*.  As a result, the price 

impact from trading a share then will be negligible or just ε, the infinitesimal.  This 

herding is common knowledge between both informed traders, but not for individual noise 

traders. 

 

Assumption 3: The cause and effects of noise traders’ herding 

① The cause: Pk = 2.5-4d (2.5+4d). 

② Effect 1: Pk+1 = 1 (Pk+1 = 4). 

③ Effect 2: 1 ≤ Pn ≤ 1+ε (4-ε ≤ Pn ≤ 4), where n = k+2, …, T-1  

 

Another reason, not essential though, for picking 2.5-4d is that, noise traders often 

herd after they belatedly find that informed traders have kept selling or buying shares.  

In the model, 2.5-4d (2.5+4d) is the level of price to be realized only when F and L 

cumulatively net-sell (buy) fours shares, and is a good candidate as a critical threshold 

for the herding of noise traders.  

 

3.4 Parameters 

 

We like the model to have the feature that, when F or L receives a weakly (strongly) 

bad signal, he optimally sells one share (two shares), and when receiving a weakly 

(strongly) good signal, he optimally buys one share (two).  And this should hold for F and 

L whether they move simultaneously or sequentially.  To this end, we determine the 

ranges of their values as follows, which are common knowledge between F and L. 

 

Assumption 4: The ranges of parameters 

① 
6
1 < d <

4
1  

② 1.5-3d < qL < 1 

 

Suppose F receives a bad signal, i.e., sF = θ* = 1 or 2.  This automatically means that L 

also receives a bad signal, i.e., sL = 1 or 2 by Assumption 2.  In order for F to optimally 

sell one share given θ* = 2, it must hold that the least he gets from selling his first share 

is greater than what he gets by holding it till T.  Since the former is 2.5-2d (assuming he 

sells after L) and the latter is 2 = E[PT|θ*=2], we have 2<2.5-2d.  Furthermore, for him 
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to sell only one share, not two, given θ* = 2, the most he gets from selling his second 

share must be less than what he gets by holding it till T.  Since the former is 2.5-3d 

(assuming he sells before L) and the latter is 2, we have 2.5-3d<2.  Similarly, for him to 

sell his second share, too, given θ* = 1, 1 should be less than the least he gets by selling 

it, which is 2.5-4d assuming he sells later than L.  After all, we have  

 

2.5-3d< 2 <2.5-2d, and 1 <2.5-4d.  

 

Solving these two simultaneous inequalities leads to ①.  Similarly, for L, it must be true 

that 2.5-3d < E[PT|sL=2] = 1+qL< 2.5-2d and E[PT|sL=1] = 2-qL< 2.5-4d.  This leads 

to ②, and ① and ② stay valid for good signals like sF (sL) = 3 or 4.  The derivation of 

① and ② are provided in the Appendix (Proof 2). 

 

4. Trading in the presence of asymmetric information 
 

In this section, we examine informed traders’ trading when they trade either 

sequentially or simultaneously.  We analyze this assuming θ* ∈ {1, 2} since θ* ∈ {3, 4} 

can be analyzed similarly and symmetrically.  Particularly, we focus on the optimal 

strategy of either trader given the other’s trading information, their learning process 

about the other’s changing strategy, and the characteristics and market implications of 

the long run equilibrium. 

 

4.1 Simultaneous trading 

 

Suppose θ* ∈ {1, 2} or equivalently sF (sL) ∈ {1, 2} by Assumption 2, and F and L 

receive their bad signals at the same time.  Neither F nor L will delay selling his first 

share because there is a waiting cost, the price impact.  If the other sells earlier than he, 

he has to sell a share later at a more unfavorable price by “d.”    So F and L place a 

(limit) sell order as early as possible or simultaneously.  Then the excess demand for 

the stock is two shares, and the market clearing price will be P1 = 2.5-2d.  Now further 

suppose {sF, sL}= {2, 2}.  Then neither will place another sell order at 2.5-3d or 2.5-4d 

by Assumption 4.  So the share price will stay at 2.5-2d till time T.  What if {sF, sL}= {1, 

2}?  Then only F will place a sell order, which will be executed at 2.5-3d, and this price 

will last until T.   

Now if {sF, sL} = {1, 1}, F and L will place a sell order simultaneously, and as a result, 

P2 = 2.5-4d, the herding threshold.  Then noise traders will herd and P3 = 1.  Also, if 

{sF, sL}= {2, 1}, F will hold but L will wrongly sell a share at 2.5-3d.  The share price 
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will stay at that level until T13.  Lastly, if {sF, sL}= {1, 2}, L will hold and F will sell a 

share at 2.5-3d, which will stay at that level until T.14 

Since either trader will always sell his first share simultaneously given θ* ∈ {1, 2}, the 

payoff from selling it for F or L is always 2.5-2d, i.e., πF,1 = πL,1 = 2.5-2d.  Since this 

always holds true, their first trading will not be examined further in the paper.  Now 

what about the expected payoff from trading the second shares (xF,2, xL,2 ∈ {-1,0})?  It 

turns out that when F and L act on their signals only, the expected payoffs for them are 

as in Lemma 2 (Proof 3).  As a result, the differential performance between F and L is 

½(1-qL), which comes from the informational advantage for F over L since E[πF,2] = 

E[πL,2] if qL = 1 = qF. 

 

Lemma 2 Investment Performances (when F and L act sincerely)   

① E[πF,2] = ½(4.5 – 3d –d∙qL) 

② E[πL,2] = ½{3.5 – 3d +qL(1-d)} 

③ E[πF,2] – E[πL,2] = ½(1-qL) > 0 

 

Now will L be better off if he waits to see how F moves?  Since L knows that F has a 

perfect signal, L has an incentive to follow F for an information externality.  On the 

other hand, there will be the waiting cost, d, by waiting.  Altogether, it turns out that he 

is better off by ½(1-qL)(1-d) when following F as in Lemma 3.  As for F, he is also 

better off by ½d∙qL since he is not any more vulnerable to the disadvantageous price 

impact “d” when F and L sell shares simultaneously with probability P[sF =1 and sL =1] = 

P[θ* =1 and sL =1] = P[θ* =1]×P[sL =1|θ* =1] = ½qL.  In that both F and L can be better 

off when L follows F, Lemma 2 can be neither an (Pareto) optimal nor an efficient 

equilibrium.  Finally, the differential performance now is larger (½d) than before (½(1-

qL)).  The proof of Lemma 3 is in the Appendix (Proof 4). 

 

Lemma 3 Investment Performances (when L follows F or xL,2 = xF,2)   

① E[πF,2] = ½(4.5 - 3d) 

② E[πL,2] = ½(4.5 - 4d) 

③ ΔE[πF,2] = ½d∙qL 

④ ΔE[πL,2] = ½(1-qL)(1-d) 

⑤ E[πF,2] – E[πL,2] = ½d > ½(1-qL) 

                                           
13 F will not buy it at 2.5-3d+d = 2.5-2d>2 = θ*. 
14 L will not buy it at 2.5-3d+d = 2.5-2d>1+qL = E[PT|sL=2]. 
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As a result, the time series of the share price given θ* = 1 is, {P1, P2, P3, P4} = {2.5-2d, 

2.5-3d, 2.5-4d, 1 = θ*}.15  That is, the price reflects its fundamental value as early as t = 

4.  If L does not follow F given θ* = 1, it will take at least as long and sometimes longer, 

depending on sL; if sL = 2 with probability (1-qL), the price will stay at 2.5-3d until T.  It 

turns out that, when L follows F acting sincerely, L gets the most, and the price 

converges to its intrinsic value as early as possible. 

Now, will L be even better off by selectively following F than by blindly following F as 

in Lemma 3?  It turns out that selectively following F makes L worse off than does 

blindly following F (Proof 5 in the Appendix). 

 

4.2 Sequential trading 

 

Suppose that F receives sF earlier than L receives sL, and places his first sell order 

earlier than L does.  Then F and L will sell a share at 2.5-d = P1 and at 2.5-2d = P2, 

respectively.  Similarly, if L receives his signal earlier, L and F will sell a share at 2.5-d 

= P1 and at 2.5-2d = P2, respectively.  But, for t>2, i.e., from their second trading, how 

early F and L received their signals does not matter since, before time 2, both traders 

will have their signals anyway.  What matters then is how accurate their signals are.  L, 

the weakly informed trader, is better off by waiting to follow F, the strongly informed 

trader, as proven in the previous section.  In this sense, it is of no use to blindly 

distinguish between simultaneous and sequential trading after time 2; F and L will trade 

earlier, later, or at the same time based on whether he will be better off by doing so.  It 

turns out that F never delays his trading since he wants to sell at a higher price before 

his information is reflected on Pt with probability qL (since sF = sL with probability qL).  

Meanwhile, L is always better off by waiting to see F’s move.  If L has a wrong signal, 

then L is always better off by doing so because of F’s superior information.  Even if L 

has a right signal (with probability qL), he is not better off by acting (as) early (as F) 

since then both F and L will sell a share at 2.5-4d if θ* = 1 (and hold if θ* = 2).  That is, 

given sL = sF = 1, L will never be able to sell a share at 2.5-3d even if he acts early.  In 

short, by waiting to see F’s move, L gains something with probability 1-qL (when he is 

wrong) and loses nothing with probability qL (right).  Consequently L optimally waits to 

see F’s move. 

 

                                           
15 When θ* = 2, Pt does not equal θ* until T.  This is because the price movement by d happens not to 

match 2 exactly. 
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4.3 Cheating 

 

If L continues to copy F’s trading for the payoff externality as in Lemma 3, F notices L 

copying his trading, and does not act always sincerely.  Rather, he can cheat L if he can 

achieve an extra payoff from cheating.  Given the assumptions and lemmas in the 

previous sections, the only way for F to get an extra payoff by cheating is to manipulate 

Pt, taking advantage of both L’s trust in him and noise traders’ herding behavior.  More 

specifically, this means that, given θ* = sF = 2, F takes xF,2 = -1 at 2.5-3d, pretending 

that he has “sF = 1.”  When L follows by taking xL,2 = -1, Pt will reach 2.5-4d, and noise 

traders will herd to sell, causing Pt+1 to plummet to 1.  And, as all noise traders believe 

in θ* = 1, each of them will be willing to sell a share for any price greater than 1, such as 

1+ε.  F enters here and buys back a share at 1+ε at, say, time T-1.  And PT = θ* = 2 

will be realized at T, giving F a total payoff of (2.5-3d)-(1+ε)+2 = 3.5-3d-ε, which is 

higher than 2, the expected payoff he will get by acting on sF to hold his second share till 

T.16  

If F does this indeed, F and L’s performances will be changed into Lemma 4.  F’s and 

L’s expected payoffs get larger from ½(4.5–3d) to ½(6 – 6d -ε) and smaller from ½(4.5 – 

4d) to ½(5 – 8d), respectively, than in Lemma 3, where L follows F (Proof 6).  

 

Lemma 4 Investment Performances (when F cheats L)   

πF,2 here involves means F’s selling and buying his second share. 

 

① E[πF,2] = ½(6 - 6d -ε) > ½(4.5 - 3d) 

② E[πL,2] = 2.5-4d = ½(5 - 8d) < ½(4.5 - 4d) 

③ E[πF,2] – E[πL,2] = ½(1+2d-ε) > ½d 

 

4.4 Distrust 

 

F can cheat L successfully once or so but not repeatedly because eventually L will 

notice F’s cheating.  Once L learns that F does not always act on sF but cheat sometiems, 

L has no reason to blindly follow F.  Eventually L can infer that F is not cheating when 

holding a share, i.e., when xF,2 = 0 (given θ* = 1).  But when F sells a share (xF,2 = -1), 

he might or might not be cheating.  Therefore, given xF,2 = -1, L has to decide whether 

to follow F blindly, to distrust him blindly, or to follow (distrust) him selectively, say, 

                                           
16 F has no incentives to cheat when θ* = 1.  If he cheats by holding, the price will stay at 2.5-2d and, 

at T, will give him 1, which is less than 2.5-3d he will get by selling. 
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based on his own information, sL.  It turns out that L optimally relies back on sL when he 

sees xF,2 = -1, and the resulting payoffs of F and L are in Lemma 5 (Proof 7). 

 

Lemma 5 Investment Performances (when L distrusts F, who cheats)   

① E[πF,2] = ½{6–6d-qL-ε(1-qL)} < ½(4.5 - 3d) 

② E[πL,2] = ½(3.5-4d+qL) > ½(5 - 8d) 

③ E[πF,2] – E[πL,2] = ½{1+2d-qL-ε(1-qL)} < ½(1+2d-ε) 

 

4.5 The Long Run Equilibrium 

 

F and L have different problems: given θ* = 2 = θ2, F has to decide whether to cheat L 

or not, and, given xF,2 = -1 and sL = 2, L should decide whether to trust F or not.  Their 

expected payoffs from different choices are provided in the cells in Tables 1 and 2 (Proof 

8).  The arrows show either trader’s incentives to deviate given the other trader’s 

strategy.  For example, given that L trusts F and θ* = 2, F prefers to cheat since 3.5-3d-

ε> 2. 

 

Table 1.  Expected payoffs for F when θ* = 2:  E[πF,2 |θ2] 

The value in each cell shows F’s expected payoff given θ* = 2, which depends on the strategy profile of 

F and L.  L’s trust (strategy) means xL,2 = xF,2, and his distrust means xL,2 = -1 (0) if sL = 1 (2).  F’s 

cheating strategy means xF,2 = -1 whether sF = 1 or 2, while his sincere strategy means xF,2 = -1 (0) if 

sF = 1 (2). 

 

L  

Trust Distrust 

Act sincerely (xF,2 = 0) 2 ↓ 2 F 

Cheat (xF,2 = -1) 3.5 -3d-ε  3.5-3d-qL-ε(1-qL) ↑ 

 

Suppose that initially F acts sincerely and L trusts him.  Then if sF = 2, both F and L 

will hold to earn 2 at T.  But this is not optimal for F since he can deviate to the cheating 

strategy to earn 3.5-3d-ε>2.  If F repeatedly does this, L will notice it and deviate to his 

distrust strategy to earn (1+qL) (>2.5-4d) when he sees sL = 2 and xF,2 = -1.  Then F’s 

cheating goes futile and his expected payoff will fall to 3.5-3d-qL-ε(1-qL), so he will 

return to his sincere strategy to earn 2 (>3.5-3d-qL-ε(1-qL)).  Then xF,2 = -1 reveals 

truthfully θ* = 1 again, and L will follow F to earn 2.5-4d, rather than follow sL = 2 to 
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earn 1.  Then, again, F will have an incentive to cheat L and so on.   

 

Table 2.  Expected payoffs for L:  E[πL,2 |sL = 2, xF,2 = -1] 

The value in each cell shows L’s expected payoff given sL = 2 and xF,2 = -1, which depends on the 

strategy profile of F and L. 

 

L  

Trust (xL,2 = -1) Distrust (xL,2 = 0) 

Act sincerely 2.5-4d ←   1 F 

Cheat    2.5-4d → 1+qL  

 

This process of selecting the best response to each other’s strategy will eventually 

lead to a long-run equilibrium, where both traders have no further incentives to deviate.  

More specifically, in equilibrium, given θ* = 2, F cheats not always but with probability α, 

and, given sL = 2 and xF,3 = -1, L trusts F not always but with probability β.  Table 3 

summarizes θ*, α, β and the investment performances of F and L.17 

 

Table 3.  θ*, α, β and investors’ performances 

“Prob.” means probability, and Δ denotes E[πF,2] – E[πL,2], the differential performance between F and L. 

Prob. θ* Prob. xF,2 Prob. sL Prob. xL,2 E[πF,2] E[πL,2] Δ

qL 1 1 -1 2.5-3d 2.5-4d
β -1 2.5-3d 2.5-4d

1 - β 0 2.5-3d 1 1.5-3d
1 - qL 1 1 -1 3.5 - 3d - ε 2.5-4d

β -1 3.5 - 3d - ε 2.5-4d
1 - β 0 2.5-3d 2 1.5-3d

1 - qL 1

qL 2

d

1 + d - ε

01 0 2 20

1 1 -10.5

0.5

2

2

α -1
qL 2

1 - α

1 - qL

 

 

The values of {α, β} will be determined in such a way that, at {α, β}, neither trader has 

any incentives to deviate since, at {α, β}, both are maximizing their expected payoffs, or 

they cannot increase them any more by switching to any other strategy.  Lemma 6 

shows the closed form solutions for α and β, and their ranges (Proof 9).  

  

                                           
17 Recall that xF,2 = 0 is a sufficient condition that θ* = 2, so L always holds to earn 2 at T.  
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Lemma 6 α* and β*   

α* (β*) is the optimal level of probability, with which F cheats given θ* = 2 (L trusts F given sL = 2 and 

xF,2 = -1). 
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All these results make sense intuitively.  The higher the precision of L’s information is, 

the more often F’s cheating ends unsuccessfully.  So he cheats less often ((1)) and L 

trusts him more often than otherwise ((3)).  Similarly, the higher the price impact goes, 

the higher cost of cheating F has to incur (since he has to trade twice more).  So he 

cheats less frequently ((2)) and L trusts him more frequently than elsewhere ((4)). 

  

4.6 Investor Performances 

 

Given qL and d, F and L’s investment performances are determined by their investment 

strategies (α and β).  Table 4 shows their performances in each of various combinations 

of α and β, including {α*, β*}, where α = 0 (1) indicates F’s sincere (cheating) strategy, 

and β = 0 (1) means L’s distrust (trust) strategy.  Initially, we assumed α = 0 and β = 1, 

where F and L’s expected payoffs are ½(4.5-3d) and ½(4.5-4d), respectively (Lemma 3).  

In equilibrium, those are ½(4.5-3d) and ½{5-8d + (1-α*)(4d-0.5)}, respectively.  

Therefore, F’s expected payoff has not changed but L has lost part of his payoff as ½{5-

8d + (1-α*)(4d-0.5)} < ½(4.5-4d).18  Table 4 summarizes F and L’s expected payoffs in 

each of their strategy profiles, where the ranks mean the relatives sizes of the expected 

payoffs (with ① being the highest one) by Assumption 4 (Proof 10).  

 

Table 4.  Strategies and performances 

This table shows various combinations of {α, β}, F and L’s expected payoffs given a specific {α, β}, and 

the relative sizes of F’s or L’s payoffs in an descending order.  

 

α = β = E[πF,2|α, β] = rank E[πL,2|α, β] = rank

0 1 ½(4.5-3d) ② ½(4.5-4d) ① 

0 0 ½(4.5-3d) ② ½{3+qL(1.5-4d)} ② 

1 1 ½(6-6d) ① ½(5-8d) ④ 

1 0 ½(6-qL-6d) ④ ½(3.5+qL-4d) ③ 

α* β* ½(4.5-3d) = ②  ③ < ½{5-8d + (1-α*)(4d-0.5)} < ②  

 

4.7 Market Implications 

 

What could be the implications of this investigation for stock markets in the presence 

of asymmetric information?  First, more informed investors might take advantage of their 

                                           
18 ½{5-8d + (1-α*)(4d-0.5)} is decreasing in α*, and equals ½(4.5-4d) when α* = 0 or qL = 1.  
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informational edge for an extra profit.  This automatically inflicts damage on the 

investment performances of less informed investors as, in the model, L earns less in the 

long-run equilibrium than he does when F trades sincerely.  This negative effect is the 

most pronounced when {α, β} = {1,1}, where F and L achieve the maximum and minimum 

performance, respectively.  Besides, in equilibrium, F gets as much as at {α, β} = {0, 1}, 

which is effectively the starting point of the game, whereas L gets less than at {0, 1} as 

in Table 4.  

Second, as more informed investors try to mislead less informed investors and noise 

traders, their private information is not revealed in the market as quickly as otherwise; 

rather the prices are often manipulated and kept away from their fundamental values for 

an extended period.  When F acts sincerely (and L follows him) given θ1, the path of Pt is 

such that {P3, P4, P5} = {2.5-3d, 2.5-4d, 1} with probability one.  So the price converges 

to θ1 by time 5.  On the contrary, when, F cheats L, {P3, P4, P5} = {2.5-3d, 2.5-4d, 1} 

with probability β*, and {P3, P4, P5, P6, …, PT-1, PT} = {2.5-3d, 2.5-3d, 2.5-3d, 2.5-3d, …, 

2.5-3d, 1} with probability (1-β*).  In the latter’s case, the price will never converge to 

θ1 by the very last time T.  In other words, stock markets will stay informationally 

inefficient for a longer period.   

Third, in reality, α and β might be a little or far away from α* and β*.  For example, if 

more informed investors do not cheat less informed investors often, the latter might not 

notice the cheating and β might be close to 1.  For example, if α = 0.1 and β = 1, the 

expected payoffs for F and L will be larger and smaller, respectively, than in equilibrium.  

Then the differential performance between the two will be expanded. 

Our analysis could be applied to emerging markets like Korea, Taiwan, or China, where 

foreign investors are often regarded as more informed than local institutions or local 

individual since they have more experiences, more money, better know-how to value 

stocks, better global networks, etc.  As a matter of fact, when they began to invest in 

these markets for the first time, they successfully established a good reputation as more 

informed investors because they showed fundamentals-oriented, scientific investment 

behavior and often outperformed markets, where local investors were less sophisticated 

than in developed markets.  And then the Asian financial crisis in 1997 broke out beyond 

the expectations from Asians and according to the expectations from foreigners.  As a 

result, foreigners’ reputation and locals’ belief in them soared.  Given this, foreigners 

might have incentives to cheat locals or manipulate market prices to maximize their 

profits whenever they could.  If they did it successfully indeed, it might take long before 

locals fully understand this sophisticated behavior of foreigners, or equivalently, locals 

might have to suffer unfairly bad performances for long before α and β converge to α* 

and β*. 
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4.8 Trading in the Absence of Information Asymmetry 

 

Here, for reference, let us consider the case where F does not have any 

informational advantage over L.  More specifically, let us assume that so far F has been 

trading sincerely based on his superior information and L has been following him.  That 

is, we simply assume that Lemma 3 holds.  Now we additionally assume that F does not 

have his informational edge any more (for whatever reasons), and the accuracy of sF now 

is exactly the same as that of sL as in Assumption 2-1,19 but L does not know this yet.  

Then how will F and L optimally trade? 

 

Assumption 2-1: The quality of sF and sL 

① P[sF = θi|θi] = P[sL = θi|θi] = qL,  i ∈ {1, 2, 3, 4} 

② P[sL = θ2|θ1] = P[sL = θ1|θ2] = P[sL = θ4|θ3] = P[sL = θ3|θ4] = 1-qL 

③ P[sF = θ2|θ1] = P[sF = θ1|θ2] = P[sF = θ4|θ3] = P[sF = θ3|θ4] = 1-qL 

 

In Section 4.1, we learn that, given θ* ∈ {θ1, θ2} or sL ∈ {1, 2}, L will optimally sell 

his first share as soon as he receives sL.  Now, F’s information is no better than L’s, and 

F is exactly in the same situation as L is, although L does not know this.  So F will 

optimally sell his first share immediately he receives sF just as L does.  Consequently, 

given θ* ∈ {θ1, θ2} or sF (sL) ∈ {1, 2}, both traders will optimally sell their first shares as 

in Section 4.1.   

Now what will they do to their second shares?  Suppose F continues to trade 

sincerely.  Then L will trade after F since L still believes that sF is perfect.  And their 

expected payoffs are as in Lemma 7 (Proof 11), where the differential performance is ½d 

as in Lemma 3. 

 

Lemma 7 Investment Performances (when L follows F or xL,2 = xF,2)   

① E[πF,2] = ½(3.5+qL-3d) 

② E[πL,2] = ½(3.5+qL-4d) 

③ E[πF,2] – E[πL,2] = ½d 

 

In this circumstance, F has an incentive to cheat L as long as L believes that F still 

                                           
19 Lemma 1 should be also changed accordingly; for example, P[θ1|sF = θ1] = qL, P[θ2|sF = θ1] = 1-qL 

이고, E[PT|sF = θ1] = 2-qL, E[PT|sF = θ2] = 1+qL. 
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receives the perfect information.  For example, given sF = 2, he will get E[PT|sF = 2] = 

1+qL if he acts on sF.  But if he sells his second share at 2.5-3d against sF, L will sell his, 

too, at 2.5-4d, which will cause noise traders sell off theirs and the price will plummet to 

1.  If F buys back one share at (1+ε) and holds till T, his total expected payoff will be 

(2.5-3d)-(1+ε)+(1+qL), and his extra payoff will be (2.5-3d)-(1+ε) = 1.5-3d-ε>0.  

Furthermore, even if sL = 1, F can get an extra payoff by doing exactly the same thing.  

That is, F will sell his second share at 2.5-3d since E[PT|sL = 1] = 2-qL<2.5-3d.  Then 

L and noise traders will also sell their shares and the price will plunge to 1.  If sF = 1 = 

θ* indeed, F would have no incentive to buy back a share at (1+ε).  But, now, his 

information, sF, is imperfect and E[PT|sF = 1] = 2-qL>1+ε.  Consequently, he is better 

off by buying back a share at (1+ε) now and earn the expected payoff of 2-qL at T.  

Therefore he will optimally sell his second share even when he gets sF = 1, and in this 

circumstance, their expected payoffs are as in Lemma 8  (Proof 12).20   

 

Lemma 8 Investment Performances (when F cheats L)   

① E[πF,2] = ½(6-6d) 

② E[πL,2] = ½(5-8d) 

③ E[πF,2] – E[πL,2] = ½(1+2d) 

 

Over time, from repeated trading, L will realize that F neither has the perfect 

information nor acts sincerely, and eventually, he will be able to infer that the quality of 

sF is as good as that of sL.  Given this, L has no reason to follow F, which will lead to 

Lemma 9 (Proof 13).   

 

Lemma 9 Investment Performances (when L distrusts F, who cheats)   

① E[πF,2] = ½(6-qL-6d) 

② E[πL,2] = ½(3.5+qL-4d) 

③ E[πF,2] – E[πL,2] = ½(2.5-2qL-2d) 

 

As a result, the expected payoffs for F and L are, respectively, less than and greater 

than when F cheats successfully (Proof 13).  And L’s expected payoff is as high as in 

Lemma 7, where it hinges entirely on the quality of sF since L blindly follows F.  

Similarly, in Lemma 9, it depends critically on the quality of sL since this time he acts on 

sL.  But the quality of sL happens to equal that of sF, so his expected payoff in either 

                                           
20 ε, the infinitesimal, is ignored since, effectively, it is like zero. 
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case is the same.  

As for F’ expected payoff, it could be greater or less than in Lemma 7.  If qL, the 

quality of sL, is high enough for L not to fall prey to F’s cheating or if d, a cost to F’s 

cheating, is high enough, then F is worse off by cheating than by trading sincerely.  

Intuitively, this makes sense since qL also indicates the quality of sF since qL = qF.  In 

other words, a high qL implies a high qF, so F is better off by acting honestly on sF given 

a high qL.
21 

Finally, in equilibrium, F and L trade neither later than, nor earlier than, the other but 

simultaneously since they are in exactly the same situations.  If F is better off by trading 

earlier or later than L, so is L.  Therefore in equilibrium, they will move 

simultaneously,22 and their expected payoffs in equilibrium are as in Lemma 10 (Proof 

14).   

 

Lemma 10 Investment Performances in Equilibrium   

① E[πF,2] = ½{3.5+qL-4d+2qL(1-qL)d} 

② E[πL,2] = ½{3.5+qL-4d+2qL(1-qL)d} 

③ E[πF,2] – E[πL,2] = 0 

 

In equilibrium, L’s expected payoff is greater, by ½×2qL(1-qL)d = qL(1-qL)d, than 

½{3.5+qL-4d}, the expected payoff when he acts on sL or follows F who acts on sF.  The 

equilibrium expected payoffs for F and L match when the qualities of their signals equal, 

unlike those in the presence of information asymmetry. 

 

5. Concluding Remarks 
 

Securities investors with less information have an incentive to follow those with more 

information for information or payoff externality.  Also noise traders, who trade 

securities for idiosyncratic reasons, tend to herd when they see stock prices soar or 

plunge quickly.  Then more informed investors could take advantage of less informed 

investors’ belief in them and noise traders’ herd behavior to obtain an extra payoff.  As 

a result, more and less informed investors achieve more and lee than they deserve, 

                                           
21 The expected payoffs from the two strategies of F are the same when 6-qL-6d = 3.5+qL-3d, where 

the right hand side is the expected payoff when F trades sincerely.  It will be easily shown that the 

higher qL or d gets, the right hand side gets increasingly bigger than the left hand side.  More 

specifically, the two sides of the equation equal only when 2.5 = 2qL + 3d.  If 2.5 < 2qL+3d, then the 

right hand side is greater than the left hand side.  For example, qL and d are relatively high such as qL 

= 0.95, and d = 0.24, 6-qL-6d = 3.61 < 3.73 = 3.5+qL-3d. 
22 Either F or L will end up selling at 2.5-3d if the other optimally holds. 
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respectively, and stock prices are kept away from their fundamental values for an 

extended time.  Over time an equilibrium will be reached in which more informed 

investors mix their sincere and cheating strategy, and less informed ones mix their trust 

and distrust strategy.  Furthermore, even if allegedly more informed investors do not 

actually have any informational edge, they might be able to obtain an extra payoff as long 

as less informed ones do not know of the fact.   

One possible application of this model could be to emerging markets, where foreign 

investors mostly from developed markets like the US or the UK are considered more 

informed than local institutions.  Particularly Asian emerging markets could be good 

examples, where foreigners have been enjoying markets’ belief in them since some of 

them predicted successfully the Asian currency crisis in 1997.  We think that this leaves 

a potential avenue for future research.  
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Appendix 
 

Proof 1: Lemma 1 

 

Let us say i = 1.  Then  

P[θ1|sL = θ1] = P[θ1 and sL = θ1]/P[sL = θ1] 

= {P[θ1]×P[sL = θ1|θ1]}/{P[θ1]×P[sL = θ1|θ1]+ P[θ2]×P[sL = θ1|θ2]} 

= (¼×qL)/{¼×qL + ¼×(1-qL)}  (by Assumption 2) 

= qL  

This also holds for i ∈ {2, 3, 4}.  Hence ①.  Also, ② can be similarly derived by 

Assumption 2. 

Now, E[PT|sL=θ1]  

= P[θ1|sL=θ1]×E[PT|θ1] + P[θ2|sL=θ1]×E[PT|θ2] 

= qL×1 + (1-qL)×2 = 2-qL by ① and ②.  Hence ③.  And ④, ⑤ and ⑥ can be similarly 

derived. 

 

Proof 2: Assumption 4 

Solving 2.5-3d< 2 <2.5-2d and 1 <2.5-4d leads to 
6
1 < d <

4
1 (①).  Also, solving 2.5-3d< 

1+qL< 2.5-2d and 2-qL< 2.5-4d leads to 1.5-3d<qL<1.5-2d and qL>½-4d, respectively.  

Since qL<1 and ① implies that 1.5-2d>1 and ½-4d<1.5-3d, the range of qL turns out to 

be 1.5-3d<qL<1. 

 

Proof 3: Lemma 2 

 

The current share price is P1 = 2.5-2d.  Now, in order to calculate the expected payoff 

from trading the second shares (xF,2, xL,2 ∈ {-1,0}), we should recall that xF,2 = -1 (0) 

when θ* = 1 (2), and xL,2 = -1 (0) when sL = 1 (2).  For example, E[πF,2|θ
*=1, sL=1] = 

E[πL,2|θ
*=1, sL=1] = 2.5-4d since both F and L sell a share simultaneously.  Similarly,  

E[πL,2|θ
*=2, sL=1] = E[πF,2|θ

*=1, sL=2] = 2.5-3d since only one trader sells a share.  

Then, L’s expected payoff from xL,2 is,  

 

E[πL,2]  = P[θ1]×{P[sL=1|θ1]∙E[πL,2|θ1, sL=1] + P[sL=2|θ1]∙E[πL,2|θ1, sL=2]} 

  + P[θ2]×{P[sL=1|θ2]∙E[πL,2|θ2, sL=1] + P[sL=2|θ2]∙E[πL,2|θ2, sL=2]} 

= ½{qL(2.5-4d) + (1-qL)(1)} + ½{(1-qL)(2.5-3d) + qL(2)} 

= ½{3.5-3d+qL(1-d)} 
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Similarly,  

 

E[πF,2]  = P[θ1]×{P[sL=1|θ1]∙E[πF,2|θ1, sL=1] + P[sL=2|θ1]∙E[πF,2|θ1, sL=2]} 

  + P[θ2]×{P[sL=1|θ2]∙E[πF,2|θ2, sL=1] + P[sL=2|θ2]∙E[πF,2|θ2, sL=2]} 

= ½{qL(2.5-4d) + (1-qL)(2.5-3d)} + ½{(1-qL)×2 + qL×2} 

= ½{4.5-3d-d∙qL} 

 

Proof 4: Lemma 3 

 

E[πF,2] = P[θ1]×E[πF,2|θ1] + P[θ2]× E[πF,2|θ2] 

= P[xF,2 = -1]×E[πF,2| xF,2 = -1] + P[xF,2 = 0]×E[πF,2| xF,2 = 0] 

= ½(2.5-3d) + ½(2) = ½(4.5-3d) 

 

E[πL,2]  = P[θ1]×E[πL,2|θ1] + P[θ2]×E[πL,2|θ2] 

= P[xF,2 = -1]×E[πL,2| xF,2 = -1] + P[xF,2 = 0]×E[πL,2| xF,2 = 0] 

= P[xF,2 = -1]×E[πL,2| xL,2 = -1] + P[xF,2 = 0]×E[πL,2| xL,2 = 0] 

= ½(2.5-4d) + ½(2) = ½(4.5-4d) 

 

ΔE[πF,2]= ½(4.5-3d) - ½(4.5-3d-d∙qL) = ½d∙qL 

 

ΔE[πL,2] = ½(4.5-4d) - ½{3.5-3d+qL(1-d)} 

 = ½{1-d-qL(1-d)} = ½{1×(1-qL)-d(1-qL)} 

 = ½(1-qL)(1-d) > 0 

 

E[πF,2]–E[πL,2] = ½(4.5-3d) - ½(4.5-4d) = ½d > ½(1-qL)  

 since d-(1-qL) = d-1+qL > d-1+(1.5-3d) = ½-2d >0 by Assumption 4. 

 

Proof 5: L is worse off by selectively following F than by blindly following F. 

 

Basically there are two ways to selectively follow F.  One way is to follow F with a 

certain probability; for example, follow F with probability f and do not follow F with 

probability (1-f).  But this should not be optimal because the expected payoff from the 

former is always greater than that from the latter, i.e., ½(4.5-4d) > ½{3.5–3d+qL(1-d)}.  

Therefore, if L is to follow F anyway, he should follow F always or blindly.   

The other one is to follow F on the basis of his information sL; for example, follow F if 

sL = 2 and do not follow F otherwise.  This also makes L worse off than does blindly 

following F.  First, P[sL = 2|θ* ∈ {θ1, θ2}] = P[θ1]×P[sL = 2|θ1]+ P[θ2]×P[sL = 2|θ2] = 
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½qL + ½(1-qL) = ½.  Now, given sL = 2, F will hold to earn 2 with probability P[θ2|sL= 2] 

= qL and sell a share at 2.5-3d with probability P[θ1|sL= 2] = 1-qL.  If L follows F given 

sL = 2, then L’s expected payoff given sL = 2 is qL∙2 + (1-qL)(2.5-4d).  If sL = 1, L will 

not follow F and sell a share.  Since P[sF= θ1|sL=1] = qL and P[sF = θ2|sL=1] = (1-qL), L 

will sell a share at 2.5-4d with probability qL and at 2.5-3d with probability (1-qL).  So 

his expected payoff given sL = 1 is qL(2.5-4d)+ (1-qL)(2.5-3d).  Overall, the expected 

payoff for L is 

 

P[sL = 2]×E[πL,2|sL = 2] + P[sL = 1]×E[πL,2|sL = 1] 

= ½{qL∙2 + (1-qL)(2.5-4d)} + ½{qL(2.5-4d)+ (1-qL)(2.5-3d)} 

= ½{qL(4.5-4d)+ (1-qL)(5-7d)} 

= ½{5-7d+qL(3d-0.5)} 

 

Now, the incremental payoff of L’s copying strategy over this strategy is positive since 

½(4.5 – 4d) - ½{5-7d+qL(3d-0.5)} = ½{3d-0.5-qL(3d-0.5)} = ½(3d-0.5)(1-qL) > 0 by 

Assumption 4 (①).  Similarly it can be shown that the strategy of following F only if sL = 

1 is inferior to the strategy of blindly following F. 

 

Proof 6: Lemma 4 

 

When sF = θ* = 2, F can cheat L to cause Pt to plummet to 1 and then buys back a share 

at the lowest price of 1+ε.  More specifically, given θ* = 2, he will sell a share at 2.5-3d 

= P3, and L will sell a share at 2.5-4d = P4.  Then noise traders will herd to sell, which 

will bring about P5 = 1.  Once this happens, noise traders are willing to sell at any price 

greater than 1, and F can buy back a share at 1+ε at time, say, T-1.  At T, θ* = 2 

becomes common knowledge, and PT = θ* = 2.  Accordingly, his total payoff from this 

strategy given θ* = 2 is (2.5-3d)-(1+ε)+2 = 3.5-3d-ε.  Also, his payoff given θ* = 1 is 

2.5-3d.  After all, the expected payoff of F when he cheats L given θ* = 2 is, 

   

E[πF,2]  = P[θ1]× E[πF,2|θ1] + P[θ*=2]× E[πF,2|θ2] 

= ½(3.5-3d-ε) + ½(2.5-3d) 

= ½(6-6d-ε). 

 

This amount is greater than his expected payoff when he trades honestly and L follows F 

since ½(6-6d-ε) - ½(4.5-3d) = ½(1.5-3d-ε) > 0.  Meanwhile, L’s payoff is always 2.5-4d, 

i.e., E[πL,2] = 2.5-4d = ½(5-8d) as L will follow F, who sells a share at 2.5-3d whether θ* 

= 1 or 2.  However, this amount is less than his expected payoff when L follows 
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“always-honest” F as ½(5-8d) - ½(4.5 – 4d) = ½(0.5-4d) < 0 where 
6
1 <d.  Last, the 

differential performance is E[πF,2] – E[πL,2] = ½(6 – 6d -ε) - ½(5 – 8d) = ½(1+2d-ε) > ½d. 

 

Proof 7: Lemma 5 

 

If L always sells a share following xF,2 = -1, his payoff is always 2.5-4d no matter what 

θ* is.  But L knows that F might be cheating when xF,2 = -1 (θ* = θ1 or θ2), although F is 

not cheating when xF,2 = 0 (θ1).  What will be L’s expected payoff if he bases his trading 

on sL when he sees xF,2 = -1?  Since F always takes xF,2 = -1 whether θ* = θ1 or θ2, “xF,2 

= -1” does not reveal any information on θ*.  In fact, given θ* ∈ {1, 2}, P[θ1|xF,2 = -1] =  
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and accordingly P[θ2|xF,2 = -1] = ½.  Again, the event of xF,2 = -1 does not help L infer 

about θ* at all.  Therefore he will follow xF,2 = -1 only if sL recommends him to sell, i.e., 

only if sL = 1, and will not follow xF,2 = -1 if sL = 2.  Then L’s expected payoff will 

depend on sL.  Suppose sL = 2, then P[θ1|xF,2= -1, sL= 2] = P[θ1| sL= 2] = 1-qL, and 

P[θ2|xF,2= -1, sL= 1] = P[θ2| sL= 1] = qL.  Therefore E[πL,2|xF,2 = -1, sL = 2] = E[πL,2|sL 

= 2] = E[PT|sL = 2] = 1+qL, which is greater than 2.5-4d by Assumption 4.  Therefore, 

given xF,2 = -1 and sL = 2, L is better off by distrusting F and following sL.  Similarly it 

can be shown that, given xF,2 = -1 and sL = 1, L is better off by following F (and following 

sL), i.e., 2.5-4d > 2-qL (by Assumption 4).  After all L’s expected payoff is, 

 

E[πL,2]  = P[sL = 1|θ* ∈ {1, 2}]×E[πL,2|sL = 1] + P[sL = 2|θ* ∈ {1, 2}]×E[πL,2|sL = 2] 

 = ½×(2.5-4d) + ½×(1+qL)
23 

= ½(3.5-4d+qL) > 2.5-4d  (∵qL>1.5-3d) 

 

Now, given θ2, F cannot cheat L by taking xF,2 = -1 as easily as before; L will sell a share 

only if sL = 1 with probability 1-qL = P[sL = 1|θ2] and will not sell otherwise.  F’s payoff 

will be just 2.5-3d if L does not sell, and (3.5-3d-ε) if he sells.  Overall, F’s expected 

payoff is, 

                                           
23 Refer to Proof 5 for P[sL= 1|θ*= {θ1, θ2}] = P[sL= 2|θ*= {θ1, θ2}] = ½. 
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E[πF,2]  = P[θ1]×E[πF,2|θ1] + P[θ2]×E[πF,2|θ2] 

= ½×(2.5-3d) + P[θ2]×{P[sL=1|θ2]×E[πF,2|sL=1] + P[sL=2|θ2]×E[πF,2|sL = 2]} 

= ½×(2.5-3d) + ½{(1-qL)×(3.5-3d-ε) + qL×(2.5-3d)} 

= ½×(2.5-3d) + ½{3.5-3d-q-ε(1-qL)} 

= ½×{6–6d-qL-ε(1-qL)} 

 

This is even less than F’s payoff when he acts sincerely, which is ½(4.5–3d) as ½×{6–6d-

qL-ε(1-qL)} - ½(4.5–3d) = ½{1.5-3d-q-ε(1-qL)} < 0 (∵ qL>1.5-3d). 

 

Proof 8: Expected payoffs in each of F and L’s strategy profiles 

 

Table 1. Expected payoffs for F when θ* = 2 

L E[πF,2 |θ2] 

Trust Distrust 

Act sincerely (xF,2 = 0) 2 ↓ 2 F 

Cheat (xF,2 = -1) 3.5 -3d-ε  3.5-3d-qL-ε(1-qL) ↑ 

 

When θ* = θ2 = 2, F’s expected payoff from acting sincerely (xF,2 = 0) is 2, which is trivial.  

But that depends on L’s response when he cheats.  If F cheats L, who trusts him (xL,2 = 

-1), then F’s expected payoff will be 3.5-3d-ε (Proof 6).  If L distrusts F and relies on 

sL, that will be  

 

P[sL = 2|θ2]×E[πF,2|θ2, sL = 2] + P[sL = 1|θ2]×E[πF,2|θ2, sL = 1]  

= qL(2.5-3d)+(1-qL)(3.5-3d-ε) = 3.5-3d-qL-ε(1-qL).  

 

3.5-3d-ε is greater than 2 as d<¼, and 3.5-3d-qL-ε(1-qL) is less than 2 as qL>1.5-3d. 

 

Table 2. Expected payoffs for L when sL = 2 and xF,2 = -1 

L E[πL,2|sL= 2, xF,2= -1] 

Trust (xL,2 = -1) Distrust (xL,2 = 0) 

Act sincerely 2.5-4d ←1 F 

Cheat 2.5-4d → 1+qL  

 

Given xF,2 = -1 and sL = 2, L can follow F by selling a share and earn to 2.5-4d with 
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probability one.  If he distrusts F and holds his second share, his expected payoff is 

E[PT|sL = 2] = 1+qL.  And (2.5-4d) is greater than 1 and less than (1+qL) by 

Assumption 4.  Notice that taking xF,2 = -1 while cheating  does not always mean that F 

is cheating.  Even if F employs the cheating strategy, P[θ1|xF,2 = -1] = P[θ2|xF,2 = -1] = 

½ (Proof 5).  That is, xF,2 = -1 does not help L infer about θ*.  Only sL = 2 helps him 

calculate the (ex post) probability that θ* = 1 or 2, which is (1-qL) or qL.   

 

Proof 9: Lemma 6 

 

Given θ* = 2 = θ2, the expected payoff for F when he cheats (xF,2 = -1) is 

 

E[πF,2|θ2, xF,2 = -1] 

= P[sL = 1|θ2]×E[πF,2|sL = 1] + P[sL = 2|θ2]×E[πF,2|sL = 2] 

= (1-qL)×E[πF,2|xL,2= -1] + qL×{β×E[πF,2| xL,2 = -1]+ (1-β)×E[πF,2| xL,4 = 0]} 

= (1-qL)×(3.5-3d-ε) + qL×{β×(3.5-3d-ε)+ (1-β)×(2.5-3d)} 

= (3.5-3d) -qL×(1-β)       ( 5 ) 

 

Similarly, given sL = 2 and xF,2 = -1, L’s payoff is 2.5-4d by selling a share.  If L does 

not trusts F and holds a share, his expected payoff will depend on P[θ*= θ1|xF,3= -1, sL= 

2] such that 

 

E[πL,2|xF,2 = -1, sL = 2, xL,2 = 0]  

= P[θ1|xF,2= -1, sL = 2]×E[πL,2|θ1, xL,2 = 0] +P[θ2|xF,2 = -1, sL = 2]×E[πL2|θ2, xL,2 = 0] 

= P[θ1|xF,2= -1, sL= 2]×1 + P[θ2|xF,2 = -1, sL = 2]×2. 

 

Here, P[θ1|xF,2= -1, sL= 2] = 
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Accordingly P[θ2|xF,2= -1, sL= 2] = 
LL

L

qq
q

⋅+−
⋅
α

α
1

 and 

 

E[πL,2|xF,2 = -1, sL = 2, xL,2 = 0] 

= P[θ1|xF,2= -1, sL= 2]×1 + P[θ2|xF,2 = -1, sL = 2]×2. 

LL

LL

LL

L

LL

L

qq
qq

qq
q

qq
q

⋅+−
⋅+−

=×
⋅+−

⋅
+×

⋅+−
−

=
α
α

α
α

α 1
212

1
1

1
1

.  ( 6 ) 

 

In equilibrium, the expected payoff from F’s cheating (=(5)) should be equal to 2, the 

payoff when he does not cheat (xF,2 =0).  This is because, if (5) is greater (less) than 2, 

he always (never) cheats.  But a pure strategy such as cheating with probability 1 or 0 

does not constitute a long-run equilibrium as shown in Tables 1 and 2.  Therefore (5) 

should be equal to 2 and we have (ignoring ε) 

 

Lq
d

2
631* −
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Similarly (6) should be equal to 2.5-4d.  After a lengthy algebra, we have  
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And numerical analyses below show that the ranges of α* and β* are 0 < α* < ⅓, and 0< 

β* < ¼, where α* = ⅓ if d = ¼ and qL = 1.5-3d, and β* = ¼ if d = ¼ and qL = 1.  Notice 

that, while doing numerical analyses, the values of qL and d are carefully picked to 

always satisfy the two inequalities of Assumption 4 simultaneously. 
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< the range of α* > 

(qL(min) is the minimum value of qL to meet qL>1.5-3d ) 

0.168 0.173 0.178 0.183 0.188 0.193 0.198 0.203 0.208 0.213 0.218 0.223 0.228 0.233 0.238 0.243 0.248

0.751

0.761 0.33
0.771 0.31

0.781 0.32 0.29

0.791 0.32 0.30 0.27

0.801 0.30 0.28 0.26

0.811 0.31 0.28 0.26 0.24

0.821 0.31 0.29 0.27 0.25 0.23

0.831 0.29 0.27 0.25 0.23 0.21

0.841 0.29 0.27 0.25 0.23 0.21 0.20

0.851 0.30 0.27 0.25 0.23 0.21 0.20 0.18

0.861 0.27 0.25 0.23 0.21 0.20 0.18 0.17

0.871 0.27 0.25 0.23 0.21 0.20 0.18 0.17 0.15

0.881 0.27 0.25 0.23 0.21 0.19 0.18 0.16 0.15 0.14

0.891 0.27 0.25 0.23 0.21 0.19 0.18 0.16 0.15 0.14 0.13

0.901 0.24 0.22 0.20 0.19 0.17 0.16 0.15 0.13 0.12 0.11

0.911 0.24 0.22 0.20 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.10

0.921 0.21 0.19 0.17 0.16 0.15 0.13 0.12 0.11 0.10 0.10 0.09

0.931 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.08

0.941 0.19 0.17 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.08 0.07 0.07

0.951 0.15 0.14 0.13 0.11 0.10 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.05

0.961 0.14 0.12 0.11 0.10 0.09 0.08 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.04

0.971 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03

0.981 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02

0.991 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

qL(min) 0.997 0.982 0.967 0.952 0.937 0.922 0.907 0.892 0.877 0.862 0.847 0.832 0.817 0.802 0.787 0.772 0.757

qL =
d =

 

< the range of β* > 

0.168 0.173 0.178 0.183 0.188 0.193 0.198 0.203 0.208 0.213 0.218 0.223 0.228 0.233 0.238 0.243 0.248

0.751

0.761 0.01

0.771 0.02

0.781 0.01 0.03

0.791 0.01 0.02 0.04

0.801 0.02 0.04 0.05

0.811 0.01 0.03 0.05 0.07

0.821 0.00 0.02 0.04 0.06 0.08

0.831 0.02 0.03 0.05 0.07 0.09

0.841 0.01 0.03 0.05 0.06 0.08 0.10

0.851 0.00 0.02 0.04 0.06 0.08 0.09 0.11

0.861 0.02 0.03 0.05 0.07 0.09 0.10 0.12

0.871 0.01 0.03 0.04 0.06 0.08 0.10 0.11 0.13

0.881 0.00 0.02 0.04 0.06 0.07 0.09 0.11 0.12 0.14

0.891 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.13 0.15

0.901 0.01 0.03 0.04 0.06 0.08 0.09 0.11 0.13 0.14 0.16

0.911 0.00 0.02 0.04 0.05 0.07 0.09 0.10 0.12 0.14 0.15 0.17

0.921 0.02 0.03 0.05 0.06 0.08 0.10 0.11 0.13 0.15 0.16 0.18

0.931 0.01 0.03 0.04 0.06 0.07 0.09 0.11 0.12 0.14 0.15 0.17 0.19

0.941 0.00 0.02 0.04 0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.16 0.18 0.20

0.951 0.01 0.03 0.05 0.06 0.08 0.09 0.11 0.13 0.14 0.16 0.17 0.19 0.20

0.961 0.01 0.02 0.04 0.06 0.07 0.09 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.21

0.971 0.00 0.02 0.04 0.05 0.07 0.08 0.10 0.11 0.13 0.14 0.16 0.17 0.19 0.20 0.22

0.981 0.01 0.03 0.04 0.06 0.08 0.09 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.21 0.23

0.991 0.01 0.02 0.04 0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.16 0.18 0.19 0.21 0.22 0.24
qL(min) 0.997 0.982 0.967 0.952 0.937 0.922 0.907 0.892 0.877 0.862 0.847 0.832 0.817 0.802 0.787 0.772 0.757

qL =
d =
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Proof 10: Table 4 

 

α β E[πF,2|α, β] rank E[πL,2|α, β] rank

0 1 ½(4.5-3d) ② ½(4.5-4d) ① 

0 0 ½(4.5-3d) ② ½{3+qL(1.5-4d)} ② 

1 1 ½(6-6d) ① ½(5-8d) ④ 

1 0 ½(6-qL-6d) ④ ½(3.5+qL-4d) ③ 

α* β* ½(4.5-3d) = ②  ③ < ½{5-8d + (1-α*)(4d-0.5)} < ②  

 

All the values of E[πF,2|α, β] and E[πL,2|α, β] but E[πF,2|α = β = 0] and E[πL,2|α = β = 0] 

have been already derived by Lemmas.  And E[πF,2|α = β = 0] = E[πF,2|α = 0, β = 1] = ½

(4.5-3d) since the expected payoff of F, who trades first based on sF, is not affected by 

L’s trading strategy.  And, using Table 3,  

 

E[πL,2|α = β = 0]  

= P[θ1]× E[πL,2|θ1, α = β = 0] + P[θ2]× E[πL,2|θ2, α = β = 0] 

= ½×{qL(2.5-4d)+(1-qL)×1} + ½×2 (∵ xF,2 = 0 indicates θ2) 

= ½{3+qL(1.5-4d)}. 

 

Now, in the ranks of F, ① – ② = (6-6d) – (4.5-3d) = 1.5-3d>0 as d<¼.  And ② – ④ = 

(4.5-3d)-(6-qL-6d) = -1.5+3d+qL>0 as qL>1.5-3d.  As for the ranks of L, ① – ② =  

½{4.5-4d-3-qL(1.5-4d)} = ½(1.5-4d)(1-qL) > 0 (∵4d<1).  Also, ② – ③ =  

½{3+qL(1.5-4d)-3.5-qL+4d} = ½{(4d-0.5)-qL(4d-0.5)} = ½(4d-0.5)(1-qL) > 0.  And  

③ – ④ = ½(3.5+qL-4d-5+8d) = ½(4d+qL-1.5) > 0 (∵qL>1.5-4d).  Finally, numerical 

analyses below show that E[πL,2|α = α*, β = β*] = ½{5-8d+(1-α*)(4d-0.5)} lies between 

③ and ②.  
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< the range of E[πL,2|α = α*, β = β*] - ③ >24 

 

0.168 0.173 0.178 0.183 0.188 0.193 0.198 0.203 0.208 0.213 0.218 0.223 0.228 0.233 0.238 0.243 0.248

0.751

0.761 0.08

0.771 0.08

0.781 0.07 0.08

0.791 0.06 0.07 0.07

0.801 0.06 0.07 0.07

0.811 0.06 0.06 0.07 0.07

0.821 0.05 0.05 0.06 0.06 0.07

0.831 0.05 0.05 0.06 0.06 0.07

0.841 0.04 0.05 0.05 0.06 0.06 0.06

0.851 0.04 0.04 0.05 0.05 0.05 0.06 0.06

0.861 0.04 0.04 0.04 0.05 0.05 0.05 0.06

0.871 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05

0.881 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05

0.891 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05

0.901 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04

0.911 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04

0.921 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04

0.931 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03

0.941 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03

0.951 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.961 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

0.971 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.981 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qL(min) 0.997 0.982 0.967 0.952 0.937 0.922 0.907 0.892 0.877 0.862 0.847 0.832 0.817 0.802 0.787 0.772 0.757

qL =
d =

 
 

< the range of E[πL,2|α = α*, β = β*] - ② >25 

 

0.168 0.173 0.178 0.183 0.188 0.193 0.198 0.203 0.208 0.213 0.218 0.223 0.228 0.233 0.238 0.243 0.248

0.751

0.761 -0.04

0.771 -0.03

0.781 -0.03 -0.03

0.791 -0.03 -0.03 -0.03

0.801 -0.03 -0.03 -0.03

0.811 -0.03 -0.02 -0.02 -0.02

0.821 -0.02 -0.02 -0.02 -0.02 -0.02

0.831 -0.02 -0.02 -0.02 -0.02 -0.02

0.841 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

0.851 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01

0.861 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.871 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.881 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.891 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.901 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.911 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00

0.921 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.931 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.941 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.951 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.961 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.971 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.981 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qL(min) 0.997 0.982 0.967 0.952 0.937 0.922 0.907 0.892 0.877 0.862 0.847 0.832 0.817 0.802 0.787 0.772 0.757

qL =
d =

 

                                           
24 ½, the common coefficients are omitted as in another table below.   
25 The 0.00’s in this Excel spreadsheet are the numbers, which are less than, but very close to, zero. 
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Proof 11: Lemma 7 

 

E[πF,2]  = P[θ1]×{P[sF =1|θ1]∙E[πF,2|θ1, sF =1] + P[sF =2|θ1]∙E[πF,2|θ1, sF =2]} 

  + P[θ2]×{P[sF =1|θ2]∙E[πF,2|θ2, sF =1] + P[sF =2|θ2]∙E[πF,2|θ2, sF =2]} 

= ½{qL(2.5-3d) + (1-qL)(1)} + ½{(1-qL)(2.5-3d) + qL(2)} 

= ½(3.5+qL-3d). 

 

Meanwhile,  

P[sF =1] = P[sF =1, θ1] + P[sF =1, θ2] = P[θ1]×P[sF =1|θ1] + P[θ2]×P[sF =1|θ2]  

  = ½×qL + ½×(1-qL) = ½. 

 

Therefore, 

E[πL,2]  = P[sF =1]×E[πL,2|sF =1] + P[sF =2]×E[πL,2|sF =2] 

= ½×E[πL,2|xL,2 = -1] + ½×E[PT|sF =2] 

= ½(2.5-4d) + ½(1+qL) = ½(3.5+qL-4d). 

 

Also E[πF,2] – E[πL,2] = ½(3.5+qL-3d) – ½(3.5+qL-4d) = ½d.  

 

Proof 12: Lemma 8 

 

When F cheats given θ* = {θ1, θ2}, he always sells his second share and buy it back at 

(1+ε).  In this circumstance, the expected payoff for him is a function of θ*, i.e., 

E[πF,2|θ1] = 2.5-3d -(1+ε)+1 = 2.5-3d-ε, and E[πF,2|θ2] = 2.5-3d -(1+ε)+2 = 3.5-3d-ε.  

His total expected payoff is, ignoring ε,  

 

E[πF,2]  = P[θ1]∙ E[πF,2|θ1] + P[θ2]∙ E[πF,2|θ2] 

 = ½(2.5-3d) + ½(3.5-3d) = ½(6-6d).  

 

The expected payoff for L, who always sells following F, is  

 

E[πL,2] = ½(2.5-4d)+½(2.5-4d) = ½(5-8d)이다.   

 

And the differential performance between them is  

 

E[πF,2] – E[πL,2] = ½(6-6d) – ½(5-8d) = ½(1+2d) > ½d. 

 

Therefore the performance gap is greater than when F sincerely trades. 
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Proof 13: Lemma 9 

 

Let us say, {a, b} denotes the combination of “sF = a” and “sL = b.”  Then, both F 

and L sell their second shares (and F repurchase a share) only when {a, b} = {1,1} or 

{2,1} since L sells only when sL= 1.  Since F can achieve an extra payoff only when θ* = 

θ2, his expected payoff in each combination of {sF, sL} is as follows. 

  

E[πF,2|θ1, {1,1}] = (2.5-3d)-ε 

E[πF,2|θ1, {1,2}] = (2.5-3d) 

E[πF,2|θ1, {2,1}] = (2.5-3d)-ε 

E[πF,2|θ1, {2,2}] = (2.5-3d) 

 

E[πF,2|θ2, {1,1}] = (3.5-3d)-ε 

E[πF,2|θ2, {1,2}] = (2.5-3d) 

E[πF,2|θ2, {2,1}] = (3.5-3d)-ε 

E[πF,2|θ2, {2,2}] = (2.5-3d) 

 

That is, (ignoring ε) E[πF,2] = (3.5-3d) when θ* = θ2 and {sF, sL} = {1,1} or {2,1}, and 

E[πF,2] = (2.5-3d) elsewhere.  The probability that θ* = θ2 and {sF, sL} = {1,1} or {2,1} is 

nothing but P[θ2, sL = 1] = P[θ2]×P[sL = 1|θ2] = ½(1-qL), and the probability of its 

mutually exclusive events is 1-½(1-qL) = ½(1+qL).  Therefore his expected payoff is 

 

E[πF,2]  = P[θ2, sL = 1]×(3.5-3d) + {1- P[θ2, sL = 1]}×(2.5-3d)  

 = ½(1-qL)(3.5-3d) + ½(1+qL) (2.5-3d) 

 = ½(6-qL-6d), 

 

Which is less than ½(6-6d), the expected payoff when he successfully cheats L. 

  Meanwhile we know that P[sF =1] = ½ from Proof 11, and P[sL =1] = ½ can be proven 

similarly.  We also know that, since F always sells his second share, L sells his at 2.5-

4d and holds to get E[PT] when sL = 1 and sL = 2, respectively.  Accordingly, his 

expected payoff is 

 

E[πL,2]  = P[sL = 1]×(2.5-4d) + P[sL = 1]×E[PT|sL = 2] 

= P[sL = 1]×(2.5-4d) + P[sL = 1]×(1+qL)  

 = ½(2.5-4d) + ½(1+qL) 

 = ½(3.5+qL-4d). 
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Proof 14: Lemma 10 

 

Here we only calculate L’s expected payoff because F and L are in a perfectly 

symmetrical situation.  L acts on sL, so he sells if sL = 1 and holds if sL = 2.  More 

specifically, he sells at 2.5-4d and 2.5-3d if {sF, sL} = {1, 1} and {sF, sL} = {2, 1}, 

respectively, and holds to get E[PT|sL= 2] = 1+qL.  The probabilities of these events 

are as follows. 

 

P[sL= 2] = ½ (Proof 13), 

P[sL= sF= 1] = P[θ1, sL= sF=1] + P[θ2, sL= sF=1] = ½qL
2
 + ½(1-qL)

2 = ½{qL
2
 + (1-qL)

2} 

P[sL= 1, sF= 2] = P[θ1, sL= 1, sF= 2] + P[θ2, sL= 1, sF= 2]  

= ½qL(1-qL) + ½(1-qL)qL = ½{2qL(1-qL)} 

 

Consequently, his eventual expected payoff is  

 

E[πL,2]  = P[sL= 2]×E[PT|sL= 2] + P[sL= sF= 1]×(2.5-4d) + P[sL= 1, sF= 2]×(2.5-3d) 

 = ½(1+qL) + ½{qL
2
 + (1-qL)

2}(2.5-4d) + ½{2qL(1-qL)}(2.5-3d) 

 = ½(1+qL) + ½{qL
2
 + (1-qL)

2}(2.5-4d) + ½2qL(1-qL)(2.5-4d+d) 

= ½(1+qL) + ½{qL
2
 + (1-qL)

2 + 2qL(1-qL)}(2.5-4d) + ½2qL(1-qL)×d 

= ½(1+qL) + ½{qL + (1-qL)}
2×(2.5-4d) + ½×2qL(1-qL)d 

= ½(1+qL) + ½×1×(2.5-4d) + ½2qL(1-qL)d 

= ½{3.5+qL-4d+2qL(1-qL)d}, 

 

and so is E[πF,2].  Meanwhile, 2qL(1-qL), as a quadratic function of qL, reaches its 

maximum value at qL = ½.  However, since qL>0.75 by Assumption 4 or Proof 9, 2qL(1-

qL) is less than 2qL(1-qL) at qL = 0.75, which is 2×0.75×0.25 = 0.375 = ⅜.  Hence 

 

½{3.5+qL-4d} < ½{3.5+qL-4d+2qL(1-qL)d} < ½{3.5+qL-4d+⅜d}. 

 

 

 

 

 


