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Abstract

This paper presents a joint analysis of the term structure of credit default swap (CDS) spreads

and the implied volatility surface. The rapid development of the CDS market has provided conve-

nient products to extract credit risk, and its interaction with equity volatility has been analyzed in

many studies. However, in most of them the 5-year credit default swap spread is used to measure

credit risk, whilst the at-the-money 1-month implied volatility is used to measure equity volatility.

Only very few studies analyze the entire smile and the term structure of CDS spreads.

The purpose of this paper is to study the co-movements of the term structure of credit default

swap spreads and the implied volatility surface. We perform a factor decomposition for both the

dynamics of the implied volatility surface and the CDS curve. Then we jointly analyze the factors.

More precisely, we compute the information flow between the credit and volatility factors, scruti-

nize the contemporaneous interactions between the factors, and study the efficiency of cross-hedges

between the credit and volatility markets.

Using time series of options and CDS curves for the U.S. and European markets, we find

that the credit market is the main contributor to overall market innovations. Our methodology

is parsimonious and allows to capture the intrinsic relationships between the two markets. The

empirical study highlights the existing cross-market linkages during the Global Financial Crisis. It

also underlines that factors with small associated eigenvalues can be of tremendous importance to

perform efficient cross-hedges.
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1 Introduction

The aim of this paper is to provide a joint analysis of the term structure of credit default swap (CDS)

spreads and the implied volatility surface. The link between credit spreads and equity volatility is

central to Merton’s model and this relation has been studied extensively in the literature, see Campbell

and Taksler (2003) and Collin-Dufresne et al. (2001), among many others. The rapid development of

the credit default swap market has provided convenient products to extract credit risk, and its inter-

action with equity volatility has been studied in detail, see Benkert (2004), Forte and Pena (2009),

and Zhang et al. (2009). In most of these studies the 5-year CDS spread is used to measure credit

risk because it is the most liquid point of the curve, whilst the at-the-money (ATM) 1-month implied

volatility is used to measure equity volatility.

However, the skewness of the smile and the slope of the credit default swap curve contain important

information. For example, Cremers et al. (2008) analyze the impact of both implied volatility (ATM)

and the implied volatility skew on corporate bond credit spreads (long and short maturities) and find

that these variables have strong explanatory power. Carr and Wu (2010) find a significant correlation

between the smile and the skew and the average (along the term structure axis) of the CDS spread

on corporate data. Carr and Wu (2007) analyze the interaction between sovereign CDS spreads and

currency options. The smile dynamics is synthesized through option strategies (straddles, risk rever-

sals, butterfly spreads) that capture different aspects of the smile, such as the level or the slope, whilst

each CDS maturity is studied individually. They find a strong relation between all these variables.

Cao et al. (2010) analyze the 5-year CDS spread along with the at-the-money implied volatility and

the implied volatility skew. Hui and Chung (2011) study the 10-delta dollar-euro implied volatility in

relation to the 5-year sovereign credit default swap spread. These authors conclude that both level

and slope of the smile contain relevant information for the credit market.

The term structure of interest rates is known to convey relevant economic and financial information,

see Viceira (2012) and António and Martins (2012), to name only a few studies. In comparison, the

term structure of CDS spreads has attracted less attention, although some recent works underline

its importance. For example, Zhang (2008) studies the default risk premium for Argentine sovereign

debt jointly with some macroeconomic variables, whilst Pan and Singleton (2008) apply a similar

framework to Mexico, Turley, and Korea. Han and Zhou (2010) find that the term structure of CDS

spreads explains log stock returns, hence the slope of the CDS curve contains relevant information for
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the stock dynamics. To sum up, the slope of the CDS curve carries important financial information

beyond the level of the CDS curve (usually given by the 5-year CDS spread).

The purpose of this work is to study the co-movements of the term structure of credit default swap

spreads and the implied volatility surface. However, we will not restrict our analysis to a part of

the CDS curve (such as the 5-year CDS spread) or the ATM skew for the implied volatility. Both

of these objects will be analyzed globally. This aspect is essential if we want to manage portfolios of

options and CDSs as inevitably they will contain different option maturities and strikes and different

CDS maturities. Managing credit risk requires an understanding of the dynamics of the CDS curve,

whilst for volatility risk knowing the dynamics of the implied volatility surface is crucial. Once this is

achieved a joint analysis of these risks can be undertaken, one important application being the hedging

of credit risk with volatility products,1 see for example Carr and Wu (2011), and risk management at

the portfolio level (i.e. at an aggregate level).

As the implied volatility surface and the term structure of CDS spreads are multidimensional, we first

have to perform a principal component analysis in order to reduce their dynamics to a small number of

factors. For the smile we follow the methodology proposed in Cont and Da Fonseca (2002) and build a

factor decomposition for the dynamics of the implied volatility surface.2 We find that the usual three

factors (level, slope, and curvature) mainly explain the dynamics of the surface. As for the interest

rate yield curve we can decompose the dynamics of the CDS curve with the usual three factors (level,

slope, and curvature). Therefore, we can summarize the movements of the implied volatility surface

as well as the CDS curve with few factors. Then, we can analyze these factors to understand the joint

dynamics. We perform our analysis on a time series of implied volatility surfaces and credit default

swap curves for the pairs S&P 500/CDX.NA.IG and Euro Stoxx 50/iTraxx Europe for the period

2007-2011. Our sample covers the Global Financial Crisis and, taking into account the very particular

role played by the credit market during this period, our study allows to understand the cross-market

linkages between these two derivatives markets.

We obtain the following results: first, using a similar methodology as in Hui and Chung (2011),

we study the information flow between the credit and volatility markets and find that the former

is the main contributor to overall market innovations. Second, by computing correlations between

1We can also consider hedging volatility risk using credit products, but this seems of less interest.
2For related works on factor decomposition of the implied volatility surface see Skiadopoulos et al. (1999), Fengler

et al. (2003), Fengler et al. (2007), Chalamandaris and Tsekrekos (2010) and Chalamandaris and Tsekrekos (2012).
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contemporaneous factor changes and with the known relations between log stock returns and the

credit/volatility market, we get a complete picture of the joint dynamics of these two derivatives mar-

kets. Therefore, our results underline intrinsic relations between the term structure of CDS spreads

and the implied volatility surface. Third, we perform a regression analysis between contemporaneous

factors that allows us to devise cross-hedging strategies between the credit and volatility markets. We

find that the ability to achieve effective cross-hedging varies over time. When some market factors

allow to perform effective cross-hedges, this does not necessarily imply effectiveness of the reciprocal

cross-hedges. Lastly, factors with small eigenvalues can be very important from a cross-hedging point

of view.

The structure of the paper is as follows. In the first part, we describe the data along with some

descriptive statistics. In a second part, we present the factor decomposition for both the credit de-

fault swap spreads and the implied volatility surfaces. The third part contains the empirical results:

the information flow analysis between the two markets, the contemporaneous analysis as well as the

cross-hedging analysis. The last part concludes the paper. All tables and figures are gathered in the

appendix.

2 Data Description

A credit default swap (CDS) is a credit derivative contract between two counterparties that essentially

provides insurance against the default of an underlying entity. In a CDS, the protection buyer makes

periodic payments to the protection seller until the occurrence of a credit event or the maturity date

of the contract, whichever is first. The premium paid by the buyer is denoted as an annualized spread

in basis points and referred to as CDS spread. If a credit event (default) occurs on the underlying

financial instrument, the buyer is compensated for the loss incurred as a result of the credit event, i.e.

the difference between the par value of the bond and its market value after default.

Our dataset comprises the evolution of the term structure of credit default swap spreads for both the

U.S. market, given by the index CDX.NA.IG, and the European market, given by the index iTraxx

Europe. We collect daily time series for both indices from Markit at maturities of 0.5, 1, 2, 3, 5, 7,

and 10 years from January 24, 2007 to December 30, 2011. As the Global Financial Crisis is con-

tained in our sample, we split the full 5-year period into two sub-samples for all our analyses. The

4



first sub-sample (January 24, 2007 - November 12, 2009) spans the turbulent crisis period, while the

second sub-sample (November 13, 2009 - December 30, 2011) is more tranquil.

Figures 1 and 2 clearly reflect the turmoil of the Global Financial Crisis from mid-2007 onwards,

with CDS levels peaking around the default of Lehman Brothers in September 2008. Maximum CDS

spread levels reached in the U.S. (>500 basis points) are almost double the maximum levels reached

in Europe (>300 basis points). While CDS spreads come down in mid-2009 and the term structure

returns to a normal positively-sloped shape, the onset of the European debt crisis is visible in the

iTraxx Europe index from mid-2010 onwards when CDS prices start to rise again.

[Insert Figure 1 here]

[Insert Figure 2 here]

Summary statistics for the CDS indices CDX.NA.IG and iTraxx Europe are reported in Table 1 for the

full sample and two sub-samples. The mean CDS spread level for the CDX.NA.IG index ranges from

99 basis points for the shortest maturity (6 months) to 141 basis points for the longest maturity (10

years). The shorter maturities display significantly higher volatility than the longer maturities, with

standard deviations between 105 basis points (6 months) and 60 basis points (10 years). European

CDS spreads are lower across all maturities for the sample period 2007-2011, with mean CDS spreads

ranging from 69 basis points (6 months) to 119 basis points and standard deviations between 72 basis

points (6 months) and 47 basis points (10 years).

The first sub-sample (Jan 2007 - Nov 2009) displays significantly higher CDS prices and elevated

volatility due to the Global Financial Crisis. In fact, the term structure of the CDX.NA.IG is now

almost flat, with mean CDS spreads between 140 basis points (6 months) and 150 basis points (5

years). This stands in stark contrast to the second sub-sample (Nov 2009 - Dec 2011), when mean

CDS spreads fall between 37 basis points (6 months) and 131 basis points (10 years). The steeper slope

of the term structure is accompanied by drastically reduced volatility. The same observation applies

to the iTraxx Europe index, although the differences between turbulent and tranquil time periods are

somewhat less pronounced than for the CDX.NA.IG.

[Insert Table 1 here]

The implied volatility surface is constructed from European call and put options on the S&P 500 index

for the United States and on the Euro Stoxx 50 index for Europe. Daily prices of all available options
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were obtained from Datastream.

3 Factor Decompositions of CDS Spreads and the Implied Volatility

Surface

Our purpose is to study the joint dynamics of the term structure of credit default swap spreads and

the implied volatility surface. As both of them are multidimensional, we need to perform a factor

decomposition in order to reduce the dimension. For the CDS curve we proceed as for the interest

rate curve, see Litterman and Scheinkman (1991), whilst for the implied volatility surface we follow

the approach proposed in Cont and Da Fonseca (2002), see also Skiadopoulos et al. (1999).

3.1 The Term Structure of CDS Spreads

The term structure of credit default swap spreads for the U.S. and European markets is given by

the indices CDX.NA.IG and iTraxx Europe, respectively, as described in the Data section. Since

the CDS curves have similar properties as the yield curve, we can apply a well-established factor

decomposition. Denoting by {lncds(t, τi); i = 1 . . . N1} the time series of CDS spreads (logarithm) for

the available maturities we can compute, using ∆xt(τi) = lncds(t, τi) − lncds(t − 1, τi), a principal

component analysis decomposition. Figures 3 and 4 show the eigenvectors for the U.S. and European

markets, respectively. The corresponding eigenvalues are reported in Table 2. First, we note that both

markets lead to the same decompositions, a result which is similar to what is obtained in yield curve

studies. The first eigenvector is always positive and corresponds to a shift of the CDS spread curve.

Its associated eigenvalue dominates as it represents a large fraction of the global variance (around 95%

for both markets). The second eigenvector implies a change of the slope because the short-term part

is positive whereas the long-term part is negative, and the second eigenvalue accounts for 2.5% of the

global variance. The third factor has a U-shaped form and is related to a change of the convexity of

the term structure. Similar to yield curve factor decompositions the third eigenvalue only represents

a very small fraction of the global volatility. The overall results resemble what is obtained for yield

curves in the sense that we get the usual level, slope and curvature factor decomposition, which is

already fairly obvious from Figures 1 and 2. It is not necessary to go beyond the first three factors as

their sum amounts to 98% of market volatility.

[Insert Figure 3 here]
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[Insert Figure 4 here]

[Insert Table 2 here]

3.2 The Implied Volatility Surface

To build an implied volatility surface on which we can apply a factor decomposition we follow the

approach developed in Cont and Da Fonseca (2002). If we denote by cbs(t, st,K, T, σ) the Black-

Scholes formula for a European option (either call or put) at time t, with maturity T , strike K, when

the stock price at time t is st and volatility σ, then the implied volatility for an option whose market

price is c(t, st,K, T ) is the number σbst (T,K) such that

cbs(t, st,K, T, σ
bs
t (T,K)) = c(t, st,K, T ) (1)

As the Black-Scholes formula is monotonic with respect to volatility, this equation has a unique solution

and the function

σbst : (K,T )→ σbst (K,T ) (2)

is called the implied volatility surface. We can parametrize this function in terms of time to maturity

and moneyness (m = K
st

), so we define the function: It(m, τ) = σbst (mst, t+ τ). As this surface is usu-

ally non-flat and exhibits a U-shaped form for all times to maturity with less convexity for long-term

options, this surface is often referred to as the smile.3 Lastly, this smile fluctuates over time.

On the market for a given day t we observe a set of implied volatility values {It(mi, τi); i = 1 . . . Nt}

defined on a grid of pairs {(mi, τi); i = 1 . . . Nt} that will change over time because as the underlying

stock moves the available moneynesses will change because an option has a fixed strike. Similarly, as

time passes the options get closer to their maturities so the available times to maturity will change

over time. However, to perform a factor decomposition for the implied volatility surface we need to

build a smile which is parametrized by a fixed grid of time to maturity and moneyness. To this end we

interpolate by using a non-parametric Nadaraya-Watson estimator based on an independent bivariate

Gaussian kernel as in Cont and Da Fonseca (2002), see also Carr and Wu (2010). This allows us to

define a time series of implied volatility surface denoted {It(m̄j , τ̄j); j = 1 . . . N} on a fixed grid of

3More precisely, on the equity/index derivatives market we observe a smirk for each time to maturity.
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points {(m̄j , τ̄j); j = 1 . . . N}. To be more precise we compute the following quantities:4

It(m̄j , τ̄j) =

∑Nt
l=1 It(ml, τl)g(m̄j −ml, τ̄j − τl)∑Nt

l=1 g(m̄j −ml, τ̄j − τl)
(3)

where g(x, y) = e−x
2/(2h1)e−y

2/(2h2), with (h1, h2) being the bandwidth parameters of the kernel. For

the optimal choice of these parameters we refer to the classical literature, see Härdle (1990). How-

ever, we found more convenient to set directly the values5, see table for precise values. Also, we only

consider options with a time to maturity greater than one week to avoid the volatility spikes related

to very short term options, see Cao et al. (2010) where a similar problem is underlined.

Having built a daily time series {It(m̄j , τ̄j); j = 1 . . . N}, we can perform a factor decomposition for

the CDS spread curves. Given the high autocorrelation, skewness, and positivity constraints on the

implied volatility itself, we focus on daily variations of the logarithm of implied volatility. Thus, us-

ing ∆Xt(m̄j , τ̄j) = ln It(m̄j , τ̄j) − ln It−1(m̄j , τ̄j) we can perform a factor decomposition and denote

by {ek(m̄j , τ̄j); j = 1 . . . N} and λk the kth eigensurface and eigenvalue, respectively.6 Note that we

have
∑N

j=1 ek1(m̄j , τ̄j)ek2(m̄j , τ̄j) = δk1k2 , with δk1k2 the Kronecker function. Having these key quanti-

ties available, we can analyze the shape of the factors underlying the dynamics of the smile of our data.

The first three eigensurfaces are reported in Figures 5, 6, and 7 for the options on the S&P 500 and

in Figures 8, 9, and 10 for the options on the Euro Stoxx 50. Table 3 contains the corresponding

eigenvalues (expressed as a percentage of the global variance). Both options sets lead to same-shaped

factors as well as the same eigenvalue decomposition. Since the first eigensurface is always positive,

it is associated with a translation or shift of the smile. As the first eigenvalue accounts for 89%

of the global variance, we conclude that a one-factor model, based on this eigensurface, provides a

reasonably good model for the dynamics of the smile. If a more accurate model is required, then we

need to go beyond this first factor. The second eigensurface is, for all times to maturity, positive for

moneyness lower than one and negative otherwise. A shock along this mode implies that out-of-the-

money (OTM) put options, whose volatility is given by the smile with moneyness lower than one, will

become more expensive. OTM call options, whose volatility is given by the smile with moneyness

4For the CDS spreads this transformation is not needed as they are always quoted with the same time to maturity. A
similar remark applies to FX options which are quoted in terms of fixed time to maturity and delta, see Chalamandaris
and Tsekrekos (2010), and Chalamandaris and Tsekrekos (2012).

5For the S&P 500 we take h1 = 0.006 and h2 = 0.14, for the Euro Stoxx 50 h1 = 0.008 and h2 = 0.09.
6From a computational point of view we just need to stack column-wise all the columns of the matrix ∆Xt(m̄j , τ̄j),

compute the PCA decomposition, and rewrite the obtained eigenvectors in matrix form, by reversing the procedure, to
get the eigensurfaces.
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greater than one, will become less expensive. As a consequence, this eigensurface is associated with a

bear market movement. The corresponding eigenvalue represents 7.5% of the total variance. Lastly,

the third factor, given by Figure 7, is associated with a bull market movement. A shock along this

eigensurface implies a decrease of long-term implied volatility for all times to maturity, a strong

increase of short-term OTM call prices and a minor (negligeable) increase of short-term OTM put

prices. Its eigenvalue is equal to 2.8% of the total variance. As the first three eigenvalues account for

98% of the total variance, it is not necessary to go beyond these three factors.

[Insert Figure 5 here]

[Insert Figure 6 here]

[Insert Figure 7 here]

[Insert Figure 8 here]

[Insert Figure 9 here]

[Insert Figure 10 here]

[Insert Table 3 here]

Having built these factors, we can decompose the dynamics of the smile into these fundamental modes.

We define the three scalar processes

∆volk,t =
N∑
j=1

∆Xt(m̄j , τ̄j)e
k(m̄j , τ̄j) k = 1, 2, 3 (4)

which are the projection of the implied volatility change on the eigensurfaces, hence each one quantifies

to which extent the smile ”moves” along the direction given by the corresponding factor. Therefore,

we will have ∆vol1,t, which is associated with a shift of the smile, ∆vol2,t, which is associated with

a change of the skew (slope) of the smile, and ∆vol3,t, which is associated with a change of the

convexity of the smile. Note that we could have used other functions to decompose the dynamics

of the implied volatility surface. The principal component analysis relates the functions used to the

covariance structure of the process. The factor decomposition allows us to reduce the dynamics of the

smile, which is a surface, into three scalar time series that encompass most of the statistical properties.

In order to gain further understanding of the factors, it is fruitful to compute the correlation between

∆volk,t and the log stock returns ∆ ln st = ln st − ln st−1 for all factors. In Table 4 we report the

results, which are consistent with intuition. The correlation between log stock returns and the first

factor is negative because if the stock market goes down, the overall surface will go up due to the
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leverage effect. The second correlation coefficient is negative because if the stock market goes down,

it is a bear market configuration, which implies a steepening of the smile, hence an increase along

the second factor. Lastly, if the market goes up, it is a bull market configuration, which implies an

increase along the third factor, hence a positive correlation coefficient.

[Insert Table 4 here]

4 Cross-Market Linkages

The interaction between option implied volatility and credit default swap spreads has been studied in

prior work. For the former either the at-the-money short-term volatility or the short-term slope of the

smile is used, whilst for the latter the 5-year CDS spread is used. Our aim is to further investigate the

interaction between these two markets, in order to reveal the existing cross-market linkages. Thanks to

our factor decompositions we can analyze the interaction between the whole implied volatility surface

and the whole CDS curve.

4.1 Information Flow between CDS and Volatility Markets

In order to understand the relation between implied volatility and CDS spreads we follow the methodol-

ogy proposed by Acharya and Johnson (2007). It allows us to quantify to which extent market-specific

innovations explain the dynamics of another market. For example, we can measure how the CDS in-

novation impacts the volatility market and, obviously, we can reverse the analysis and evaluate how

the volatility innovation spreads into the CDS market. Hence, we can have a complete picture of the

interaction between these two markets.

To implement this methodology we need to compute the lead-lag relationships between the CDS

market and the volatility market through their respective factor decompositions. As we have three

factors for each market, we first focus on the information flow between the factors of the same order.

More precisely, we first compute

∆cds1,t = a+ b∆vol1,t +

N∑
k=1

c1,k∆cds1,t−k + εcds1,t . (5)

Hence, {εcds1,t} represents the information specific to the credit market, given by the first CDS factor,

that is not explained by the first volatility factor (plus lagged values of the first CDS factor). To

measure the impact of the CDS market on the volatility market we estimate
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∆vol1,t = α+

N∑
k=1

βkεcds1,t−k
+

N∑
k=1

νk∆vol1,t−k + εt. (6)

If I =
∑N

k=1 βk is found to be statistically significant, then we conclude that an information flow exists

from the CDS market to the volatility market. Conversely, we can study the pair

∆vol1,t = a+ b∆cds1,t +
N∑
k=1

c1,k∆vol1,t−k + εvol1,t

∆cds1,t = α+
N∑
k=1

β̃kεvol1,t−k
+

N∑
k=1

νk∆cds1,t−k + εt,

with Ĩ =
∑N

k=1 β̃k, if significant, suggesting an information flow from the volatility market to the credit

market. This methodology to quantify information flow through innovations was used by Acharya and

Johnson (2007) and Berndt and Ostrovnaya (2008), and after some modifications was applied by Hui

and Chung (2011) to study the interaction between European sovereign 5-year CDS spreads and FX

options (the 10-delta volatility point). We follow their approach to quantify information flow. How-

ever, for both markets we consider all the quotes and thanks to the factor decompositions the main

features of the dynamics can be analyzed.

As we have three factors for each market, we can compute the information flow between the second

(third) CDS factor and the second (third) volatility factor. This allows us to measure the cross-market

interaction between the same factors. We can also analyze the interaction between different factors.

It is natural to study the cross-market impact of a higher factor on a lower factor because in practice

the question is whether we should increase the number of factors, hence to which degree an additional

factor is appropriate. Therefore, we compute the information flow from the second volatility factor to

the first CDS factor, and also the information flow from the third volatility factor to both the second

and first CDS factors. The first specification leads to the following pair of equations:

∆vol2,t = a+ b∆cds1,t +
N∑
k=1

c1,k∆vol2,t−k + εivol2,t

∆cds1,t = α+

N∑
k=1

β̃kεivol2,t−k
+

N∑
k=1

νk∆cds1,t−k + εt.

We perform the reverse analysis and quantify the impact of CDS factors on volatility factors.
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As described in the data section, we split our sample in two parts, a choice mainly motivated by the

behavior of the U.S. CDS market, and report in Table 5 the information flow from the credit market

to the volatility market for the pairs S&P 500/CDX.NA.IG and Euro Stoxx 50/iTraxx Europe. The

reverse information flow from the volatility market to the credit market is presented in Table 6,

although we only find one significant value for the European indices in the first sub-sample.

[Insert Table 5 here]

[Insert Table 6 here]

In the first sub-sample we observe only information flows from the credit market to the volatility

market for the U.S. as all statistically significant values imply such a relation. This is consistent with

the crisis having its roots in the credit market. The table also suggests that the third and second

credit factors contain relevant information for the volatility dynamics, although the channel is through

the first factor. For the second sub-sample the conclusions are quite similar. The information flows

go from the credit market to the volatility market. However, the third credit factor now carries less

information because it is involved only once and the corresponding coefficient is significant at the 10%

level only.

For the European market we obtain qualitatively similar results. The information flow goes from the

credit market to the volatility market in both sub-samples and all the credit factors seem to provide

some information. Note that the third credit factor has a statistically significant coefficient at the 1%

level in the second sub-sample, which is less turbulent than the first sub-sample, possibly because of

first signs of the sovereign credit crisis around May 2010 and more turmoil by end-2011. Although

the iTraxx Europe is a corporate CDS index, it is impacted by the sovereign CDS market.

In conclusion, the information flow goes from the credit market to the volatility market, a finding

that is consistent with those obtained by Hui and Chung (2011) for the pair 5-year sovereign CDS

spread/10-delta foreign exchange option. Also, even if the eigenvalue decomposition suggests a one-

factor model, the second and third credit factors contain relevant information, thus emphasizing the

interest of multi-factor models for the dynamics of the CDS curve and the implied volatility surface.

4.2 Contemporaneous Interactions

So far we have analyzed cross-market information flow based on innovation as described, for example,

by (5) and (6). In equation (5) {εcds1,t} is the innovation specific to the credit market not explained

12



by the contemporaneous first volatility factor and the lags of the first CDS factor when the dynamics

is described by a one-factor model. Equation (6) allows to test the existence of a flow from the credit

market to the volatility market through a Wald test of the coefficients. We now turn our attention to

contemporaneous effects by computing the correlations between the different variables and report the

results in Table 7 whilst Table 8 gives the correlation between log stock returns and factor changes

that will be useful to analyze the results.

[Insert Table 7 here]

[Insert Table 8 here]

For both pairs of indices the correlations are consistent across the samples. Their signs remain largely

the same although we can observe some minor changes. For example, the correlation between ∆cds2

and ∆vol2 for the U.S. turns from negative to positive as the sub-sample changes. Similarly, the

correlation for the U.S. between ∆cds3 and ∆vol2 becomes statistically insignificant in the second

sub-sample, whilst it is negative in the first sub-sample. We observe a positive correlation between

∆cds1 and ∆vol1, thereby implying that an increase of the smile is associated with an increase of

the CDS spread. If we take into account the negative correlation between log returns and volatility

as well as the negative correlation between log returns and the first CDS factor, we end up with a

consistent dynamics of the stock, the level of volatility, and the level of the CDS spread.

The correlation between ∆cds1 and ∆vol2 is positive, whereas the correlation between ∆cds1 and

∆vol3 is negative for all pairs and sub-samples. An increase of the CDS level implies more default risk.

This is associated with a bear stock market configuration, which in turn implies a steeper skew, hence

a positive correlation sign for ∆vol2 because of the interpretation developed in the factor decomposi-

tion of the smile. The third factor is associated with a bull market configuration so that an increase of

the level of the CDS curve should produce the opposite effect, hence a negative sign for the correlation.

At this stage it becomes complicated to provide an explanation valid for both markets. If we start

with the European one, which contains more significant values, it might be useful to analyze the

values in conjunction with the correlation of log stock returns with the derivatives markets reported

in Table 8. In the European case the factor ∆vol1 is positively correlated with either ∆cds2 or

∆cds3 because to an increase of this factor corresponds a decrease of the stock price with two con-

sequences: it will increase the likelihood of a default according to Merton (1974), and it will increase

the second factor and third factor due to the negative correlation between the log returns and these
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factors. As a consequence, we must have a positive correlation. For the correlation sign between

∆cds2 and ∆vol2, the positiveness at least in the European case can also be understood through

the stock market. An increase of ∆vol2 implies a decrease of the stock price, which in turn implies

an increase along ∆cds2. Lastly, an increase of ∆cds2 leads to a decrease of the stock price, which

due to positive correlation with ∆vol3 implies a decrease of this volatility factor, hence a negative

correlation between the second CDS factor and the third volatility factor. By using the correlation

of spot log returns with the credit factors and volatility factors, the sign whenever statistically sig-

nificant obtained between the factors can be understood. For the U.S. the results are less evident to

analyze although to some extent they are consistent with the European ones. It is interesting to note

that for the S&P500 the correlation between the log returns and the credit factors changes when the

subsample changes and that the correlation between the S&P500 returns and the first volatility factor

is lower (in absolute value terms) than what is obtained for the European market. This loose rela-

tion with respect to the stock might be the reason for the changing results observed in the U.S. market.

The contemporaneous correlations provide a complementary point of view to the information flow

developed in the previous section. The important ingredient that allows to understand the relations

between the credit factors and volatility factors is the correlation between these factors and the stock

returns. Because of the leverage effect between stock price and volatility, as explained in Black (1976),

and the tight relation between stock price and credit risk, as shown by Merton (1974), the interactions

between credit and volatility factors can be analyzed through their relation with the stock.

4.3 Cross-Hedging Between Credit and Volatility Factors

Now that we have a better understanding of the relationships between the different factors we focus

on a regression analysis of the first factor (i.e. the main factor). More precisely, we regress the first

volatility factor on a set of explanatory variables chosen among the credit factors. As a given factor is

worthy of consideration only if lower-order factors are taken into account, the sets of variables will be

nested. Since we have three credit factors, we perform three regressions. Also, we reverse the analysis

by regressing the first credit factor on a set of volatility factors. These regressions are of practical

interest as they allow us to devise cross-hedging strategies.

[Insert Table 9 here]

[Insert Table 10 here]
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We report in Tables 9 and 10 the results for the U.S. and European markets, respectively. For the U.S.

market the results are consistent with those reported in Table 7, the signs of the regression coefficients

are coherent with the correlation coefficients. However, for the first period (01/2007-11/2009) the

(adjusted) R2 is very small for all regressions, implying that a hedging strategy based on these results

is likely to perform poorly. Whether we try to hedge credit risk (given by the first credit factor) using

options (given by the volatility factors) or to hedge volatility risk (given by the first volatility factor)

using credit default swaps (given by the credit factors), the results will be poor. During the second

period (12/2009-12/2011) the results are different and interesting. Regressing the first volatility fac-

tor on credit factors, whatever the number of factors chosen is, leads to small R2. On the contrary,

regressing the first credit factor on volatility factors gives reasonably good R2 and, most surprisingly,

it is the second and third factor that improve the results. We can draw several conclusions. First,

the ability to perform cross-hedging changes over time. Second, the volatility market can be used to

hedge the credit market during the second period, but we cannot hedge the volatility market using

the credit market, hence the relation is not reciprocal. Third, even if a factor has a small eigenvalue

it can be useful for hedging purposes.

For the European market the results are significantly different. During the first period all the regres-

sions have a high R2, ranging from 14% to 19% when the dependent variable is the first volatility

factor and from 14% to 33% when this variable is the first credit factor. The point of interest is

the increase of the R2 when higher factors are taken into account. For example, the second factor

improves the R2 by around 5% in both cases, whilst the third volatility factor increases the R2 by an

amount of 13%. For the second sub-sample the regressions also lead to interesting remarks. During

this period, contrarily to what is obtained in the first sub-sample, the volatility factor can no longer be

hedged using the credit factors as all the R2 are small. This confirms the conjecture that cross-market

correlations change over time. However, we can still hedge the first credit factor using the volatility

factors as these variables appear to have strong explanatory power. What is more, the highest factors

(the second and third factor) are responsible for this result. In fact, the second factor increases the

R2 from 6% to 21%, whereas the third factor nearly doubles the R2 from 21% to 38%. Hence, a factor

with a small eigenvalue can be of tremendous importance for an efficient hedging strategy.

15



5 Conclusion

In this work we propose a joint analysis of the term structure of credit default swap spreads and the

implied volatility surface. To carry out this analysis we develop a factor decomposition for both mar-

kets which allows us to study them globally. We do not need to restrict our data to a part of the CDS

curve, such as the 5-year swap spread as done in previous studies, and/or a part of the smile, such as

the 1-month ATM implied volatility. We implement our methodology on a database of options and

the term structure of CDS spreads for the U.S. and European markets covering the Global Financial

Crisis. We quantify the information flow between the two markets and find the credit market to be

the main contributor to global market innovations. A correlation analysis between contemporaneous

factors along with stock returns confirms the ability of our methodology to perform viable factor de-

compositions for the implied volatility surface and the CDS curve. These allow to handle the joint

statistical properties of the two markets. We also perform a regression analysis which underlines the

cross-hedging opportunities between the two markets. They change over time and are not reciprocal.

Furthermore, factors with small eigenvalues can be very important from a cross-hedging point of view;

this has strong consequences from a risk management perspective as the number of factors chosen for

a model should not depend only on the eigenvalue decomposition.

Our work suggests some extensions. We analyze the credit market through credit default swap con-

tracts but collateralized debt obligations (CDOs) could be used instead, see Carverhill and Luo (2011).

As these products are similar to options, they might lead to more effective cross-hedges. The correla-

tions between the factors found in our study impose some strong constraints if we were to develop a

model in the spirit of Carr and Wu (2010). We leave these open issues for future research.
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Appendix

Tables and Figures

Maturity 0.5 1 2 3 5 7 10

(a) Full sample: January 24, 2007 - December 30, 2011
CDX.NA.IG Mean 98.965 103.724 109.488 116.907 132.447 136.264 141.171

Std. dev. 105.191 103.483 93.448 87.215 76.608 67.674 60.171
iTraxx Europe Mean 69.399 74.988 85.353 94.933 108.838 113.653 118.766

Std. dev. 72.187 71.534 66.962 62.965 55.810 51.460 47.177

(b) First sub-sample: January 24, 2007 - November 12, 2009
CDX.NA.IG Mean 140.156 142.933 142.298 144.731 150.115 147.943 147.917

Std. dev. 118.553 117.601 108.086 102.727 93.700 83.832 75.035
iTraxx Europe Mean 77.759 81.895 88.579 94.894 102.825 105.244 108.559

Std. dev. 90.183 89.002 82.694 76.873 65.929 58.652 51.466

(c) Second sub-sample: November 13, 2009 - December 30, 2011
CDX.NA.IG Mean 37.135 44.870 60.239 75.141 105.926 118.733 131.045

Std. dev. 14.019 15.519 15.898 16.371 17.876 19.660 20.689
iTraxx Europe Mean 57.297 64.989 80.683 94.988 117.543 125.826 133.541

Std. dev. 27.228 29.946 32.346 33.998 34.767 35.434 35.324

Table 1: Descriptive statistics for the CDS indices CDX.NA.IG and iTraxx Europe for the full sample
and sub-samples. Maturities range from 0.5 years to 10 years. Means and standard deviations are
based on daily data. CDS spreads are expressed in basis points.

Eigenvalue CDX.NA.IG iTraxx Europe

first 96.5 94.9
second 2.2 2.5
third 0.8 1.9

Table 2: Eigenvalues as a percentage of the total variance (daily data, same sample as the one used
to compute the eigenvectors).

Eigenvalue S&P 500 Euro Stoxx 50

first 88.8 88.3
second 7.3 7.6
third 2.8 2.7

Table 3: Eigenvalues as a percentage of the total variance (daily data, same sample as the one used
to compute the eigensurfaces).
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∆vol1 ∆vol2 ∆vol3

S&P 500 -0.163 -0.629 0.507
Euro Stoxx 50 -0.360 -0.606 0.737

Table 4: Correlation between log returns ∆ ln st = ln st− ln st−1 and the factors ∆volk,t for k = 1, 2, 3
(daily data, same sample as the one used to compute the eigensurfaces).

01/2007-11/2009 12/2009-12/2011
∆cds1 ∆cds2 ∆cds3 ∆cds1 ∆cds2 ∆cds3

Panel A: S&P 500 - CDX.NA.IG
∆vol1 1.482∗∗∗ -7.196∗∗∗ -9.128∗∗∗ 7.066∗∗∗ 16.998∗∗∗ -11.672∗

∆vol2 — -0.146 0.156 — 2.695∗∗∗ -1.095
∆vol3 — — 2.055∗∗∗ — — 2.640

Panel B: Euro Stoxx 50 - iTraxx Europe
∆vol1 2.250∗∗∗ 2.403 1.195 4.523∗∗∗ 12.003∗∗∗ 23.996∗∗∗

∆vol2 — 1.555∗∗∗ 2.467∗∗∗ — -0.747 -1.766
∆vol3 — — -0.042 — — -0.957

Table 5: Information flow from CDS market to volatility market for the pairs S&P 500/CDX.NA.IG
and Euro Stoxx 50/iTraxx Europe for two subsamples. ∗∗∗ denotes statistical significance at the 1%
level, ∗∗ at the 5% level, and ∗ at the 10% level.

01/2007-11/2009 12/2009-12/2011
∆vol1 ∆vol2 ∆vol3 ∆vol1 ∆vol2 ∆vol3

Panel A: S&P 500 - CDX.NA.IG
∆cds1 -0.001 0.012 0.034 -0.006 -0.047 0.025
∆cds2 — -0.008 -0.005 — 0.008 -0.001
∆cds3 — — 0.004 — — -0.006

Panel B: Euro Stoxx 50 - iTraxx Europe
∆cds1 0.005 0.108∗∗ 0.049 0.019 0.054 -0.017
∆cds2 — 0.017 0.018 — 0.010 -0.005
∆cds3 — — 0.007 — — -0.001

Table 6: Information flow from volatility market to CDS market for the pairs S&P 500/CDX.NA.IG
and Euro Stoxx 50/iTraxx Europe for two subsamples. ∗∗∗ denotes statistical significance at the 1%
level, ∗∗ at the 5% level, and ∗ at the 10% level.
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01/2007-11/2009 12/2009-12/2011
∆cds1 ∆cds2 ∆cds3 ∆cds1 ∆cds2 ∆cds3

Panel A: S&P 500 - CDX.NA.IG
∆vol1 0.072∗ 0.027 -0.024 0.060 -0.016 0.020
∆vol2 0.166∗∗∗ -0.139∗∗∗ -0.151∗∗∗ 0.328∗∗∗ 0.090∗ 0.051
∆vol3 -0.154∗∗∗ 0.137∗∗∗ 0.142∗∗∗ -0.369∗∗∗ -0.043 0.121∗∗∗

Panel B: Euro Stoxx 50 - iTraxx Europe
∆vol1 0.373∗∗∗ 0.322∗∗∗ 0.245∗∗∗ 0.248∗∗∗ 0.216∗∗∗ 0.177∗∗∗

∆vol2 0.350∗∗∗ 0.091∗∗ 0.003 0.451∗∗∗ 0.315∗∗∗ 0.350∗∗∗

∆vol3 -0.532∗∗∗ -0.315∗∗∗ -0.307∗∗∗ -0.501∗∗∗ -0.397∗∗∗ -0.400∗∗∗

Table 7: Cross-market factor correlations for the pairs S&P 500/CDX.NA.IG and Euro Stoxx
50/iTraxx Europe for two subsamples. ∗∗∗ denotes statistical significance at the 1% level, ∗∗ at the
5% level, and ∗ at the 10% level.

∆vol1 ∆vol2 ∆vol3 ∆cds1 ∆cds2 ∆cds3

01/2007-11/2009

S&P 500 -0.163 -0.629 0.507 -0.257 0.190 0.221
Euro Stoxx 50 -0.360 -0.606 0.737 -0.609 -0.207 -0.165

12/2009-12/2011

S&P 500 -0.102 -0.640 0.497 -0.619 -0.164 0.065
Euro Stoxx 50 -0.233 -0.544 0.605 -0.740 -0.492 -0.477

Table 8: Correlation between log returns ∆ ln st = ln st − ln st−1 and the factors ∆volk and ∆cdsk
for k = 1, 2, 3.

S&P 500 - CDX.NA.IG
01/2007-11/2009 12/2009-12/2011

Dependent variable: ∆cds1
∆vol1 0.014∗ 0.007 0.004 0.005 0.001 -0.005
∆vol2 0.106∗∗∗ 0.093∗∗∗ 0.121∗∗∗ 0.104∗∗∗

∆vol3 -0.087∗∗ -0.090∗∗∗

Adj. R2 0.003 0.030 0.034 0.000 0.123 0.156

Dependent variable: ∆vol1
∆cds1 0.336∗ 0.337∗ 0.332∗ 0.461 0.629 0.669
∆cds2 0.824 0.837 -2.021 -2.090
∆cds3 -0.104 2.495
Adj. R2 0.003 0.003 0.001 0.000 0.000 0.000

Table 9: Cross-market factor regressions for the pair S&P 500/CDX.NA.IG for two subsamples. Re-
gression intercepts have been suppressed in order to conserve space. ∗∗∗ denotes statistical significance
at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level.
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Euro Stoxx 50 - iTraxx Europe
01/2007-11/2009 12/2009-12/2011

Dependent variable: ∆cds1
∆vol1 0.066∗∗∗ 0.051∗∗∗ 0.026∗∗∗ 0.039∗∗∗ 0.019∗∗∗ 0.011∗

∆vol2 0.166∗∗∗ 0.106∗∗∗ 0.266∗∗∗ 0.219∗∗∗

∆vol3 -0.314∗∗∗ -0.287∗∗∗

Adj. R2 0.139 0.195 0.331 0.060 0.213 0.377

Dependent variable: ∆vol1
∆cds1 2.128∗∗∗ 1.702∗∗∗ 1.706∗∗∗ 1.603∗∗∗ 1.312∗∗∗ 1.350∗∗∗

∆cds2 5.688∗∗∗ 4.328∗∗∗ 1.890 2.710
∆cds3 4.554∗∗ -2.847
Adj. R2 0.139 0.181 0.185 0.060 0.059 0.057

Table 10: Cross-market factor regressions for the pair Euro Stoxx 50/iTraxx Europe for two subsam-
ples. Regression intercepts have been suppressed in order to conserve space. ∗∗∗ denotes statistical
significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level.
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Figure 1: Term structure of CDS spreads for the index CDX.NA.IG. Daily observations from 24/1/2007
to 30/12/2011.

0.5 
2 

5 
10 

0 

50 

100 

150 

200 

250 

300 

350 

Maturity 
(in years) 

Time 

Term structure of CDS for iTraxx Europe 

0-50 50-100 100-150 150-200 200-250 250-300 300-350 

Figure 2: Term structure of CDS spreads for the index iTraxx Europe. Daily observations from
24/1/2007 to 30/12/2011.
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Figure 3: Eigenvectors for the CDS curve for the CDX.NA.IG, computed using a one-year daily sample
(2007).
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Figure 4: Eigenvectors for the CDS curve for the iTraxx Europe, computed using a one-year daily
sample (2007).
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Figure 5: First eigensurface for the S&P 500, computed using a one-year daily sample (2007).
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Figure 6: Second eigensurface for the S&P 500, computed using a one-year daily sample (2007).

25



1 

3 

5 

7 

9 

11 

-0.1 

-0.05 

0 

0.05 

0.1 

0.15 

0.8 

0.86 

0.92 

0.98 

1.04 

1.1 
1.16 

Time to maturity 
(in months) 

Moneyness 

Third Eigensurface S&P 500 

-0.1--0.05 -0.05-0 0-0.05 0.05-0.1 0.1-0.15 

Figure 7: Third eigensurface for the S&P 500, computed using a one-year daily sample (2007).
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Figure 8: First eigensurface for the Euro Stoxx 50, computed using a one-year daily sample (2007).
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Figure 9: Second eigensurface for the Euro Stoxx 50, computed using a one-year daily sample (2007).
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Figure 10: Third eigensurface for the Euro Stoxx 50, computed using a one-year daily sample (2007).
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