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Abstract

The ad hoc Black-Scholes model is one of the most widely used models for forecasting implied
volatility. In this paper, we propose a methodology that provides more accurate out-of-sample
implied volatility forecasts. Standard approaches estimate the whole volatility smile using both
out-of-the-money puts and calls. The improvements from our method are obtained by taking
advantage of information contained in the asymmetric slopes of the put and call implied volatil-
ity sneers that result in a discontinuity when moneyness is equal to 1. These improvements
in out-of-sample implied volatility forecasts are large and significant. Our results are robust
across several dimensions, including: time period, forecast horizon, moneyness, and model
specification.
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Do Implied Put and Call Sneers Contain Different Information?

Abstract

The ad hoc Black-Scholes model is one of the most widely used models for forecasting implied
volatility. In this paper, we propose a methodology that provides more accurate out-of-sample
implied volatility forecasts. Standard approaches estimate the whole volatility smile using both
out-of-the-money puts and calls. The improvements from our method are obtained by taking
advantage of information contained in the asymmetric slopes of the put and call implied volatil-
ity sneers that result in a discontinuity when moneyness is equal to 1. These improvements
in out-of-sample implied volatility forecasts are large and significant. Our results are robust
across several dimensions, including: time period, forecast horizon, moneyness, and model
specification.

I Introduction

There is a huge effort by practitioners and academics to make accurate out-of-sample (OOS) forecasts for

implied volatility. Having an accurate OOS forecast of implied volatility is important. First it is a basic input

in option pricing models that are used in trading strategies. Second, accurate hedge positions can only be

obtained when the implied volatility is accurately estimated and forecast. Given the magnitude of trading in

derivative contracts, the ability to accurately make OOS forecasts of implied volatility is critical. This paper

develops a new methodology that improves implied volatility OOS forecasts.

Typically implied volatility is estimated using the whole cross-section of out-of-the-money (OTM) put

and call options. However, this approach to simultaneously using OTM-puts and OTM-calls in the estima-

tion imposes hidden constraints. Using both put and call contracts constrains the implied volatility smile

to be continuous at unit moneyness. That is, the OTM-call and the OTM-put volatility sneer curves must

be continuous and differentiable at S/K = 1. Another constraint is there must be symmetry in the slopes

of the call and put sneers. However, neither condition is typical in real option data. We have observed

that the OTM-call and OTM-put sneers are almost always discontinuous (see Figure 1). This discontinuity

contains valuable information that, to date, has not been incorporated into implied volatility forecasts. We

develop a new data usage methodology in order to take advantage of the information in the volatility smile

discontinuity that allows us to make significant improvements in OOS forecasts of implied volatility.

Figure 1 about here.

There is a simple economic intuition for what information is contained in the curvature and slope of the

call and put sneers. This information is reflected in the asymmetric slopes of the put and call sneers, which

leads to the observed discontinuity in implied volatility at-the-money (ATM). It is instructive to look at an

example of an up-trending market. As the underlying index increases, on the one hand, OTM call options

increase in value as the index price approaches the OTM strike price. On the other hand, OTM puts become

more OTM and thus their value decreases slower than the OTM call value increases. Implied volatilities
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derived from these instruments will reflect this asymmetric response. The volatility in the OTM call will

be high compared to the volatility in the OTM put. Also, near-the-money (NTM) calls will become in-the-

money (ITM). At this point, the price change is close to linear in the index price. NTM puts will lose value at

a faster rate, leading to a higher implied volatility compared to the NTM calls. That is, the relative value of

implied volatility is reversed for NTM puts and calls when compared to OTM puts can calls. This differential

in relative values creates two effects: (i) the call sneer should be steeper than the put sneer, and (ii) the ATM

gap will be positive, i.e., ATM put implied volatility is greater than ATM call implied volatility. This two

differences will change with the speed of price, i.e., the slope of the market trend line. Similar intuition

holds for down- and side-trending markets. Thus, one can conclude that important information on market

trend and trend speed is incorporated in the differences between the call and put sneers. If market price

level and return are related to expected implied volatility, utilizing a methodology to specifically calculate

the difference should incorporate important information and thus lead to better parameter estimates, which

will lead to better implied volatility OOS forecasts.

Indeed, papers document that implied volatility is related to price and return of the underlying index.

Combined results of Bali and Hovakimian (2009) and Bakshi and Kapadia (2003a,b) show that implied

volatility is greater than realized volatility and this difference, i.e., the implied volatility spread, is related

to returns. From this one can conclude that part of implied volatility can be explained by return. Choi,

Jordan, and Ok (2012) test this joint conjecture and document a significant relationship between implied

volatility and return. Thus, it is an empirical question concerning the costs versus benefits of exploiting this

relationship.

Incorporating extra information should add to the accuracy of OOS forecasts. However, to capture addi-

tional information requires an associated increase in the number of parameters in the model, thus potentially

decreasing the parameter estimation accuracy. In addition, trying to capture more information may increase

the technical difficulty of the technique. It is not directly obvious on how one should change the model or

methodology in order to capture the additional information. Our contribution is that we develop a succinct

method to incorporate the information contained in the asymmetric response of the call and put sneers. Our

method requires only one more step than the conventional approach (CON) and the technical difficulty of

our method is identical to CON. Our proposed method separates the implied volatility smile estimation step

into two steps, one to estimate the call sneer only using OTM calls and the other to separately estimate the

put sneer only using OTM puts. Our separation method (SEP) does increase the number of parameters to be

estimated.1 Thus, it is an empirical question as to whether the SEP method outperforms the CON method.

We conduct extensive tests to document that SEP clearly dominates CON. The forecast accuracy gains from

using SEP are large and significant.

The rest of the paper is as follows. In section 2, we review some literature. In section 3, we describe

our data and provide some background information on the Korean market index and the Korean options

market. In section 4, our methodology is explained. Next, we present our INS and OOS empirical findings

in sections 5 and 6, respectively. In section 7, our new methodology is compared directly with the standard
1This is referred to as the “overfitting problem.” Since we forecast 10 minutes to 1 hour, the underlying implied volatility

structure does not change as much as with long-term forecasts.
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methodology, which is followed by some robustness tests in section 8. Finally, in section 9 we summarize

and conclude our results.

II Literature, Data, and Market Background

In this section, we review the relevant data, describe our data, and provide some background on the Korean

stock and options markets.

A Literature Review

There is a large literature that attempts to use historic data in order to forecast volatility, e.g., GARCH.

However, historic or realized data does not incorporate expectations. Using the Black-Scholes (BS) model

in order to imply volatility from options prices incorporates market expectations. Thus, the methodology in

this paper is forward looking, not backward looking.

Again, there is a large literature that attempts to estimate implied volatility models in order to predict the

future underlying return. This line of literature is quite different than the focus of our paper as we concentrate

on OOS forecasts on implied volatility.2 Completely different subsets of agents would be interested in each

separate line of research. Predicting returns will be of interest to traders and speculators, whereas, accurate

forecasts of implied volatility, although of interest to vol-traders, will be mostly used by hedgers. For

example, if an exact forecast of implied volatility could be made at the desired hedging horizon, a hedger

who will hold the position to expiry would have no need to rebalance. Thus, accurate implied volatility

forecasts are an important calculation to most businesses with future obligations.

The research on predicting volatility can be broken down into several approaches, e.g., deterministic

volatility function and GARCH option valuation. There is, however, extensive research that demonstrates

the superiority of the AHBS method compared to these alternative and more sophisticated methods.3 It is

for this reason that the AHBS model is the model most used by practitioners. Thus, we focus our efforts and

only consider the AHBS model from this point on.

There is a developing literature that studies the use of AHBS implied volatility models to make OOS

forecasts of future implied volatility. Choi and Ok (2011) demonstrate that forecast accuracy can be signifi-

cantly increased by adjusting the rollover strategy. Choi, Jordan, and Ok (2012) show that large reductions in

forecast accuracy is realized when expectations are incorporated into dividend estimates. Our paper is most

similar to this literature in that we document a new methodology to estimate the implied volatility curve.

The gains from our proposed methodology are above and beyond those documented in the prior literature as

we incorporate all suggested improvements in our methodological implementation.
2See Cremers and Weinbaum (2010) for a summary of this literature.
3For example, see Dumas, Fleming, and Whaley (1998); Jackwerth and Rubinstein (2001); Brandt and Wu (2002); and Christof-

fersen and Jacobs (2004a).
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B Data

We use minute-by-minute intraday data from the Korean Exchange (KRX). That is, our data includes

minute-by-minute put and call option prices on the KOSPI 200 index for January 1, 2007 to December

31, 2009. The last reported price is the last transaction prior to 2:50 p.m. We exclude the first 10 minutes

of the data due to unusual activity of the opening process. For each option contract, we have the underlying

asset price, the strike price, and whether the option is a put or call. We restrict our analysis to nearest-expiry,

OTM contracts.

In order to improve the information environment of our data, we exclude certain subsets of data. For

example, options with prices lower than 0.02 are excluded. Prices not satisfying the arbitrage restriction are

excluded, e.g., put-call pairs not satisfying put-call parity are excluded. We only use OTM options for both

calls and puts, because there tends to be low trading volume for ITM options. Finally, options with less than

7 days to expiration are excluded. Options with less than 7 days to expiration may induce biases due to low

prices and bid-ask spreads. Instead, the nearest options with greater than 6 days to expiration are chosen.

Owing to liquidity problems of the Korean Treasury bill market, the three-month CD rates are used

as risk-free interest rates in spite of the mismatch of maturity between options and spot rates. For the

empirical analysis, the last reported transaction price prior to 2:50pm of each option is selected to resolve

the synchronization issues between the stock and options markets mentioned in Dumas et al. (1998). The cut

at 2:50pm is used since there are simultaneous bids and offers from 2:50pm. That is, because the recorded

KOPSI 200 index values are not equivalent to the daily closing index levels, there is no nonsynchronous

price issue, except the KOSPI 200 index level itself may contain stale component stock prices at each point

in time.

C Korean stock market

We present a figure of the KOSPI 200 market index for 2007, 2008, and 2009 in order to compare the

market characteristics pre-, during-, and post-the-liquidity crisis. These three different market types provide

a robustness test to the stability of our results. In 2007, Figure 2 shows there was a strong up trend in the

market with high volatility in the second half of the year. Of course, 2008 was the year of the liquidity crisis

and thus there is both a strong downward trend and high volatility throughout the year. Finally, there is an

upward trend with medium, but steady, volatility in 2009. We use 2007 as our base year. Thus, years 2008

and 2009 will provide an out-of-sample robustness tests.

[Figure 2 about here.]

D Korean options market

Since the KOSPI 200 was introduced by the KSE (Korea Stock Exchange) on July 7, 1997, the KOSPI 200

options market, despite its short history, has become one of the fastest-growing markets in the world. Three

consecutive near-term delivery months and one additional month from the quarterly cycle (March, June,
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September, and December) make up four contract months. Options expire on the second Thursday of each

contract month. Each contract month has at least five strike prices. The number of strike prices may increase

depending on the price movement. The trading of KOSPI 200 index options is fully automated. The style

of exercising KOSPI 200 options is European, and thus, contracts can be exercised only on expiration dates.

Hence, our test results are not affected by complications associated with the early exercise feature of U.S.

options. Moreover, liquidity is concentrated in the nearest expiration contract.

III Methodology

In this section, we develop the methodology used to calculate implied volatility.

A Ad hoc Black-Scholes models

Due to its simplicity and excellent performance compared to more sophisticated models, the AHBS model

is a popular option valuation models among practitioners. In the AHBS model, implied volatility skew is

modeled as a polynomial function and estimated by OLS. There are three standard versions of the AHBS

model, which differ by the definition used for implied volatility: (i) the relative smile (R3) approach defines

implied volatility as a function of moneyness, “S/K”, (ii) the absolute smile (A3) approach defines implied

volatility as a fixed function of strike price , “K”, and (iii) the forward moneyness (F3) approach defines

implied volatility as a fixed function of the logarithm of the strike price over the forward price, normalized

by the standard deviation of expected return on maturity. Choi, Jordan, and Ok (2012) investigate the

performance of six different AHBS models, i.e., a linear and a quadratic version of A3, R3, and F3, and

three dividend estimation schemes. For OOS forecasts, the A3 model utilizing the implied-forward dividend

scheme is the best pair under three of the four error measure/dividend scheme combinations. It is a very

close second in the remaining category. Given the consistent superior performance of the AHBSA3 model

that utilizes the implied-forward dividend scheme for INS, one-day OOS forecasts, and one-week OOS

forecasts, we shall concentrate on this combination in the rest of the paper.4 We utilize both a quadratic and

cubic specification for the market’s implied Black-Scholes volatilities.5

AHBSAq : σimi = β0 + β1 ·Ki + β2 ·K2
i(1)

AHBSAc : σimi = β0 + β1 ·Ki + β2 ·K2
i + β3 ·K3

i(2)

where σimi is the implied volatility for an option with the strike priceKi and the spot price S. The subscripts

q and c refer to a quadratic and cubic polynomial model, respectively.

The innovation in this paper is that rather than calculating the whole implied volatility smile simultane-

ously using puts and calls, we individually estimate the call sneer, i.e., the downward sloping left curve of
4We refer to the AHBSA3 model of Choi, Jordan, and Ok (2012) as AHBSAq .
5We extend our study to include a cubic model as we focus on short-horizon forecasts. Thus, the overfitting problem is not

severe, implying there may be gains to increasing the order of the estimated polynomial.
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the volatility smile, and the put sneer, i.e., the upward sloping right half of the volatility smile. We estimate

the call sneer using only OTM calls for S/K < 1. Likewise, we calculate the put sneer using only OTM

puts for S/K > 1.

B Forward-implied dividend calculation

For our implied dividend calculations, we use a four-step procedure. We first calculate the forward price

from option prices and from these forward prices we then calculate the expected dividend yield. An impor-

tant advantage is that this method estimates expectations on dividends directly. Most methods use realized

dividends to estimate expected dividends, but past research has shown this approach can result in misleading

conclusions. To calculate expected dividends, we utilize the forward price as the underlying asset in the BS

model and we utilize the risk-free rate as the appropriate discount rate.

For our implied dividends, we use options prices in order to calculate the forward price and from this the

expected dividend yield. The advantage of this strategy is that it incorporates implied market expectations

rather than realizations on the dividend stream. As asset pricing theory is based on expectations, this method

should provide some advantage. In this scenario, the underlying asset in the Black-Scholes formula is

changed from the stock price to the forward price and the dividend yield is changed to the risk-free rate.

This method is developed by Carr and Wu (2003) and further explored in Zhang and Xiang (2008).6

Step 1. Compute implied volatility σimi satisfying BS formula:

c = c(t, F ;T,K, σ) = Fe−rτN(d1)−Ke−rτN(d2)

p = p(t, F ;T,K, σ) = Ke−rτN(−d2)− Fe−rτN(−d1)
(3)

with

d1 =
ln(F/K) + (σ2/2)τ

σ
√
τ

d2 = d1 − σ
√
τ , τ = T − t,

where F is the implied forward price from the contemporaneous option prices.

Step 2. Use the ordinary least square method to estimate the parameters {βk}2k=0 in Equation 1 and {βk}3k=0

in Equation 2. For AHBSAq, the parameters β0, β1, and β2 are estimated by minimizing the equally-

weighted mean squared error:

Σi[σ
im
i − (β0 + β1Ki + β2K

2
i )]2.

Step 3. Use the estimated parameters from Step 2 to compute the model implied volatility for each option at

time t+ k, i.e., compute σ̂i,t+k for k = 1, 2, . . . .

6When using the underlying stock, one needs to buy exp(−q(T − t)) units of the underlying at time t to have one unit of the
underlying asset at time T . However, if one uses the underlying forward, then one needs to buy exp(−r(T − t)) units of the
underlying forward at time t to have one unit of the underlying asset at time T .
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Step 4. From the BS formula with F as the underlying, i.e., Equation 3, use the model implied volatility

estimates from Step 3 to price options, V ∗
i,t+k = V ∗(t+ k, Ft+k;T,Ki, σ̂i,t+k) .

C Error measures

We use the following two error measures as our metric of OOS forecast fit. First we use the root mean

square valuation error (RMSVE) and the mean absolute error (MAE).

RMSVE =
1

T

T∑
t=1

√√√√ 1

Nt

Nt∑
i=1

[V (t, S;Ki)− V ∗(t, S;Ki)]
2(4)

MAE =
1

T

T∑
t=1

1

Nt

Nt∑
i=1

|V (t, S;Ki)− V ∗(t, S;Ki)|(5)

where V ∗(t, S,Ki) denotes the model price of option i on day t and V (t, S,Ki) denotes the market price of

option i on day t. Nt denotes the number of traded OTM calls and puts to differences in strike prices on day

t, and T denotes the number of days in the sample. MAE measures the magnitude of pricing errors, whereas

the RMSVE measures the volatility of errors.

D Parameter estimation

At each minute t, we use the cross-section of option prices (either OTM calls or OTM puts) to estimate the

coefficients of either the quadratic or cubic AHBSA model. Using these coefficients, we then forecast the

implied volatility at time t + 10 for the 10-minute forecast horizon and calculate our error metric. Table 1

presents the mean and standard error of the estimated parameters for both the quadratic and cubic AHBSA
models. Each parameter is estimated by minimizing the trade equally-weighted mean squared error for each

trading day. Panels A, B, and C of Table 1 give parameter estimates using only calls (superscript Call), only

puts (superscript Put), and both calls and puts (superscript All), respectively.

Table 1 about here.

The signs of the parameters for each model are consistent across all three years. However, the coefficient

magnitudes can change substantially. For example, β1 in the AHBSCallAc model changes from 44.357 in 2007

down to 8.2408 in 2008 and then back up to 14.4263 in 2009.

IV INS Empirical Results

In Table 2, we investigate the in-sample (INS) fit of the AHBS model by moneyness, i.e., by S/K, and by

forecast horizon. We compare the accuracy between the CON and SEP methodologies. Panels A and B give

the results for the AHBSAq model, while Panels C and D give the forecast errors for the AHBSAc model
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under RMSVE and MAE, respectively. The standard AHBS methodology (CON) estimates the implied

volatility smile using both OTM puts and OTM calls. Estimating the entire implied volatility smile at

one time can be thought of as a simultaneous estimating of the call and put sneers where continuity and

smoothness is imposed as constraints at S/K = 1, i.e., ATM. Our proposed methodology relaxes both

constraints. Instead, we propose to estimate the call and put sneers separately (SEP) using OTM calls and

OTM puts, respectively.

Our results indicate that using SEP always results in a more accurate OOS forecast (i.e., a smaller

forecast error) than using CON. This is true for any moneyness and for all forecast horizons. For example,

for a cubic AHBS model with moneyness 1.03 < S/K < 1.06 and a 60-minute horizon, the RMSVE

is 0.0364 if CON is used, while it is 0.0187 if SEP is used. Thus, there is a 48.6% increase in forecast

accuracy if the SEP method is implemented rather than the CON method. The conclusions are identical

under a cubic AHBS as it is for the quadratic AHBS. In every combination of moneyness and forecast

horizon, there is significant improvement in forecast accuracy when the SEP methodology is chosen over

the CON methodology.

Table 2 about here.

V OOS Empirical Results

In our OOS tests, we investigate the OOS forecast accuracy by moneyness, i.e., by S/K, and by forecast

horizon. We conduct such tests under both the CON and SEP methodologies to facilitate comparison.

Finally, we conduct tests between the AHBSAq model and the AHBSAc model.

A CON vs. SEP methodology

Table 3 provides a comparison of CON and SEP. Panels A and B give the forecast errors for the AHBSAq
model under RMSVE and MAE, respectively. Using SEP always results in a more accurate OOS forecast

(i.e., a smaller forecast error) than using CON. This is true for any moneyness and for all forecast horizons.

For example, for a quadratic AHBS model with moneyness 0.94 < S/K < 0.97 and a 10-minute horizon,

the RMSVE is 0.0703 if CON is used, while it is 0.0375 if SEP is used. Thus, there is a 46.7% increase in

forecast accuracy if the SEP method is implemented rather than the CON method. Panels C and D give the

forecast errors for the AHBSAc model under RMSVE and MAE, respectively. The conclusions are identical

under a cubic AHBS as it is for the quadratic AHBS. Again, in every combination of moneyness and forecast

horizon, there is significant improvement in forecast accuracy if the SEP methodology is chosen over the

CON methodology.

[Table 3 about here.]

For the quadratic AHBS model (AHBSAq), Figure 3 visually compares the forecast error between the

CON and SEP methodology for each forecast period. That is, each bar represents the improvement (positive)

8



or loss (negative) in forecast performance realized by using the SEP in place of the CON methodology. This

gain is calculated as:

(6)
MAECON −MAESEP

MAECON

The forecast gain is shown across six different moneyness classes. Panel A gives the results for the RMSVE

error measure, while Panel B gives the results for the MAE error measure. The first observation is that

regardless of forecast horizon or moneyness, the forecast error is always reduced by using the SEP method-

ology rather than the CON methodology. The second observation is that as the forecast horizon increases,

the gain in forecast accuracy achieved by using the SEP over the CON methodology decreases. This is

reflected in the fact that for any group of three bars, the differential (height of the bar) drops as the forecast

horizon increases (move to the right). The third observation is that as the price of the underlying asset moves

from a deep-out-of-the-money call option (D-OTMc) to a near-out-of-the-money call option (N-OTMc) the

gain from using the SEP methodology decreases. This is true for all forecast horizons. Finally, as the price of

the underlying asset moves from a deep-out-of-the-money put option (D-OTMp) to a near-out-of-the-money

call option (N-OTMp) the gain from using the SEP methodology generally decreases, but not monotoni-

cally. Overall, one can conclude from this figure that it is always better to use the SEP instead of the CON

methodology, regardless of the moneyness or forecast time horizon. Figure 4 provides the same comparison

for the cubic AHBS model (AHBSAc) as Figure 3 does for the AHBSAq. The conclusions are remarkably

similar.

[Figure 3 about here.]

[Figure 4 about here.]

VI Cubic vs. Quadratic AHBS

Figure 5 compares the forecast error improvement by going from the quadratic to a cubic AHBSA model

for each forecast period. We use all three years in our estimates. Panel A gives the results for the RMSVE

error measure, while Panel B gives the results for the MAE error measure. The first observation is that for

any specific time period, i.e., 10 minutes, the magnitude of the error is larger under the CON methodology

than it is under the SEP methodology. The second observation is that the error from the AHBSAq model

is always higher than that for the AHBSAc model. This is true for any forecast horizon, whether CON or

SEP is used. Lastly, we observe that the differential improvement from going from a quadratic to a cubic

AHBSA model is greater under the CON methodology. For example, for the MAE error and the 10 minute

forecast horizon, there is a 36.7% improvement in forecast accuracy under CON if AHBSAc is used in place

of AHBSAq, while the corresponding gain under SEP is 10.2%.7 Thus, OOS forecast accuracy is improved

by increasing the number of parameters from three to four. The improvement under the SEP methodology is
7The calculations use Equation 6, e.g., 0.367 = (0.0581− 0.0368)/0.0581 = (MAECON,q −MAECON,c) /MAECON,q ,

while 0.102 = (0.0325− 0.0292)/0.0325 = (MAESEP,q −MAESEP,c) /MAESEP,q
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always small, suggesting that less is gained from going from a six-parameter to an eight-parameter model.

Overall, if computing power or time is not an issue, then the best method is the AHBSAc model under

the SEP methodology. However, if computing or time is a constraint, the AHBSAq model under the SEP

methodology is an excellent substitute as little is lost in forecast performance.

[Figure 5 about here.]

What is probably the most important insight from Figure 5 is that there are improvements from two dif-

ferent approaches. The first improvement is from using the same data in different ways. This is represented

in the figures by the difference in forecast errors using the same model, but going from CON to SEP. For

any specific forecast horizon, this “data improvement” is reflected by the drop in forecast error when the

SEP forecast error is compared to the CON forecast error. For example if the AHBSAq model is used with

a 10-minute forecast horizon, the RMSVE error goes from a 6.86% forecast error under CON to a 4.28%

forecast error under SEP. The second improvement is a “model improvement.” By changing the underlying

model, in our case from AHBSAq to AHBSAc, there is improvement in forecast error. This is reflected in the

drop in forecast error when one compares adjacent bars, i.e., same methodology and forecast horizon. What

is most important to note is that the gain in forecast accuracy is always larger when data is separated as in

SEP than it is by changing the model. This can be seen in Figure 5 by comparing the CON and SEP pairs

for a specific forecast horizon, e.g., 10 minutes. Specifically, the quadratic SEP10 forecast error is smaller

than the cubic CON10 forecast error. This is always true whether the 10-, 30-, or 60-minute forecast horizon

is used. That is, the reduction in OOS forecast error by using SEP over CON is larger than by using a cubic

over a quadrati model.

VII 2008 & 2009 Robustness Tests

In this section we conduct robustness tests for our 2007 results. We conduct our analysis on OOS forecasting

accuracy for minute-by-minute data for the years 2008 (liquidity crisis) and 2009 (post-liquidity crisis).

The 2008 results are displayed in Table 4. During a strong down trending market due to the crisis, the

SEP methodology always outperforms the CON methodology. This is true across all moneyness categories,

for all forecast horizons, and whether the RMSVE or MAE error measure is used. The results are robust

across quadratic and cubic AHBS model specifications. Table 5 gives the results for 2009, the year after the

liquidity crisis. Again, under all possible scenarios we test, the OOS forecast accuracy is always increased

by using SEP rather than CON.

[Table 4 about here.]

[Table 5 about here.]

We have found that no matter the moneyness and no matter the AHBS model specification, there are

large OOS forecast gains to be made by estimating the call and put sneers separately, i.e., using SEP, over
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the standard methodology of estimating the entire implied volatility smile at the same time, i.e., using CON.

Our results were based on 2007 minute-by-minute data. Figure 2 demonstrates that 2008 and 2009 have

quite different dynamics than those of 2007. We thus repeat our analysis and compare SEP to CON for both

years 2008 and 2009.

Figure 6 provides a visual comparison of the SEP to the CON methodology under the RMSVE error

measure. Each bar represents the improvement/loss (positive/negative) in OOS forecast accuracy if the SEP

methodology is used in place of the CON methodology. The conclusion that SEP is always superior to

CON is robust during both 2008 and 2009. The superior performance of SEP holds across all moneyness

categories, for all forecast horizons, and for both measures of forecast error.

[Figure 6 about here.]

There is an interesting relationship between the relative improvement gained from using only puts to that

of using only calls. Recall from Figure 3 and Figure 4 that there was a higher OOS forecast for moneyness

much less than one, i.e., D-OTMc, and M-OTMc, than for moneyness much greater than one, i.e., D-OTMp,

and M-OTMp. In 2007 the market was volatile and up trending. If over-confident speculators or trend

chasers were chasing returns, then puts would be subject to noise risk and thus be less accurately priced. In

the crash year, 2008, where volatility remained high but the trend reversed, fear (or over pessimism) would

create more noise in calls relative to puts. Interestingly, in 2008, we see that the forecast error improvement

is relatively higher for calls than for puts. In 2009, when volatility is not as prominent as in 2007 and 2008,

the magnitude of error for puts and calls are in line.

Figure 7 provides a visual comparison of the SEP to the CON methodology under the MAE error mea-

sure. The results are identical to those under the RMSVE error measure. There are always gains to switch-

ing to the SEP from the CON. This is true across moneyness, forecast horizons, and across different market

types.

[Figure 7 about here.]

VIII Discussion and Conclusion

We carefully consider the method of incorporating information contained in OTM calls and puts into the

parameter estimates from various AHBS models. The standard approach is to use both OTM calls and

puts and estimate the volatility smile simultaneously. We make the empirical observation that typically the

call and put sneers are discontinuous ATM and have different slopes. This empirical fact directly violates

constraints imposed by the CON implied volatility smile estimation methodology. We propose a simple

methodology to estimate the call and put sneers separately and investigate its effect on OOS forecast errors.

We demonstrate that our “Put-Call Sneer” methodology produces more consistent estimates both in-sample

market and out-of-sample.
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Our results are robust across several dimensions. We conduct our tests using minute-by-minute data for

three different years that have very different characteristics. That is, we conduct tests for the 2007 (pre-

liquidity crisis year), 2008 (liquidity-crisis year), and 2009 (post–liquidity crisis year). We also conduct our

tests for three different forecast horizons, 10-minutes, 30-minutes, and 1-hour. We also subject our tests

across six different moneyness categories. Our basic finding that separately incorporating the information

contained in OTM calls and OTM puts produces superior OOS forecasts is robust across all scenarios we

test.
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Table 1: Parameter Estimates

Panel A: Year = 2007
β0 (s.e) β1 (s.e)×102 β2 (s.e)×104 β3 (s.e)×106

AHBSCall
Aq 8.6638 (0.2508) -7.7984 (0.2260) 1.8322 (0.0517)

AHBSCall
Ac -30.219 (10.310) 44.357 (13.888) -21.710 (6.3374) 3.5737 (0.9790)

AHBSPut
Aq 3.0038 (0.0956) -2.3925 (0.1004) 0.5242 (0.0266)

AHBSPut
Ac 11.069 (1.8580) -15.795 (3.0069) 7.9935 (1.6375) -1.3948 (0.2999)

AHBSAll
Aq 3.4757 (0.0514) -2.9051 (0.0515) 0.6643 (0.0130)

AHBSAll
Ac -4.3061 (0.5973) 9.4276 (0.8980) -5.8905 (0.4532) 1.1671 (0.0768)

Panel B: Year = 2008
β0 (s.e) β1 (s.e)×102 β2 (s.e)×104 β3 (s.e)×106

AHBSCall
Aq 5.8005 (0.1039) -5.0148 (0.0967) 1.1624 (0.0230)

AHBSCall
Ac -3.7544 (2.6400) 8.2408 (3.5156) -5.1616 (1.5836) 1.0423 (0.2422)

AHBSPut
Aq 1.2128 (0.1306) -0.5121 (0.1466) 0.0302 (0.0428)

AHBSPut
Ac 5.9470 (4.6378) -7.2119 (7.7345) 3.1490 (4.4358) -0.4712 (0.8787)

AHBSAll
Aq 3.3414 (0.0450) -2.7556 (0.0447) 0.6354 (0.0113)

AHBSAll
Ac -5.6736 (0.3885) 10.403 (0.5577) -5.8333 (0.2706) 1.0736 (0.0445)

Panel C: Year = 2009
β0 (s.e) β1 (s.e)×102 β2 (s.e)×104 β3 (s.e)×106

AHBSCall
Aq 4.8070 (0.1436) -4.4547 (0.1447) 1.1063 (0.0369)

AHBSCall
Ac -7.8923 (5.6084) 14.4263 (8.3434) -8.3740 (4.1868) 1.6096 (0.7092)

AHBSPut
Aq 2.4816 (0.0463) -1.9783 (0.0547) 0.4325 (0.0165)

AHBSPut
Ac 2.7542 (0.8411) -2.6693 (1.4376) 0.9771 (0.8376) -0.1372 (0.1669)

AHBSAll
Aq 3.0916 (0.0254) -2.7022 (0.0284) 0.6529 (0.0081)

AHBSAll
Ac -1.0154 (0.2467) 3.8604 (0.4025) -2.8845 (0.2218) 0.6444 (0.0413)

This table presents the mean and standard error of the estimated parameters for each model. For each trading day,
there are 33 times for which the AHBS model parameters are estimated. Our first estimate is at 9:10am and then
every 10 minutes thereafter until 2:40pm. We estimate the standard error for each day in our sample period as:
s.e. = σ̂/

√
33. The parameter values and standard errors reported in this table are the mean daily value over all

trading days. Dividends were calculated with the implied-forward-dividend AHBS strategy developed in Carr and
Wu (2003). For both the quadratic and cubic AHBS models, each parameter is estimated by minimizing the trade
equally-weighted mean squared error for each trading day. The subscript letter “A3” means that implied volatility is
modeled as a polynomial in the strike price K. A quadratic implied volatility model is denoted by “q” and a cubic
by “c”. The subset of OTM options utilized is given by the superscript, where “Call” implies only OTM call options
were used, “Put” means only OTM put options were used, and “All” indicates that both OTM call and put options
were used. Panels A, B, and C provide the parameter estimates for the implied-forward-dividend AHBS strategy for
the years 2007, 2008, and 2009, respectively. 14



Table 2: INS Errors under Ad Hoc AHBS Models - Total

Panel A: Quadratic Polynomial, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0303 0.0091 0.0303 0.0091 0.0301 0.0090
0.94 - 0.97 0.0534 0.0183 0.0533 0.0180 0.0532 0.0175
0.97 - 1.00 0.0722 0.0305 0.072 0.0303 0.0713 0.0301
1.00 - 1.03 0.0883 0.0385 0.0878 0.0380 0.0865 0.0369
1.03 - 1.06 0.0703 0.0227 0.0700 0.0222 0.0700 0.0229
1.06 < S/K 0.0381 0.0101 0.0379 0.0100 0.0368 0.0100

Total 0.0589 0.0216 0.0587 0.0213 0.0582 0.0212

Panel B: Quadratic Polynomial, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0245 0.0065 0.0245 0.0066 0.0243 0.0065
0.94 - 0.97 0.0491 0.0155 0.0492 0.0154 0.0494 0.0152
0.97 - 1.00 0.0635 0.0248 0.0636 0.0249 0.0635 0.0250
1.00 - 1.03 0.0802 0.0307 0.0806 0.0307 0.0805 0.0304
1.03 - 1.06 0.0639 0.0183 0.0639 0.0183 0.0643 0.0189
1.06 < S/K 0.0316 0.0072 0.0314 0.0073 0.0305 0.0073

Total 0.0523 0.0172 0.0523 0.0172 0.0523 0.0173

Panel C: Cubic, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0156 0.0061 0.0156 0.0061 0.0152 0.0060
0.94 - 0.97 0.0288 0.0129 0.0287 0.0127 0.0286 0.0123
0.97 - 1.00 0.0415 0.0191 0.0413 0.0191 0.0407 0.0189
1.00 - 1.03 0.0500 0.0245 0.0493 0.0240 0.0486 0.0233
1.03 - 1.06 0.0363 0.0185 0.0358 0.0182 0.0364 0.0187
1.06 < S/K 0.0161 0.0074 0.0159 0.0074 0.0158 0.0074

Total 0.0315 0.0148 0.0312 0.0146 0.0310 0.0145

Panel D: Cubic, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0122 0.0043 0.0122 0.0044 0.0119 0.0044
0.94 - 0.97 0.0249 0.0104 0.0249 0.0104 0.0251 0.0103
0.97 - 1.00 0.0343 0.0152 0.0344 0.0154 0.0342 0.0155
1.00 - 1.03 0.0423 0.0187 0.0426 0.0187 0.0428 0.0186
1.03 - 1.06 0.0308 0.0146 0.0308 0.0146 0.0315 0.0153
1.06 < S/K 0.0125 0.0053 0.0124 0.0053 0.0124 0.0054

Total 0.0262 0.0114 0.0263 0.0115 0.0264 0.0116

This table presents INS implied volatility forecast errors using all data from 2007, 2008, and 2009. Errors are given for several
moneyness categories and for three horizons 10 minutes (10M), 30 minutes (30M), and 60 minutes (60M). Panels A and B give the
quadratic AHBS results for RMSVE and MAE, respectively. Panels C and D give the cubic AHBS results for RMSVE and MAE,
respectively. 15



Table 3: 10M, 30M, 60M OOS Performance errors under Absolute AHBS Models - 2007

Panel A: Quadratic Polynomial, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0403 0.0194 0.0447 0.0276 0.0492 0.0332
0.94 - 0.97 0.0703 0.0375 0.0815 0.0533 0.0878 0.0609
0.97 - 1.00 0.0912 0.0581 0.1064 0.0808 0.1168 0.0924
1.00 - 1.03 0.1072 0.0820 0.1183 0.1005 0.1259 0.1104
1.03 - 1.06 0.0821 0.0514 0.0912 0.0660 0.1015 0.0797
1.06 < S/K 0.0299 0.0215 0.0353 0.0284 0.0389 0.0328

Total 0.0704 0.0452 0.0799 0.0597 0.0872 0.0687

Panel B: Quadratic Polynomial, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0332 0.0139 0.0361 0.0207 0.0402 0.0260
0.94 - 0.97 0.0622 0.0287 0.0707 0.0422 0.0772 0.0507
0.97 - 1.00 0.0770 0.0441 0.0894 0.0634 0.1002 0.0749
1.00 - 1.03 0.0922 0.0642 0.1011 0.0797 0.1100 0.0921
1.03 - 1.06 0.0705 0.0400 0.0774 0.0531 0.0873 0.0656
1.06 < S/K 0.0220 0.0148 0.0260 0.0201 0.0288 0.0238

Total 0.0598 0.0345 0.0671 0.0468 0.0743 0.0559

Panel C: Cubic, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0281 0.0187 0.0342 0.0267 0.0393 0.0327
0.94 - 0.97 0.0492 0.0351 0.0627 0.0516 0.0698 0.0597
0.97 - 1.00 0.0696 0.0540 0.0876 0.0782 0.0988 0.0911
1.00 - 1.03 0.0842 0.0684 0.0986 0.0912 0.1080 0.1002
1.03 - 1.06 0.0613 0.0470 0.0739 0.0626 0.0861 0.0767
1.06 < S/K 0.0242 0.0188 0.0307 0.0260 0.0351 0.0309

Total 0.0530 0.0405 0.0649 0.0563 0.0732 0.656

Panel D: Cubic, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0218 0.0133 0.0264 0.0199 0.0315 0.0256
0.94 - 0.97 0.0409 0.0263 0.0518 0.0409 0.0599 0.0496
0.97 - 1.00 0.0568 0.0401 0.0712 0.0610 0.0839 0.0739
1.00 - 1.03 0.0694 0.0520 0.0814 0.0705 0.0929 0.0837
1.03 - 1.06 0.0501 0.0360 0.0604 0.0498 0.0725 0.0628
1.06 < S/K 0.0173 0.0129 0.0222 0.0185 0.0259 0.0225

Total 0.0429 0.0303 0.0525 0.0437 0.0615 0.0533

This table presents OOS implied volatility forecast errors for 2007. Errors are given for several moneyness categories and for three
horizons 10 minutes (10M), 30 minutes (30M), and 60 minutes (60M). Panels A and B give the quadratic AHBS results for RMSVE
and MAE, respectively. Panels C and D give the cubic AHBS results for RMSVE and MAE, respectively.
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Table 4: 10M, 30M, 60M OOS Performance errors under Absolute AHBS Models - 2008

Panel A: Quadratic Polynomial, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0430 0.0270 0.0512 0.0375 0.0595 0.0467
0.94 - 0.97 0.0859 0.0572 0.1053 0.0797 0.1238 0.0975
0.97 - 1.00 0.1058 0.0782 0.1252 0.1015 0.1455 0.1207
1.00 - 1.03 0.1309 0.0686 0.1458 0.0941 0.1596 0.1146
1.03 - 1.06 0.1065 0.0546 0.1206 0.0775 0.1321 0.0974
1.06 < S/K 0.0805 0.0374 0.0861 0.0527 0.0937 0.0670

Total 0.0922 0.0539 0.1059 0.0740 0.1194 0.0909

Panel B: Quadratic Polynomial, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0299 0.0172 0.0349 0.0242 0.0407 0.0311
0.94 - 0.97 0.0736 0.0447 0.0882 0.0637 0.1062 0.0810
0.97 - 1.00 0.0899 0.0612 0.1040 0.0797 0.1218 0.0989
1.00 - 1.03 0.1163 0.0511 0.1258 0.0728 0.1381 0.0941
1.03 - 1.06 0.0931 0.0417 0.1026 0.0605 0.1126 0.0793
1.06 < S/K 0.0676 0.0279 0.0710 0.0399 0.0769 0.0534

Total 0.0785 0.0407 0.0879 0.0569 0.0997 0.0732

Panel C: Cubic, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0288 0.0241 0.0390 0.0353 0.0480 0.0447
0.94 - 0.97 0.0605 0.0529 0.0825 0.0765 0.1027 0.0951
0.97 - 1.00 0.0700 0.0676 0.0947 0.0935 0.1180 0.1151
1.00 - 1.03 0.0771 0.0645 0.0999 0.0889 0.1189 0.1107
1.03 - 1.06 0.0637 0.0525 0.0858 0.0754 0.1029 0.0975
1.06 < S/K 0.0452 0.0364 0.0578 0.0519 0.0701 0.0669

Total 0.0576 0.0497 0.0768 0.0704 0.0937 0.0886

Panel D: Cubic, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0188 0.0152 0.0255 0.0226 0.0321 0.0300
0.94 - 0.97 0.0483 0.0404 0.0666 0.0604 0.0864 0.0790
0.97 - 1.00 0.0548 0.0514 0.0753 0.0729 0.0973 0.0949
1.00 - 1.03 0.0617 0.0479 0.0796 0.0693 0.0990 0.0904
1.03 - 1.06 0.0506 0.0395 0.0679 0.0588 0.0846 0.0792
1.06 < S/K 0.0350 0.0270 0.0445 0.0390 0.0560 0.0532

Total 0.0449 0.0370 0.0600 0.0540 0.0762 0.0713

This table presents OOS implied volatility forecast errors for 2008. Errors are given for several moneyness categories and for three
horizons 10 minutes (10M), 30 minutes (30M), and 60 minutes (60M). Panels A and B give the quadratic AHBS results for RMSVE
and MAE, respectively. Panels C and D give the cubic AHBS results for RMSVE and MAE, respectively.
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Table 5: 10M, 30M, 60M OOS Performance errors under Absolute AHBS Models - 2009

Panel A: Quadratic Polynomial, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0271 0.0161 0.0316 0.0221 0.0342 0.0263
0.94 - 0.97 0.0416 0.0267 0.0508 0.0375 0.0568 0.0439
0.97 - 1.00 0.0577 0.0377 0.0690 0.0506 0.0774 0.0591
1.00 - 1.03 0.0600 0.0496 0.0700 0.0613 0.0778 0.0681
1.03 - 1.06 0.0514 0.0315 0.0594 0.0422 0.0649 0.0500
1.06 < S/K 0.0244 0.0151 0.0278 0.0199 0.0304 0.0237

Total 0.0437 0.0295 0.0515 0.0390 0.0570 0.0453

Panel B: Quadratic Polynomial, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0215 0.0118 0.0248 0.0167 0.0274 0.0208
0.94 - 0.97 0.0352 0.0207 0.0423 0.0294 0.0484 0.0365
0.97 - 1.00 0.0485 0.0288 0.0571 0.0392 0.0656 0.0480
1.00 - 1.03 0.0511 0.0389 0.0585 0.0486 0.0669 0.0563
1.03 - 1.06 0.0442 0.0244 0.0500 0.0331 0.0553 0.0409
1.06 < S/K 0.0183 0.0104 0.0205 0.0139 0.0226 0.0170

Total 0.0365 0.0225 0.0422 0.0302 0.0478 0.0367

Panel C: Cubic, RMSVE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0192 0.0160 0.0246 0.0223 0.0282 0.0272
0.94 - 0.97 0.0300 0.0261 0.0406 0.0370 0.0473 0.0435
0.97 - 1.00 0.0403 0.0372 0.0503 0.0508 0.0616 0.0596
1.00 - 1.03 0.0401 0.0399 0.0524 0.0522 0.0606 0.0604
1.03 - 1.06 0.0324 0.0301 0.0425 0.0410 0.0496 0.0491
1.06 < S/K 0.0152 0.0137 0.0199 0.0188 0.0236 0.0228

Total 0.0296 0.0272 0.0389 0.0371 0.0452 0.0438

Panel D: Cubic, MAE

Time 10M 30M 60M

S/K CON SEP CON SEP CON SEP

S/K < 0.94 0.0145 0.0117 0.0187 0.0167 0.0223 0.0212
0.94 - 0.97 0.0238 0.0200 0.0327 0.0291 0.0395 0.0362
0.97 - 1.00 0.0317 0.0281 0.0402 0.0394 0.0510 0.0485
1.00 - 1.03 0.0313 0.0302 0.0411 0.0401 0.0499 0.0495
1.03 - 1.06 0.0253 0.0229 0.0333 0.0318 0.0404 0.0400
1.06 < S/K 0.0106 0.0094 0.0140 0.0132 0.0171 0.0164

Total 0.0229 0.0204 0.0303 0.0284 0.0368 0.0354

This table presents OOS implied volatility forecast errors for 2009. Errors are given for several moneyness categories and for three
horizons 10 minutes (10M), 30 minutes (30M), and 60 minutes (60M). Panels A and B give the quadratic AHBS results for RMSVE
and MAE, respectively. Panels C and D give the cubic AHBS results for RMSVE and MAE, respectively.
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Figure 1: Volatility smile, Call sneer, and Put sneer

(a) IVs and their curve: 10:10 (b) IVs and their curve: 11:10

(c) IVs and their curve: 12:10 (d) IVs and their curve: 14:10

This figure shows the volatility smile, the call sneer, and the put sneer. Two empirical facts are illustrated. First, the
volatility smile, which is estimated using puts and calls, is continuous and smooth at S/K = 1 and is symmetric
about this point. Second, an asymmetry usually exists between the slope of the call and put sneers. There is a gap
or discontinuity in both slope and value at S/K = 1 between the call and put sneers. The curves represent the
AHBSAq model implied volatility smile estimated by using both OTM calls and OTM puts (solid black line), the
AHBSAq model implied volatility call sneer estimated by only using OTM calls (red dashed line), and the AHBSAq

model implied volatility put sneer estimated by only using OTM puts (blue dotted line). Also shown are the market
estimates of implied volatility derived from item 3. The market estimates are given when only OTM calls are used as
input (red circles) and only OTM puts are used as input (blue squares). As can be seen from these graphs, the slopes
of the implied volatility differ when using the AHBSAq model whether the put and calls are used simultaneously or
separately. Also, the gap, and the fact that its magnitude time varies, is apparent in the separately estimated sneers.
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Figure 2: Time Series of KOSPI 200

This figure shows the KOSPI 200 Index and a trend line for the three years 2007, 2008, and 2009. The plot indicates
that during the 2008 liquidity crises the market experienced an overall down trend and exhibited high volatility. Prior
to the crisis, the time series for 2007 experienced an up trend with considerable volatility in the later half of the year.
In the post-crisis year, there was again an up trend, but with much less volatility.
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Figure 3: 2007 Conventional vs. Separation Method - Quadratic AHBS

This table shows the benefit (in terms of reduced OOS forecast error) of implementing the SEP methodology over the
CON methodology. Results are shown for the quadratic AHBS model (AHBSAq) using minute-by-minute data from
the year 2007. The height of the bars visually compares the forecast error between the CON and SEP methodology for
each forecast period for several subsets of option contracts. That is, each bar represents the improvement (positive)
or loss (negative) in forecast performance realized by using the SEP in place of the CON methodology. The forecast
gain is shown across six different moneyness classes. For calls and puts separately, results are shown for deep-out-
of-the-money (D-OTM), medium-out-of-the-money (M-OTM), and near-out-of-the-money (N-OTM). Panel A gives
the results for the RMSVE error measure, while Panel B gives the results for the MAE error measure. Three different
forecast horizons are provided: 10 minutes (10M), 30 minutes (30M), and one hour (1H).
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Figure 4: 2007 Conventional vs. Separation Methodology - Cubic AHBS

This table shows the benefit (in terms of reduced OOS forecast error) of implementing the SEP methodology over
the CON methodology. Results are shown for the cubic AHBS model (AHBSAc) and for the year 2007. The height
of the bars visually compares the forecast error between the CON and SEP methodology for each forecast period
for several subsets of option contracts. That is, each bar represents the improvement (positive) or loss (negative) in
forecast performance realized by using the SEP in place of the CON methodology. The forecast gain is shown across
six different moneyness classes. For calls and puts separately, results are shown for deep-out-of-the-money (D-OTM),
medium-out-of-the-money (M-OTM), and near-out-of-the-money (N-OTM). Panel A gives the results for the RMSVE
error measure, while Panel B gives the results for the MAE error measure. Three different forecast horizons are
provided: 10 minutes (10M), 30 minutes (30M), and one hour (1H).
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Figure 5: RMSVE and MAE

This table shows the benefit (in terms of reduced OOS forecast error) of implementing one strategy over another. All
three years 2007, 2008, and 2009 are used in the estimates. The solid black is the gain from implementing a cubic
over a quadratic AHBS model. The dashed black is the gain from utilizing the SEP methodology rather than the CON
methodology. Three different forecast horizons are provided: 10 minutes (10), 30 minutes (30), and one hour (60).
For example, SEP60 indicates that the call and put sneers were estimated separately and the forecast horizon was one
hour.
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Figure 6: Robust Test for RMSVE: Conventional vs. Separation Methodology - Quadratic AHBS

(a) RMSVE - 2008

(b) RMSVE - 2009

This table shows the benefit (in terms of reduced OOS forecast error) of implementing the SEP methodology over
the CON methodology. Results are shown for the quadratic AHBS model (AHBSAq) for the years 2008 and 2009.
The height of the bars visually compares the RMSVE forecast error between the CON and SEP methodology for each
forecast period for several subsets of option contracts. That is, each bar represents the improvement (positive) or loss
(negative) in forecast performance realized by using the SEP in place of the CON methodology. The forecast gain
is shown across six different moneyness classes. For calls and puts separately, results are shown for deep-out-of-
the-money (D-OTM), medium-out-of-the-money (M-OTM), and near-out-of-the-money (N-OTM). Panel A gives the
2008 results, while Panel B gives the 2009 results. Three different forecast horizons are provided: 10 minutes (10M),
30 minutes (30M), and one hour (1H).
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Figure 7: Robust Test for MAE: Conventional vs. Separation Methodology - Quadratic AHBS

(a) RMSVE - 2008

(b) RMSVE - 2009

This table shows the benefit (in terms of reduced OOS forecast error) of implementing the SEP methodology over
the CON methodology. Results are shown for the quadratic AHBS model (AHBSAq) for the years 2008 and 2009.
The height of the bars visually compares the MAE forecast error between the CON and SEP methodology for each
forecast period for several subsets of option contracts. That is, each bar represents the improvement (positive) or loss
(negative) in forecast performance realized by using the SEP in place of the CON methodology. The forecast gain
is shown across six different moneyness classes. For calls and puts separately, results are shown for deep-out-of-
the-money (D-OTM), medium-out-of-the-money (M-OTM), and near-out-of-the-money (N-OTM). Panel A gives the
2008 results, while Panel B gives the 2009 results. Three different forecast horizons are provided: 10 minutes (10M),
30 minutes (30M), and one hour (1H).
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