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Volatility Forecasting Performance of Two-Scaled Realized Volatility 

 

ABSTRACT 

This paper examines the forecasting performance of two-scale realized volatility (TSRV), in 

comparison to the conventional sparse-sampled realized volatility (SSRV) measure, using 

selected volatility forecasting models. TSRV time series, though stationary, is highly persistent 

and follows a long-memory process similar to SSRV time series. There is evidence that the 

forecasts based on TSRV are more efficient and less biased, as compared to those based on 

SSRV, for all volatility forecasting models employed. This implies that the quality of forecast 

predominantly depends on the quality of estimate, and not on the forecasting model used. 

EWMA model dominates on account of efficiency and bias for daily forecasts with TSRV. 

Random walk model dominates for weekly and monthly forecasts with TSRV. 

 

Keywords: Volatility forecasting, Realized volatility, two-scale realized volatility (TSRV), 

sparse-sampled realized volatility (SSRV), random walk, EWMA 

JEL Classification Codes: G1, G17 
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Volatility Forecasting Performance of Two-Scaled Realized Volatility 

 

INTRODUCTION 

Volatility of the underlying is central to the theory and practice of option pricing and risk 

management. Regardless of its wide application, volatility is still an ambiguous term because it is 

unobservable directly and there is no unique universally accepted definition for it. Thus volatility 

estimation and forecasting have generated a significant amount of discussion in the financial 

literature for the last few decades. The existing literature proposes various measures for volatility 

estimation and various models for volatility forecasting. But many of these measures and models, 

in addition to being complex, do not provide unbiased and efficient forecasts. Inaccurate 

forecasts could acutely affect the precision of option pricing and the effectiveness of trade risk 

management.  

 

Volatility measures can be derived from the past time series of prices (historical volatility) or the 

prices of a market traded option (implied volatility) of an asset. Since options are not available 

on all assets and for all time horizons, historical volatility is generally used for volatility 

estimation and forecasting. Historical volatility estimation has developed in tandem with more 

and more availability and/ or use of data on past time series of asset prices, bringing in more 

accuracy with each development. Conventionally, volatility was estimated as a constant value, 

being the standard deviation of close-to-close returns of the asset over a specified period of time. 

To further improve the accuracy of the volatility estimate, Parkinson (1980) and Garman and 

Klass (1980) suggested the use of the other readily available asset prices (open, high and low). 

This led to the development of various Range Based volatility estimators. Many empirical 
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studies
1
 have found that the range based volatility estimates exhibit better estimation and 

forecasting performance than the traditional daily close-to-close returns.  

 

In the last fifteen years, using high-frequency intraday data, researchers
2
 have found an 

opportunity to further improve the volatility estimate to give a true measure of ex-post volatility 

(realized volatility). This has improved the quality of benchmarks for comparison of forecasts 

generated from competing models. Andersen and Bollerslev (1998) found that, realized volatility 

also enhanced the performance of volatility forecasts based on conventional volatility forecasting 

models. Additionally, new volatility forecasting models have also been devised based on the 

empirical properties of historical realized volatility.  

 

Andersen and Bollerslev (1998) contend that theoretically, as the observation frequency 

increases to infinitesimally small intervals, the cumulative squared returns converge to an 

unbiased measure of actual historical volatility. However, practically, the presence of market 

microstructure noise due to non-synchronous trading, discrete price observations and bid-ask 

spreads makes sampling at very high-frequency undesirable. Andersen et al. (2001) suggested 

sparse sampling like five-minute interval cumulative squared returns, to minimize market 

microstructure noise. However, simple sparse sampling led to discarding intermediate data. For 

using complete data and eliminating noise, Zhang et al. (2005) suggested two refinements. The 

first being, sparse sampling of data over sub-grids of observations and averaging the results 

obtained across those sub-grids. The second being, the two-scale realized volatility (TSRV). 

TSRV is a combination of averages of realized volatilities. The realized volatilities are estimated 

                                                           
1
 Li and Weinbaum (2000), Bali and Weinbaum (2005), Shu and Zhang (2006), Vipul and Jacob (2007) 

2
 Andersen and Bollerslev (1998), Andersen et al. (2001), Pong et al. (2004) 
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over sub-grids on a slow time scale, and also with all the data, for providing bias-correction. 

Zhang et al. argue that TSRV is the best estimator of realized volatility. TSRV, although 

considered a better estimate of volatility than the simple sparse-sampled realized volatility 

(SSRV), has not been explored for volatility forecasting. 

 

Traditionally, simple techniques like random walk, simple average and moving average were 

used for volatility forecasting. These methods assigned equal weights to all the past volatility 

estimates included, and zero weights to the past estimates not included, whereas, one would 

expect the more recent events to be more relevant and therefore, to have higher weights. This is 

accommodated by models like Exponentially Weighted Moving Average (EWMA). Common 

time-series forecasting models like AR, MA, ARMA and ARIMA have also been used for 

volatility forecasting. Most of the volatility forecasting literature is dominated by GARCH class 

models which are based on the daily close-to-close returns. These models try to capture the 

empirical behavior of the daily close-to-close returns namely, time-variation, clustering and 

mean reversion. But with the availability of high-frequency intraday data, the scenario has 

changed. Andersen et al. (2001) studied the distribution of realized volatility and found it to be 

quite different from that of the traditional daily close-to-close measure. They suggested that 

GARCH class models may not be able to capture the empirical properties of the high-frequency 

intraday realized volatility. 

 

Literature suggests that GARCH class models fare poorly as volatility forecasting models. 

Andersen et al. (2003) found that GARCH based volatility models are inferior to the time series 

models, based on high-frequency based realized volatility, in the foreign exchange market. 
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Superiority of realized volatility measures for volatility estimation and forecasting has been well 

recognized in the literature. Ghysels et al. (2006) showed that volatility measures based on high-

frequency, data rather than daily returns or price ranges, predict future volatility more efficiently. 

Empirical literature indicates that realized volatility time series displays long memory with a 

fractional difference parameter d of around 0.4. Andersen et al. (2001) found that high-frequency 

volatility follows a long memory process and when it is studied as fractionally integrated series, 

the transformation induces normality. Researchers
3
 have extensively employed Auto-Regressive 

Fractionally Integrated Moving Average (ARFIMA) to model realized volatility.  

 

Corsi (2003) suggested a simpler volatility forecasting model, Heterogeneous Auto-Regressive 

(HAR) model, to take care of the long memory process. HAR model is based on heterogeneous 

market hypothesis; it models the heterogeneity of market agents with respect to their time 

horizons. Andersen et al. (2007) extended the HAR model by dividing the past realized volatility 

into continuous and jump components with the help of Realized Bi-power variation measure 

proposed by Barndorff-Nielsen and Shephard (2004, 2006). They found that separation of 

continuous and jump components enhanced the volatility forecasting performance of the simple 

HAR model. Many studies
4
 on different markets have also found that continuous and jump 

components of realized volatility, when separated, led to better volatility forecasting. All these 

studies, based on high-frequency data, have used SSRV measure for volatility forecasting. To 

our knowledge, no study has explored TSRV measure for volatility forecasting. 

 

                                                           
3 Andersen et al. (2003), Pong et al. (2004) and Martens and Zein (2004) 

4
 Chung et al. (2008) on Taiwan Stock Exchange; Liao (2011) on three individual Chinese stocks; Kumar (2010) on 

Indian financial markets (S&P CNX Nifty index) 
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With this background, the paper builds on the existing literature on three counts. First, it 

examines the volatility forecasting performance of TSRV vis-à-vis the most commonly used 

five-minute SSRV measure. Second, it assesses the performance of TSRV in volatility 

forecasting using conventional (random walk and EWMA), time series (ARIMA and ARFIMA) 

and HAR (HAR and HAR-J) volatility forecasting models. Third, it evaluates the forecasting 

performance based on both efficiency and bias. The forecasts based on TSRV, are found to be 

significantly more efficient and less biased, than those based on SSRV. In terms of efficiency, 

the performance of forecasts based on TSRV is comparable across random walk (not for daily 

forecasts), EWMA, ARIMA, ARFIMA and HAR volatility forecasting models. In terms of bias, 

the performance of forecasts based on TSRV worsens with the complexity of volatility 

forecasting model.  

 

The remaining article is organized as follows. The next section provides the data and data 

sources. The third section describes the methodology used to assess the forecasting performance 

of TSRV measure in the paper. The fourth section presents the results and analysis. The fifth 

section concludes the paper. 

 

DATA 

The study uses S&P CNX Nifty (Nifty) index data, from 2
nd

 January 2001 to 30
th

 June 2011, to 

assess the forecasting performance of TSRV measure. Nifty is the leading index of National 

Stock Exchange of India (NSE). NSE, established in 1994, is the largest Indian stock exchange 

in terms of trading volumes. Nifty is a value-weighted stock index of NSE, derived from the 

prices of 50 largest capitalization and most liquid stocks. Tick-by-tick data of Nifty is used to 
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calculate the TSRV and SSRV measures. This data was provided by the Indian Institute of 

Management Ahmedabad Library database. Trading data is missing for four trading days in the 

ten and half year data set. It is expected that in such a big data set, the errors due to missing data 

will be minimal. The data is filtered for special trading sessions on weekends and Diwali
5
, as 

these sessions may not reflect the interaction of all the market players. This results in a data set 

of 2596 trading days. 

 

METHODOLOGY 

Volatility Estimation Measures 

SSRV measure is taken as the cumulative returns at five-minute interval, similar to other such 

studies
6
. For each trading day t, this measure is calculated by summing up five minute close-to-

close squared returns as follows.   

 2 2

,

1

( )

T

t t j

j

SSRV r


 



    (1) 

where is the sampling interval equal to five minutes, r is the return equal to the log closing 

price relative for the sampling interval, T is the open market time period in minutes, and 2 is 

the measure of variance. TSRV measure, suggested by Zhang et al. (2005), is calculated as in 

Vipul and Jacob (2007). It is as follows. 

 2 2 2

low_frequecy, t high_frequency, t[ ]
( )

t t

N n
TSRV

N n N
    


 (2) 

where n is the average number of returns across all the subsamples at the low frequency and N is 

the total number of returns at the high frequency. This is under the assumption that the price 

                                                           
5
 Diwali is an annual Indian festival on which special trading sessions are organized by Indian Exchanges. 

6 Andersen et al. (2001, 2007), Ghysels et al. (2006), Koopman et al. (2005) and Kumar (2010), for instance 
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process is independent of the noise. In this study, TSRV values are calculated with high 

frequency as one second and low frequency as five minutes. The SSRV and TSRV measures 

calculate the open market volatility. Volatility forecasting models require realized volatility 

measures for the entire day, including the closed-market period. Therefore, SSRV and TSRV 

measures are scaled up by the ratio of daily close-to-close to open-to-close historical variances. 

This scaling factor ρ, similar to those employed by Koopman et al. (2005) and Vipul and Jacob 

(2007), is as follows.  

 2 2

1 1

T T

cc oc

t t

r r
 

   (3) 

where rcc is the daily close-to-close return, roc is the daily open-to-close return, and T is the total 

number of trading days included in the study. The scaled daily realized variances are added over 

the relevant period to estimate weekly and monthly realized variances. A week is considered to 

be five trading days and a month is considered to be twenty-two trading days.   

 

These estimators of realized volatility consider the price process to follow a path of continuous 

diffusion, and do not consider jumps in the price process. Barndorff-Nielsen and Shephard (2004, 

2006) allow for separate (non-parametric) identification of the continuous and jump components 

of the quadratic variation process. For this purpose, they define the standardized realized bi-

power variation (BPV), for each trading day t, as follows. 

 
/

2

1 , ( 1) ,

2

( )
T

t j j

j

BPV r r




    



    (4) 

where 1 (2 / ) ( )E Z   denotes the mean of the absolute value of standard normally 

distributed random variable Z,  is the sampling interval equal to five minutes, r is the return 

equal to the log closing price relative for the sampling interval, and T is the open market time 
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period in  minutes. Barndorff-Nielsen and Shephard show that realized BPV represents the 

continuous component of the quadratic variation process. Hence, the contribution of jumps to the 

quadratic variation process may be consistently estimated by the difference between realized 

variance and BPV as follows.  

( ) max[ ( ) ( ),0]t t tJ RV BPV             (5) 

where  is the sampling interval equal to five minutes, Jt is the jump contribution, RVt is the 

realized variance (SSRV), and BPVt is the bi-power variation for trading day t. Since the 

estimates of squared jumps in this approach could have a negative value, the left hand side 

measurements are truncated at zero. Jump measures are calculated with the help of equation (5), 

in line with Andersen et al. (2007), considering the markets to be continuous.  

 

Volatility Forecasting Models 

For forecasting volatility, standard deviation is preferred to variance as the volatility measure 

because the latter would involve the fourth moments (Poon and Granger, 2003). The forecasting 

models employed in this study include the conventional models: random walk and EWMA; the 

time series models: ARIMA and ARFIMA; and the HAR models: HAR and HAR-J. They are 

described in the following text.  

Random Walk    1
ˆ

t t  
              (6) 

where t-1σ  is the estimate of volatility on day t-1, and tσ̂ is the forecast of volatility on day t, 

volatility measured as standard deviation. 

 

EWMA     1 1
늿 1 ;0 1t t t                               (7) 
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where t-1σ  is the estimate of volatility on day t-1, t t-1
늿σ  and σ is the forecast of volatility on day t 

and day t-1 respectively, and λ is the smoothing parameter. λ is estimated from the data. Some 

researchers argue that the smoothing parameter should be allowed to change over time, in order 

to adapt to the latest characteristics of the time series. Others argue that this leads to unstable 

forecasts (Fildes, 1979). Makridakis et al. (1982) found that adaptive smoothing parameter is less 

successful than a constant optimized smoothing parameter. Accordingly, in this study, a constant 

smoothing parameter is used. Gardner (1985) recommends that the smoothing parameter should 

be found by minimizing the sum of ex-post 1-step-ahead forecast errors. In line with his 

recommendation, in this study, smoothing parameter is found by minimizing the root mean 

square errors of the forecasts. 

 

Amongst the time series models, the study uses the generalized Auto-Regressive Moving 

Average (ARMA) model in the form of Auto-Regressive Integrated Moving Average (ARIMA) 

model to forecast volatility. The model is generally referred to as an ARIMA (p, d, q) model 

where p, d, and q are non-negative integers that refer to the order of autoregressive, integrated, 

and moving average parts of the model respectively. It can be written as follows. 

ARIMA (p, d, q) 
1 1

(1 )(1 ) (1 )
p q

i d i

i t i t

i i

L L L   
 

                (8) 

where L is the lag operator, i  are the parameters of the autoregressive part, iθ are the parameters 

of the moving average part, and tε is the error term.  

 

Pong et al. (2004), Koopam et al. (2005) and many others have found that realized volatility can 

be modeled as an ARFIMA time series. Auto-Regressive Fractionally Integrated Moving 

http://en.wikipedia.org/wiki/Autoregressive_moving_average
http://en.wikipedia.org/wiki/Autoregressive_moving_average
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Average (ARFIMA) model generalizes ARIMA model by allowing non-integer values of the 

differencing parameter and is useful in modeling time series with long memory. This model is 

especially advantageous when a time series, though stationary (i.e. series does not have a unit 

root or d is not equal to 1), exhibits persistence. It can be written as follows. 

ARFIMA (p, d, q) 
1 1

(1 )(1 ) (1 )
p q

i d i

i t i t

i i

L L L   
 

     ; d is a non-integer         (9) 

Koopam et al. (2005) found that most parsimonious and effective description of the dynamics in 

the S&P 100 realized volatility is provided by the ARFIMA (1, d, 0) model. Following their 

approach, this study tries to forecast the realized volatility of Nifty with the ARFIMA (1, d, 0) 

model. Additionally, the study attempts to forecast realized volatility with a simpler and more 

parsimonious form of ARFIMA model i.e. ARFIMA (0, d, 0). In this model, autoregressive and 

moving average terms are absent and differencing parameter d is a non-integer. This form is 

helpful when a time series can be explained with just the differencing parameter. It can be 

written as follows. 

ARFIMA (0, d, 0)  (1 )d

t tL    ; d is a non-integer         (10) 

Best ARIMA model is chosen according to AIC value. Both ARIMA and ARFIMA models are 

estimated using the maximum likelihood estimation and the innovations and their variance are 

found by a Kalman filter.  

 

Figlewski (1997) suggests that, while making weekly or monthly predictions, forecasts 

constructed from weekly and monthly data should be used. Thus for the random walk, EWMA, 

ARIMA and ARFIMA models, non overlapping data is used in the estimation of weekly and 

monthly volatility measures as in Martens and Zein (2004). In the EWMA, ARIMA and 

ARFIMA models the estimation period for the out-of-sample forecasts is 1250 days for daily 

http://en.wikipedia.org/wiki/ARIMA
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Parameter
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forecasts, 250 weeks for weekly forecasts and 60 months for monthly forecasts. Each of these 

estimation sets corresponds to a period of about 5 years.   

 

The HAR model, proposed by Corsi (2003), is specified as a multi-component volatility model. 

The model has an additive hierarchical structure, such that the volatility is specified as a sum of 

components over different horizons. The model comprises of three volatility components: daily, 

weekly and monthly. These represent (1) the short-term daily activity of speculators; (2) the 

medium-term activity typically due to portfolio managers, who rebalance their positions weekly, 

and (3) the long-term activity with a characteristic time of one or more months. The model can 

be written as follows. 

HAR        
1/2 1/2 1/21/2

, 5, 22, ,t t H dH t wH t t mH t t t t HRV c RV RV RV            (11) 

where ,t t HRV  is the H day ahead ex-post measure of daily realized volatility, H being the 

forecasting horizon. tRV ,
5,t tRV 

and
22,t tRV 

 are the measured contemporaneous daily, weekly 

and monthly realized volatility, and 
,t t H 

represents the volatility measurement and estimation 

errors. The consistency of the above requires the realized volatility measures to be unbiased. 

 

Andersen et al. (2007) introduced HAR-J model to account for jump components in volatility 

forecasting. It can be written as follows.  

HAR-J              
1/2 1/2 1/21/2 1/2

, 5, 22, ,t t H dH t wH t t mH t t jH t t t HRV c RV RV RV J             (12) 

where Jt is the contemporaneous jump component. For the HAR models, overlapping data is 

used in the estimation of weekly or monthly volatility measures, as in Andersen et al. (2007). 

HAR models are estimated using ordinary least square (OLS) estimation. 
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Evaluation of Performance 

The study uses both bias and efficiency for evaluation of the competing volatility measures and 

forecasting methods. The efficiency is measured by the mean squared error (MSE), and the mean 

absolute error (MAE); and the bias, by the mean bias and the mean relative bias (MRB). These 

loss functions are as follows. 

 2ˆMSE ( )t tE     (14) 

 ˆMAE t tE     (15) 

 ˆMean Bias t tE              (16) 

 ˆMRB [ / ]t t tE               (17)  

The efficiency and bias of the forecasts, based on the two estimation measures (TSRV and 

SSRV), and the various forecasting models (random walk, EWMA, ARIMA, ARFIMA, HAR 

and HAR-J), are compared to find the most appropriate estimator and forecasting model. For this 

purpose, Wilcoxon signed ranks test (recommended by Diebold & Mariano, 1995) is used. In 

this test, the null hypothesis is that the two forecasts selected for comparison are equally efficient 

(or biased). This is one of the most powerful non-parametric tests for comparing related samples, 

and is a useful alternative, when normality assumptions do not hold. Its power efficiency 

approaches 95.5 percent as compared to t-test, as sample size increases, and is close to 95 

percent even for small-sized samples (Siegel and Castellan, 1988). It is used because most of the 

financial time series data are known to exhibit non-normality. For all the volatility forecasting 

models, the ex-post benchmark volatility measure is taken as TSRV.  

   

RESULTS 
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Volatility Estimation 

The average variance of the microstructure noise, estimated by the TSRV measure is very low, 

compared to the variance of the sparsely sampled (over sub-grids) and averaged five minute 

returns. It is about 0.0000273 whereas the average variance of TSRV is about 0.000177. This 

indicates that the estimation of realized volatility is quite accurate, even with sparse sampling 

(over sub-grids) and averaging only. The explicit bias correction of TSRV, further improves it. 

The close-to-open variance is about 4.93% of the open-to-close variance.
7
 Accordingly, a scaling 

factor of 1.0493 is used for converting the TSRV and SSRV measures for the open market period 

to those for an entire day. Table
8
 I lists the sample statistics for TSRV and SSRV time series. 

The table shows that, though SSRV is upward biased and exhibits higher variance, both the 

series have similar properties. Both are non-normal, leptokurtic and positively skewed as found 

by Vipul and Jacob (2007). Both the series are stationary, but the fractional parameter d 

calculated by Geweke and Porter-Hudak method is significantly different from zero (it is 

between 0.3-0.5) for both. This shows presence of long memory behavior in the two series. 

These results are similar to those found by Andersen et al. (2001), for high-frequency data on 

deutsche-mark and yen returns against the US dollar.  

 

Volatility Forecasting 

Table II lists the performance of forecasts, based on TSRV and SSRV, using the random walk 

model. The table shows that forecasts based on TSRV are more efficient and less biased vis-à-vis 

those based on SSRV. The MRB of random walk forecasts based on SSRV is in the range of 24-

                                                           
7 This is based on the average ratio of close-to-close to open-to-close historical volatility of Nifty for the 2596 

trading days covered by the study. 
8
 All tables are provided at the end of the article 
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28% whereas that based on TSRV is in the range of 3-5%. This implies that previous day SSRV 

is a highly biased forecast for the next day.  

 

Table III lists the performance of in-sample and out-of-sample forecasts, based on TSRV and 

SSRV, using the EWMA model. In the out-of-sample data sets, an attempt was made to find an 

adaptive smoothing parameter, which changes over time, but it gave unstable forecasts. Thus a 

constant smoothing parameter is found by minimizing the root mean square errors (RMSE) of 

forecasts for the full period, as suggested by Gardner (1985). This is done for daily, weekly and 

monthly, in-sample and out-of-sample, data sets. The smoothing parameter λ, based on TSRV 

and SSRV is in the range 0.4-0.48 and 0.69-0.82 respectively. These values are very different 

from the ones suggested by J. P. Morgan’s RiskMetrics
TM 

model (λ= 0.94 for daily data). To 

reconcile this difference, λ for daily in-sample close-to-close returns is estimated. Its value (0.79), 

that minimizes the RMSE with TSRV as benchmark is quite close to 0.94. The lower values of λ 

for TSRV imply that forecasts, based on TSRV, are more dependent on the recent past 

component than the smoothed component. That probably is the reason, why random walk 

forecasts based on TSRV perform so well. Table III shows that the in-sample EWMA forecasts, 

based on TSRV, have marginally higher efficiency and the out-of-sample forecasts have 

marginally lower efficiency, as compared to random walk model. However, the bias for EWMA 

is higher than that for the random walk. The forecasts based on SSRV follow a similar pattern, 

with the efficiency of EWMA model not consistently better than that for the random walk. 

However, on both efficiency and bias criteria, TSRV forecasts are better than SSRV forecasts, as 

in the case of random walk model. 
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Table IV lists the performance of in-sample and out-of-sample forecasts, based on TSRV and 

SSRV, using ARIMA model. The table shows that forecasts, using ARIMA model, based on 

TSRV outperform those based on SSRV, both in terms of efficiency and bias, as in the earlier 

models. Table V lists the ranges of order of autoregressive (p), integration (d) and moving 

average (q) parts in the estimated ARIMA models. Tables IV and V indicate that, d in all the 

estimated ARIMA models, for both in-sample and out-of-sample, is either zero or one. Since 

ARIMA model assumes the d to be an integer, it does not take care of fractional integration. 

Table I shows that, both TSRV and SSRV time series, in their sigma form, did not have a unit 

root, and possessed long memory. This indicates presence of fractional integration. Pong et al. 

(2004), Koopam et al. (2005) and many others have found that realized volatility can be 

effectively modeled as an ARFIMA series. This calls for the use of ARFIMA model in volatility 

forecasting of Nifty. 

 

Table VI lists the performance of in-sample and out-of-sample forecasts, based on TSRV and 

SSRV, using ARFIMA (0, d, 0) model. The table shows that forecasts, using ARFIMA (0, d, 0) 

model, based on both TSRV and SSRV, are similar to their ARIMA forecasts. Thus implying 

that, although Nifty can be modeled with ARIMA model well ARFIMA (0, d, 0) provides a more 

parsimonious alternative. Table VI also shows that forecasts based on SSRV, are more efficient 

with ARFIMA (0, d, 0) model than with the random walk model. For instance, the MSE of daily 

out-of-sample forecasts, based on SSRV, are 0.5899 and 0.7024 with ARFIMA (0, d, 0) and the 

random walk model respectively. Similar improvements are seen in weekly and monthly 

forecasts. On the other hand, forecasts based on TSRV, do not show significant improvements in 

efficiency with the use of ARFIMA (0, d, 0) model. The MSE of daily out-of-sample forecasts, 
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based on TSRV, are 0.4468 and 0.4485 with ARFIMA (0, d, 0) and the random walk model 

respectively. Weekly and monthly forecasts become less efficient for ARFIMA (0, d, 0). Table V 

also indicates that forecasts, based on both TSRV and SSRV, are more biased with the ARFIMA 

(0, d, 0) model than their random walk forecasts. ARFIMA (0, d, 0) model enhances efficiency 

of forecasts based on SSRV, but also increases their bias. The enhanced efficiency of forecasts, 

based on SSRV is still less than the efficiency of forecasts based on TSRV. 

 

Table VII lists the performance of in-sample and out-of-sample forecasts, based on TSRV and 

SSRV, using ARFIMA (1, d, 0) model. The table shows that forecasts, using ARFIMA (1, d, 0) 

model, based on both TSRV and SSRV, do not show any improvement in efficiency and bias 

over those with ARFIMA (0, d, 0) model. Therefore, TSRV and SSRV time series, can be better 

modeled by a simpler and more parsimonious ARFIMA (0, d, 0) model.  These results contrast 

with the results of Koopam et al. (2005), who found that the ARFIMA (1, d, 0) model explains 

the dynamics in the realized volatility of S&P 100 most effectively and parsimoniously.  

 

Table VIII lists the in-sample OLS regression results of the HAR and the HAR-J models, based 

on both TSRV and SSRV. These results indicate that the adjusted R-squares of the regressions 

are the highest for daily forecasts, and the lowest for monthly forecasts. This pattern is repeated 

across the two models and the two measures. Coefficients of historical daily, weekly and 

monthly realized volatility are significant for all forecasting horizons, in both HAR and HAR-J 

model regressions, based on both TSRV and SSRV. But the coefficient of the jump component 

in HAR-J model is significant only in the regressions based on SSRV. It is not significant in the 

regressions based on TSRV. Consequently, R-squares of the HAR-J model improve over that of 
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the HAR model, for forecasts based on SSRV. Andersen et al. (2007) used the SSRV measure 

for realized volatility and found similar results for S&P 500. They had therefore credited HAR-J 

model with accounting for the jump component in the HAR model. Our results indicate that the 

inclusion of jump component improves the estimation of the HAR model only for SSRV and not 

for TSRV. The TSRV measure is robust enough to incorporate the effect of jumps in the 

historical realized volatility series. 

 

Table IX and X list the performance of in-sample and out-of-sample forecasts, based on TSRV 

and SSRV, using HAR model and HAR-J model respectively. The tables show that efficiency 

and bias of forecasts, based on TSRV, are very similar for both the HAR and HAR-J model. The 

efficiency and bias of forecasts, based on SSRV, improve with the inclusion of jump component 

in the HAR model. Despite this improvement, forecasts based on SSRV still lag behind forecasts 

based on TSRV measure, both in terms of efficiency and bias. Table XI lists the performance of 

out-of-sample forecasts, based on TSRV as compared to those based on SSRV, using all the 

forecasting models. It represents the relative performance of the TSRV measure over the SSRV 

measure. The table shows that for all forecasting models, and for all forecasting horizons, the 

forecasts based on TSRV are more efficient and less biased than those based on SSRV. The p-

values of the Wilcoxon signed-ranks test confirm this fact.  

 

Table XII lists the comparative performance of out-of-sample forecasts, based on TSRV, in 

terms of efficiency. The table compares the performance of all the forecasting models for daily, 

weekly and monthly forecasts. Panel A of the table indicates that ARFIMA (0, d, 0) model 

forecasts daily volatility more efficiently than random walk, EWMA and ARIMA. The p-values 
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show that all the models provide, significantly more efficient daily forecasts, than the random 

walk model. There is no significant difference in the efficiency of daily forecasts provided by the 

long memory models (ARFIMA and HAR). Except for ARFIMA (0, d, 0) performing better than 

EWMA and ARIMA, there is no significant difference in performance of EWMA, ARIMA, 

ARFIMA and HAR models.  

 

Panel B of table XII indicates that the HAR models forecast weekly volatility more efficiently 

than the other models. The p-values show that HAR models provide significantly more efficient 

weekly forecasts than the ARFIMA (1, d, 0) model. Other than that, there is no significant 

difference in efficiency of weekly forecasts amongst the various models. Panel C of table XI 

indicates that random walk model forecasts monthly volatility as well as the other models. The p-

values show that there is no significant difference in efficiency of monthly forecasts provided by 

random walk, EWMA, ARIMA, ARFIMA and HAR models.  

 

Table XIII represents the comparison of out-of-sample relative bias, relative to zero, based on 

TSRV, for all forecasting models and all forecasting horizons. The table shows that all forecasts 

are positively biased. At 1% level, the bias in random walk forecasts is not significantly different 

from zero for all forecasting horizons. For monthly forecasts, the bias in forecasts, from all 

models except ARIMA model, is not significantly different from zero, at 1% level. But, at 5% 

level, only the random walk model has a bias not significantly different from zero. The Z-

statistics indicate that the bias worsens with the complexity of forecasting model. Based on 

TSRV, EWMA model provides a good trade-off between efficiency and bias for daily forecasts. 

For weekly and monthly forecasts random walk is the best option on these criteria.  
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CONCLUSIONS 

The study examines the forecasting performance of two-scale realized volatility (TSRV) in 

comparison to the conventional sparse sampled realized volatility (SSRV) measure using various 

forecasting models. TSRV suggested by Zhang et al. (2005) and SSRV suggested by Andersen et 

al. (2001) are both measures of realized volatility (ex-post true volatility) calculated using high 

frequency intra-day data. TSRV combines average values of realized volatility measured at two 

frequencies, using complete data. SSRV calculates cumulative squared returns at a lower 

frequency, like five minutes. Both these approaches are followed to minimize market 

microstructure noise.  

 

Most studies have used SSRV, as the measure of realized volatility, to forecast volatility. TSRV, 

although considered a better estimate of volatility than SSRV with its more robust bias-

correction technique, has not been explored in volatility forecasting. The study attempts to fill 

this gap by comparing the performance of forecasts based on TSRV relative to those based on 

SSRV, in terms of both efficiency and bias. The study employs conventional (random walk and 

EWMA), time series (ARIMA and ARFIMA) and HAR (HAR and HAR-J) volatility forecasting 

models for this purpose.  

 

There is evidence that the forecasts, based on TSRV, are significantly more efficient and 

significantly less biased than those based on SSRV. These results are universal, regardless of the 

volatility forecasting model or the volatility forecasting horizon. Thus quality of forecast 

primarily depends on the quality of estimate and not so much on the forecasting model used. 

This implies that better estimation leads to better forecasting. These results are similar to those of 

Vipul and Jacob (2007), where the authors found that the range based estimators, which 
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estimated the historical volatility better, also led to better forecasts regardless of volatility 

forecasting model or horizon. 

 

Both TSRV and SSRV time series are stationary, but exhibit persistence with a fractional 

integrating parameter between 0.3-0.5. There is evidence that ARFIMA (0, d, 0) model provides 

significantly more efficient daily forecasts than ARIMA model with TSRV. The ARFIMA (0, d, 

0) and the ARFIMA (1, d, 0) models, provide almost equally efficient and equally biased 

forecasts with both TSRV and SSRV, for all time horizons. These results indicate that the 

dynamics of the realized volatility of Nifty is better captured by the fractional differencing 

parameter. HAR-J model provides more efficient forecasts than the HAR model, with SSRV. 

However, with TSRV measure, both these models give similar forecasts implying that the 

inclusion of jump component in the HAR model is not required, for forecasts based on TSRV. 

 

The study also assesses the competing forecasting models, to find out the model, which provides 

the most efficient and least biased forecasts, with TSRV. For daily forecasting horizons, the 

efficiency of forecasts is comparable across EWMA, ARIMA, ARFIMA and HAR models. For 

weekly and monthly forecasting horizons, it is comparable across random walk, EWMA, 

ARIMA ARFIMA and HAR models. Bias of forecasts, worsens with the complexity of model. It 

is not significantly different from zero for random walk forecasts for all horizons. Based on 

TSRV, EWMA model provides a good trade-off between efficiency and bias for daily forecasts. 

Random walk model is the best option for weekly and monthly forecasts on these criteria. 



21 
 

REFERENCES 

Andersen, T.G., and Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility 

models do provide accurate forecasts. International Economic Review, 39, 885–905. 

Andersen, T. G., Bollerslev, T., and Diebold, F.X. (2007). Roughing it up: including jump 

components in the measurement, modeling and forecasting of return volatility. Review of 

Economics and Statistics 89, 701–720. 

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and Forecasting 

Realized Volatility. Econometrica, 71, 579–625. 

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The Distribution of 

Realized Exchange Rate Volatility. Journal of the American Statistical Association, 

96(453), 42-55. 

Bali, T.G. and Weinbaum, D. (2005). A Comparative Study of Extreme Value Volatility 

Estimators. Journal of Futures Markets, 25(9), 873-92. 

Barndorff-Nielsen, O.E., and Shephard, N. (2004). Power and Bipower Variation with Stochastic 

Volatility and Jumps. Journal of Financial Econometrics, 2, 1-37. 

Barndorff-Nielsen, O.E., and Shephard, N. (2006). Econometrics of Testing for Jumps in 

Financial Economics Using Bipower Variation. Journal of Financial Econometrics, 4, 1-

30. 

Chung, H., Huang, C.S., and Tseng, T.C. (2008). Modeling and Forecasting of Realized 

Volatility Based on High-Frequency Data: Evidence from Taiwan. International Research 

Journal of Finance and Economics, 22, 178-191. 

Corsi, F. (2003). A Simple Long Memory Model of Realized Volatility. Working Paper, 

University of Southern Switzerland. 



22 
 

Diebold, F.X., and Mariano, R.S. (1995). Comparing predictive accuracy. Journal of Business & 

Economic Statistics, 13, 253–263. 

Fildes, R. (1979). Quantitative forecasting – the state of the art: extrapolative models. Journal of 

the Operational Research Society, 30, 691-710. 

Figlewski, S. (1997). Forecasting volatility. Financial Markets, Institutions and Instruments, 6(1), 

1–88. 

Gardner, E.S. Jr. (1985). Exponential smoothing: the state of the art. Journal of Forecasting, 4, 1-

28. 

Garman, M.B., and Klass, M.J. (1980). On the estimation of security price volatilities from 

historical data. Journal of Business, 53, 67–78.  

Ghysels, E., Sanata-Clara, P., and Valkanov, R. (2006). Predicting Volatility: getting the most 

out of return data sampled at different frequencies. Journal of Econometrics, 131, 59-95. 

Kumar, M. (2010). Improving the accuracy: volatility modeling and forecasting using high-

frequency data and the variational component. Journal of Industrial Engineering and 

Management, 3(1), 199-220. 

Koopman, S.J., Jungbacker, B. and Hol, E. (2005). Forecasting daily variability of the S&P 100 

stock index using historical, realized and implied volatility measurements. Journal of 

Empirical Finance, 12, 445-475. 

Li, K. and Weinbaum, D. (2000). The Empirical Performance of Alternative Extreme Value 

Volatility Estimators. Working Paper, Stern School of Business, New York. 

Liao, Y. (2011). Does Decomposing Realized Volatility Help in Risk Prediction: Evidence from 

Chinese Mainland Stocks. Working Paper, Australian National University, Australia. 



23 
 

Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., 

Parzen, E., and Winkler, R. (1982). The accuracy of extrapolation (time series) methods: 

results of a forecasting competition. Journal of Forecasting, 1, 111-153. 

Martens, M., and Zein, J. (2004). Predicting financial volatility: high frequency time series 

forecasts vis-à-vis implied volatility. Journal of Future Markets, 24(11), 1005-1028.  

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. 

Journal of Business, 53, 61–65.  

Poon, S., and Granger, C.W.J. (2003). Forecasting volatility in financial markets: A Review. 

Journal of Economic Literature, 41, 478–539. 

Pong, S., Shackleton, M. B., Taylor, S. J., and Xu, X. (2004). Forecasting currency volatility: A 

comparison of implied volatilities and AR(FI)MA models. Journal of Banking & Finance, 

28, 2541–2563. 

Shu, J., and Zhang, J.E. (2006). Testing range estimators of historical volatility. Journal of 

Futures Markets, 26, 297–313. 

Siegel, S., and Castellan, N.J. (1988). The Case of One Sample, Two Measures or Paired 

Replicates. In: Siegel, S. and Castellan, N.J. (Second Ed.), Nonparametric Statistics for 

the Behavioral Sciences. Mc-Graw Hill, Singapore, 87-95. 

Vipul and Jacob, J. (2007). Forecasting Performance of Extreme-Value Volatility estimators. 

Journal of Futures Markets, 27(11), 1085-1105. 

Zhang, L., Mykland, P. A. and Aı¨t-Sahalia, Y. (2005). A Tale of Two Time Scales: Determining 

Integrated Volatility with Noisy High-Frequency Data. Journal of the American 

Statistical Association, 100(472), 1394-1411. 



24 
 

 

Table I: Descriptive Statistics of TSRV and SSRV 

 

TSRV SSRV 

  

 2        2       

mean 

 

1.772 1.156 2.788 1.391 

sd 

 

0.035 0.660 0.080 0.924 

skewness 

 

12.16 3.58 19.81 4.86 

kurtosis 

 

219.15 27.81 534.58 51.19 

Jarque bera test (p value) 

 

< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

adf test (p value) 

 

< 0.01 < 0.01 < 0.01 < 0.01 

GPH (d) 

 

0.38 0.44 0.34 0.43 

No. of observations 

 

2596 2596 2596 2596 

Note: 2 represents the variance and  represents the standard deviation. The figures of 
2 and  are given in percent square and percent respectively. Jarque bera test has a null 

hypothesis of normality. Adf test has an alternate hypothesis of stationarity. GPH (d) 

represents the fractional parameter d estimated by the method of Geweke and Porter-

Hudak.   

 

 

 

Table II: Forecasting performance using Random Walk model 

Random walk RMSE MAE Mean Bias MRB 

Panel A: TSRV 

    Daily  0.4485 0.2736 0.0002 4.1453 

Weekly  1.0687 0.5944 0.0023 3.8280 

Monthly 2.2141 1.5163 0.0152 4.9409 

Panel B: SSRV 

    Daily  0.7024 0.3947 0.2351 24.2384 

Weekly  1.5320 0.9144 0.5821 25.2559 

Monthly 3.1230 2.1258 1.3304 28.3470 

Note: RMSE, MAE, Mean Bias and MRB are given in percentages. 
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Table III: Forecasting performance of TSRV and SSRV using EWMA model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily (λ=0.42) 0.4275 0.2550 0.0003 5.0062 

Weekly (λ=0.47) 0.9912 0.5772 0.0040 5.2506 

Monthly (λ=0.45) 2.0970 1.4555 0.0231 6.7795 

Panel B: TSRV out-of-sample 

    Daily (λ=0.40)  0.4644 0.2800 0.0004 5.1652 

Weekly (λ=0.46) 1.0868 0.6433 0.0015 5.3011 

Monthly (λ=0.48) 2.5214 1.7848 0.0396 8.8016 

Panel C: SSRV in-sample 

    Daily (λ=0.81) 0.5612 0.3790 0.2356 27.8712 

Weekly (λ=0.75) 1.2847 0.9339 0.5957 30.2466 

Monthly (λ=0.69) 2.6915 2.2112 1.3784 33.6028 

Panel C: SSRV out-of-sample 

    Daily (λ=0.82) 0.6253 0.4308 0.2773 29.5649 

Weekly (λ=0.74) 1.4387 1.0636 0.6843 31.5841 

Monthly (λ=0.74) 3.1395 2.6919 1.6347 38.2520 

Note: λ is chosen by minimizing the RMSE of the forecasts. RMSE, MAE, Mean Bias 

and MRB are given in percentages. 
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Table IV: Forecasting performance of TSRV and SSRV using ARIMA model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily (p=1, d=1, q=1) 0.4103 0.2468 0.0008 6.0445 

Weekly (p=1, d=1, q=2) 0.9617 0.5620 0.0143 7.2331 

Monthly (p=1, d=0, q=0) 1.9821 1.3378 -0.0001 8.6953 

Panel B: TSRV out-of-sample 

    Daily (p=1.86, d=0.83, q=1.72)  0.4511 0.2723 -0.0074 5.9132 

Weekly (p=1.18, d=0.65, q=1.35)  1.0875 0.6308 -0.0435 5.9104 

Monthly (p=0.83, d=0.29, q=0.50)  2.5482 1.7310 0.0460 11.4205 

Panel C: SSRV in-sample 

   Daily (p=1, d=1, q=1) 0.5301 0.3676 0.2389 28.5850 

Weekly (p=1, d=1, q=1) 1.2307 0.9039 0.6054 30.5340 

Monthly (p=1, d=1, q=1)  2.4127 1.9933 1.3243 33.3463 

Panel C: SSRV out-of-sample 

    Daily (p=2.18, d=0.83, q=2.82)  0.6085 0.4202 0.2783 29.7245 

Weekly (p=1.46, d=0.57, q=1.32)  1.3478 0.9924 0.6144 29.9383 

Monthly (p=0.83, d=0.38, q=0.66)  2.9690 2.5444 1.4226 34.9357 

Note: ARIMA model is estimated using maximum likelihood estimation. Best ARIMA model is 

chosen according to AIC value with a maximum value of order of autoregressive and moving 

average as five. RMSE, MAE, Mean Bias and MRB are given in percentages. 

 

 

Table V: Ranges of p, d, q of ARIMA model used in out-of-sample forecasting 
 

  Maximum Minimum 

  p d q p d q 

Panel A: TSRV 

      Daily  5 1 5 1 0 1 

Weekly  5 1 4 0 0 0 

Monthly 1 1 2 0 0 0 

Panel B: SSRV 

      Daily  5 1 5 1 0 1 

Weekly  4 1 5 0 0 0 

Monthly 1 1 2 0 0 0 



27 
 

 

Table VI: Forecasting performance of TSRV and SSRV using ARFIMA (0, d, 0) model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily (d=0.498) 0.4115 0.2435 0.0011 7.0876 

Weekly (d=0.483) 0.9616 0.5595 0.0058 7.5623 

Monthly (d=0.453) 2.0123 1.3707 0.0272 9.2070 

Panel B: TSRV out-of-sample 

    Daily ( d =0.496)  0.4468 0.2669 -0.0007 7.3578 

Weekly ( d =0.454) 1.0754 0.6311 -0.0176 7.7337 

Monthly ( d =0.396) 2.4800 1.6767 -0.0730 10.4142 

Panel C: SSRV in-sample 

   Daily (d=0.428) 0.5211 0.3649 0.2373 29.0786 

Weekly (d=0.461) 1.1976 0.8865 0.5897 30.6631 

Monthly (d=0.416) 2.4861 2.1046 1.3538 34.4527 

Panel C: SSRV out-of-sample 

    Daily ( d =0.448) 0.5899 0.4140 0.2782 30.5474 

Weekly ( d =0.437) 1.3217 0.9912 0.6484 31.9492 

Monthly ( d =0.354) 2.8190 2.4607 1.3628 35.8523 

Note: ARFIMA (0, d, 0) model is estimated using maximum likelihood estimation. RMSE, 

MAE, Mean Bias and MRB are given in percentages. 
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Table VII: Forecasting performance of TSRV and SSRV using ARFIMA (1, d, 0) model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily (d=0.425) 0.4086 0.2449 0.0011 7.0962 

Weekly (d=0.325) 0.9643 0.5574 0.0050 7.9474 

Monthly (d=0.000) 1.9846 1.3354 0.0101 8.4288 

Panel B: TSRV out-of-sample 

    Daily ( d =0.336)  0.4477 0.2697 -0.0065 7.2595 

Weekly ( d =0.015) 1.1107 0.6414 -0.0731 6.8989 

Monthly ( d =0.000) 2.4587 1.6784 -0.1031 8.1277 

Panel C: SSRV in-sample 

   Daily (d=0.448) 0.5223 0.3649 0.2372 28.9223 

Weekly (d=0.346) 1.1917 0.8811 0.5891 31.2163 

Monthly (d=0.000) 2.4669 2.0235 1.3202 33.7337 

Panel C: SSRV out-of-sample 

    Daily ( d =0.390) 0.5902 0.4091 0.2697 30.1667 

Weekly ( d =0.174) 1.3300 0.9526 0.5869 30.6010 

Monthly ( d =0.000) 2.8176 2.3608 1.2555 33.1045 

Note: ARFIMA (1, d, 0) model is estimated using maximum likelihood estimation. RMSE, 

MAE, Mean Bias and MRB are given in percentages.
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Table VIII: In sample regression results of HAR and HAR-J model 

  HAR (TSRV) HAR (SSRV) HAR-J (TSRV) HAR-J (SSRV) 

H 1 5 22 1 5 22 1 5 22 1 5 22 

             c 0.001 0.006 0.022 0.002 0.008 0.031 0.001 0.006 0.022 0.002 0.008 0.030 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

             βd 0.574 0.806 0.903 0.376 0.682 0.769 0.575 0.799 0.884 0.562 0.936 1.023 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

             βw 0.063 0.194 0.416 0.115 0.194 0.383 0.063 0.191 0.409 0.105 0.180 0.369 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

             βm 0.034 0.114 0.234 0.036 0.116 0.225 0.034 0.114 0.235 0.034 0.112 0.221 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

             βj 

      

-0.002 0.026 0.066 -0.307 -0.420 -0.418 

       

(0.884) (0.373) (0.299) (0.000) (0.000) (0.000) 

             Adj. R
2
 0.615 0.545 0.404 0.474 0.459 0.327 0.615 0.545 0.404 0.501 0.470 0.330 

Note: The table reports the in-sample OLS estimates for daily (H=1) and overlapping weekly (H=5), and monthly (H=22) HAR and 

HAR-J volatility forecast regressions based on TSRV and SSRV volatility measures.
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Table IX: Forecasting performance of TSRV and SSRV using HAR model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily  0.4109 0.2458 0.0000 7.1574 

Weekly  0.9164 0.5364 0.0000 6.8959 

Monthly  1.9741 1.2885 0.0000 8.3083 

Panel B: TSRV out-of-sample 

    Daily  0.4478 0.2685 -0.0164 6.4092 

Weekly  1.0020 0.5853 -0.0677 5.4597 

Monthly  2.2388 1.4471 -0.2137 6.5165 

Panel C: SSRV in-sample 

   Daily  0.5299 0.3647 0.2347 29.5341 

Weekly  1.1708 0.8541 0.5758 30.3313 

Monthly  2.4592 1.9847 1.3003 33.4223 

Panel C: SSRV out-of-sample 

    Daily  0.5795 0.3924 0.2426 28.9341 

Weekly  1.2249 0.8946 0.5480 28.6742 

Monthly  2.5384 2.0493 1.1285 30.7959 

Note: HAR model is estimated using OLS estimation. RMSE, MAE, Mean Bias and MRB 

are given in percentages.
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Table X: Forecasting performance of TSRV and SSRV using HAR-J model 

 

RMSE MAE Mean Bias MRB 

Panel A: TSRV in-sample 

    Daily  0.4109 0.2459 0.0000 7.1576 

Weekly  0.9163 0.5360 0.0000 6.8979 

Monthly  1.9737 1.2877 0.0000 8.3101 

Panel B: TSRV out-of-sample 

    Daily  0.4500 0.2686 -0.0128 6.6437 

Weekly  1.0051 0.5844 -0.0581 5.7576 

Monthly  2.2378 1.4477 -0.2170 6.4529 

Panel C: SSRV in-sample 

   Daily  0.5192 0.3599 0.2347 28.8628 

Weekly  1.1590 0.8461 0.5758 29.9589 

Monthly  2.4506 1.9800 1.3003 33.2990 

Panel C: SSRV out-of-sample 

    Daily  0.5530 0.3755 0.2185 26.5974 

Weekly  1.1933 0.8713 0.5196 27.4439 

Monthly  2.7493 2.2582 1.4427 36.0195 

Note: HAR-J model is estimated using OLS estimation. RMSE, MAE, Mean Bias and MRB 

are given in percentages. 
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Table XI: Forecasting performance of TSRV relative to SSRV 

Forecasting Method  

% change in 

efficiency 

(MSE) p-value 

% change in 

relative bias 

(MRB) p-value 

Panel A: Daily 

    Random Walk -59.23 0.000 -82.90 0.000 

EWMA -44.86 0.000 -82.53 0.000 

ARIMA  -45.06 0.000 -80.11 0.000 

ARFIMA (0, d, 0)  -42.63 0.000 -75.91 0.000 

ARFIMA (1, d, 0) -42.47 0.000 -75.94 0.000 

HAR -40.29 0.000 -77.85 0.000 

HAR-J  -33.77 0.000 -75.02 0.000 

Panel B: Weekly 

   

 

Random Walk -51.34 0.000 -84.84 0.000 

EWMA -42.94 0.000 -83.22 0.000 

ARIMA  -34.89 0.000 -80.26 0.000 

ARFIMA (0, d, 0)  -33.81 0.000 -75.79 0.000 

ARFIMA (1, d, 0) -30.26 0.000 -77.46 0.000 

HAR -33.09 0.000 -80.96 0.000 

HAR-J  -29.05 0.000 -79.02 0.000 

Panel C: Monthly 

    Random Walk -49.74 0.000 -82.57 0.000 

EWMA -35.50 0.000 -76.99 0.000 

ARIMA  -26.34 0.000 -67.31 0.000 

ARFIMA (0, d, 0)  -22.61 0.000 -70.95 0.000 

ARFIMA (1, d, 0) -23.85 0.002 -75.45 0.000 

HAR -22.21 0.000 -78.84 0.000 

HAR-J  -33.75 0.000 -82.09 0.000 

Note: Change in efficiency (relative bias) represents percentage change in MSE (MRB) of the 

out-of-sample forecasts based on TSRV measure as compared to the forecasts based on SSRV 

measure. The statistical significance of this difference is indicated by the p-values of Wilcoxon 

signed-ranks test. 
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Table XII: Comparative forecasting efficiency of various models based on TSRV measure 

 

  

Random 

Walk EWMA ARIMA 

ARFIMA  

(0, d, 0) 

ARFIMA  

(1, d, 0) HAR 

Panel A: Daily 

       % increase in MSE EWMA 7.190 

     Z statistic 

 

5.151 

     p-value 

 

0.000 

     % increase in MSE ARIMA  1.138 -5.645 

    Z statistic 

 

5.756 0.327 

    p-value 

 

0.000 0.744 

    % increase in MSE ARFIMA  -0.755 -7.412 -1.872 

   Z statistic (0, d, 0) 5.788 2.611 3.001 

   p-value 

 

0.000 0.009 0.003 

   % increase in MSE ARFIMA  -0.379 -7.061 -1.500 0.379 

  Z statistic (1, d, 0) 6.588 1.283 0.888 -1.772 

  p-value 

 

0.000 0.200 0.375 0.076 

  % increase in MSE HAR -0.321 -7.007 -1.443 0.438 0.059 

 Z statistic 

 

7.149 2.364 1.120 -1.326 1.582 

 p-value 

 

0.000 0.018 0.263 0.185 0.114 

 % increase in MSE HAR-J  0.676 -6.076 -0.457 1.442 1.059 1.000 

Z statistic 

 

7.084 2.553 1.404 -1.036 2.088 1.863 

p-value 

 

0.000 0.011 0.160 0.300 0.037 0.062 
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Table XII (continued): Comparative forecasting efficiency of various models based on TSRV measure 

 

  

Random 

Walk EWMA ARIMA 

ARFIMA  

(0, d, 0) 

ARFIMA  

(1, d, 0) HAR 

Panel B:Weekly 

       % increase in MSE EWMA 3.418 

     Z statistic 

 

-0.428 

     p-value 

 

0.668 

     % increase in MSE ARIMA  3.558 0.135 

    Z statistic 

 

-0.043 0.712 

    p-value 

 

0.966 0.476 

    % increase in MSE ARFIMA  1.252 -2.095 -2.227 

   Z statistic (0, d, 0) -0.134 0.343 0.955 

   p-value 

 

0.893 0.731 0.340 

   % increase in MSE ARFIMA  8.012 4.441 4.300 6.676 

  Z statistic (1, d, 0) -0.282 -1.105 -0.416 -0.968 

  p-value 

 

0.778 0.269 0.678 0.333 

  % increase in MSE HAR -12.095 -15.000 -15.115 -13.182 -18.615 

 Z statistic 

 

1.066 1.677 2.179 1.498 2.566 

 p-value 

 

0.286 0.093 0.029 0.134 0.010 

 % increase in MSE HAR-J  -11.540 -14.464 -14.579 -12.634 -18.101 0.631 

Z statistic 

 

1.105 1.753 2.180 1.671 3.006 1.695 

p-value 

 

0.269 0.080 0.029 0.950 0.003 0.090 
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Table XII (continued): Comparative forecasting efficiency of various models based on TSRV measure 

 

  

Random 

Walk EWMA ARIMA 

ARFIMA  

(0, d, 0) 

ARFIMA  

(1, d, 0) HAR 

Panel C: Monthly 

       % increase in MSE EWMA 29.690 

     Z statistic 

 

0.646 

     p-value 

 

0.518 

     % increase in MSE ARIMA  32.460 2.136 

    Z statistic 

 

0.693 0.089 

    p-value 

 

0.488 0.929 

    % increase in MSE ARFIMA  25.465 -3.258 -5.281 

   Z statistic (0, d, 0) 1.227 0.484 1.212 

   p-value 

 

0.220 0.628 0.226 

   % increase in MSE ARFIMA  23.324 -4.908 -6.897 -1.706 

  Z statistic (1, d, 0) 1.878 0.050 0.646 -0.314 

  p-value 

 

0.060 0.960 0.518 0.754 

  % increase in MSE HAR 2.249 -21.159 -22.808 -18.504 -17.090 

 Z statistic 

 

1.545 1.761 2.381 2.330 2.063 

 p-value 

 

0.122 0.078 0.017 0.020 0.039 

 % increase in MSE HAR-J  2.157 -21.230 -22.877 -18.577 -17.164 -0.090 

Z statistic 

 

1.444 1.583 2.094 2.164 1.947 -1.597 

p-value 

 

0.149 0.113 0.036 0.030 0.052 0.110 

Note: Change in efficiency is indicated by percentage change in MSE of the out-of-sample forecasts, based on TSRV 

measure. The % increase in MSE is computed for the forecasting method mentioned in the second column with respect 

to the method mentioned in the header row. The statistical significance of this difference is indicated by the Z statistic 

and p-values of Wilcoxon signed-ranks test. A positive sign of the Z statistic indicates that the ‘second column’ 

forecasting model is more efficient than the ‘header row’ forecasting model. 
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Table XIII: Comparative forecasting bias (relative to zero) of various models based on TSRV measure 

 

  

Random 

Walk EWMA ARIMA 

ARFIMA  

(0, d, 0) 

ARFIMA  

(1, d, 0) HAR HAR-J 

Panel A: TSRV  

        Daily Z statistic -2.451 -4.651 -6.186 -8.705 -8.017 -6.959 -7.315 

 

p-value 0.014 0.000 0.000 0.000 0.000 0.000 0.000 

Weekly Z statistic -1.729 -3.441 -3.997 -5.178 -4.005 -4.302 -4.379 

 

p-value 0.084 0.001 0.000 0.000 0.000 0.000 0.000 

Monthly Z statistic -1.397 -2.025 -2.884 -2.520 -2.195 -2.272 -2.350 

 

p-value 0.162 0.043 0.004 0.012 0.028 0.023 0.019 

Note: The table represents the Z statistic and p-values of Wicoxon signed-rank tests for statistical difference in relative 

bias compared with zero for various forecasting models. A negative sign of the Z statistic indicates that the forecasting 

model is positively biased. 

 


