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Abstract

This paper documents a robust new finding that delta-hedged equity option return

decreases monotonically with an increase in the idiosyncratic volatility of the underlying

stock. Buying calls on low idiosyncratic volatility stocks and selling calls on high

idiosyncratic volatility stocks (both delta-hedged) on average earns about 1.4% over

the next month. Our results can not be explained by standard stock market risk

factors or volatility risk premium. They are distinct from existing anomalies in the

stock market or volatility-related option mispricing. Our results are consistent with

theory of option pricing under market imperfections. Option dealers charge a higher

premium for options on high idiosyncratic volatility stocks because these options have

higher arbitrage costs. Controlling for several limits to arbitrage proxies reduces the

strength of the negative relation between delta-hedged option return and idiosyncratic

volatility by about 40%.



Electronic copy available at: http://ssrn.com/abstract=1786607

1 Introduction

Despite the tremendous growth in equity options in recent decades, we know very little about

the determinants of expected return in this market. Partly responsible for this may be the

view that options are merely leveraged positions in the underlying stocks. Correspondingly,

academic research on options has traditionally focused on no-arbitrage valuation of options

relative to the underlying stocks. However, recent studies show that options are not redun-

dant,1 and there are limits to arbitrage between options and stocks.2

The main test hypothesis of this paper is a negative relation between option returns

and the idiosyncratic volatility of the underlying stock. The hypothesis is motivated by

theory of option pricing in the presence of limits to arbitrage between stocks and options

(e.g., Garleanu, Pedersen, and Poteshman (2009)). No-arbitrage approach can only establish

very wide bounds on equilibrium option prices. Option prices are importantly affected by

demand for options by the end-users and the costs of option dealers to supply options when

they can not perfectly hedge the options. We focus on the relation between option returns

and idiosyncratic volatility, because idiosyncratic volatility is the most important proxy of

arbitrage costs, as it is correlated with transaction costs and imposes a significant holding

cost for arbitrageurs (e.g., Pontiff (2006)).

Under limited arbitrage between the options and the underlying stocks, both supply and

demand considerations suggest that option return is expected to be negatively related to

stock’s idiosyncratic volatility. On the one hand, stocks with high idiosyncratic volatility

attract speculators (e.g., Kumar (2009), Han and Kumar (2010)). On the other hand,

options on high idiosyncratic volatility stocks are more costly to supply because they are

more difficult to hedge. Thus, option dealers charge a higher premium for options on high

idiosyncratic volatility stocks, leading to lower future returns.

To test the hypothesis, we examine a cross-section of options on individual stocks each

month. We pick one call (or put) option on each optionable stock that has a common time-to-

maturity (about one and a half months) and is closest to being at-the-money. At-the-money

1See, e.g., Buraschi and Jackwerth (2001), Coval and Shumway (2001), Jones (2006). Options are traded
because they are useful and, therefore, options cannot be redundant for all investors (Hakansson (1979)).

2See, e.g., Figlewski (1989), Figlewski and Green (1999), Bollen and Whaley (2004), Garleanu, Pedersen,
and Poteshman (2009).
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options are most sensitive to changes in stock volatility. For each optionable stock and in

each month we evaluate the return over the following month of a portfolio that buys one

call (or put), delta-hedged with the underlying stock. The delta-hedge is rebalanced daily

so that the portfolio is not sensitive to stock price movement. We study option returns

after hedging out the exposure to the underlying stocks so that our results are not driven

by determinants of the expected stock returns. Our results are obtained from about 210,000

delta-hedged option returns for 6,000 underlying stocks.

Empirically, we find that on average, delta-hedged options have negative returns, espe-

cially when the underlying stock has high idiosyncratic volatility. The delta-hedged options

on stocks with high idiosyncratic volatility on average earn significantly lower returns than

those on low idiosyncratic volatility stocks. This is the key new finding of our paper. The

same pattern holds for both call options and put options. For example, a portfolio strategy

that buys delta-hedged call options on stocks ranked in the bottom quintile by idiosyncratic

volatility and sells delta-hedged call options on stocks from the top idiosyncratic volatility

quintile earns about 1.4% per month.

We also find that the delta-hedged option return is on average significantly more negative

when the underlying stocks or the options are less liquid, and when the option open interests

are higher. These results are consistent with option dealers charging a higher option premium

when there are more limits to arbitrage between stocks and options, such as when the options

are more difficult to hedge and demands for them are higher.

Limits to arbitrage also play an important role explaining the negative relation between

delta-hedged option return and idiosyncratic volatility. This relation is stronger when it

is more costly to arbitrage between options and stocks. Controlling for several limits to

arbitrage proxies reduces the strength of the negative relation between delta-hedged option

return and idiosyncratic volatility by about 40%.

Further supporting the limits to arbitrage explanation, we find that the profitability of

our volatility-based option strategy crucially depends on option trading costs. Buying delta-

hedged call options on stocks ranked in the bottom idiosyncratic volatility quintile and selling

delta-hedged call options on stocks from the top idiosyncratic volatility quintile earns about

1.4% per month, when we assume options are traded at the mid point of the bid and the

ask quotes. If we assume the effective option spread is equal to 25% of the quoted spread,
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the average return of our option strategy is reduced to 0.79%. If the effective option spread

is equal to 50% of the quoted spread, then the profit of our option strategy is only 0.17%,

which is no longer statistically or economically significant. Thus, only arbitrageurs facing

sufficient low costs can profit from our option trading strategy.

We explore a number of potential alternative explanations for our results. The first is that

the profitability of our option strategy reflects compensation for bearing volatility risk. It is

well known that stock return volatility is time-varying. Delta-hedged options are positively

exposed to changes in the volatility, and their average returns could embed a volatility risk

premium.

After we control for the volatility risk premium in Fama-MacBeth regressions with the

delta-hedged option return as the dependent variable, the coefficient on idiosyncratic volatil-

ity remains negative and significant. Further, we run time-series regressions of the returns

to our option strategy on several proxies of market volatility risk and common idiosyncratic

volatility risk. Our portfolio strategy still has a significant positive alpha of about 1.32%

per month, after controlling for these volatility-related risk factors in addition to the Fama-

French three factors and the momentum factor. Thus, our results can not be explained by

the volatility risk premium.

Another potential explanation of our results is volatility-related option mispricing. Stocks

with high current volatility may have experienced recent increase in volatility. If investors

overreacted to recent change in volatility (see, e.g., Stein (1989), Poteshman(2001)), and

paid too much for options on stocks with high current volatility, then it could explain our

result. However, after we control for recent changes in volatility, we still find a significant

negative relation between delta-hedged option returns and the idiosyncratic volatility of

the underlying stock. Our results are not simply manifestation of investor overreaction to

changes in volatility.

Further, we control for the difference between the realized volatility and the at-the-money

option implied volatility. Goyal and Saretto (2009) argue that large deviations of implied

volatility from historical volatility are indicative of mis-estimation of volatility dynamics.

Consistent with their paper, we find that delta-hedged options on stocks with large positive

differences between historical volatility and implied volatility have higher returns.3 However,

3Unlike our study, Goyal and Saretto (2009) hold delta-hedged option positions for a month without daily
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after controlling for the difference between historical and option-implied volatility, we find

a more negative relation between delta-hedged option return and idiosyncratic volatility.

Thus, controlling for volatility-related option mispricing exacerbates rather than explains

our results.

A voluminous literature has studied the cross-section of stock returns, but papers that

examine the cross-section of option returns are sparse. Previous studies on option returns

have focused on index options (e.g., Coval and Shumway (2001)). Duarte and Jones (2007)

use delta-hedged options to study properties of individual stock volatility risk premium.

They find that the individual stock volatility risk premium is related to stock’s exposure to

the market volatility risk and depends on the market volatility level. They do not examine

how delta-hedged stock option return is related to the idiosyncratic volatility of the under-

lying stock, which is the focus of our study.4 Goyal and Saretto (2009) link delta-hedged

options to the difference between historical realized volatility and at-the-money option im-

plied volatility. They are motivated by investors’ mis-estimation of volatility dynamics and

volatility-related option mispricing. We examine additional theory-motivated variables (not

examined in previous studies) that are expected to be related to delta-hedged stock option

returns, including proxies of option demand pressures and costs of arbitrage between stocks

and options.

The rest of the paper is organized as follows. Section 2 describes the data and delta-

hedged option returns. Section 3 presents Fama-MacBeth regression results and tests several

potential explanations of our results. Section 4 presents portfolio-sorting results and studies

an option trading strategy taking into account realistic transaction costs. Section 5 concludes

the paper.

rebalancing. We thank an anonymous referee for pointing that rebalancing could have important impact
on the performance of delta-hedged option positions, as there is a big difference in performance between an
unrebalanced delta hedge and one that is rebalanced as a function of the stock’s realized price path.

4Bali and Murray (2010) study the return of skewness asset constructed from a pair of option positions
(one long and one short) and a position in the underlying stock. By design, their skewness asset is not
exposed to changes in stock volatility. Thus, their study has a different focus from our paper.
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2 Data and Delta-hedged Option Returns

2.1 Data

We use data from both the equity option and stock markets. For the January 1996 to

October 2009 sample period, we obtain data on U.S. individual stock options from the Ivy

DB database provided by Optionmetrics. The data fields we use include daily closing bid and

ask quotes, trading volume and open interest of each option, implied volatility as well as the

option’s delta and vega computed by OptionMetrics based on standard market conventions.

We obtain daily and monthly split-adjusted stock returns, stock prices, and trading volume

from the Center for Research on Security Prices (CRSP). For each stock, we also compute

the book-to-market ratio using the book value from COMPUSTAT. Further, we obtain the

daily and monthly Fama-French factor returns and risk-free rates from Kenneth French’s

data library.5

At the end of each month and for each optionable stock, we collect a pair of options

(one call and one put) that are closest to being at-the-money and have the shortest maturity

among those with more than 1 month to expiration. We apply several filters to the extracted

option data. First, our main analyses use call options whose stocks do not have ex-dividend

dates prior to option expiration (i.e., we exclude an option if the underlying stock paid a

dividend during the remaining life of the option).6 Second, we exclude all option observations

that violate obvious no-arbitrage conditions such as S ≥ C ≥ max(0, S −Ke−rT ) for a call

option C where S is the underlying stock price, and K is the option strike price, T is time to

maturity of the option, and r is the riskfree rate. Third, to avoid microstructure related bias,

we only retain options that have positive trading volume, positive bid quotes and where the

bid price is strictly smaller than the ask price, and the mid-point of bid and ask quotes is

at least $1/8. We keep only the options whose last trade dates match the record dates and

whose option price dates match the underlying security price dates. Fourth, the majority

of the options we pick each month have the same maturity. We drop the options whose

maturity is longer than that of the majority of options.

5The data library is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
6For the short-maturity options used in our study, the early exercise premium is small. We verify that

our results do not change materially when we include options for which the underlying stock paid a dividend
before option expire.
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Thus, we obtain, in each month, reliable data on a cross-section of options that are ap-

proximately at-the-money with a common short-term maturity. Our final sample in each

month contains, on average, options on 1514 stocks. The pooled data has 213,640 obser-

vations for delta-hedged call returns and 199,198 observations for delta-hedged put returns.

Table 1 shows that the average moneyness of the chosen options is 1, with a standard devia-

tion of only 0.05. The time to maturity of the chosen options ranges from 47 to 52 calendar

days across different months, with an average of 50 days. These short-term options are the

most actively traded. We utilize this option data to study the cross-sectional determinants

of expected option returns.

Compared to the whole CRSP stock universe, our sample of stocks with traded options

have larger market cap, more institutional ownership and analyst coverage. For stocks in our

sample, the average market cap of is 3.81 billion dollars, the average institutional ownership

is 66.68%, and the average number of analyst coverage is 8.72. Our results are not driven

by small or neglected stocks.

2.2 Delta-hedged Option Returns

To measure delta-hedged call option return, we first define delta-hedged option gain, which

is change in the value of a self-financing portfolio consisting of a long call position, hedged

by a short position in the underlying stock so that the portfolio is not sensitive to stock price

movement, with the net investment earning risk-free rate. Our definition of delta-hedged

option gain follows Bakshi and Kapadia (2003). Specifically, consider a portfolio of a call

option that is hedged discretely N times over a period [t, t+τ ], where the hedge is rebalanced

at each of the dates tn, n = 0, 1, · · · , N −1 (where we define t0 = t, tN = t+ τ). The discrete

delta-hedged call option gain over the period [t, t+ τ ] is

Π(t, t+ τ) = Ct+τ − Ct −
N−1∑
n=0

∆C,tn [S(tn+1)− S(tn)]−
N−1∑
n=0

anrtn
365

[C(tn)−∆C,tnS(tn)], (1)

where ∆C,tn is the delta of the call option on date tn, rtn is annualized riskfree rate on date

tn, an is the number of calendar days between tn and tn+1.
7 Delta-hedged call option return

7Following Carr and Wu (2009) as well as Goyal and Saretto (2009), our delta hedges rely on implied
volatilities and “Greeks” from the Black-Scholes model. We also compute option delta based on the GARCH
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is Π(t, t+ τ)/(∆tSt−Ct). Definition for the delta-hedged put option gain is the same as (1),

except with put option price and delta replacing call option price and delta.

3 Empirical results

3.1 Average Delta-hedged Option Returns

First, we examine the time-series average of delta-hedged option returns for individual stocks.

Table 1 Panel A and B show that for both call options and put options, the mean and

median of the pooled delta-hedged option returns are negative. For example, the average

delta-hedged at-the-money call option return is -0.81% over the next month and -1.13% if

held till maturity (which is on average 50 calendar days). The median delta-hedged call

option return is -0.92% (respectively -1.29%) for the next month (respectively till maturity).

For put options, the median delta-hedged option return is -0.73% (respectively -1.17%) for

the next month (respectively till maturity).

Table 1 Panel D reports the results of t-test for the time-series mean of individual stock

delta-hedged option returns. We have time series observations of call options on 6141 stocks.

About 78% of them have negative average delta-hedged call option returns and 32% of them

have significantly negative average delta-hedged call option returns. In contrast, the average

delta-hedged call option return is significantly positive for about only 1% of the cases. The

pattern for the put options is similar.

3.2 Delta-hedged Option Returns and Idiosyncratic Volatility

Table 1 shows there are large variations in the delta-hedged option returns. We study the

cross-sectional determinants of delta-hedged option returns using monthly Fama-MacBeth

regressions. For Tables 2 to 6, the dependent variable in month t’s regression is delta-hedged

call option return till maturity, i.e., Π(t, t + τ)/(∆tSt − Ct), where the common time to

maturity τ is about one and a half months. The independent variables are all pre-determined

at time t. The key variable of interest is the idiosyncratic volatility of the underlying stock.

volatility estimate and obtain similar results.
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Table 7 reports robustness checks for different holding periods (e.g., one week or one month)

and for put options.

Table 2 Panel A shows that delta-hedged option return is negatively related to the total

volatility of the underlying stock. Model 1 is the univariate regression of delta-hedged option

returns on stock return volatility V OL, measured as the standard deviation of daily stock

returns over the previous month. The V OL coefficient estimate is -0.0299, with a significant

t-stat of -8.72. In Model (2), we add option vega as a regressor to control for cross-sectional

difference in option moneyness. The point estimate and t-stat of the V OL coefficient in

Model 2 barely change from those in Model 1.

The significant negative relation between delta-hedged option returns and stock volatility

is robust to alternative measures of stock volatility. In Model 3, we measure stock volatility

as the square root of average of daily returns squared over the previous month. In Model 4,

volatility is estimated as the standard deviation of monthly stock returns over the past 60

months. In Model 5, we use at-the-money Black-Scholes option implied volatility IV at the

beginning of the option holding period. The coefficients for all of these volatility measures

are significantly negative.

Table 2 Panel B shows that the negative relation between delta-hedged option returns

and the volatility of the underlying stock is entirely driven by the idiosyncratic volatility. In

Model 1 of Table 2 Panel B, we decompose individual stock volatility into two components:

idiosyncratic volatility IV OL and systematic volatility SysV ol. We measure idiosyncratic

volatility as the standard deviation of the residuals of the Fama-French 3-factor model es-

timated using the daily stock returns over the previous month, and systematic volatility

is
√
V OL2 − IV OL2.8 When both idiosyncratic volatility and systematic volatility are in-

cluded as regressors, the estimated IV OL coefficient is -0.0405 with a t-stat of -15.38. In

contrast, the estimated coefficient of systematic volatility is 0.0165 with a t-stat of 3.93.

We confirm that the significant negative relation between delta-hedged option returns

and idiosyncratic volatility is not sensitive to how idiosyncratic volatility is measured. In

Model 2, we measure idiosyncratic volatility as the standard deviation of the residuals of the

8Our definition of idiosyncratic volatility follows Ang, Hodrick, Xing, and Zhang (2006). Our definition
of systematic volatility follows Duan and Wei (2009). They report a positive relation between the level or
the slope of the option implied volatility curve and the amount of systematic volatility in the underlying
stock.
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CAPM model estimated using monthly stock returns over the past 60 months. In Model 3,

we estimate an EGARCH (1,1) model using all historical monthly returns, and use the fitted

volatility of residuals.9 In Model 4, we estimate idiosyncratic volatility as the one-period

ahead expected volatility of residuals of the EGARCH(1,1) model. The coefficients for all of

these idiosyncratic volatility measures are significantly negative.

The impact of idiosyncratic volatility on delta-hedged option return is not only statisti-

cally significant, but also economically significant. Based on the -0.0405 coefficient estimate

for IV OL and its summary statistics reported in Table 1 Panel C, a one-standard deviation

increase in the idiosyncratic volatility would reduce the delta-hedged option return on aver-

age by 0.93%. Moving from the 10 (resp. 25) percentile of stocks ranked by idiosyncratic

volatility to the 90 (resp. 75) percentile, the delta-hedged option return can be expected to

decrease by 2.14% (resp. 1.09%).

3.3 Controlling for Volatility Risk and Jump Risk

Under the Black-Scholes model, the call option can be replicated by trading the underlying

stock and riskfree bond. In this case, the discrete delta-hedged gain in Equation (1) has

a symmetric distribution centered around zero (e.g., Bertsimas, Kogan, and Lo (2000)).

When volatility is stochastic and volatility risk is priced, the mean of delta-hedged option

gain would be different from zero, reflecting the volatility risk premium. For example, Bakshi

and Kapadia (2003) show that under stochastic volatility model, the expected delta-hedged

option gain depends positively on the volatility risk premium. Existing option pricing models

with stochastic volatility specify volatility risk premium as a function of the volatility level.

For example, in Heston (1993), the volatility risk premium is linear in volatility. The negative

relation between delta-hedged option return and stock volatility is consistent with a negative

volatility risk premium whose magnitude increases with the volatility level.10

9Each month and for each stock in our sample, we estimate the EGARCH(1,1) model using all available
historical monthly stock returns since 1963, if at least 5 years of historical data are available.

10Only a few papers have examined the volatility risk premium for individual stocks. Carr and Wu (2009)
report that out of the 35 individual stocks they study, only seven generate volatility risk premiums that are
significantly negative. For stocks belonging to the S&P 100 index, Driessen, Maenhout and Vilkov (2009)
report “We find no evidence for the presence of a significant negative volatility risk premium in individual
stock options. If anything, there is weak evidence of a positive risk premium for variance risk in individual
options.”

9



In Table 3, we control for the volatility risk premium to examine whether it can explain

the negative relation between delta-hedged option return and idiosyncratic volatility. The

volatility risk premium of stock i in month t is

V RPi,t =
√
RVi,t −

√
IVi,t

where RVi,t is realized return variance over month t computed from high frequency return

data, and IVi,t is the risk-neutral expected variance extracted from equity options on the last

trading day of each month t (see Appendix 1 for details). Our estimates of implied variance

IV and realized variance RV are identical to those in Bollerslev, Tauchen and Zhou (2009)

and Drechsler and Yaron (2010).11 Due to data limitation and to ensure the reliability of

the variance risk premium estimates, we obtain the the volatility risk premium only for a

subset (about one-third) of our sample in Table 2.12

Table 3 Model 1 is identical to Table 2 Panel A Model 2, and Table 3 Model 4 is identical

to Table 2 Panel B Model 1, except the sample size smaller in Table 3. Just like in Table 2,

delta-hedged option return decreases with an increase in the total volatility of the underlying

stock (Table 3 Model 1), and this result is entirely driven by the idiosyncratic volatility (Table

3 Model 4).

Table 3 Model 2 show a significantly positive relation between the delta-hedged option

return and the volatility risk premium. However, after controlling for the volatility risk

premium, we still find significant negative coefficients for both total stock volatility and

idiosyncratic volatility, but significant positive coefficient for stock’s systematic volatility

exposure (just like in Table 2). The coefficient estimates and their t-statistics barely change

in the presence of the volatility risk premium. The negative relation between delta-hedged

option return and idiosyncratic volatility can not simply be explained by the volatility risk

premium.13

11Buraschi, Trojani and Vedolin (2009) measure the volatility risk premium as
√
IVi,t −

√
RVi,t, which is

our measure multiply by -1, except that they estimate realized variance from daily stock returns while our
measure is based on intra-daily stock returns.

12The set of stocks for which we estimate the variance risk premium is a subsample of all optionable stocks
that have larger market cap, higher institutional ownership, and higher analyst coverage.

13In unreported empirical work, we find that the regression coefficient of delta-hedged option return on
idiosyncratic volatility does not change much and remains significant when we control for stocks’ beta with
respect to several proxies of systematic volatility risk factors. The first factor is the monthly change of the
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Table 3 Model 3 and 6 examine whether our result can be explained by a state-dependent

jump risk premium. For example, in Pan (2002), the jump-arrival intensity is linear in the

volatility level, and the jump-risk premium is linear in stock volatility V OL. Following

Bakshi and Kapadia (2003), we control for the jump risk by including the option implied

risk-neutral skewness and kurtosis of the underlying stock return. Appendix 2 provides

details of these measures. The coefficients of risk-neutral skewness and kurtosis are negative

and statistically significant. However, after controlling for the jump risk proxies, there is

still a significant negative relation between delta-hedged option return and idiosyncratic

volatility. Thus, our result can not be explained by jump risk premium.

3.4 Controlling for Volatility-related Option Mispricing

Another potential explanation of our result is volatility-related option mispricing. First,

Goyal and Saretto (2009) provide evidence of volatility mispricing due to investors’ failure to

incorporate the information contained in the cross-sectional distribution of implied volatilities

when forecasting individual stock’s volatility. They argue that large deviations of implied

volatility from historical volatility are indicative of mis-estimation of volatility dynamics.

They find that options with high implied volatility (relative to the historical volatility) earn

low returns.

Table 4 Model 2 controls for the log difference between historical and at-the-money option

implied volatility, the same variable used by Goyal and Saretto (2009).14 This variable

has a significant positive coefficient, which is consistent with Goyal and Saretto (2009).

More importantly, after controlling for this proxy of volatility-related option mispricing,

the coefficient for idiosyncratic volatility not only remains statistically significant, but its

magnitude more than doubles. The IV OL coefficient estimate is now -0.0741 (Model 2),

compared to -0.0325 (Model 1) without controlling for the Goyal and Saretto variable. Thus,

volatility-related mispricing documented by Goyal and Saretto (2009) exacerbates rather

than explains our result.

V IX index from the Chicago Board Options Exchange. The second factor is the zero-beta straddle return
on the S&P 500 index. The third is the market variance risk premium. The fourth factor is the monthly
change of the equal-weighted average idiosyncratic volatility of individual stocks.

14Our results do not change when we use the difference (rather than log difference) between historical and
at-the-money option implied volatility.
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Second, stocks with high idiosyncratic volatility may have experienced increase in volatil-

ity recently. If investors overreact to recent changes in volatility (see, e.g., Stein (1989),

Poteshman(2001)), and pay too much for options on high volatility stocks, then the subse-

quent returns of delta-hedged option positions would be low. In Table 4 Model 3, we control

for the average change in stock volatility over the past six months. Delta-hedged option

return tends to be lower after recent increase in volatility. This is consistent with the over-

reaction to volatility story. However, after controlling for recent change in volatility, we still

find a significant negative relation between delta-hedged option return and the idiosyncratic

volatility of the underlying stock. Thus, our result can not be explained simply by investors’

overreaction to recent change in volatility.

Table 4 Model 4 further controls for the change in the implied volatility of the same

option over the same time period as the dependent variable, the delta-hedged option return.

If the negative relation between delta-hedged option return and the stock volatility at the

beginning of the period just reflects the correction of some kind of volatility-related option

mispricing, then it should become insignificant once we control for the contemporaneous

change in the option implied volatility. We find a strong and significantly positive coefficient

for the contemporaneous change in the option implied volatility.15 However, we find that

the IV OL coefficient continues to be highly significant, both statistically and economically.

3.5 Controlling for Stock Characteristics

The dependent variable in all of our regressions is the returns of delta-hedged option po-

sitions. We rebalance the delta-hedges daily to minimize the influence of underlying stock

price for delta-hedged option position. Still, it may be possible that due to the imper-

fections in the delta-hedges, the strong link between delta-hedged option return and stock

idiosyncratic volatility we document is related to some known pattern in the cross-section

of expected stock return. To test this possibility, the regressions reported in Table 5 control

for several stock characteristics that are significant predictors of the cross-section of stock

returns, including size (ME), book-to-market ratio (BE/ME) of the underlying stock and

past stock returns. Following Fama and French (1992), we measure ME as the product

15Note that by definition, delta-hedged option return is positively related to contemporaneous change in
the option implied volatility, even in the absence of volatility mispricing.
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of monthly closing stock price and the number of outstanding common shares in previous

June. BE/ME is the previous fiscal-yearend book value of common equity divided by the

calendar-yearend market value of equity.

The IV OL coefficient remains negative and highly significant in all regressions reported

in Table 5. In particular, the strong negative relation between delta-hedged option return

and idiosyncratic volatility is insensitive to controlling for past stock returns over various

horizons, including past one month, between 12 months and 1 month ago, and between three

years and one year ago. The IV OL coefficient is about -0.038 to -0.039 in the presence of

the past stock returns. By comparison, the IV OL coefficient is -0.0325 without the past

stock returns as additional regressors (see Table 4 Model 1). Thus, controlling for past stock

returns actually strengthens the negative relation between delta-hedged option return and

idiosyncratic volatility. This is in stark contrast to the return-idiosyncratic volatility relation

in the stock market. Huang, Liu, Ghee, and Zhang (2009) report that the volatility-return

relation in the cross-section of stocks becomes insignificant when past one-month return is

used as a control variable. Controlling for size and book-to-market ratio does not materially

affect the magnitude and statistical significance of the IV OL coefficient either.

Interestingly, Table 5 shows that delta-hedged call option return is significantly and

positively related to the underlying stock return over past one year as well as between three

years and one year ago. The same pattern holds for delta-hedged put option returns (see

Table 7 Panel B). These findings can not be explained by stock return predictability by

past returns. First, we examine delta-hedged options that are not sensitive to stock price

movement by construction. Second, it is hard to explain why past return between three

years and one year ago is positively related to delta-hedged call option return but negatively

related to stock return if our result just reflects stock return predictability by past returns.

To summarize, we have shown that the negative relation between delta-hedged option

return and idiosyncratic volatility can not be explained by volatility risk premium or volatility

related option mispricing. Our finding is robust and distinct from known results on the

determinants expected stock return.
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3.6 Limits to Arbitrage

In this section, we provide evidence that our result can be better understood under mod-

els of option valuation in imperfect market (e.g., limits to arbitrage between options and

stocks). Traditionally, options are priced relative to the underlying stock by the no arbitrage

principle. Recent studies document that options are non-redundant and there are limits to

arbitrage in the options market. No-arbitrage approach can only establish very wide bounds

on equilibrium option prices (e.g., Figlewski (1989)).

In the presence of limited arbitrage between options and the underlying stocks, delta-

hedged option return is expected to be negatively related to stock’s idiosyncratic volatility.

First, investors’ demand for equity options is higher when the underlying stock is more

volatile. In particular, stocks with high idiosyncratic volatility attract speculation (e.g.,

Kumar (2009)) and thus demand for options on these stocks is also higher. Several recent

studies have shown that due to limits to arbitrage in the options market, investors’ demand

pressures for options importantly affect option prices (e.g., Bollen and Whaley (2004), Gar-

leanu, Pedersen, and Poteshman (2009)). Thus, high demand for options on stocks with high

idiosyncratic volatility leads to high prices paid for these options and low future returns.

Second, among the hindrances to arbitrage activity, idiosyncratic risk has been found

to be one of the more robust and strong factors associated with mispricing (e.g., Pontiff

(2006)). Idiosyncratic volatility prevents arbitrageurs from engaging in arbitrage trades. In

particular, it is difficult to hedge options on high idiosyncratic volatility stocks. Thus, option

supply considerations combined with idiosyncratic volatility acting as a proxy for limits to

arbitrage would also suggest a negative relation between delta-hedged option return and the

underlying stock’s idiosyncratic volatility.

Table 6 examines the impact of limits to arbitrage proxies on delta-hedged option returns

and how it affects the relation between delta-hedged option returns and stock’s idiosyncratic

volatility. We control for the effect of option demand pressure using individual option’s

open interest as a proxy. We use option open interest at the end of the month scaled by

monthly stock trading volume.16 We also control for various liquidity measures for options

and underlying stocks, such as option’s bid-ask spread, stock price and the Amihud (2002)

16Our results are qualitatively the same if we use option trading volume instead of open interest, or if we
scale by stock’s total shares outstanding.
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measure of the price impact for stocks. The Amihud illiquidity measure for stock i at month

t is defined as

ILi,t =
1

Dt

Dt∑
d=1

|Ri,d|/V OLUMEi,d,

where Dt is the number of trading days in month t, Ri,d and V OLUMEi,d are, respectively,

stock i’s daily return and trading volume in day d of month t. The motivation is that

arbitrage between stock and option is more difficult to implement when transaction costs in

options are high, and when the stocks are illiquid. These cases tend to be associated with

high stock volatility as well.

Table 6 Model 2 shows that delta-hedged option returns decrease with option open inter-

est, which has a significantly negative coefficient of -0.0704 (t-stat -7.91). This is consistent

with the idea that option market makers charging higher premium for options with large

end-users demand. Further, Table 6 Model 3 to 5 show that the delta-hedged option returns

are more negative when the option bid-ask spread is higher, when the underlying stock is less

liquid and when the underlying stock has low price. These results confirm that delta-hedged

option returns importantly depend on the difficulty to arbitrage between stocks and options.

After controlling for the limits of arbitrage proxies above, the magnitude of the IV OL

coefficient is reduced by about 41% from -0.0366 (Table 6 Model 1) to -0.0214 (Model 6).

Thus, limits to arbitrage play a key role in explaining the negative relation between delta-

hedged option return and stock idiosyncratic volatility. In Section 4.4, we provide further

evidence on the importance of limits to arbitrage for our results.

3.7 Robustness Checks

Table 7 reports several robustness checks on our results. In previous regression tables, the

dependent variable, delta-hedged option returns, are measured as changes in daily rebalanced

delta-hedged option portfolio till maturity scaled by the initial value of the delta-hedged

portfolio. In Table 7 Panel A, we use delta-hedged option return over alternative holding

periods, such as one week or one month. Previous tables report the results for call options.

In Table 7 Panel B, we re-run the regressions for put options. In all regressions, we still find

a significant negative IV OL coefficient.

We have conducted additional robustness checks. First, our results are qualitatively the
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same when we scale the delta-hedged gains by the initial stock price or option price. Second,

we also control for option theta. In univariate regression, option theta is negatively correlated

with delta-hedged option return. In the presence of other control variables, theta loses its

significance. In all regressions, the coefficient for idiosyncratic volatility is still significantly

negative. Third, we re-estimate our models using panel regressions (both OLS and with

firm-time clustered standard errors). We find again a significantly negative relation between

delta-hedged option returns and stock idiosyncratic volatility, consistent with the results

from Fama-MacBeth cross-sectional regressions.

4 Volatility-based Option Trading Strategy

This section studies the relation between delta-hedged option returns and stock idiosyncratic

volatility using the portfolio sorting approach. We confirm the previous results obtained

by the Fama-MacBeth regressions, propose a volatility-based option trading strategy, and

examine the impact of liquidity and transaction costs on the profitability of our option

strategy.

At the end of each month, we rank stocks with traded options into five quintiles based

on their idiosyncratic volatility (we also repeat the exercise sorting on total volatility or

systematic volatility). Our option strategy buys the delta-hedged call options on stocks

ranked in the bottom volatility quintile and sells the delta-hedged call options on stocks

ranked in the top volatility quintile.17 We rebalance daily the delta-hedged option positions

and track their performances over the next month.

A long delta-hedged option position involves buying one contract of call option and

selling ∆ shares of the underlying stock, where ∆ is the Black-Scholes call option delta. A

short delta-hedged option position involves selling one contract of call option against a long

position of ∆ shares of the underlying stock. In both cases, we adjust the delta hedge each

trading day by buying or selling proper amount of stock, keeping the option position to be

one contract until the end of next month when it is closed out. The return to selling a

delta-hedged call over one trading day [t, t + 1] is Ht+1/Ht − 1 where Ht = ∆St − Ct, with

17As in Section 3, for each optionable stock, we choose a call option that is closest to being at-the-money
and has a time-to-maturity of about 50 days.
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C and S denoting call option price and the underlying stock price. We compound the daily

returns to compute the monthly return.

4.1 Average Returns

Table 8 reports the average returns of five portfolios, each of which consists of short positions

in daily-rebalanced delta-hedged calls on stocks ranked in a given quintile by the underlying

stock’s total volatility (Panel A) or by its idiosyncratic volatility (Panel B). Table 1 shows

that the returns of delta-hedged options are negative on average. We use short positions in

delta-hedged call options in Table 8 so that the average portfolio returns are positive. Table

8 also reports in the “5-1” column the difference in the average returns of the top and the

bottom (idiosyncratic) volatility quintile portfolios, which is by definition exactly the return

of our volatility-based option trading strategy.

We try three weighting schemes in computing the average portfolio return: equal weight,

weighted by the market capitalization of the underlying stock or by the market value of total

option open interests on each stock (at the initial formation of option portfolio). Our results

are consistent across different weighting schemes.

Table 8 shows that the average return of selling delta-hedged calls is positive. Corre-

sponding to the significant negative relation between delta-hedged option return and stock

(idiosyncratic) volatility in the regressions, we find that the average return to selling delta-

hedged calls on high (idiosyncratic) volatility stocks is significantly higher than that on low

(idiosyncratic) volatility stocks. For example, the average difference in returns between the

equal-weighted portfolio of short positions in delta-hedged calls for stocks ranked in the top

volatility quintile and that for stocks ranked in the bottom volatility quintile is 1.2%. The

same result is stronger (1.4%) when we sort stocks by their idiosyncratic volatility. All of

these return differences are significant both statistically and economically.

In both Panel A and B, the value-weighted portfolio return differences between the top

and the bottom (idiosyncratic) volatility quintiles are only about half the magnitude as the

corresponding equal-weighted results. This suggests that our results are stronger among

smaller stocks. Table 8 Panel C confirms this. Each month, we first sort stocks into five

quintiles by their market capitalization, and then within each size quintile, we sort further
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by stock’s idiosyncratic volatility. We document the average returns of five portfolios and

the “5-1” difference (i.e., the profitability of our option strategy) separately for each size

quintile.

The average return of our option strategy ranges from 1.63% for the bottom size quintile

to 0.32% among the top size quintile. Our option strategy is profitable both in January and

in the rest of the year. The average equal-weighted return to our strategy is over 1% per

month in all subperiods (1996 to 1999, 2000 to 2003, 2004 to 2006 and 2007 to 2009).

4.2 Double Sorts on Idiosyncratic Volatility and Systematic Volatil-

ity

Previously, we use Fama-MacBeth regressions to show that the negative relation between

delta-hedged option return and stock volatility is entirely driven by the idiosyncratic volatil-

ity. Table 8 Panel D and E use conditional double sorts to highlight the differential impact

of idiosyncratic volatility and systematic volatility on the delta-hedged option returns. In

Panel D, we first sort stocks at the end of each month into five portfolios by their system-

atic volatility exposures, and then within each systematic volatility quintile, we further sort

stocks by their idiosyncratic volatility. In Panel E, we switch the order of double sorts, first

sorting on idiosyncratic volatility, and then on systematic volatility.

Table 8 Panel D shows that in all five systematic volatility quintiles, selling delta-hedged

calls on high idiosyncratic volatility stocks significantly outperforms selling delta-hedged calls

on low idiosyncratic volatility stocks. The average outperformance ranges from 2.07% in the

highest systematic volatility quintile to 0.82% in the lowest systematic volatility quintile.

These findings are consistent with the negative relation between delta-hedged option return

and idiosyncratic volatility. Further, this negative relation is significant after controlling for

stock’s systematic volatility exposure.

On the other hand, when we sort stocks by their systematic volatility exposures, the

average portfolio returns to selling delta-hedged options show a pattern that is opposite to

those when we sort stocks by their idiosyncratic volatility. Table 8 Panel E shows that selling

delta-hedged options on stocks with high systematic volatility tends to underperform, not

outperform, selling delta-hedged options on stocks with low systematic volatility. This is
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consistent with the positive regression coefficients on stock’s systematic volatility in Table 2

Panel B and Table 3.

4.3 Controlling for Common Risk Factors

Table 9 examines whether return of our option strategy can be explained by the systematic

volatility risk factors. We regress the time-series of equal-weighted monthly returns of our

option strategy on several systematic volatility risk factors. The first is the zero-beta strad-

dle return on the S&P 500 index, which proxies for the market volatility risk (e.g., Coval

and Shumway (2001) and Carr and Wu (2009)). For robustness, we also measure the market

volatility risk by change in the VIX index from the Chicago Board Options Exchange follow-

ing Ang et al (2006). The third volatility risk factor is the common individual stock variance

risk used in Driessen, Maenhout and Vilkov (2009). It is measured as value-weighted zero-

beta straddle returns on the individual stocks that are components of the S&P 500 index. In

addition, we include the Fama-French three factors and the momentum factor as additional

regressors.

Table 9 shows that the estimated coefficients for the volatility risk factors are negative,

but only the coefficient for the common individual stock variance risk is significantly negative

in all specifications. In addition, our option strategy loads positively on the SMB factor

and the momentum factor. More importantly, after controlling for the volatility risk factors

and common risk factors from the stock markets, our option strategy still has a significant

positive alpha of 1.318% per month, compared to the raw equal-weighted average return of

1.4% (Table 8 Panel B). Therefore, common risk factors only explain a tiny fraction of the

profitability of our option strategy.

4.4 Transaction Costs

For all of the previous results, we assume the options can be bought or sold at the mid-point

of the bid and ask price quotes. Table 10 examines the impact of transaction cost on the

profitability of our volatility-based option strategy. To take into account the costs associated

with buying or selling options, we assume the effective option spread is equal to 10%, 25%,

or 50% of the quoted spread. Effective spread is defined as twice the difference between the
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actual execution price and the market quote at the time of order entry. The column “MidP”

in Table 10 Panel A corresponds to zero effective spread, i.e., transaction price equals the

mid-point of the bid and ask quotes, like in all previous tables.

Table 10 Panel A shows that the average return to the equal-weighed portfolio strategy

of selling delta-hedged calls on stocks ranked in the top idiosyncratic volatility quintile and

buying delta-hedged calls on the bottom idiosyncratic volatility quintile stocks decreases

monotonically with the transaction cost. It is 1.40% per month when evaluated at the

mid-point of bid and ask quotes. When the effective option spread is 10% or 25% of the

quoted spread, the average return of our option strategy is reduced to 1.16% or 0.79%

respectively, although still statistically significant. When we buy an option at the average

of the ask price and the mid-point of the quoted spread, and sell an option at the average

of the bid price and the mid-point of the quoted spread (i.e., the effective spread is 50%

of the quoted spread), the average return of our option strategy is only 0.17%, which is

no longer significant statistically or economically. The results are similar when we consider

the Fama-French three-factor alphas rather the raw returns, or when we modify the trading

strategy from “5 minus 1” to “10 minus 1” using the extreme deciles sorted by idiosyncratic

volatility.18 Hence, only market participants who face relatively low transaction costs can

take advantage of our option strategy profitably.

Table 10 Panel B documents how the profitability of our option strategy varies with

liquidity. Each month, we first sort the optionable stock sample into five quintiles by the stock

price or its Amihud (2002) illiquidity measure. Then within each quintile, we further sort by

stock’s idiosyncratic volatility. Panel B shows that the average return of our idiosyncratic

volatility based option strategy is significantly higher for illiquid and low priced stocks.19

For example, the average return of our option strategy is 2.04% among stocks ranked in

the top quintile by the Amihud illiquidity measure, and 1.99% among lowest priced stocks.

In contrast, for stocks ranked in the bottom quintile by the Amihud illiquidity measure

and for highest priced stocks, the average return of our option strategy is insignificant,

18The average return of the “10 minus 1” strategy is still significantly positive when the effective spread
is 50% of the quoted spread. But it becomes insignificant when the effective spread is 75% of the quoted
spread.

19We also verify these results in unreported Fama-MacBeth regressions that include IV OL, stock price,
Amihud illiquidity measure, as well as IV OL× stock price and IV OL× Amihud measure as regressors.
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both statistically and economically. These results highlight again that limits to arbitrage

play a key role explaining the negative relation between delta-hedged option return and

idiosyncratic volatility documented in this paper.

4.5 Discussions

A rapidly growing literature documents that low-volatile stock portfolios earn high risk-

adjusted returns (e.g., Ang, Hodrick, Xing, and Zhang (2006), Bali and Cakici (2008), Fu

(2009), Huang, Liu, Ghee, and Zhang (2009), Boyer, Mitton, and Vorkink (2010), and Han

and Kumar (2010)). The prospect of reducing risk without sacrificing return makes this new

low-volatility investment style very attractive to investors, especially since the experience of

the financial crises.20 We contribute to this literature showing that the low volatility invest-

ment style works in the options market. By construction of delta-hedged option portfolio,

the significant relation between delta-hedged option returns and idiosyncratic volatility of

the underlying stock is distinct from and not driven by relation between stock return and

idiosyncratic volatility.21

Existing theories for why assets with high volatility may have low average returns have

difficulties explaining our results. One such explanation is investors’ preference for positive

skewness (e.g., Boyer, Mitton, and Vorkink (2010)). Options have positively skewed payoffs,

and call option payoff skewness increases with the volatility of the underlying stock. Hence,

it is possible that investors with skewness preference are willing to pay a higher price and

accept a lower expected return for call options on high volatility stocks because such options

offer more positive skewness. However, the same argument does not apply to the put op-

tions: put options on high volatility stocks offer lower, not higher, skewness. So skewness

preference could not fully explain the negative relation between delta-hedged put options

and the volatility of the underlying stocks.

Another explanation for why high volatility assets have low average returns is realization

utility. Barberis and Xiong (2009) show that investors with realization utility hold onto

risky asset till they have a sufficient gain. Our results are based on options with about one

20For example, MSCI launched a minimum volatility index in April 2008 to exploit volatility as an alpha
source.

21For our sample of optionable stocks and for the 1996-2009 sample period, we find no significant relation
between the average stock return and idiosyncratic volatility.
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and a half months till maturity. Investors may not have the luxury of holding onto these

short-term options until they have a gain. In addition, unlike stocks, options lose value over

time. The time decay of option value is especially severe for high volatility stocks. Thus, it

is unlikely that realization utility investors would find short-term options on high volatility

stocks attractive.

5 Conclusions

This paper provides a comprehensive study of individual stock option returns after delta-

hedging the exposure to the underlying stocks. The key new finding is that the average

delta-hedged option return is negative and decreases monotonically with an increase in the

idiosyncratic volatility of the underlying stock. This holds for both call options and put

options. It is robust and significant, both statistically and economically. For example,

when equal-weighted, the portfolio of delta-hedged call options on stocks ranked in the top

idiosyncratic volatility quintile on average underperforms the portfolio of delta-hedged call

options on stocks ranked in the bottom idiosyncratic volatility quintile by 1.4% per month.

Our finding is a new anomaly relative to the traditional option pricing models based on

perfect markets and no arbitrage. Our tests rule out explanations based on common stock

market risk factors or stock characteristics. Exposure to market volatility risk or common

idiosyncratic volatility risk only explains a small portion of the underperformance of delta-

hedged options on stocks with high idiosyncratic volatility. Further, controlling for proxies

of volatility-related option mispricing exacerbates rather than explains our result.

We document that several proxies of limits to arbitrage between stocks and options

importantly affect the cross-section of delta-hedged option returns. The relation between the

delta-hedged option return and idiosyncratic volatility of the underlying stock is stronger

when it is more costly to arbitrage between options and stocks. Controlling for several limits

to arbitrage proxies reduces the strength of the negative relation between delta-hedged option

return and idiosyncratic volatility by about 40%. We find only market participants who face

relatively low transaction costs can take advantage of the negative relation between the

delta-hedged option return and the idiosyncratic volatility of the underlying stock.

Our results are consistent with market makers charging a higher premium for options
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on high idiosyncratic volatility stocks because these options are more difficult to hedge and

also have higher arbitrage costs. To the extent that options on high idiosyncratic volatility

stocks are likely to attract large investor demand, demand-based option pricing models (e.g.,

Garleanu, Pedersen, and Poteshman (2009)) also suggest that option market makers charge

a higher price for these options, thus leading to a lower future returns. Our results may

be also consistent with informed trading in options.22 It is likely that there is more private

information in stocks with high idiosyncratic volatility (e.g., Durnev, Yeung and Zarowin

(2003)). Back (1993) shows that asymmetric information can make it impossible to price

options by arbitrage. Market makers get hurt by the informed trading in options. They

charge a higher premium for options on high idiosyncratic volatility stocks because there are

more informed trading.

Finally, another new empirical finding of this paper is that delta-hedged option returns

for past winner stocks are significantly higher than delta-hedged option returns for past

loser stocks. This “option momentum” pattern holds for both individual stock call options

and put options. Further research is needed to better understand this option momentum

phenomenon.

22See e.g., Cao, Chen, and Griffin (2005), Pan and Poteshman (2006) for evidence of informed trading in
options.
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Appendix 1: Volatility Risk Premium

Our measure of volatility risk premium follows closely previous studies such as Carr and

Wu (2008) and Bollerslev, Tauchen, and Zhou (2009). In each month t and for each stock i

with options traded, we measure the stock’s volatility risk premium as

V RPi,t =
√
RVi,t −

√
IVi,t

where RVi,t is realized return variance computed from high frequency return data over all

trading days in the month t, and IVi,t is the risk-neutral expected variance extracted from

equity options on the last trading day of each month t. Both RVi,t and IVi,t are annualized.

More precisely, we extract from TAQ intraday equity trading data spaced by ∆ = 15

minutes interval.23 Let pij denote the logarithmic price of stock i at the end of the jth

15-minutes interval in the month t. The month t realized variance is measured as:

RV i
t = 12

n∑
j=1

[
pij − pij−1

]2
. (2)

where n is the number of 15-minutes interval in month t. We multiply by 12 to get an

annualized variance estimate that is comparable to the risk-neutral expected variance implied

from the options data.

The one-month risk-neutral expected variance is

IVi,t ≡ EQ[Return Variation (t, t+ 1)i] (3)

= 2

∫ ∞
0

Ci(t, t+ 1, K)/B(t, t+ 1)−max[0, Si,t/B(t, t+ 1)−K]

K2
dK.

where Si,t denotes the price of stock i at t, Ci(t, t + 1, K) denotes the date t price of a call

option with a strike price K and time-to-maturity of one month. B(t, t + 1) denotes the

present value of a zero-coupon bond that pays off one dollar next month.24

In our empirical estimation, the integral in (3) is evaluated numerically. On the last

trading day of each month t, we first extract the implied volatilities for one-month call options

23All of our results are robust when we estimate the realized variance using stock prices sampled every 30
minutes or every hour.

24We have also computed the model–free implied variance based on prices of put options and obtained
virtually the same estimates as those based on the call options.
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from the standardized Volatility Surface provided by OptionMetrics, and then translate these

implied volatilities into call option prices using the Black-Scholes model. We find that the

number of strikes provided by the standardized Volatility Surface is fine enough so that

the discretization in the numerical integration has minimal impact on the estimation of the

risk-neutral expected variance.25

To estimate the variance risk premium for a stock in a given month, we require that at

the end of the month, there are at least five traded call options on the stock with maturity

between 15 days and 60 days that survive the option data filters described in Section 2.

Among these options, we further require at least two are out of money, two in the money,

one close to being at the money. This helps to ensure the reliability of the variance risk

premium estimates. With these additional data filters, on average there are about 464

stocks in each month for which we estimate the volatility risk premium. The set of such

stocks increases from about 350 in the beginning of our sample (1996-1997) to about 670

towards the end of the sample (2008-2009).

Appendix 2: Risk-neutral Skewness and Kurtosis

We use a model-free and ex-ante measure of risk-neutral skewness and kurtosis given by

Bakshi, Kapadia, and Madan (2003). For each stock on date t, the skewness and kurtosis of

the risk-neutral density of the stock return over the period [t, t+ τ ] can be inferred from the

contemporaneous prices of out-of-the-money call options and put options as follows:

Skew(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
, (4)

where

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ), (5)

and V (t, τ), W (t, τ) and X(t, τ) are the weighted sums of OTM call option prices C(t, τ,K)

and put option prices P (t, τ,K), with time-to-maturity τ and strike price K, given the

25OptionMetrics computes the implied volatility of a traded option from its price using a proprietary
pricing algorithm. OptionMetrics uses a kernel smoothing technique to compute a surface of option implied
volatilities for standard maturities and strikes based on the implied volatilities of traded options. The
standard strikes correspond to call option deltas of 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,
0.70, 0.75, and 0.80. For options with strike prices beyond the available range, we use the endpoint implied
volatility to extrapolate their option value.
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underlying asset price St:

V (t, τ) =

∫ ∞
St

2(1− ln(K
St

))

K2
C(t, τ,K)dK +

∫ St

0

2(1 + ln(St

K
))

K2
P (t, τ,K)dK, (6)

W (t, τ) =

∫ ∞
St

6ln(K
St

)− 3[ln(K
St

)]2

K2
C(t, τ,K)dK −

∫ St

0

6ln(St

K
) + 3[ln(St

K
)]2

K2
P (t, τ,K)dK,

(7)

X(t, τ) =

∫ ∞
St

12[ln(K
St

)]2 − 4[ln(K
St

)]3

K2
C(t, τ,K)dK+

∫ St

0

12[ln(St

K
)]2 + 4[ln(St

K
)]3

K2
P (t, τ,K)dK.

(8)

The integrals are approximated in (6), (7) and (8) using the trapezoidal method. For ac-

curacy, we require at least three out-of-the-money call options and three out-of-the-money

put options. Due to this data constraint, the option implied skewness and kurtosis are only

available for about half of the sample.
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Table 1: Summary Statistics 
 

This table reports the descriptive statistics of delta-hedged option returns for the pooled data. The option sample period is from Jan 
1996 to Oct 2009.  At the end of each month, we extract from the Ivy DB database of Optionmetrics one call and one put on each 
optionable stock. The selected options are approximately at-the-money with a common maturity of about one and a half months. We 
exclude the following option observations: (1) moneyness is lower than 0.8 or higher than 1.2; (2) option price violates obvious no-
arbitrage option bounds; (3) reported option trading volume is zero; (4) option bid quote is zero or mid-point of bid and ask quotes is 
less than $1/8; (5) the underlying stock paid a dividend during the remaining life of the option. Delta-hedged gain is the change (over 
the next month or till option maturity) in the value of a portfolio consisting of one contract of long option position and a proper 
amount of the underlying stock, re-hedged daily so that the portfolio is not sensitive to stock price movement. The call option delta-
hedged gain is scaled by (∆*S – C), where ∆ is the Black-Scholes option delta; S is the underlying stock price; C is the price of call 
option. Days to maturity is the number of calendar days till the option expiration. Moneyness is the ratio of stock price over option 
strike price. Vega is the option vega according to the Black-Scholes model scaled by stock price. Total volatility (VOL) is the standard 
deviation of daily stock returns over the previous month. Idiosyncratic volatility (IVOL) is the standard deviation of the residuals of 
the Fama-French 3-factor model estimated using the daily stock returns over the previous month. Volatility risk premium (VRP) is the 
difference between the square root of a model free estimate of the risk-neutral variance implied from stock options at the end of each 
month and the square root of realized variance estimated from intra-daily stock returns over the previous month. VOL_deviation is the 
log difference between VOL and Black-Scholes implied volatility for at-the-money options (IV). Option bid-ask spread is the ratio of 
the difference between ask and bid quotes of option over the mid-point of bid and ask quotes at the end of each month.  Illiquidity is 
the average of the daily Amihud (2002) illiquidity measure over the previous month.  

 
 

Variable Mean Median StDev 10 Pctl Lower 
Quartile 

Upper 
Quartile 90 Pctl 

        

Panel A: Call Options (213,640 Obs)   
Delta-hedged gain till maturity / (∆*S – C)        (%) -1.13 -1.29 8.07 -7.86 -4.05 1.09 4.87 
Delta-hedged gain till month-end / (∆*S – C)    (%) -0.81 -0.92 5.13 -5.47 -2.86 0.90 3.76 
Days to maturity 50 50 2 47 50 51 52 
Moneyness = S/K                                                (%) 100.55 100.18 5.08 94.80 97.36 103.36 106.53 
Vega 0.14 0.14 0.01 0.13 0.14 0.15 0.15 
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Variable Mean Median StDev 10 Pctl Lower 
Quartile 

Upper 
Quartile 90 Pctl 

Panel B: Put Options (199,198 Obs)   
Delta-hedged gain till maturity / (P - ∆*S)        (%) -0.82 -1.17 6.46 -6.68 -3.57 1.18 4.95 
Delta-hedged gain till month-end / (P - ∆*S)    (%) -0.35 -0.73 4.67 -4.55 -2.44 1.08 3.93 
Days to maturity 50 50 2 47 50 51 52 
Moneyness = S/K                                               (%) 99.84 99.73 4.86 94.20 96.87 102.69 105.63 
Vega 0.14 0.14 0.01 0.13 0.14 0.15 0.15 

 
 

Variable Mean Median StDev 10 Pctl Lower 
Quartile 

Upper 
Quartile 90 Pctl 

Panel C: Stock Characteristics Summary (Time-Series Average of Cross-Sectional Statistics)   
Total volatility: VOL 0.50 0.44 0.24 0.24 0.32 0.62 0.82 
Idiosyncratic volatility: IVOL 0.42 0.37 0.23 0.19 0.26 0.53 0.72 
Volatility risk premium: VRP 0.05 0.05 0.09 -0.05 0.01 0.09 0.15 
VOL deviation: Ln (VOL / IV) -0.09 -0.08 0.29 -0.45 -0.27 0.10 0.28 
(Option open interest / stock volume) *103 0.03 0.01 0.07 0.00 0.00 0.03 0.08 
Option bid-ask spread 0.21 0.16 0.15 0.07 0.10 0.27 0.42 
Ln (Illiquidity) -6.33 -6.30 1.68 -8.56 -7.50 -5.15 -4.17 

 

Panel D: Average Delta-hedged Gain till Maturity Scaled by (∆*S – C) for Call or (P - ∆*S) for Put         

Option Type Total stocks mean<0 t<-2 mean>0 t>2 P10 P25 P50 P75 P90 
Call 6141 4759 1930 1382 64 -3.75% -1.85% -0.77% -0.08% 0.77% 
Put 6065 3926 1371 2139 104 -2.75% -1.25% -0.36% 0.30% 1.40% 
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Table 2: Delta-Hedged Option Returns and Stock Volatility 
 

This table reports the average coefficients from monthly Fama-MacBeth regressions of call option 
delta-hedged gain till maturity scaled by (∆*S – C) at the beginning of the period. All volatility 
measures are annualized. Total volatility (VOL) is the standard deviation of daily stock returns over 
the previous month. VOL2 is the square root of average of daily returns squared over the previous 
month. VOL_month is the standard deviation of monthly stock returns over the past 60 months. IV is 
the at-the-money Black-Scholes option implied volatility at the end of each month. Idiosyncratic 
volatility (IVOL) is the standard deviation of the residuals of the Fama-French 3-factor model 
estimated using the daily stock returns over the previous month. Systematic volatility (SysVOL) is the 
square root of (VOL2-IVOL2). IVOL_month is the standard deviation of the residuals of the CAPM 
model estimated using monthly stock returns over the past 60 months. SysVOL_month is the square 
root of (VOL_month2 – IVOL_month2). Eidio_in is the fitted idiosyncratic volatility from a EGARCH 
(1,1) model estimated using all historical monthly returns. Eidio_out is the one-step ahead 
idiosyncratic volatility forecast from the EGARCH(1,1) model. Vega is the Black-Scholes option vega 
scaled by the underlying stock price at the beginning of the period. All independent variables are 
winsorized each month at 0.5% level. The sample period is from January 1996 to October 2009. To 
adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in brackets. 
 

Panel A: Delta-Hedged Call Option Returns and Stock Total Volatility 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 
Intercept 0.0024 0.0219 0.0216 0.0284 0.0486
            (1.34) (4.86) (4.81) (6.34) (9.62) 
VOL -0.0299 -0.0297    
            (-8.72) (-8.68)    
VOL2   -0.0287   
              (-8.54)   
VOL_month    -0.0340  
               (-10.88)  
IV     -0.0824 
     (-21.40) 
Vega  -0.1406 -0.1415 -0.1590 -0.1290 
  (-3.99) (-4.00) (-4.38) (-3.52) 
Average Adj. R2 0.0194 0.0206 0.0207 0.0228 0.0665 
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Panel B: Systematic vs. Idiosyncratic Volatility 
 

 Model 1 Model 2 Model 3 Model 4 
Intercept 0.0226 0.0285 0.0308 0.0302 
            (5.35) (6.19) (5.41) (5.17) 
IVOL -0.0405    
            (-15.38)    
SysVOL 0.0165    
            (3.93)    
IVOL_month  -0.0454   
  (-12.87)   
SysVOL_month  0.0273   
  (4.37)   
Eidio_in   -0.0348  
   (-10.61)  
Eidio_out    -0.0341 
    (-10.68) 
Vega -0.1522 -0.1692 -0.1908 -0.1876 
 (-4.64) (-4.57) (-4.17) (-3.97) 
Average Adj. R2 0.0257 0.0277 0.0198 0.0196 
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Table 3: Controlling for Volatility Risk Premium and Jump Risk 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional regressions. 
The dependent variable is call option delta-hedged gain till maturity scaled by (∆*S – C) at the 
beginning of the period. Total volatility (VOL) is the standard deviation of daily stock returns over 
the previous month. Idiosyncratic volatility (IVOL) is the standard deviation of the residuals of the 
Fama-French 3-factor model estimated using the daily stock returns over the previous month. 
Systematic volatility (SysVOL) is the square root of (VOL2-IVOL2). Volatility risk premium (VRP) is 
the difference between the square root of a model free estimate of the risk-neutral variance implied 
from stock options and the square root of realized variance estimated from intra-daily stock returns 
over the previous month. All volatility measures are annualized. Option implied skewness and 
kurtosis are the risk-neutral skewness and kurtosis of stock returns inferred from a cross-section of 
out of the money calls and puts at the beginning of the period. Vega is the Black-Scholes option vega 
scaled by the underlying stock price at the beginning of the period. All independent variables are 
winsorized each month at 0.5% level. The sample period is from January 1996 to October 2009. To 
adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in brackets.  

 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Intercept 0.0275 0.0235 0.0149 0.0285 0.0246 0.0199
            (6.15) (5.77) (2.19) (5.75) (5.20) (2.15) 
VOL -0.0125 -0.0090 -0.0095    
            (-2.92) (-2.34) (-2.54)    
IVOL    -0.0236 -0.0203 -0.0200 
               (-7.02) (-6.48) (-7.92) 
SysVOL    0.0202 0.0223 0.0190 
               (4.46) (5.26) (3.81) 
VRP  0.1048   0.1028  
  (22.70)   (20.55)  
Option Implied Skewness   -0.0036   -0.0036 
              (-7.21)   (-7.37) 
Option Implied Kurtosis   -0.1179   -0.1071 
              (-8.71)   (-7.34) 
Vega -0.2219 -0.1632 -0.1404 -0.2315 -0.1747 -0.1785 
 (-5.89) (-4.84) (-2.98) (-5.76) (-4.66) (-2.78) 
Average Adj. R2 0.0135 0.0376 0.0400 0.0183 0.0412 0.0467 
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Table 4: Controlling for Volatility Related Mispricing 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional regressions. 
The dependent variable in month t’s regression is call option delta-hedged gain till maturity scaled by 
(∆*S – C) at the end of month t-1. Idiosyncratic volatility (IVOL) is the standard deviation of the 
residuals of the Fama-French 3-factor model estimated using the daily stock returns over month t-1. 
Total volatility (VOLt-1) is the standard deviation of daily stock returns over month t-1. 
VOL_deviation is the log difference between VOLt-1 and IVt-1, the Black-Scholes implied volatility 
for at-the-money options at the end of month t-1. Change in volatility (ΔVOL) is the difference 
between VOLt-1 and the previous six months’ average realized volatility. In addition to these lagged 
regressors, we also control for contemporaneous change in option implied volatility Ln (IVt / IVt-1). 
All volatility measures are annualized. Vega is the Black-Scholes option vega scaled by the 
underlying stock price at the beginning of the period. All independent variables are winsorized each 
month at 0.5% level. The sample period is from January 1996 to October 2009. To adjust for serial 
correlation, robust Newey-West (1987) t-statistics are reported in brackets.  

 
 

 Model 1 Model 2 Model 3 Model 4 
Intercept 0.0331 0.0416 0.0413 0.0097 
            (6.55) (8.78) (8.79) (2.24) 
IVOL -0.0325 -0.0741 -0.0665 -0.0570 
 (-10.39) (-20.33) (-15.17) (-14.25) 
VOL_deviation  0.0590 0.0724 0.0563 
             (18.50) (16.24) (14.85) 
ΔVOL   -0.0361 -0.0233 
   (-8.48) (-5.90) 
Ln (IVt / IVt-1)    0.0826 
    (25.39) 
Vega -0.2191 -0.1342 -0.1484 0.0248 
 (-5.80) (-3.80) (-4.12) (0.76) 
Average Adj. R2 0.0210 0.0694 0.0774 0.1333 

 



36 
 

Table 5: Controlling for Stock Characteristics 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional regressions 
of call option delta-hedged gain till maturity scaled by (∆*S – C) at the beginning of the period. 
Idiosyncratic volatility (IVOL) is the standard deviation of the residuals of the Fama-French 3-
factor model estimated using the daily stock returns over the previous month.  Ret (-1, 0) is the stock 
return in the prior month. Ret (-12, -1) is the cumulative stock return from the prior 2nd through 12th 
month. Ret (-36, -13) is the cumulative stock return from the prior 13th through 36th month. ME is the 
product of monthly closing price and the number of outstanding shares in previous June. Book-to-
market (BE/ME) is the fiscal-yearend book value of common equity divided by the calendar-
yearend market value of equity. Vega is the Black-Scholes option vega scaled by the underlying 
stock price at the beginning of the period. All independent variables are winsorized each month at 
0.5% level. The sample period is from January 1996 to October 2009. To adjust for serial 
correlation, robust Newey-West (1987) t-statistics are reported in brackets.  

 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 
Intercept 0.0254 0.0285 0.0258 0.0304 -0.0017
            (5.36) (6.20) (5.42) (6.36) (-0.31) 
IVOL -0.0395 -0.0383 -0.0376 -0.0423 -0.0294 
            (-15.00) (-14.32) (-13.68) (-18.35) (-12.19) 
Ret (-1,0) 0.0237   0.0250 0.0250 
            (5.73)   (6.31) (6.55) 
Ret (-12,-1)  0.0066  0.0072 0.0072 
             (3.75)  (4.19) (4.43) 
Ret (-36, -13)   0.0020 0.0021 0.0018 
              (4.93) (4.81) (4.53) 
Ln (ME)     0.0046 
                (9.60) 
Ln (BE/ME)     0.0012 
     (2.41) 
Vega -0.1544 -0.1862 -0.1603 -0.2073 -0.2465 
 (-3.89) (-4.82) (-4.08) (-5.20) (-6.13) 
Average Adj. R2 0.0280 0.0301 0.0238 0.0400 0.0509 
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Table 6: Controlling for Limits to Arbitrage 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional regressions of 
call option delta-hedged gain till maturity scaled by (∆*S – C) at the beginning of the period. 
Idiosyncratic volatility (IVOL) is the standard deviation of the residuals of the Fama-French 3-factor 
model estimated using the daily stock returns over the previous month. Stock volume is the stock trading 
volume over the previous month. Option bid-ask spread is the ratio of bid-ask spread of option quotes 
over the mid-point of bid and ask quotes at the beginning of the period.  Illiquidity is the average of the 
daily Amihud (2002) illiquidity measure over the previous month. Stock price is closing price at the 
beginning of the period. Vega is the Black-Scholes option vega scaled by the underlying stock price at the 
beginning of the period. All independent variables are winsorized each month at 0.5% level. The sample 
period is from January 1996 to October 2009. To adjust for serial correlation, robust Newey-West (1987) 
t-statistics are reported in brackets.  

 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Intercept 0.0252 0.0265 0.0330 0.0024 0.0158 0.0151
            (5.76) (6.10) (7.66) (0.47) (3.13) (2.76) 
IVOL -0.0366 -0.0372 -0.0364 -0.0245 -0.0212 -0.0214 
 (-12.75) (-13.18) (-13.14) (-8.55) (-8.02) (-8.23) 
(Option open interest /  
stock volume) *103 

 -0.0704    -0.0532 
 (-7.91)    (-7.05) 

Option bid-ask spread   -0.0363   -0.0081 
              (-9.25)   (-2.62) 
Ln (Illiquidity)    -0.0051  -0.0016 
               (-9.77)  (-3.90) 
Stock price     0.0005 0.0004 
     (12.42) (10.39) 
Vega -0.1535 -0.1478 -0.1594 -0.2473 -0.2387 -0.2565 
 (-4.31) (-4.15) (-4.50) (-6.54) (-5.72) (-5.99) 
Average Adj. R2 0.0221 0.0256 0.0286 0.0369 0.0428 0.0512 
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Table 7: Alternative Measures of Delta-Hedged Option Returns 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional regressions, 
using alternative measures of delta-hedged option returns as the dependent variable, for both call 
options (Panel A) and put options (Panel B). The first model uses delta-hedged option gain till 
maturity defined in Equation (2) scaled by (∆*S - C) for call, or scaled by (P - ∆*S) for put. In the 
second model, delta-hedged option positions are held for one month rather than till option maturity. In 
the third model, delta-hedged option positions are held for one week. All independent variables are 
the same as in Table 2 to 6, and winsorized each month at 0.5% level. The sample period is from 
January 1996 to October 2009. To adjust for serial correlation, robust Newey-West (1987) t-statistics 
are reported in brackets.  

 
Panel A: Delta-Hedged Call Option Returns 

Dependent Variables Gain till maturity 
(∆*S – C)     

Gain till month-end 
(∆*S – C)     

Gain till next week 
(∆*S – C)     

Intercept 0.0773 0.0700 0.0204 
            (13.18) (16.61) (11.45) 
IVOL -0.0904 -0.0680 -0.0158 
            (-33.64) (-31.84) (-16.07) 
Ret (-1,0) 0.0051 0.0008 -0.0029 
            (1.27) (0.27) (-2.11) 
Ret (-12,-1) 0.0035 0.0007 -0.0001 
            (2.60) (0.90) (-0.44) 
Ret (-36, -13) 0.0013 0.0003 0.0003 
 (3.42) (1.23) (2.46) 
(Option open interest /  
stock volume) *103 

-0.0371 -0.0270 -0.0007 
(-6.82) (-6.59) (-0.52) 

Option bid-ask spread -0.0240 -0.0155 -0.0042 
            (-8.43) (-7.65) (-4.00) 
Ln (Illiquidity) -0.0043 -0.0015 -0.0004 
            (-7.34) (-4.69) (-3.54) 
Ln (ME) -0.0055 -0.0037 -0.0011 
 (-9.91) (-11.32) (-8.33) 
VOL_deviation 0.0632 0.0504 0.0162 
            (17.89) (18.41) (15.24) 
Vega -0.2208 -0.1954 -0.0460 
 (-5.04) (-6.51) (-3.73) 
Average Adj. R2 0.0938 0.1229 0.0567 
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Panel B: Delta-Hedged Put Option Returns 

 

Dependent Variables Gain till maturity 
(P - ∆*S)     

Gain till month-end 
(P - ∆*S)     

Gain till next week 
(P - ∆*S)     

Intercept 0.0134 0.0345 0.0217 
            (1.48) (5.84) (8.93) 
IVOL -0.0633 -0.0511 -0.0110 
            (-19.73) (-21.84) (-17.09) 
Ret (-1,0) -0.0085 -0.0071 -0.0054 
            (-2.52) (-2.58) (-4.45) 
Ret (-12,-1) 0.0018 0.0014 -0.0002 
            (2.66) (2.58) (-0.97) 
Ret (-36, -13) 0.0013 0.0006 0.0003 
 (4.99) (4.26) (3.85) 
(Option open interest /  
stock volume) *103 

-0.0348 -0.0246 -0.0004 
(-6.56) (-5.90) (-0.28) 

Option bid-ask spread -0.0018 -0.0065 -0.0022 
            (-0.60) (-2.82) (-2.33) 
Ln (Illiquidity) -0.0036 -0.0012 -0.0005 
            (-5.99) (-3.81) (-3.83) 
Ln (ME) -0.0045 -0.0028 -0.0009 
 (-7.80) (-8.43) (-7.21) 
VOL_deviation 0.0483 0.0382 0.0113 
            (18.98) (20.42) (15.61) 
Vega 0.1126 -0.0190 -0.0843 
 (2.01) (-0.54) (-5.97) 
Average Adj. R2 0.0932 0.0967 0.0497 
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Table 8: Returns of Selling Delta-Hedged Calls: Portfolio Sorts by Stock Volatility 
 

This table reports the average return of selling short-maturity at-the-money call options on stocks 
sorted by volatility. At the end of each month, we rank all stocks with options traded into five 
groups by their total volatility (VOL) or idiosyncratic volatility (IVOL). For each stock, we sell 
one contract of call option against a long position of ∆ shares of the underlying stock, where ∆ is 
the Black-Scholes call option delta. The delta-hedges are rebalanced daily. For each stock and in 
each month, we compound the daily returns of the rebalanced delta-hedged call option positions 
over the next month to arrive a monthly return. We use three weighting schemes in computing the 
average return of selling delta-hedged calls for a portfolio of stocks: equal weight, weight by the 
market capitalization of the underlying stock or by the market value of option open interest at the 
beginning of the period. All returns in this table are expressed in percent. Total volatility (VOL) 
is the standard deviation of daily stock returns over the previous month. Idiosyncratic volatility 
(IVOL) is the standard deviation of the residuals of the Fama-French 3-factor model estimated 
using the daily stock returns over the previous month. Systematic volatility (SysVOL) is the 
square root of (VOL2-IVOL2). The sample period is from January 1996 to October 2009. To 
adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in the brackets.  

 
 

 
Quintile 1-Low 2 3 4 5-High 5-1 

Panel A: Return to Selling Delta-hedged Calls, Sorted by Stock Volatility  
Equal-weighted 0.85 0.97 1.15 1.42 2.05 1.20 
  (6.97) (6.37) (6.42) (6.55) (8.30) (6.10) 
Stock-value-weighted 0.73 0.73 0.81 0.84 1.28 0.54 
  (5.87) (5.07) (4.62) (3.51) (4.46) (2.13) 
Option-value-weighted 0.96 1.07 1.34 1.51 2.36 1.40 
  (8.85) (7.33) (7.94) (6.04) (7.38) (4.64) 
 
 
 
Panel B: Return to Selling Delta-hedged Calls, Sorted by Stock Idiosyncratic Volatility  
Equal-weighted 0.80 0.92 1.12 1.41 2.20 1.40 
  (6.42) (5.94) (5.97) (6.53) (9.62) (8.11) 
Stock-value-weighted 0.71 0.70 0.80 0.86 1.48 0.76 
  (5.17) (5.05) (4.23) (3.62) (5.66) (3.46) 
Option-value-weighted 0.96 1.05 1.21 1.52 2.68 1.72 
  (7.58) (7.73) (6.47) (6.20) (8.49) (5.94) 
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Panel C: Subsample Results: Equal-weighted Portfolio Returns, Sorted by IVOL 

 1-Low 2 3 4 5-High 5-1 t-stat 
Size Quintile 1 1.82 2.06 2.38 2.43 3.45 1.63 (9.11) 
Size Quintile 2 1.12 1.19 1.29 1.28 2.03 0.91 (5.37) 
Size Quintile 3 0.87 0.86 0.81 1.06 1.60 0.73 (3.92) 
Size Quintile 4 0.75 0.74 0.77 0.87 1.20 0.45 (1.98) 
Size Quintile 5 0.62 0.60 0.63 0.58 0.94 0.32 (1.66) 
         

January 0.75 1.06 1.27 1.46 2.90 2.15 (6.75) 
Feb-Dec 0.80 0.90 1.10 1.40 2.14 1.34 (6.98) 
1996 - 1999 0.74 0.82 1.04 1.42 2.27 1.53 (5.35) 
2000 - 2003 0.86 1.00 1.11 1.36 1.87 1.01 (2.06) 
2004 - 2006 0.76 1.00 1.29 1.62 2.49 1.72 (14.41) 
2007 - 2009 0.82 0.86 1.06 1.23 2.28 1.45 (8.74) 

 
 

 
Panel D: Control for Systematic Risk: Equal-weighted Portfolio Returns, Sorted by IVOL 

 1-Low 2 3 4 5-High 5-1 t-stat 
SysVOL Quintile 1 0.93 0.89 0.94 1.23 1.74 0.82 (6.05) 
SysVOL Quintile 2 0.76 0.80 0.95 1.08 1.82 1.06 (7.18) 
SysVOL Quintile 3 0.69 0.87 0.94 1.15 1.67 0.98 (5.46) 
SysVOL Quintile 4 0.74 0.93 1.17 1.49 2.06 1.32 (8.65) 
SysVOL Quintile 5 0.75 0.94 1.20 1.57 2.82 2.07 (13.20) 
         

 
 

 
Panel E: Control for IVOL: Equal-weighted Portfolio Return, Sorted  by SysVOL 

 1-Low 2 3 4 5-High 5-1 t-stat 
IVOL Quintile 1 0.93 0.87 0.76 0.72 0.70 -0.23 (-2.96) 
IVOL Quintile 2 0.96 0.97 0.85 0.86 0.77 -0.19 (-1.66) 
IVOL Quintile 3 1.24 1.06 0.98 1.00 0.85 -0.39 (-2.59) 
IVOL Quintile 4 1.56 1.30 1.28 1.35 0.95 -0.61 (-2.84) 
IVOL Quintile 5 2.05 1.82 2.19 2.01 2.08 0.03 (0.17) 
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Table 9: Return of Option Portfolio Strategy and Exposure to Common Risk Factors 
 

This table reports the results of monthly time-series regressions of the return to the strategy of selling 
delta-hedged calls on high idiosyncratic volatility stocks and buying delta-hedged calls on low 
idiosyncratic volatility stocks on several common risk factors. The risk factors include Fama-French 
(1993) three factors (MKT-Rf, SMB, HML), the Carhart (1997) momentum factor (Mom), the Coval 
and Shumway (2001) zero-beta straddle return of S&P 500 index option (ZB-STRAD-Index), the 
value-weighted zero-beta straddle returns of S&P 500 individual stock options (ZB-STRAD-Stock), 
and change of CBOE’s Volatility Index (ΔVIX). The sample period is from January 1996 to October 
2009. 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Alpha 1.385 1.376 1.210 1.234 1.413 1.318 
            (7.74) (8.47) (5.05) (6.31) (8.35) (6.62) 
MKT-Rf 0.057 0.049    -0.009 
 (1.11) (1.12)    (-0.18) 
SMB  0.068    0.063 
             (1.96)    (2.00) 
HML  -0.079    -0.094 
  (-1.07)    (-1.26) 
MOM  0.053    0.071 
             (2.06)    (2.83) 
ZB-STRAD-Index   -0.012   0.011 
              (-1.87)   (1.97) 
ZB-STRAD-Stock    -0.033  -0.048 
               (-2.87)  (-4.38) 
ΔVIX     -0.085 -0.020 
     (-1.68) (-0.41) 

Adj. R2 0.0137 0.0931 0.0345 0.0706 0.0321 0.1589 
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Table 10: Impact of Transaction Costs and Liquidity on the Return of Option Portfolio Strategy 
 
This table reports the impact of liquidity and transaction costs of stock options on the profitability of our 
option trading strategy based on stock volatility. Each month and for each optionable stock, we sell one 
contract of short-maturity at-the-money option, delta-hedged with the underlying stock, rebalance the delta-
hedges daily over the next month. In Panel A, each number of the columns under 5-1 (resp. 10-1) is the 
difference in the equal-weighted average returns of selling delta-hedged calls on stocks in the top idiosyncratic 
volatility quintile (resp. decile) versus selling delta-hedged calls on stocks in the bottom idiosyncratic volatility 
quintile (resp. decile). For the column “MidP” in Panel A (as well as for Panel B and all previous tables), we 
assume the options are transacted at the mid-point of the bid and ask quotes (i.e., effective spread is zero). The 
other columns correspond to different assumptions on the ratio of effective bid-ask spread (ESPR) to the 
quoted bid-ask spread (QSPR). Panel B reports the average return spread between selling delta-hedged calls on 
high versus low idiosyncratic volatility stocks in various subsamples.  Each month, we first sort our sample 
into five quintiles (G1 to G5) by the Amihud (2002) stock illiquidity measure, stock price level or by the 
option bid-ask spread. Then within each quintile, we further sort by stock’s idiosyncratic volatility. All the 
numbers in this table are expressed in percent. The sample period is from January 1996 to October 2009. To 
adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in the brackets. 

 
Panel A: Returns of IVOL Based Option Strategy for Different Option Transaction Costs 

 
 

5-1 
 

10-1 

   ESPR/QSPR   ESPR/QSPR 

 MidP 10% 25% 50% 
 

MidP 10% 25% 50% 

Average Return 1.40 1.16 0.79 0.17  1.89 1.60 1.15 0.44 
  (8.11) (6.68) (4.51) (0.96)  (9.97) (8.40) (6.04) (2.24) 
           

FF-3 Alpha 1.41 1.17 0.80 0.18  1.89 1.60 1.15 0.44 
  (8.67) (7.16) (4.88) (1.09)  (9.92) (8.37) (6.02) (2.23) 

 
 
                               Panel B: Returns of IVOL Based Option Strategy in Subsamples of Different Liquidity 

 Illiquidity Stock Price 

   

G1- Low 0.17 1.99 
 (0.70) (12.12) 

G2 0.61 0.86 
 (2.72) (5.08) 

G3 0.77 0.35 
 (4.30) (1.69) 

G4 1.20 0.10 
 (6.82) (0.45) 

G5 –High 2.04 -0.09 
 (12.04) (-0.37) 

G5 – G1 1.87 -2.08 
 (8.47) (-8.15)
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Figure 1: Time-Series of Returns of Option Portfolio Strategy  
 

This figure plots the monthly time-series of the difference in the equal-weighted average returns of selling delta-hedged calls on stocks 
ranked in the top idiosyncratic volatility quintile and selling delta-hedged calls on stocks ranked in the bottom idiosyncratic volatility 
quintile. The delta-hedged option positions are rebalanced daily to be delta-neutral. Idiosyncratic volatility (IVOL) is the standard 
deviation of the residuals of the Fama-French 3-factor model estimated using the daily stock returns over the previous month. Our 
sample consists of short-term at-the-money call options on individual stocks. The sample period is from January 1996 to October 2009. 
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