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Abstract 
 
This study examines the predictability of jumps in stock prices using options-trading information, the futures 
basis spread, the cross-sectional standard deviation of returns on components in the stock index, and exchange 
rates. A stock price jump was defined as a large fluctuation in the stock price that deviated from the distribution 
thresholds of the past rates of return. This empirical analysis shows that the implied volatility spread between 
ATM call and put options was a significant predictor for both upward and downward jumps, whereas the 
volatility skew was less significant. In addition, the futures basis spread was moderately significant for 
downward stock price jumps. Both the cross-sectional standard deviation of the rates of return on component 
stocks in the KOSPI 200 and the won-dollar exchange rates were significant predictors for both upward and 
downward jumps. 
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I. Introduction 

 

Predictability of large stock price changes (termed “stock price jumps” from here on) 

has been a significant issue to capital market participants. Stock price jumps would be an 

important consideration especially to options traders, who operate with far higher leverage 

than do stock traders. With reliable predictability of negative stock price jumps could 

derivatives traders reduce the insurance costs. Since the start of options trading on 

KOSPI200 in 1997, stock prices in Korean market have repeatedly shown a pattern of falls, 

resulting from unfavorable factors, followed by a rapid rebound. Huge profits and losses 

related to options trading were reported in each of those cases.  

Option trading requires a much quicker response than does stock trading. Options 

traders are informed investors who possess more sophisticated information than stock 

traders on the future short-term movement of stock markets. Since the predictions of 

informed options traders will more rapidly affect the derivatives market (such as options) 

than stock market, informational variables that are related to the derivatives market, and 

especially to options, are expected to play an important role as explanatory variables in 

predicting stock price jumps. 

The volatility skew of stock options can function as predictive information for 

downward jumps in price, as it reflects the fear of large downward jumps in stock markets. 

If, as suggested by Rubinstein (1994), the volatility skew is a right-downward decline of 

implied volatility as the exercise price moves from small to large options, the volatility 

skew would be a significant factor in determining stock price jumps. According to studies 

performed by Doran, Peterson, and Tarrant (2007) on the volatility skew of S&P100 

options and studies by Kim and Park (2011) on the volatility skew of KOSPI200 options, 

the option volatility skew is useful to predict negative stock price jumps but relatively 

ineffective in predicting positive stock price jumps. However, our study reveals that the 

KOSPI200 options took the shape of a volatility smile rather than the volatility skew that 

was described by Rubinstein. This finding implies that, in the Korean market, the volatility 

skew (volatility smile) of KOSPI200 options has limited significance in predicting stock 

price jumps. Our study shows that, for KOSPI200 options, the volatility skew plays a 

limited role in predicting stock price jumps. Instead, it was significant only in explaining a 

portion of upward stock jumps.   

Aside from the volatility skew, we can think of other explanatory variables in the 
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option market that can affect stock price jumps. These variables include the implied 

volatility spread between at-the-money (ATM) call and put options, the spread between 

the implied volatility and the historical volatility, and the put-call ratio. The implied 

volatility spread between ATM call and put options would implicitly reflect information 

regarding future stock price changes and deviations in put-call parity. In our study, the 

implied volatility spread between ATM call and put options showed a very significant 

power in predicting both upward and downward jumps in stock price.   

Clues on stock price jumps can also be found in other than option markets. Basis 

spreads may reflect the movements of statistical arbitragers, who are astute and informed 

investors in the futures markets. An empirical analysis in our study showed that basis 

spreads have predictability on stock price jumps. Leading movements of smart money can 

also exist in stock markets. This information can be captured by the cross-sectional 

standard deviation of stocks being traded in the market because advance movements on 

some stocks send an early signal regarding changes in the shape of the earnings 

distribution of component stocks. Moreover, some macroeconomic variables that play a 

large role in explaining stock prices can be considered as antecedents of stock price jumps. 

The won-dollar exchange rate is a macroeconomic variable that reflects the 

characteristics of the Korean economy, which is heavily dependent on foreign trade. Our 

study shows that fluctuations in the won-dollar exchange rate is a significant explanatory 

variable with regards to stock price jumps.    

The structure of our research paper is as follows: Section II examines prior research 

on the prediction of stock price. Section III describes data and variables of the analysis. It 

provides a summary statistics and the theoretical background on the 16 explanatory 

variables that were used in our analysis. Subsequently, in section IV, we present our model 

and results of our analysis. Finally, in section V, we present a conclusion.  

 

II. Research in the Existing Literature  

 

In this section, we describe prior studies that have been conducted on the relationship 

between option’s implied volatility and stock prices. Giot (2005) showed a strong negative 

correlation between options’ implied volatility index (Chicago Board Options Exchange 

Market Volatility Index or VIX) and the stock market index. Banerjee, Doran, and Peterson 

(2006) also found that implied volatility could forecast short-term stock returns. 



4 
 

Chakravary, Gulen, and Mayhew (2004) claimed that price discovery in the options markets 

was related to the options trading volume, the spread between the stock market and the 

options markets, and the stock volatility. Hong, Ok, and Lee (1998), Kim and Moon (2001), 

Kim and Hong (2004), Kim (2007), and Lee and Hahn (2007) researched on this topic using 

KOSPI200 options. These studies focus on rather smaller number of variables such as 

trading volumes, price, and implied volatility than our study. They do not reach a 

consensus on whether option market contains embedded, predictive information on 

movement in stock markets.   

Prior studies have sought to explain the phenomenon of volatility skew. Rubinstein 

(1994) and Jackwerth and Rubinstein (1996) explained the reasons behind the existence of 

the volatility skew. Bates (1991, 2000), Bakshi, Cao, and Chen (1997), Jackwerth (2000), 

and Pan (2002) loosened the Black-Scholes (1973) model’s assumption of a fixed, inherent 

volatility in underlying assets. With the assumption of stochastic volatility and negative 

jump premiums, they explained the volatility skew phenomenon as a property of the 

implied volatility distribution.    

Several studies focus on volatility skew itself. These studies claimed that volatility 

skew is a phenomenon that follows the supply and demand created by options buyers and 

sellers. They loosen the assumption of perfect hedge of option valuation models. Garleanu, 

Pedersen, and Poteshman (2005) examined the effects of options traders’ buying pressure 

on options prices under real market conditions, where a perfect hedge is impossible. Bollen 

and Whaley (2004) asserted that implied volatility is affected by net buying pressure. 

No clear consensus has been reached on the underlying reasons for volatility skew. 

Previous studies suggested several reasons for the appearance of volatility skew. 

Commonly suggested reasons include market participants’ predictions concerning future 

stock prices, the psychological state of investors following the risks of future stock price 

fluctuations, the preference for specific options, and the buying trends of options investors. 

These studies propose that options volatility skew may actually provide more information 

contents on the price discovery process than options trading volume and prices.    

The informational effect of the options volatility skew could be greater at a time of 

rapid stock market fluctuations than it is during general market situations. Based on this 

idea, the following studies examined the relationship between the volatility skew and stock 

prices. Doran, Peterson, and Tarrant (2007) used the daily S&P100 index and options data 

from 1984-2006 to show that the volatility skew contained predictive information about 
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stock price jumps. Doran and Kreiger (2010) claimed that the difference in the implied 

volatility between ATM call and put options was an important factor in determining stock 

rate of return.   

Kim and Park (2011), using the daily KOSPI200 index and options data, show that the 

options volatility skew contained predictive information on share price jumps. Both Doran, 

Peterson, and Tarrant (2007) and Kim and Park (2011) claimed that, the phenomenon of 

volatility skew was clearly observed and served as a predictor for the negative stock 

jumps. However, in the case of positive stock jumps, options volatility skew was only 

weakly evident, and it was limited in its predictive value. Additionally, Ok, Lee, and Lim 

(2009) analyzed KOSPI200 options data from 2002-2007 and showed that the KOSPI200 

call and put options both exhibited volatility smiles shapes. The studies showed that the 

options volatility skew provides limited information for rapid stock market fluctuations.  

Our study is the first to address a more extensive range of informational variables that 

may be able to predict stock price jumps.   

 

III. Data and Model 

 

1. Data  

 

In our study, we used daily trading data from January 2001-September 2011 (2,665 

trading days). We determined the dates of stock price jumps (upwards or downwards) 

using the KOSPI200’s natural log returns and assigned a value of “1” to valid stock jump 

dates and a value of “0” to those dates without jumps to use as the dependent variables in 

the probit model1

 

. In our study, we treated upwards and downwards jumps in different 

models. The options data we used were provided by the Korea Exchange (KRX) and the 

Korea Securities Computing Corporation (KOSCOM). Data on the KOSPI200 components 

and adjusted stock prices were provided by FnGuide, and macroeconomic data such as 

exchange rates were provided by the Bank of Korea.   

  2. Definition of Stock Price Jumps 

                                                   
1 The probit model is used when the dependent variable Y is a binary variable.  In the probit model, 

Y takes on the form of Pr(Y = 1|X) = Φ(Xβ) + et towards the influential matrix X of explanatory 

variables.   Here, Φ is the standard normal cumulative distribution, and β is obtained using the 

maximum likelihood estimation(MLE). 
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Several different definitions of stock price jumps have been used in previous studies. 

In one case, a stock price jump was defined as a value exceeding an absolute threshold 

(critical value) based on the distribution of historical volatility (historical σ) (termed 

“Historical Deviation (HD) jump” from here on). Doran, Peterson, and Tarrant (2007) 

defined stock price jumps as “large movements in price that exceed the calculated critical 

values in a given period” and set the critical value in these cases as “positive or negative 

daily earnings that exceed the top 5% or 1%.”   

Lee and Mykland (2006) defined a jump (termed “LM jump” from here on) based on 

rates of return that were standardized by the rolling volatility of the prior “k” days. In 

other words, a rate of return, controlled for the volatility of a certain “k” days, was 

established as the guideline, and a jump was defined as a situation in which the rate of 

return exceeded this threshold.  

Therefore, an LM jump describes jumps that are independent of volatility at any given 

point. The test statistic for an LM jump model,Tt, is defined below: 

 

                                                                     Tt = log St−log St−1
σ
�
t

                                                           (1) 

 

, where           σ�t = � 1
k−2

∑ �logSj − logSj−1��logSj−1 − logSj−2�t−1
j=t−k+2  

 St =  Stock price at t 

 

   Lee and Mykland (2006) did not offer a definition for k (window size). Doran, 

Peterson, and Tarrant (2007) used a k value of either 16 or 30 days and showed that the 

choice of value had no significant effect on the result. In our study, we used k as 16 days. 

The definition of a stock price jump used in this study is summarized in Table 1. 

 

INSERT <Table 1> ABOUT HERE 

 

HDJump99% (95%) was defined as a positive jump when the returns exceeded the top 

1% (5%) during our period of analysis from January 2001-September 2011, and as a 
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negative jump when the returns fell short of the bottom 1% (5%)2

During the 2,665 trading days that were used for the analysis, there were 44 positive 

jumps and 45 negative jumps according to the HDJump99% definition. There were 103 

positive jumps and 126 negative jumps according to the HDJump95% definition. Using 

LMJump95% definition, we found 59 positive jumps and 75 negative jumps. Categorizing 

these data by month, there was a monthly average of 0.7 jumps of HDJump99%, 1.8 jumps 

of HDJump95%, and 1.0 jump of LMJump95% in both positive and negative directions.   

. LMJump95% was 

defined as a positive jump when the returns exceeded the 5% threshold that was set by 

Lee and Mykland (2006), and as a negative jump when the returns fell short of the bottom 

5% threshold.  

 

  3. Selection of Explanatory Variables   

 

The explanatory variables that were used in our study are summarized in Figure 2. 

The derivatives that were used as constitutive parameters were the KOSPI200 options and 

the KOSPI200 futures. Option moneyness was defined as Ke-rt/St (where K is the exercise 

price, St is the KOSPI200 index value on day t, and r is the risk free rate, defined as 91-

day CD interest rate, and T is the remaining maturity). Following Bakshi and Kapadia 

(2003), call options were categorized as deep out-of-the-money (DOTM) in the 1.075-

1.125 range, out-of-the-money (OTM) in the 1.025-1.075 range, at-the-money (ATM) in 

the 0.975-1.025 range, or in-the-money (ITM) in the 0.925-0.975 range. The ranges for 

put options were 0.875-0.925 for DOTM, 0.925-0.975 for OTM, 0.975-1.025 for ATM, and 

1.025-1.075 for ITM. 

The value of the implied volatility for each interval was calculated by averaging the 

implied volatilities of the nearby options with the exercise prices for the corresponding 

intervals. Therefore, the calculated implied volatility of ATM options is more accurately 

expressed as the implied volatility of near-the-money (NTM) options. Hentschel (2003) 

report that the implied volatilities of the individual options, especially OTM and ITM 

options, contain many errors. These errors can be alleviated by averaging the different 

implied volatilities of the options in the intervals (Doran, Peterson, and Tarrant, 2007). In 

our study, we used data from the KRX based on a binomial tree model for the implied 
                                                   
2 For the period of analysis from January 2001 to September 2011, the 1% threshold for the KOSPI 

200 was ±0.039771 and the 5% threshold was ±0.028164.  The average of the natural log of the 

returns during this analysis period was calculated as 0.0005 but was considered to be 0. 
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volatility value of the options. The marked values of 0.03 in the KRX implied volatility data 

are the cases in which no solutions were found in the implied volatility calculations using 

numerical analysis. Therefore, these observations were eliminated from our analysis (Ok, 

Lee, and Lim, 2009). Table 2 describes each explanatory variable that was used in our 

model. 

 

INSERT <Table 2> ABOUT HERE 

 

(1) Volatility skews 

 

The call volatility skew (Skew1) and the put volatility skew (Skew2) show the 

difference between the implied volatility of the OTM options and that of the ATM options. 

A large volatility skew can be interpreted as a high probability for large fluctuations in 

stock prices. However, our preliminary analyses suggest little confidence about the 

influence of the volatility skew on Korean markets. Figure 1 shows the results of the 

volatility skew analysis on KOSPI 200 options. Part (A) and (B) are the volatility skew 

graphs for the calls and the puts, respectively. Graph (a1) and (b1) are the volatility skews 

of calls and puts during the entire period. The solid line in the graph represents the mean 

and the dotted line represents the median value of the implied volatilities of the options in 

the corresponding moneyness intervals. Graph (a2) and (a3), and (b2) and (b3) each show 

the volatility skew of the calls and the puts in the two sub-periods of 2001-2005 and 

2006-2011.  

We can observe that the shape of the KOSPI 200’s volatility skew in Figure 1 is not in 

the “stock option volatility shape”, as stated in Rubinstein (1994). The shape rather closely 

resembles that of a “volatility smile”. This result is consistent for the overall period and 

for the two sub-periods as well. This preliminary analysis shows that the variables Skew1 

and Skew2, representing the volatility skew of the KOSPI 200 options, might not have 

great significance. The specific values of the volatility skews are noted in panels (C) and 

(D). 

 

INSERT <Figure 1> ABOUT HERE 

 

(2) Implied volatility spreads between ATM calls and puts  
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Imvol_Spread shows the spread between the implied volatilities of call and put options 

(ATM call implied volatility-ATM put implied volatility). However, more accurately, it 

describes the implied volatility spread of calls and puts that are calculated as NTM, which 

in turn is calculated by averaging the implied volatilities of the options in the moneyness 

intervals. Doran and Krieger(2010) argued that embedded within this variable is 

information about future stock price fluctuations and the deviation of put-call parities.   

 

(3) The spread of average implied volatility and historical volatility of Call or Put options 

 

For the average implied volatility of call and put options, we used data that were 

calculated using KRX’s method. KRX calculates average implied volatility using the 

weighted average of nearby options’ trade volumes (Yoo, 2010). The historical volatility of 

calls (puts) is calculated as a yearly volatility that is rolled every 90 days. When a large 

change in stock price is forecasted, the average implied volatility of the options moves in 

advance of the historical volatility, thus causing a larger spread between the two. 

Vol_Spread1 and Vol_Spread2 show the “average implied volatility of call options - 

historical volatility of call options” and the “average implied volatility of put options - 

historical volatility of put options”, respectively. 

 

(4) Unit Prices and Open interest  

 

Price1 and Price2 represent average unit prices of options, measured by dividing the 

options trading value by the trading volume for calls and puts, respectively. Because OTM 

options have comparatively large leverage, options traders would increase their trading of 

OTM options with lower prices when they predict stock price jumps. Then the values of 

Price1 and Price2 will be lowered near stock price jumps. For the same reason, as options 

traders with advance knowledge on stock market jumps increase their reserves of OTM 

options, OpenInterest1 (open interest of call options) and OpenInterest2 (open interest of  

put option) will increases. 

 

(5) Futures basis spread 

The basis spread of futures can provide advance information on stock market jumps by 
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reflecting the movements of probabilistic arbitragers, who are savvy and informed 

investors in the futures market. If the market is efficient, there is no opportunity for index 

arbitrage. However, even a movement of the futures basis spread within a band with no 

arbitrage, it still reflects the directions of the arbitragers’ changes and thus provides 

information on stock market fluctuations.   

 

(6) Stock market factors and Macroeconomic factors  

 

Even in the stock market, there are advance movements by smart money. Such 

information can be captured by cross-sectional moments of the stock returns. Advance 

movements of certain stocks can give early signals of changes in the distribution of rates 

of returns. Stdev shows the cross-sectional standard deviation of log returns on a given 

day for the 200 constituents of the KOSPI 200. 

The Korean won-US dollar exchange rate has significant explanatory power on capital 

market movements as a macroeconomic variable. It also reflects the characteristics of the 

Korean economy that depend heavily on foreign trade. Thus exchange rate may also provide 

a meaningful explanation for stock market jumps.  

Table 3 shows a summary of statistics for the explanatory variables, including the 

mean, standard deviation, median, minimum value, 25th percentile, 75th percentile, and the 

maximum value of each explanatory variable. Currency1, Currency2, and Currency3 are 

the log return volatilities for the exchange rates. Since the original values of Currency1, 

Currency2, and Currency3 are too small, we report values in percentage in Table 3. We, 

however, used the original values of the log return volatility in the probit analysis.  

Table 4 shows a matrix of correlation coefficients using the explanatory variables. 

Specifically, the correlation coefficients between the related call and put option variables 

show that the correlation coefficient was 0.599 between Skew1 and Skew2, 0.766 

betweenVol_Spread1 andVol_Spread2, and 0.603 between OpenInterest1 andOpenInterest2. 

The correlation coefficient between Price1 and Price2 is high, with a value of 0.492. For 

each analysis of upward or downward jumps using the probit model, we picked one of two 

combinations of variables. That is, the combination of call option-related variables (Skew1, 

Vol_Spread1, OpenInterest1, and Price1) was not used together with that of put option-

related variables (Skew2, Vol_Spread2, OpenInterest2, and Price2) in the analysis.  
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INSERT <Table 3> ABOUT HERE  

 

INSERT <Table 4> ABOUT HERE 

 

 

IV. Results of Empirical Analysis  

 

In our study, we set up the analysis models according to the direction of the jumps. We 

applied a one-day time differential to all of the explanatory variables in the model. In other 

words, the explanatory variables precede the dependent variable by 1 day to predict one-

day future returns.  

Using each jump as a dependent variable, we first set up a probit model using all of the 

explanatory variables and then estimated the model using the maximum likelihood 

estimation (MLE). Next, we re-estimated the model using only the significant or 

meaningful variables. The resulting models are shown below from (2) to (7), and the 

results from each model are summarized in Table 5, Table 6, and Table 7. 

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏) = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟏𝐭−𝟏 

                      +𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟏𝐭−𝟏  + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 

                   +𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

                                                     +𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏  + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭 (2) 

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 

                                                        +𝛃𝟒𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + 𝛃𝟓𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟔𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏) + 𝐞𝐭                  (3) 

 

INSERT <Table 5> ABOUT HERE 

 

 

Table 5 shows the estimated results from the HD upward jump model. The results (2) 

were estimated by using all of the explanatory variables and an upward jump as the 

dependent variable. The results (3) were estimated by taking only the significant and 

meaningful explanatory variables from (2) to reconstruct the model. The process was 

executed separately on HD99% upward jumps and HD95% upward jumps to verify the 
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model’s robustness. Noted in the table are the estimated coefficient values followed by the 

Z value (within the parentheses).  

For the HD upward jump, statistical significance was found for Imvol_Spread (“ATM 

call implied volatility – ATM put implied volatility”), p/c_ratio (“put/call ratio”), Stdev 

(“cross-sectional standard deviation of the KOSPI200 components’ log returns”), and 

Currency1 (“won/dollar exchange rates’ log return volatility”).    

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏) = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝐭−𝟏 

                    +𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏  + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟐𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 

                 +𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

                                                     +𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏  + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭   (4) 

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽 (𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝐭−𝟏 

                              +𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏 + 𝛃𝟓𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟔𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 

                                                         +𝛃𝟕𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟖𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏) + 𝐞𝐭                      (5) 

 

INSERT <Table 6> ABOUT HERE 

 

Table 6 shows the estimated results of the HD downward jump model shown in (4) and 

(5). For the HD downward jump, statistical significance was found for Imvol_Spread (“ATM 

call implied volatility – ATM put implied volatility”), Vol_Spread2 (“average implied 

volatility of put options-historical volatility of call options”), OpenInterest2 (“open interest 

put options”), BasisSpread (“futures market basis-theoretical basis”), Stdev (“cross-

sectional standard deviation of the KOSPI200 components’ log returns”), Currency1 

(“won/dollar exchange rates’ log return volatility”), and Currency2 (“Japanese yen/dollar 

exchange rates’ log return volatility”).   

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏) = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟏𝐭−𝟏 

                    +𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟏𝐭−𝟏  + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 

                  +𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

                                                     +𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏  + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭   (6) 

 

𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏) = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝐭−𝟏 
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                    +𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏  + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟐𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 

                  +𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

                                                     +𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏  + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭   (7) 

 

 

INSERT <Table 7> ABOUT HERE 

 

 

Table 7 shows the estimated results of the LM upward and downward jump models 

shown in (6) and (7). For the LM upward jump model, statistical significance was observed 

for Imvol_Spread  (“ATM call implied volatility – ATM put implied volatility”), 

OpenInterest1 (“open interest call option”), Price1 (“average unit price of call options”), 

BasisSpread (“futures market basis-theoretical basis“), Currency1 (”won/dollar exchange 

rates’ log return volatility”), and Currency2 (“Japanese yen/dollar exchange rates’ log 

return volatility”).  

For the LM downward jump model, statistical significance was observed for p/c_ratio 

(“put/call ratio”), BasisSpread (“futures market basis-theoretical basis“), Currency1 

(“won/dollar exchange rates’ log return volatility”), Currency2 (“Japanese yen/dollar 

exchange rates’ log return volatility”), and Currency3 (“Chinese yuan/dollar exchange 

rates’ log return volatility”). According to the results of the empirical analysis of the LM 

Jump model, Imvol_Spread (“ATM call implied volatility – ATM put implied volatility”) has 

a relatively weaker significance than it does in the HD jump model. These findings can be 

attributed to the calculations that were used for the LM jump model. As the LM Jump 

model adjusts for a rolling implied volatility during a period of k days, the denominator in 

equation (1) can be seen as a demeaned volatility with a mean value of 0. Thus, the 

explanatory aspect of the implied volatility is offset during the jump calculation process.  

In general, the explanatory variables that were significant across almost all of the 

various upward and downward jumps were Imvol_Spread (“ATM call implied volatility – 

ATM put implied volatility”), Stdev (“cross-sectional standard deviation of KOSPI200 

components’ log returns”), BasisSpread (“futures market basis-theoretical basis“), and 

Currency1 (“won/dollar exchange rates’ log return volatility”). The explanatory variables 

that were related to options, such as the p/c_ratio (“put/call ratio”), Vol_Spread2 (“average 
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implied volatility of put options - historical volatility of put options”), and OpenInterest2 

(“open interest of put options”) were significant only for some models. 

From the above empirical analysis of stock market jumps in the KOSPI200, we found a 

number of significant results. These results were not found in previous studies. First, the 

implied volatility spread between the ATM call and put options (Imvol_Spread) was 

significant in both HD upward and downward jumps. The signs of the estimated coefficients 

are negative in upward jumps and positive in downward jumps. Therefore, the increase in 

implied volatility of the ATM puts predicts a positive jump in stock prices, and the 

decrease in implied volatility of the ATM puts predicts a negative jump. In other words, if 

the options prices move to one side, the possibility of a technical upward jump or a rapid 

fall in stock prices seems to increase. However, the volatility skew was found to not have 

significant explanatory value for stock market jumps. This result can be attributed to the 

fact that the volatility of the KOSPI200 options market takes the shape of a volatility smile.  

Second, the smaller is the futures basis spread (BasisSpread), the greater the 

possibility of a negative jump in stock prices. This observation shows that the basis spread 

of futures can provide advance information on stock market jumps by reflecting the 

movements of statistical arbitragers, who are savvy and informed investors in the futures 

market. However, the futures basis spread was not significant in explaining positive stock 

market jumps.   

Third, as the cross-sectional standard deviation of the KOSPI200 components’ returns 

became larger, the possibility of a positive or negative stock market jump become 

significantly larger as well. This shows that information on leading movements of smart 

money in stock markets can be captured by the cross-sectional standard deviation of the 

stocks that are being traded in this market because advance movements on some stocks 

send an early signal to changes in the shape of the distribution of component stock returns. 

Fourth, as the won/dollar exchange rate (Currency1) decreases, the probability of a 

positive stock market jump increases. When the Currency1 increases, so does the 

probability of a negative jump. The won/dollar exchange rate, which reflects the 

characteristics of the Korean economy that depend strongly on foreign trade, has a strong 

explanatory value in predicting stock price jumps. However, the Japanese yen/dollar 

exchange rate was only significant for negative jumps when the rate decreased.   

 

V. Conclusions 
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Advance information on large changes or jumps in the stock market is very important 

to stock traders and especially so to options traders. The type of stock market jump can be 

defined according to how much the distribution thresholds of past stock market returns. 

Our research defined jumps based on historical deviation (HD; Doran, Peterson, and 

Tarrant, 2007) and LM standards (Lee and Mykland, 2006). Our empirical analysis revealed 

the following significant results.   

First, the implied volatility spread between the ATM call and put options (Imvol_Spread) 

was significant for both HD upward and downward jumps. However, the volatility skew did 

not show any significant explanatory value for stock market jumps. Second, the smaller the 

futures basis spread (BasisSpread), the larger the likelihood of a negative jump in stock 

prices. However, the futures basis spread did not significantly explain positive stock market 

jumps. Third, as the cross-sectional standard deviation of the KOSPI200 components’ 

returns became larger, the likelihood of a positive or negative stock market jump increased 

significantly. Fourth, as the won/dollar exchange rate (Currency1) decreased, the likelihood 

of a positive stock market jump increased, whereas the likelihood of a negative jump 

increased as the won/dollar exchange rate increased. However, the Japanese yen-dollar 

exchange rate was only significant for negative jumps when the rate decreased. The above 

results were not found in previous studies. 

We could not verify the robustness of our model by sub-dividing a period into two 

periods because the relatively short history of the KOSPI200 options market did not 

provide a sufficient number of stock market jumps. However, we showed that the results 

were consistent for jumps defined in several ways.  

In the future, we can consider conducting studies using options market’s high-

frequency data. With such research, we expect to get even more immediate predictive 

information on stock market jumps. In addition, we could use our model to design a trading 

strategy and evaluate the profits therein. 
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Panels (A) and (B) are volatility skew graphs for calls and puts, respectively. Option moneyness was defined 
as Ke-rt/St (where K is the exercise price, St is the KOSPI200 index value on day t, and r is the risk free rate, 
using a 91-day CD interest rate, and T is the remaining maturity). Moneyness intervals were classified for call 
options as DOTM (1.125-1.175), OTM (1.075-1.125), ATM (1.025-1.075), and ITM (0.975-1.025); put 
options were categorized as DOTM (0.875-0.925), OTM (0.925-0.975), ATM (0.975-1.025), and ITM (1.025-
1.075). We used data from KRX based on a binomial tree model for the implied volatility value of options. 
The value of the implied volatility for the moneyness interval was calculated by averaging the implied 
volatilities of nearby options with the exercise prices at the corresponding intervals. The solid line in the 
graph represents the mean and the dotted line represents the median for the implied volatilities of the options 
for the corresponding moneyness intervals. (a1) and (b1) are the volatility skews of calls and puts as they 
were calculated during the entire analysis. The solid line in the graph represents the mean and the dotted line 
represents the median of the implied volatilities of the options for the corresponding moneyness intervals. (a2), 
(a3) and (b2), (b3) each show the volatility skew of calls and puts during the two sub-periods of 2001-2005 
and 2006-2011. The specific values of the volatility skews are noted in panels (C) and (D). 

<Figure 1> Volatility Skew of KOSPI200 Options 
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(A) call option volatility skew                    (B)put option volatility skew 

  

  

  
 

  

0.00  

0.10  

0.20  

0.30  

0.40  

ITM ATM OTM DOTM 

(a1) call option volatility skew (2001-2011) 

0.00  

0.10  

0.20  

0.30  

0.40  

DOTM OTM ATM ITM 

(b1) put option volatility skew (2001-2011) 

0.00  

0.10  

0.20  

0.30  

0.40  

ITM ATM OTM DOTM 

(a2) call option volatility skew (2001-2005) 

0.00  

0.10  

0.20  

0.30  

0.40  

DOTM OTM ATM ITM 

(b2) put option volatility skew (2001-2005) 

0.00  

0.10  

0.20  

0.30  

0.40  

ITM ATM OTM DOTM 

(a3) call option volatility skew (2006-2011) 

0.00  

0.10  

0.20  

0.30  

0.40  

DOTM OTM ATM ITM 

(b3) put option volatility skew (2006-2011) 



21 
 

 

 
<Figure 1> Volatility Skew of KOSPI200 Options (continued) 

 
(C) Call option volatility skew (Average of the implied volatilities of the options for each corresponding interval) 

Category Period ITM ATM OTM DOTM 

Mean 

 
2001-2011 
2001-2005 
2006-2011 

0.2939 
0.2954 
0.2926 

0.2505 
0.2690 
0.2345 

0.2604 
0.2880 
0.2367 

0.3122 
0.3332 
0.2905 

Median 

 
2001-2011 
2001-2005 
2006-2011 

0.2600 
0.2775 
0.2463 

0.2220 
0.2523 
0.1963 

0.2355 
0.2860 
0.2032 

0.2768 
0.3180 
0.2425 

 
(D) Put option volatility skew (Average of the implied volatilities of the options for each corresponding interval) 

Category Period DOTM OTM ATM ITM 

Mean 

 
2001-2011 
2001-2005 
2006-2011 

0.3742 
0.3833 
0.3660 

0.3077 
0.3225 
0.2949 

0.2692 
0.2947 
0.2472 

0.3020 
0.3331 
0.2744 

Median 

 
2001-2011 
2001-2005 
2006-2011 

0.3310 
0.3475 
0.3078 

0.2820 
0.3145 
0.2589 

0.2380 
0.2850 
0.2136 

0.2725 
0.3175 
0.2350 
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On the basis of the KOSPI 200’s daily log returns, an HDJump99% (95%) was defined as a positive 
jump when the returns exceeded the top 1% (5%) during our period of analysis from January 2001-
September 2011 and was defined as a negative jump when the returns fell short of the bottom 1% 
(5%). An LMJump95% was defined as a positive jump when the returns exceeded the 5% threshold 
that was set by Lee-Mykland (2006) and was defined as a negative jump when the returns fell short of 
the bottom 5% threshold. 2,665 trading days were used for this analysis. For the period of analysis 
from January 2001- to September 2011, the 1% threshold for the KOSPI 200 was ±0.039771 and the 5% 
threshold was ±0.028164. The average of the natural log of the returns during this analysis period was 
calculated as 0.0005. 

<Table 1> Stock Market Jumps and Frequency of Jumps 

 

Jump Type +/- Number of Days with a Jump 
(Weight) 

Sum of Days with a Jump 
(Weight) 

HDJump99% +Jump 
-Jump 

44 (1.65%) 
45 (1.69%) 89 (3.34%) 

HDJump95% +Jump 
-Jump 

103 (3.86%) 
126 (4.73%) 229 (8.59%) 

LMJump95% +Jump 
-Jump 

59 (2.21%) 
75 (2.81%) 

134 (5.02%) 
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The derivatives that were used as constitutive parameters were the KOSPI200 Options and the 
KOSPI200 Futures. Option moneyness was defined as Ke-rT/St (where K is the exercise price, St is the 
KOSPI 200 index value on day t, and r is the risk free rate, using a 91-day CD interest rate, and T is 
the remaining maturity). Moneyness intervals were classified for call options as DOTM (1.075-1.125), 
OTM (1.025-1.075), ATM (0.975-1.025), or ITM (0.925-0.975); put options were categorized as 
DOTM (0.875-0.925), OTM (0.925-0.975), ATM (0.975-1.025), or ITM (1.025-1.075). In our study, 
we used data from KRX based on a binomial tree model for the implied volatility value of options. 
The value of the implied volatility for the moneyness interval was calculated by averaging the implied 
volatilities of nearby options with the exercise prices at the corresponding intervals. For the average 
implied volatility of call and put options, we used data calculated using KRX’s method (KRX 
calculates the average implied volatility using the weighted average of the trade volumes of nearby 
options). The historical volatility of calls (puts) is calculated as a yearly volatility, rolled every 90 
days. Price1 and Price2 designate the trading unit costs of call and put options, respectively. Stdev is 
the cross-sectional standard deviation for log returns on a given day for the 200 components of the 
KOSPI 200. A one-day time differential was applied to all of the explanatory variables in the model. 

<Table 2> Explanatory Variables Used in This Analysis 

 
  Explanatory variables Descriptions 
1 Skew1 Volatility skew of call options (OTM call – ATM call) 
2 Skew2 Volatility skew of put options (OTM put–ATM put) 
3 Imvol_Spread Implied volatility of ATM calls – Implied volatility of ATM puts 
4 Vol_Spread1 Average implied volatility of calls – Historical volatility of calls 
5 Vol_Spread2 Average implied volatility of puts – Historical volatility of puts 
6 OpenInterest1 Open interest of call options (100,000 contracts) 
7 OpenInterest2 Open interest of  put options (100,000 contracts) 
8 Price1 Trading value (100,000 won)/ Trading volume of call option 
9 Price2 Trading value (100,000 won)/ Trading volume of put option 
10 p/c_Ratio  put/call ratio(based on Trading volume) 
11 BasisSpread  Futures Market basis – Theoretical basis (pt) 

12 Stdev  Cross-sectional standard deviation of the natural log returns of 
component stocks in KOSPI200 

13 TermSpread  3-year treasury bond yields – CD interest rate 
14 Currency1 Korean won/US dollar exchange rates’ log returns 
15 Currency2 Japanese yen/US dollar exchange rates’ log returns 
16 Currency3 Chinese yuan US dollar exchange rates’ log returns 
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The mean, standard deviation, median, minimum value, 25th percentile, 75th percentile, and maximum value of each explanatory variable are shown. For 
the values of Currency1, Currency2, and Currency3, which are the log return volatilities for the exchange rates, we used the value of the log return 
volatility as calculated by the probit analysis; however, as the resulting value was too small, we present the value multiplied by 100 as a percentage in this 
table. 

<Table 3> Summary Statistics of Explanatory Variables 

 

Explanatory variables Average Standard 
deviation Median Minimum 25th percentile 75th percentile Maximum 

1 Skew1 0.0101 0.0578 -0.0047 -0.1900 -0.0174 0.0133 0.4175 
2 Skew2 0.0389 0.0562 0.0255 -0.3560 0.0117 0.0448 0.3760 
3 Imvol_Spread -0.0188 0.0553 -0.0150 -0.7935 -0.0450 0.0104 0.3350 
4 Vol_Spread1 -0.0011 0.0586 -0.0050 -0.2230 -0.0300 0.0230 0.4550 
5 Vol_Spread2 0.0356 0.0710 0.0310 -0.2090 -0.0030 0.0660 0.9200 
6 OpenInterest1 17.5477 7.4575 16.8478 1.1938 11.9554 22.4755 44.9594 
7 OpenInterest2 18.0178 7.8060 17.7530 1.1535 12.0556 22.8700 54.7844 
8 Price1 0.7789 0.3192 0.6881 0.2254 0.5586 0.9362 3.9563 
9 Price2 0.8840 0.7337 0.6877 0.3079 0.5478 1.0027 11.8274 
10 p/c_Ratio  0.9269 0.2627 0.9019 0.2337 0.7660 1.0538 3.7563 
11 BasisSpread  -0.4132 0.6754 -0.4000 -5.7300 -0.8000 0.0000 6.2800 
12 Stdev  0.0268 0.0070 0.0258 0.0142 0.0222 0.0301 0.1175 
13 TermSpread  0.0051 0.0059 0.0041 -0.0167 0.0009 0.0085 0.0214 
14 Currency1 (%) -0.0030 0.7678 -0.0239 -13.2431 -0.3010 0.2509 10.2290 
15 Currency2 (%) -0.0150 0.7012 -0.0086 -6.3738 -0.3947 0.3769 5.7649 
16 Currency3 (%) -0.0097 0.0862 0.0000 -2.0322 -0.0136 0.0029 0.8606 
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We calculated the correlation coefficients between the related call and put variables. The correlation coefficient was 0.599 between Skew1 and Skew2, 
0.766 between Vol_Spread1 and Vol_Spread2, 0.603 between OpenInterest1 and OpenInterest2, and 0.492 between Price1 and Price2. For each analysis 
of upward or downward jumps using the probit model, we picked from two combinations of variables; the combination of call option-related variables 
(Skew1, Vol_Spread1, OpenInterest1, and Price1) was distinguished from the combination of put option-related variables (Skew2, Vol_Spread2, 
OpenInterest2, and Price2).   

<Table 4> Matrix of Correlation Coefficients Between Explanatory Variables 

 
Explanatory variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 Skew1 1.000 

               2 Skew2 0.599 1.000 
              3 Imvol_Spread -0.290 0.277 1.000 

             4 Vol_Spread1 -0.140 -0.058 0.058 1.000 
            5 Vol_Spread2 -0.048 -0.176 -0.450 0.766 1.000 

           6 OpenInterest1 0.145 0.200 -0.069 0.229 0.223 1.000 
          7 OpenInterest2 0.144 0.332 0.128 -0.025 -0.035 0.603 1.000 

         8 Price1 -0.355 -0.150 0.148 0.156 0.033 -0.331 -0.162 1.000 
        9 Price2 -0.237 -0.106 -0.110 0.448 0.426 -0.020 -0.217 0.492 1.000 

       10 p/c_Ratio  0.013 0.016 0.020 -0.138 -0.131 -0.142 0.096 0.227 -0.226 1.000 
      11 BasisSpread  -0.100 0.233 0.510 0.053 -0.284 0.063 0.175 0.029 -0.081 0.045 1.000 

     12 Stdev  -0.001 -0.100 -0.074 0.284 0.227 -0.075 -0.211 0.113 0.236 -0.085 -0.050 1.000 
    13 TermSpread  0.080 0.014 0.025 -0.159 -0.218 -0.073 0.176 0.082 -0.193 0.147 -0.053 -0.102 1.000 

   14 Currency1 -0.001 0.015 0.023 -0.011 -0.043 0.016 -0.016 0.005 -0.000 -0.008 0.022 -0.057 -0.037 1.000 
  15 Currency2 0.031 0.013 0.008 -0.017 -0.017 0.004 -0.009 -0.035 -0.033 -0.026 -0.015 0.004 0.011 -0.049 1.000 

 16 Currency3 0.017 -0.020 -0.031 0.004 0.013 0.002 -0.017 -0.024 -0.003 0.012 -0.009 0.036 0.051 0.003 0.027 1.000 
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We configured a probit model using HD upward jumps and all of the explanatory variables and then estimated the model using the maximum likelihood estimation. All 
of the explanatory variables for upward jumps were used in the construction of model (2); we then reconfigured the model using only the significant or meaningful 
variables from that model to build the model (3). This process was undertaken on HD99% upward jumps and HD95% upward jumps to verify the model’s robustness. 
Noted in the table are the estimated coefficient values followed by the Z-values (in parentheses). The probit model is used when the dependent variable Y is a binary variable.  
In the probit model, Y takes on the form of Pr(Y = 1|X) = Φ(Xβ) + et towards the influential matrix X of explanatory variables.   Here, Φ is the standard normal cumulative 
distribution, and β is obtained using the maximum likelihood estimation (MLE).  

<Table 5> HD Upward (+) Jump Model and Estimated Results 

 
𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟏𝟑𝐭−𝟏 + 𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟏𝐭−𝟏 + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + 𝛃𝟕𝐁𝐚𝐬𝐢𝐬Spread𝐭−𝟏 

+𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭            (2) 

                           𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 + 𝛃𝟒𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + 𝛃𝟓𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟔𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏) + 𝐞𝐭               (3) 

 

Explanatory variables HD Upward Jump (99%) Model Estimated Values HD Upward Jump (95%) Model Estimated Values 

 Intercept -1.6693  (-3.10) *** -2.1765 (-5.07) *** -2.6491 (-7.43) *** -2.6686 (-9.57) *** 
1 Skew1 -3.3471  (-1.55)  -4.2949 (-1.88) * -0.8553 (-0.79)  -1.0576 (-0.98)  3 Imvol_Spread -3.5560  (-2.91) *** -3.9985 (-3.57) *** -2.7125 (-2.95) *** -3.0246 (-3.67) *** 
4 Vol_Spread1 1.6173  (1.33)     0.0630 (0.07)     6 OpenInterest1 -0.0090  (-0.83)     0.0010 (0.130     8 Price1l -0.6297  (-1.92) * -0.3964 (-1.38)  0.0781 (0.43)  0.0796 (0.47)  10 p/c_Ratio -0.9321  (-2.70) *** -1.0487 (-3.15) *** -0.3761 (-1.84) * -0.4295 (-2.15) ** 
11 BasisSpread  -0.0102  (-0.10)     -0.0519 (-0.65)     12 Stdev  28.5784  (3.54) *** 35.6724 (4.71) *** 35.4252 (5.23) *** 37.1667 (5.99) *** 
13 TermSpread  -19.6546  (-1.44)     -11.2327 (-1.30)     14 Currency1 -31.7106  (-3.62) *** -32.9920 (-3.87) *** -40.6627 (-5.91) *** -40.7668 (-6.03) *** 
15 Currency2 7.7887  (0.88)     6.3638 (0.95)     16 Currency3 57.1851  (0.55)     15.8004 (0.26)     

Level of significance:  *** 0.01  **0.05  *0.1  
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We configured a probit model using HD downward jumps and all of the explanatory variables and then estimated the model using the maximum likelihood estimation. 
All of the explanatory variables for downward jumps were used in the construction of the model (4); we then reconfigured the model using only the significant or 
meaningful variables from that model to build the model (5). This process was undertaken on HD99% downward jumps and HD95% downward jumps to verify the 
model’s robustness. Noted in the table are the estimated coefficient values followed by the Z-values (in parentheses). 

<Table 6> HD Downward (-) Jump Model and Estimated Results 

 
 𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝟑𝐭−𝟏 + 𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏 + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟐𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + 𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

+𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭                               (4)          
                           𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽 (𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝐭−𝟏 + 𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏 + 𝛃𝟓𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟔𝐒𝐭𝐝𝐞𝐯𝐭−𝟏  
                                                            +𝛃𝟕𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟖𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏) + 𝐞𝐭                                                                       (5) 

 

Explanatory variables HD Downward Jump (99%) Model Estimated Values HD Downward Jump (95%) Model Estimated Values 

 intercept -2.8407 (-7.17) *** -2.7086 (-8.63) *** -2.2455 (-7.98) *** -2.3408 (-10.51) *** 
2 Skew2 1.5151 (1.25)  1.56101 (1.32)  0.6409 (0.73)  0.7255 (0.84)  
3 Imvol_Spread 3.2346 (2.41) ** 3.41714 (2.55) ** 2.3395 (2.35) ** 2.3636 (2.43) ** 
5 Vol_Spread2 2.2825 (2.01) ** 2.1772 (2.39) ** 1.0425 (1.34)  1.5931 (2.44) ** 
7 OpenInterest2 -0.0210 (-1.97) ** -0.0217 (-2.17) ** -0.0126 (-1.81) * -0.0155 (-2.35) ** 
9 Price2 -0.0250 (-0.28)     0.0342 (0.56)     
10 p/c_Ratio 0.2444 (1.15)     -0.1036 (-0.61)     
11 BasisSpread  -0.2272 (-2.30) ** -0.2288 (-2.35) ** -0.2234 (-2.94) *** -0.2085 (-2.83) *** 
12 Stdev  17.8895 (2.22) ** 19.0431 (2.41) ** 23.3642 (3.97) *** 24.1244 (4.15) *** 
13 TermSpread  -12.9491 (-1.05)     -7.2995 (-0.89)     
14 Currency1 35.8487 (4.91) *** 35.9411 (5.14) *** 43.8496 (7.58) *** 44.6739 (7.82) *** 
15 Currency2 -35.4850 (-4.31) *** -35.5070 (-4.37) *** -16.8391 (-2.78) *** -17.3495 (-2.90) *** 
16 Currency3 -12.5349 (-0.20)     108.7335 (1.91) *    

Level of significance:  *** 0.01  **0.05  *0.1 
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We configured a probit model using LM jumps and explanatory variables and then estimated the model using the maximum likelihood estimation. All of the explanatory 
variables for LM upward jumps were used in the construction of the model (6); we then reconfigured the model using only the significant or meaningful variables from 
that model. All of the explanatory variables for LM downward jumps were used in the construction of the model (7); we then reconfigured the model using only the 
significant or meaningful variables from that model. Noted in the table are the estimated coefficient values followed by the Z-values (in parentheses). 

<Table 7> LM Jump Model and Estimated Results 

 
𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟏𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟏𝟑𝐭−𝟏 + 𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟏𝐭−𝟏 + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟏𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + +𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

+𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭                                (6) 
  𝐏𝐫𝐨𝐛(𝐃𝐭 = 𝟏)  = 𝚽(𝛂+ 𝛃𝟏𝐒𝐤𝐞𝐰𝟐𝐭−𝟏 + 𝛃𝟐𝐈𝐦𝐯𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟑𝐕𝐨𝐥_𝐒𝐩𝐫𝐞𝐚𝐝𝟐𝟑𝐭−𝟏 + 𝛃𝟒𝐎𝐩𝐞𝐧𝐈𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝟐𝐭−𝟏 + 𝛃𝟓𝐏𝐫𝐢𝐜𝐞𝟐𝐭𝐭−𝟏 + 𝛃𝟔𝐩/𝐜_𝐑𝐚𝐭𝐢𝐨𝐭−𝟏 + 𝛃𝟕𝐁𝐚𝐬𝐢𝐬𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 

+𝛃𝟖𝐒𝐭𝐝𝐞𝐯𝐭−𝟏 + 𝛃𝟗𝐓𝐞𝐫𝐦𝐒𝐩𝐫𝐞𝐚𝐝𝐭−𝟏 + 𝛃𝟏𝟎𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟏𝐭−𝟏 + 𝛃𝟏𝟏𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟐𝐭−𝟏 + 𝛃𝟏𝟐𝐂𝐮𝐫𝐫𝐞𝐧𝐜𝐲𝟑𝐭−𝟏) + 𝐞𝐭                                (7) 

 

Explanatory variables LM Upward Jump (95%) LM Downward Jump (95%) 

 intercept -1.5870 (-3.93) *** -1.4027 (-5.60) *** -2.3983 (-6.78) *** -2.3960 (-12.70) *** 
1 Skew1 0.9243 (0.99)  1.0430 (1.15)        2 Skew2       -1.7663 (-1.22)  -0.9012 (-0.78)  3 Imvol_Spread -1.9120 (-1.86) * -2.0519 (-2.07) ** 2.1122 (1.57)  1.4124 (1.19)  4 Vol_Spread1 0.9226 (0.83)           5 Vol_Spread2       0.9014 (0.90)     6 OpenInterest1 -0.0250 (-2.87) *** -0.0238 (-2.85) ***       7 OpenInterest2       0.0103 (1.26)     8 Price1 -0.4677 (-2.02) ** -0.3306 (-1.49)        9 Price2       -0.0063 (-0.07)     10 p/c_Ratio  0.3161 (1.43)     0.4018 (2.24) ** 0.3847 (2.27) ** 
11 BasisSpread  0.1785 (2.01) ** 0.1902 (2.19) ** -0.1920 (-2.03) ** -0.1724 (-1.92) * 
12 Stdev  -0.9831 (-0.12)     -7.8657 (-0.91)     13 TermSpread  6.8027 (0.68)     1.7912 (0.19)     14 Currency1 -26.4808 (-3.77) *** -25.5649 (-3.82) *** 34.3088 (5.18) *** 33.4218 (5.39) *** 
15 Currency2 17.0170 (2.10) ** 16.0615 (2.03) ** -27.3634 (-3.85) *** -27.1777 (-3.93) *** 
16 Currency3 -0.3320 (-0.01)     132.8158 (2.12) ** 133.3649 (2.11) ** 

Level of significance:  *** 0.01  **0.05  *0.1  
 


