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How Important Are Non-Default Factors for CDS Valuation? A Non-parametric Analysis 

 

Abstract 

To which extent can non-default components explain CDS (Credit Default Swap) spreads is 

under debate in the literature. Unlike other research applying conventional structural or reduced-

form models, this study investigates this issue by conducting a principal component analysis and 

a non-parametric local linear regression using corporate CDS data during the period from 2001 

to 2011, which includes the recent global financial crisis. A model with two market state factors, 

approximated by the first two components, are found to outperform a model with only one factor. 

The first component capturing the variation in the overall level of CDS spreads can explain 90.82% 

of the variation in the data, resulting in a 21.58 basis points (bps) root mean square error (RMSE). 

The second component, orthogonal to the first component by construction, is barely explained by 

variables implied by models of default and explains an additional 5.06% of the variation, helping 

to reduce the RMSE to 8.99 bps. The out-of-sample tests support the in-sample analysis, finding 

that a default-factor model performs much worse after the beginning of the financial crisis in 

2007. The study provides support for the recent findings that liquidity and counterparty risk are 

priced in CDS spreads besides credit risk and sheds light on CDS valuation especially for 

volatile periods. 

 

Keywords: Credit Default Swap (CDS), Local Linear Regression, Principal Component, non-

default 
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1. Introduction 

A CDS is a credit derivative in which the protection buyer makes a series of payments (CDS 

spreads) to the protection seller and, in exchange, receives a payoff in the event of a default. 

Understanding the variation in CDS spreads and its determinants has become increasingly 

important for investors because of the substantial size of the CDS market
1
, the common practice 

                                                           
1
 Although CDSs have been around since the early 1990s, the CDS market has expanded sharply since 

2003, increasing to USD 62.2 trillion (in the notional amount) by the end of 2007 and stabilizing to USD 

30.4 trillion by the end of 2009. In comparison to CDSs, the amount of total equity derivatives was USD 
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of using CDSs to hedge against defaults, and the recent 2007-2009 financial crisis. Many default-

risk models have been developed and applied to understand the dynamics of CDS spreads
2
. 

However, only recently researchers start to realize that non-default components may also play 

significant roles in explaining CDS spreads and the question of how non-default components 

explain CDS spreads is still under debate. Researches supporting pure default components 

include Schueler and Galletto (2003), in which the authors assume that CDS spreads are contract 

values without liquidity risk, and Longstaff et al. (2005), in which the authors argue that CDS is 

a contract that can always be created, thus it is not subject to a liquidity constraint and has no 

liquidity premium. Other research, however, suggests that variables for non-default risk are 

critical in CDS spreads valuation and may explain the well documented credit spread puzzle. Lin 

et al. (2011) find that non-default spreads attribute 13% to CDS spreads. Tang and Yan (2007) 

regress CDS spreads on non-default variables that capture expected liquidity and liquidity risk, 

and find that illiquidity produces higher spreads. Bongaerts et al. (2011) show strong evidence of 

liquidity spread using an equilibrium asset pricing model and conclude that liquidity risk has a 

significant effect on CDS spreads. Pu et al. (2010) argue that both liquidity and counterparty 

related variables determine CDS spreads. 

While significant advances have been made in previous studies, two flaws remain. First, 

the empirical methods employed in previous studies fail to quantify the importance of non-

default factors for CDS valuation. In other words, does a default model suffice to value CDS 

contracts for both in-sample and out-of-sample? How much performance improvement we can 

achieve by adding non-default factors? Second, existing studies examine the determinants of 

CDS spreads either by adding a factor into a reduced-form pricing model and checking its 

significance as in Lin et al. (2011) or by regressing CDS spreads on selected default and non-

                                                                                                                                                                                           
10.0 trillion for 2007 and USD 6.8 trillion for 2009. http://www.isda.org/statistics/pdf/ISDA-Market-

Survey-annual-data.pdf. 
2
 Previous studies have proposed two approaches for default risk. The structural models are based on the 

idea that a firm defaults when its value drops below a certain threshold. Early important theoretical work 

includes Black and Cox (1976), Merton (1974), Geske(1977), Longstaff and Schwartz (1995), and many 

others. Reduced form models, in comparison to structural models in which the credit spread is 

endogenously determined by the issuer’s balance sheet, assume that there are exogenously specified 

stochastic processes for factors driving the movement of credit spreads. Influential work in this area 

includes, among others, Das (1995), Das and Sundaram (1998), Duffie and Singleton (1999), Hull and 

White (2000a, 2000b), Jarrow and Turnbull (1995), Lando (1998), Pierides (1997), and Schonbucher 

(2000). See Arora, et al. (2006), Jarrow (2011) and Jarrow and Protter (2004) for comparisons between 

the structural and the reduced-form models. 
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default variables as in Pu et al. (2010). However, these methods may suffer the issue of model 

misspecification either due to an imposed reduced or structural functional form, or due to 

omitted explanatory variables, since there is no consensus on what the non-default variables 

should be.  

In this study we address these two issues by conducting a non-parametric analysis on 

both in-sample and out-of-sample model performances. Specifically, we adopt a non-parametric 

method called local linear regression with state variables approximated by principal components 

(PCs) extracted from CDS spreads. The non-parametric estimation method resolves the issue of 

model misspecification due to either an imposed reduced or structural functional form and has 

been widely applied in derivative valuation. Li and Zhao (2009) apply it to estimate the state-

price densities implicit in interest rate caps and demonstrate the high accuracy of this method via 

a simulation study. Ait-Sahalia and Duarte (2003) and Li and Zhang (2010) adopt this non-

parametric method for S&P 500 index options and show its good fittingness. Analogous to Li 

and Zhang (2010), in this study we first extract state variables with principal component analysis 

(PCA), an orthogonal transformation to convert a set of correlated CDS spreads into a set of 

linearly uncorrelated PCs.
3
 We then fit CDS spreads non-parametrically as a function of the PCs. 

Since by construction the first PC explains the largest variance of the CDS spreads and the 

second PC explains the second largest variance and is uncorrelated with the first PC, we posit 

that the first PC is attributable for the default components and the second PC captures the non-

default components.
4
 Using the fitted CDS spreads, we can examine the performance of a model 

with and without a non-default factor. 

We apply the methodology to weekly data from January 2002 to November 2011 of 

USD-denominated senior unsecured corporate CDSs with 1-, 2-, 3-, 5-, 7-, and 10-year time to 

maturity. We divide CDSs to four groups (AA/AAA, A, BBB, and below BBB (BBB-)) by credit 

ratings, take the median of each group on each observation date as the spread of that group for 

                                                           
3
 Li and Zhang (2010) propose the use of nonlinear principal components (NPCs) for determining the 

number of state variables for implied volatility modeling. Our separate study using NPCs for CDSs 

suggests that the use of NPCs does not influence the results in this study qualitatively. 
4
 An alternative way of viewing this issue is since the first PC is for the default factor, the residuals from 

the regression of CDS spreads on the first PC should then capture the non-default components. We extract 

a common factor from the residuals by a PCA method again, and find that this common factor is highly 

correlated with the second PC with a 96.83% correlation. Both methods yield similar conclusions for this 

study. 
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that day. PCs are extracted from grouped CDSs spreads of various credit ratings and maturities
5
. 

We find that the first PC accounts for 90.82% of the total variation in the CDS spreads and the 

second PC explains an additional 5.06%. An OLS (ordinary least square) regression analysis 

indicates that the change of the first PC is well explained by the change of default variables 

implied by structural model of default: risk-free rate, yield spread, business cycle, jump 

magnitude and the square of risk-free rate, while the change of the second PC is barely related to 

these variables but can be explained by variables related to liquidity and counterparty risk,  

suggesting the rationale of representing the first and second PCs as the default and non-default 

state variables. Our non-parametric results show that the root mean squared error (RMSE) is 

21.58 bps when only the first PC is included in the model and decreases to 8.99 bps when the 

second PC is included. Furthermore, a bootstrap test strongly rejects the null hypothesis that the 

models with one and two PCs perform equally in CDS valuation. Lastly, we conduct an out-of-

sample analysis to relieve the concern of possible over-fitting caused by adding a variable. Our 

out-of-sample results indicate that a model with two PCs outperforms in all sample periods but 

the year of 2006. The improvement of adding the second PC becomes more pronounced after 

2007, the beginning of the recent financial crisis. Overall, both the in-sample and out-of-sample 

tests lead to the conclusion that adding a non-default factor into CDS valuation helps to better 

understand the dynamics of CDS spreads, and this benefit is larger for short-term CDSs and in a 

volatile market. The rising importance of non-default risk after the crisis is similar to the findings 

by studies on other assets, for instance, Gefang et al. (2011) model the spreads between the 

short-term London Interbank Offered Rate (Libor) and overnight index swap (OIS) and find in 

the financial crisis most major events are more linked to liquidity risk than credit risk. Cassola 

and Morana (2012) examine the Euro financial market and find supporting evidence that beyond 

credit risk, liquidity risk is relevant during the financial crisis. 

                                                           
5
 It is worth noting that our whole analysis is conducted from the viewpoint of a CDS portfolio manager 

whose daily work involves controlling and diversifying the CDS-specific risks and of a financial modeler 

who tries to determine the number of state factors in her CDS pricing equation. To that end, in this study 

we focus on the number of market state variables by classifying CDSs into 24 sub-groups and take the 

median of CDS spreads for each sub-group, in contrast to the analysis on individual CDS spreads as in 

Cont and Kan (2011). While it is widely known that individual CDS spreads are subject to idiosyncratic 

risks, CDS portfolios can average them out and allow us to focus on market factors. A similar group 

classification is done by Li and Zhang (2010) for option prices and by Bongaerts et al. (2011) for CDS 

contracts. 
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The rest of the paper is organized as follows: Section 2 describes the data. Section 3 

introduces the methodology of principal component analysis and non-parametric valuation. 

Empirical results are discussed. Section 4 concludes this study. 

 

2. Data: Senior Unsecured CDS 

We obtain weekly mid-quotes for USD-denominated senior unsecured CDSs with 1-, 2-, 3-, 5-, 

7-, and 10-year time to maturity for the period from January 2002 to November 2011. Weekly 

data is used to reduce the noise in daily data and to provide a larger sample size than monthly 

data. We include only those CDSs satisfying the following three screening criteria: first, the CDS 

must have at least one-year trading data; second, it must have quotes for all maturities on each 

observation date; and third, it must have a modified restructuring (MR) clause. The first criterion 

excludes any CDS that disappears soon after being listed or is issued recently, the second 

criterion chooses only those CDSs with enough liquidity, and the third criterion is applied 

because a restructuring clause can change the recovery rate in the event of a default and thus, 

various clauses may have differential effects on the CDS spread valuation method. The above 

screening returns 308,202 quotes issued by 913 reference entities. We classify CDSs within each 

maturity category according to their credit ratings
6
 into four groups: AA/AAA, A, BBB, and 

below BBB (BBB-). We then take the median
7
 of all CDS quotes in each group as its CDS 

spread on each observation date.  

Table 1 shows the average CDS spreads and their standard deviations for the four rating 

groups. Both the average and standard deviation (S.D.) of spreads are generally larger for CDSs 

with lower credit rating and longer time to maturity. For instance, the 1-year CDS spread for 

AA/AAA is 18.68 bps (S.D.=18.48 bps), whereas that for BBB- is 176.95 bps (S.D.=153.84 bps). 

The A-rated spread for 1-year maturity is 25.17 bps, whereas that for 10-year is 61.09 bps. 

Figure 1 visualizes the average CDS spreads for the four rating groups. The charts indicate clear 

paradigm shifts in the behavior of these spreads after June 2007. CDS spreads were stable before 

2007 but have been quite volatile since then, peaking around the middle of 2009 regardless of 

credit ratings. An additional observation is that the spreads of CDSs with different maturity dates 

tend to move together.              

                                                           
6
 We compute averaged rating for any entity with multiple rating records for the sample period. 

7
 Median instead of mean is used to reduce the impact of outlier. 
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3. Methodology and Empirical Results 

3.1 Principal Component Analysis 

In this section, we conduct the PCA on the aforementioned CDS datasets. The whole datasets are 

divided into 24 groups according to their credit rating and number of years to maturity. This 

classification guarantees enough data in our sample since not many CDSs have long enough 

common trading dates, and furthermore, the grouping averages out the CDS-specific risks and 

allows us to focus on market factors (Li and Zhang 2010, Bongaerts et al. 2011). A standard 

PCA is then conducted and the first four PCs are extracted using these 24 time series. PCA uses 

an orthogonal transformation to convert a set of correlated CDS spreads into a set of linearly 

uncorrelated PCs. The transformation is defined in such a way that the first PC explains the 

largest variance of the data; the second PC is orthogonal to the first PC and explains the second 

largest variance, and so on. As reported in Table 2, the first four PCs explain 90.82%, 5.06%, 

2.68%, and 0.77%, respectively, of the total variation in the 24 average CDS spreads. The 

eigenvalues of the first four PCs are 21.80, 1.21, 0.64, and 0.19, respectively. According to the 

simple stopping rule suggested by the Kaiser-Guttman method, PCs sufficient for data analysis 

are those with eigenvalues bigger than one, which implies that only the first two PCs warrant our 

attention. With this finding and the major motivation to investigate the roles of default and non-

default state variables in CDS valuation, we focus on the first two PCs in our subsequent analysis. 

Figure 2 plots the eigenvectors for the first two PCs. The coefficients for the first 

eigenvector are all positive and similar in magnitude, suggesting that the first PC captures the 

variation in the overall level of CDS spreads. The second eigenvector for short-term CDSs has 

negative or small positive coefficients, whereas that for long-term CDSs shows large positive 

coefficients, suggesting that the second PC captures the variation in the slope along the maturity 

dimension. 

   Figure 3 shows the time series plots of the first two PCs. Not surprisingly, the first PC 

exhibits a pattern similar to that of the average CDS spreads in Figure 1, which is consistent with 

the large percentage of the total variation it explains and its reflection of the overall level of CDS 

spreads. On the contrary, the second PC increases gradually with a less clear pattern. 

 

3.2 Regression Analysis on PCs 
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Given the importance of representing the default and non-default state variables with the first and 

the second PC, in this section we conduct OLS regression analyses to examine the economic 

meaning of the first two PCs. 

We first adopt the regression model suggested by Collin-Dufresne et al. (2001) and 

Ericsson et al. (2009)
8
, 

                              
     slope      ump                (1)                                       

where    is an intercept,    ,    ,       represents the change in PC, risk-free rate, and 

volatility, respectively, at t. The square of risk-free rate,   
  is included to capture the nonlinear 

relationship between default spreads and risk-free rates; slope
 

 represents the difference 

between the long-term (10-year) and short-term (2-year) risk-free rate in order to reflect the 

magnitude of the instantaneous short rate;       is the return of the S&P 500 to reflect the 

overall state of the economy;  ump
 
 is a proxy for jumps in market value to control for the 

effect of a jump on credit spread. Following Collin-Dufresne et al. (2001) and Ericsson et al. 

(2009), we approximate risk-free rate as the ten-year Treasury yield; volatility as the VIX index, 

a measure of the implied volatility of S&P 500 index option; jump as the slope of the smirk of 

implied volatilities   of European put options on the S&P 500 index, which reflects the 

probability of extreme moves. The slope measures the steepness of volatility smirk and is an 

indicator of jump magnitude of an asset. The larger the slope, the steeper the smirk and the 

higher probability of a  ump in an asset’s value. Define moneyness mi=  (
  

 
)  √  , where Ki is 

the strike price, S is the S&P 500 index value, Ti is the time to maturity of a European option i on 

date t. The slope of the smirk b for date t is then estimated via an ordinary linear regression 

 (  )         . 

Panel A of Table 3 reports the results of regression (1) for the first and second PC. The 

first PC is highly explained by those variables with 18.14% adjusted R
2
; all variables are 

significant except the VIX and yield spread. The signs of coefficient estimates are consistent 

with the common understanding of the determinants of default spreads: smaller risk-free rate and 

S&P 500 return, or larger volatility, yield spread and jump magnitude lead to a wider change of 

                                                           
8
 We omit the leverage ratio variable as an explanatory variable because it is at an individual CDS firm 

level while our regression analysis is at an aggregate level, which unlikely changes our results given the 

strong significance shown in Table 3. 
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default spread (first PC). On the contrary, these variables barely explain the second PC with only 

3.13% adjusted R
2
; the only two significant variables are yield spread and the S&P 500 return,; 

but the sign of S&P 500 return becomes less intuitive.  

We further investigate the explanatory power of non-default market variables on the two 

PCs. We follow Pu et al. (2010)’s argument about the role of liquidity and counterparty risk 

priced in CDS.  

                          
     slope      ump          

                                                    (2) 

where LiborRepo represents the spread between the 3-month Libor and Repo rate. Pu et al. (2010) 

use the LiborRepo to measure the aggregate counterparty risk as it describes the spread between 

secured and unsecured loan rates. DebtIssue is the total dollar volume of corporate debt issued in 

the fixed income market, its change reflects the new debt in the market and thus affects the 

liquidity of the financial market; MMMF is the total money market mutual fund assets, a variable 

whose changes capture the inflow and outflow of funds to the money market and is typically 

associated with the market liquidity situation; our final variable for liquidity is Gamma, a 

liquidity measure proposed by Bao et al. (2011),  

     (         ) 

where    is the CDS spread on date t. It measures the covariance between consecutive CDS 

spread changes
9
. We use positive covariance instead of the negative sign in Bao et al. (2011) for 

corporate bonds since, by definition, CDS spread is approximately the difference between bond 

yield and risk-free rate and its change is, therefore, negatively correlated with corporate bond 

price return. Higher   indicates stronger illiquidity. We first calculate   for each CDS and then 

use the cross-sectional median   as the aggregate   liquidity measure for the CDS market, 

analagous to Bao et al. (2011).  

We re-organize the data at a monthly frequency as only monthly DebtIssue and MMMF 

are available. Panel B of table 3 presents the results of regression (2). First, the estimates of those 

default-related variables on the first PC are largely consistent with the results in regression (1), 

                                                           
9
 Based on the model in Bao et al. (2011), an asset’s return    consists of two components         
   , where the first component    represents the fundamental value without any friction and follows a 

random walk, the second component    is a transitory term uncorrelated with    and represents the 

impact of illiquidity. The covariance    (         ) thus depends only on the transitory component and 

captures its magnitude. 
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suggesting the robustness of the above findings after controlling for additional variables; second, 

only one non-default factor, MMMF, is significant in explaining the first PC, a stark contrast to 

the estimates for the second PC, where LiborRepo, Gamma and MMMF are all significant, 

indicating the strong explanatory power of liquidity and counterparty risk for the second PC. 

In summary, Table 3 indicates that the first PC and the second PC represent fairly well 

the default and the non-default components of CDS yield.  

 

3.3 Non-parametric Estimation 

After extracting the PCs as state variables and examining their economic meanings, in this 

section we fit a non-parametric model with those extracted PCs. Let si,J,T be the spread of a CDS 

with T years to maturity issued by a reference entity i with credit rating J, the stochastic process 

of si,J,T is governed by a M vector of state variables x={x1, x2, ..., xM} following a Markov process, 

and the valuation function of the CDS spread can be formally expressed as s=f(x, J, T)
10

, where f 

is a linear or nonlinear function related to the payoff structure of the CDS. 

To avoid model misspecifications, we choose for the CDS valuation a non-parametric 

estimation method called local linear regression, which has been widely applied in the field of 

finance, including the valuation of the interest rate cap (Li & Zhao (2009)) and the pricing of 

S&P 500 options (Ait-Sahalia & Duarte (2003)，Li & Zhang (2010)). Let pk be the k
th

 extracted 

PC, and k={1, 2}. The CDS spread s is a function of (pk, J, T), the coefficients α and β and thus 

the estimator of s are estimated by minimizing the following local linear regression equation: 

∑ [     ∑   (       )
 
        (    )      (    )]

 
  

   

 ∏
 

  
 (

       

  
) 

   
 

  
 (

    

  
)
 

  
 (

    

  
)                  (3) 

where si is the observed CDS spread, N is the number of observations, G() is a kernel function, 

and h is the associated bandwidth for the kernel function, K=1 for the model with one PC and 

K=2 for the model with two PCs. It is well known that the choice of the kernel function has little 

effect on the estimation, whereas that of the bandwidth h determines the accuracy of the final 

outcome. Thus, we choose the widely used second-order Gaussian kernel 

                                                           
10

 The recovery rate measures the amount that a creditor can receive upon a default. In this paper, we 

assume an equal and constant recovery rate for all CDSs regardless of their credit ratings, as in Longstaff 

et al. (2005) and others. 
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 ( )  
 

√  
   

    

and h by the least squares cross-validation method (Li and Racine, 2004). 

We can then estimate the RMSE
11

 for the case k=1,2 and calculate   
    

     
 

       
  

following Li and Zhang (2010) to gauge the improvement in the performance of adding the 

second PC. If the two-PC model performs better than the one-PC model, RMSE2
2
<RMSE1

2
 and 

0<R2
2<

<1. Obviously, R2
2
 can be negative when RMSE2

2
>RMSE1

2
 and a negative value implies 

that the model with two PCs performs worse than that with one PC. 

Table 4 presents the results using the local linear regression equation (3). The RMSE is 

21.58 bps when the first PC is included in the model, but the addition of the second PC reduces 

the total RMSE to 8.99 bps. The 83% partial R
2
 suggests a significant performance improvement 

of the model with the addition of the second PC. Table 4 also reports the subtotal RMSE by the 

rating group and time to maturity. Across the rating groups, BBB- shows the largest RMSE, 

which is as expected given the large variation in CDS spreads for this group (Table 1).To be 

more specific, for the model with one PC, the value of RMSE for the BBB- group is 5.76 times 

higher than that for the AA/AAA group. The ratio increases to 7.09 after the second PC is priced 

in, suggesting that a non-default factor contributes more to the AA/AAA rated CDSs than to the 

BBB- rated CDSs. The ratio of RMSE of the two-PC model to that of the one-PC model for the 

1-year CDS is 33.54%, the lowest among maturities, indicating the relative insufficiency of 

explaining short-term CDS spread with a default factor alone. This finding is consistent with 

other studies on the fallacy of default models for short-term defaultable assets, for example, by 

Huang and Huang (2002).     

Figure 4 shows the time series of average residuals. The residuals are large in 2003 and 

2008-2010, two volatile periods caused by the accounting scandal and the financial crisis, and 

they decrease when the second PC is added. The decrease is especially prominent during the 

financial crisis, suggesting the rising importance of non-default components for CDS spreads.  

In sum, we find that the model with two PCs improves the performance of the model 

with one PC both cross-sectionally and over time. The first PC, representing default components, 

                                                           
11

 We also estimate the mean absolute percentage error (MAPE), a measure of accuracy specifically in 

trend estimation and obtain similar conclusions.  
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is unable to capture the full information of CDS spreads, while the role of non-default 

components, represented by the second PC, become more crucial for short-term CDSs and 

during the crisis. The conclusions are similar for both the RMSE and residual analysis. 

 

3.4 Performance Bootstrap Test   

In this section, we conduct a rigorous test by using a bootstrap procedure to investigate whether 

two models are the same in terms of their valuation performance. Specifically, we consider the 

following hypotheses: 

H0: s(p1, J, T)=s(p2, J, T) 

H1: s(p1, J, T)≠s(p2, J, T) 

The intuition behind the test is that if the unrestricted model with two PCs shows a larger 

improvement in valuation performance than the restricted model with one PC, then CDSs valued 

under these two models should be statistically different from each other, rejecting H0. By 

contrast, H0 cannot be rejected if one model performs only marginally better than the other model. 

We adopt a two-point wild bootstrap method (see Li & Wang (1998), Li & Zhang (2010)) 

for the test. Li and Wang (1998) demonstrate that this test has good finite-sample properties. We 

first estimate CDS spreads with the restricted model s(p1, J, T) and compute the residuals as 

        (      ), where    is the market-observed CDS spread. We then construct the two-

point wild bootstrap residuals as   ̂  (
  √ 

 
)   with probability   

  √ 

 √ 
, and as  ̂  (

  √ 

 
)   

with probability
12

    . The bootstrap samples are generated as  ̂    (      )    ̂. We then 

calculate new partial  ̂ 
  for each set of bootstrap samples. By comparing the original partial 

  
 with the  ̂ 

  from many sets of bootstrap samples, we can compute the p-value for the null 

hypothesis. For example, if   
   ̂ 

 for more than 90% of total sets of bootstrap samples, we 

can conclude that the p-value is 10% and reject the null hypothesis at the 10% significance level. 

The p-value in Table 4 reports the outcome of 100 sets of bootstrapped samples. The zero p-

value suggests a significant difference in performance between the model with one PC and the 

one with two PCs. This result is not surprising considering the sharp decreases in the RMSE and 

residuals.  

                                                           
12

This construction guarantees that the bootstrap residuals satisfy the following conditions:  [  ̂]  

   [  ̂
 ]    

 , and  [  ̂
 ]    

 , where E[.] is the expectation operator. 
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3.5 Out-of-sample Tests 

We have shown that two PCs help to understand the CDS spreads. A potential concern is that a 

model with multiple variables may suffer over-fitting and actually underperform a parsimonious 

model. To determine if this is the case, we conduct an out-of-sample analysis on the model with 

two PCs, against the model with one PC only. We test the performance of each year in our 

sample in order to capture better the capabilities of models under different market conditions. 

We first fit parameters by using all data other than the given year and then use the fitted 

parameters to value the CDS spreads in that year. For example, in order to compare model out-

of-sample performances for year 2003, we use data from year 2002, and 2004 to 2011 for local 

linear regression parameter estimation and compute the model spreads for year 2003 with the 

estimated parameter set. 

Out-of-sample RMSE is reported in Table 5 as a comparison criterion, together with the 

partial R
2
. Two important observations arise: first, the model with two PCs outperforms the 

model with one PC for all years except 2006, when the partial R
2
 becomes negative. The overall 

improvement is consistent with the in-sample results shown in Table 4. Second, the significance 

of the second PC becomes stronger after 2007, as with a larger partial R
2
 than previously. The 

last column makes the differences clearer by showing the ratio of RMSE2PC/RMSE1PC, a smaller 

percentage indicating a more dramatic decrease of RMSE, and hence a more important role 

played by the second PC. Not surprisingly, the percentage during the financial crisis is much 

smaller than other periods, consistent with the indispensable role the non-default factor plays in 

volatile periods as shown in section 3.3. 

  

4. Conclusion 

This paper investigates the question of whether non-default components are significant for CDS 

spreads valuation and in particular how the former explains the latter. We group the CDSs by 

credit ratings and maturities to average out idiosyncratic risk factors. To avoid the issue of model 

misspecification, we use a non-parametric estimation method to value CDSs. We proxy market 

state factors by the PCs extracted from historical CDS spreads. Our results show clearly and 

quantitatively that non-default factors, represented by the second PC, are significant in valuing 

CDSs. A model with default and non-default factors generally outperforms a model with only a 
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default factor, as indicated by a lower RMSE value. The improvement is more pronounced for 

short-term CDSs and during the financial crisis. The rigorous bootstrap test, together with the 

out-of-sample tests, provides further support for this conclusion. Overall, our results are not only 

revealing for CDS valuation, but also instructive to those CDS portfolio risk managers who need 

to implement default risk control on a regular basis. 
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Table 1: CDS spreads in the sample (in bps) 

Average 1Y 2Y 3Y 5Y 7Y 10Y 

AA/AAA 18.68 23.33 27.25 35.62 39.75 44.64 

A 25.17 30.83 36.76 47.94 53.83 61.09 

BBB 47.61 57.20 67.05 85.03 92.79 102.28 

BBB- 176.95 214.10 246.84 295.89 306.62 315.46 

Standard Deviation 
      

AA/AAA 18.48 20.98 22.44 25.79 25.72 25.83 

A 21.47 22.75 24.48 27.17 27.03 26.94 

BBB 41.52 42.99 44.77 47.11 45.72 44.64 

BBB- 153.84 158.83 161.73 163.83 155.29 146.30 

This table shows the average CDS spreads and standard deviations for four rating groups (with 1, 

2, 3, 5, 7, and 10 years to maturity). 
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Table 2: Variance explained by the first four PCs 

  PC1 PC2 PC3 PC4 

Variance explained 90.82% 5.06% 2.68% 0.77% 

Cumsum 90.82% 95.88% 98.57% 99.34% 

The first row is the percentage of the variance explained by each PC, and the second row is the 

cumulative percentage of the variance explained. 
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Table 3: Regression of the first two PCs on selected explanatory variables 

  PC1 PC2 

Panel A: Default 
  

Constant 0.0058 0.0073 

VIX 0.0125 0.0068 

10Y Treasury -2.7593*** -0.2365 

Yield Spread 0.4446 0.3568*** 

Yield Square 0.2559** 0.0178 

Jump 2.3540** 0.2091 

S&P 500 -0.0047*** 0.0017*** 

Adjusted R2 0.1814 0.0313 

Panel B: All 
  

Constant -0.0234 0.0353 

VIX 0.0285 -0.0029 

10Y Treasury -8.0075*** 0.3928 

Yield Spread 1.4463** 0.1186 

Yield Square 0.8071*** -0.0364 

Jump -1.2850 1.0538 

S&P 500 -0.0078*** 0.0012 

LiborRepo -0.2596 0.2970** 

Gamma -0.0207 0.0727* 

DebtIssue 0.0000 0.0000 

MMMF 0.0056** -0.0013** 

Adjusted R2 0.5591 0.1359 

Panel A of this table shows the results of the weekly OLS regression of the first two PCs on the 

following explanatory variables: VIX, the 10-year Treasury yield, the spread between the 10-

year and 2-year Treasury yield, the square of 10-year Treasury yield, the jump magnitude and the 

S&P 500 index return: 

                           
     slope      ump            .  

Adjusted R
2 

results for explanatory power are shown in the last row. Panel B presents the 

monthly regression results after additional variables are included: 

    
                      

     slope      ump                        

                                    ,  

where LiborRepo, Gamma, DebtIssue and MMMF represent the spread between 3-month Libor 

and Repo rate, Gamma liquidity measure, total dollar volume of corporate debt issued in the 

fixed income market, and fund in the money market, respectively. ***Significant at the 1% level. 

**Significant at the 5% level. *Significant at the 10% level. 
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Table 4: Valuation performance of the first two PCs based on local linear regression 

  Total     Decomposition                 

PC RMSE (bps) Partial R2 p-value AA/AAA A BBB BBB- 1Y 2Y 3Y 5Y 7Y 10Y 

1 21.58 
  

7.09 6.16 10.37 40.83 26.66 21.70 18.02 18.87 20.68 22.45 

2 8.99 0.83 0.00 2.44 2.54 3.35 17.30 8.94 9.32 8.61 8.43 8.98 9.58 

This table shows the results for valuation performance based on local linear regression. “Total” 

shows the statistics for the model with one or two PCs of the whole sample. The associated 

partial      
     

 

     
  is estimated to gauge the relative performance of adding the second PC 

and p-value is for the null hypothesis that the model with one PC and the model with two PCs 

generate equal CDS spreads. Decomposition reports the subtotal RMSE in bps by rating group 

and year to maturity.  
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Table 5: Out-of-sample performance of the first two PCs based on local linear regression 

Year RMSE (bps)   Partial R
2
 Percentage  

  PC1 PC2 
  

2002 36.72 13.02 0.87 0.35 

2003 23.58 14.35 0.63 0.61 

2004 9.34 5.80 0.61 0.62 

2005 6.59 6.58 0.00 1.00 

2006 3.18 3.27 -0.06 1.03 

2007 17.58 6.10 0.88 0.35 

2008 22.32 10.86 0.76 0.49 

2009 25.14 8.79 0.88 0.35 

2010 18.85 10.30 0.70 0.55 

2011 30.32 3.98 0.98 0.13 

Overall 21.66 9.10 0.82 0.42 

This table shows the results for out-of-sample performance based on local linear regression. For 

each year, model is first fitted using CDS spreads for the other nine years, forecast is then made 

for that year using the fitted model. RMSE in bps for the model with one or two PCs is shown 

for each year. The associated partial      
     

 

     
  is estimated to gauge the relative 

performance of adding the second PC. Percentage measures the ratio of RMSE of the model with 

two PCs to that of one PC.  
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Figure 1: Average CDS spreads for each rating group  

 

 
 

Average spreads for CDSs with 1, 2, 3, 5, 7, and 10 years to maturity for each rating group, plots 

from top left to bottom right are for AA/AAA, A, BBB, and BBB-, respectively. Y-axis is for 

CDS spreads. 
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Figure 2: Eigenvector results for the first two PCs  

 
 

This figure shows the eigenvector results for the eigenvectors of the first two PCs for CDSs with 

1, 2, 3, 5, 7, and 10 years to maturity and for rating AA/AAA, A, BBB and BBB-. Left is for the 

first PC and right is for the second PC. Z-axis is for eigenvector values. 
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Figure 3: Time series plots for the first four PCs 

 
 

Left is for the first PC and right is for the second PC. Y-axis is for PC values. 
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Figure 4: Residuals over Time (in bps) 

   
This figure plots average residuals from local linear regression over time. The performance for 

the model with one and two PCs is shown from the left to the right. Y-axis is for CDS spreads 

residuals. 
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