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Abstract 

 

We present a theoretical model of option-implied preferences with model uncertainty. An option-

implied risk aversion function with model uncertainty has a higher and a steeper level of risk aversion 

than an investor without model uncertainty. Based on the theoretical model, we try to extract 

empirical option-implied risk aversion functions with S&P 500 index options. Our empirical option-

implied risk aversion and option-implied uncertainty premium show decreasing and smirk pattern 

across wealth, which helps to explain the smirk pattern of implied volatility as well as the negative 

volatility spread. 
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1. Introduction 
 

Asset prices reflect investors’ risk preferences. Especially option prices with leveraged and different 

strike prices contain important risk preferences such as risk aversion, uncertainty aversion. Previous 

literatures mainly dealt with option-implied risk aversion, not with an aversive attitude of uncertainty. 

Jackwerth (2000) and Aϊt-Sahalia (2000) derive option-implied risk aversion functions. Bliss and 

Panigirtzoglou (2004) and Kang and Kim (2006) also estimate option-implied risk aversion functions 

with the time varying property of subjective density. Rosenberg and Engle (2002) suggest a counter 

cyclical risk aversion from S&P 500 option prices. Bakshi and Madan (2006) shows that the disparity 

between implied volatility and realized volatility is affected by an investors’ risk aversion. Unlike 

those literatures, we focus on the option-implied uncertainty preference disentangled from option-

implied risk aversion.  

 

An uncertainty aversion is differentiated from a risk aversion. A risk aversion measures an aversive 

attitude from known distribution, but uncertainty aversion reflects an aversive attitude from unknown 

distribution. Knight (1921) first mentioned the difference between risk and uncertainty, and Ellsberg 

(1961) introduces a paradox that an investor with unknown distribution prefers the choice of violating 

the expected utility hypothesis. Gilboa and Schmeidler (1989), Chen and Epstein (2002), Epstein and 

Wang (1994) incorporate a Knightian uncertainty in the economic model. Anderson, Hansen, and 

Sargent (2003), Hansen and Sargent (2001, 2008), Maenhout (2004, 2006) develop a robust control 

theory along the line of an uncertainty framework. These studies usually deal with a stock price, and a 

few studies mentioned derivatives assets such as futures and options. Lien and Wang (2003) examines 

the effect of Knightian uncertainty in the commodity futures market, and Liu, Pan, and Wang (2005) 

explains the volatility smirk pattern with model uncertainty. This paper attempts to examine the effect 

of a model uncertainty in the equity options market.             
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As the first contribution, we present a theoretical framework of option-implied risk aversion with a 

model uncertainty. We set up an equilibrium model for a robust agent who has both a reference model 

and an alternative worse-case model, and the robust agent worries about a pessimistic scenario. She 

wants to maximize her terminal wealth and simultaneously minimizes the difference between the 

reference model and the alternative model. By solving this min-max utility problem, we derive the 

option-implied risk aversion function with model uncertainty, which produces higher level of risk 

aversion than the traditional option-implied risk aversion without model uncertainty.    

 

The second contribution is that we empirically derive both the option-implied risk aversion 

functions with model uncertainty and the related option-implied uncertainty premium by using S&P 

500 index options. It had been generally known that option-implied risk aversion functions show a 

decreasing or U-shaped
4
. In addition, the implied volatility of equity option had been known with a 

smirk pattern as stated in Rubinstein (1994). Our empirical option-implied risk aversion with model 

uncertainty shows decreasing and smirk pattern, which helps to explain this decreasing property of 

option-implied risk preferences and related volatility smirk pattern especially in negative wealth 

regions. Furthermore, the empirical option-implied uncertainty premium in addition to the equity 

premium could give a tip of negative volatility risk premium in Bakshi and Kapadia (2003).   

 

  The remainder of this study is organized as follows. In section 2, we construct an equilibrium 

model for deriving an option-implied risk aversion with model uncertainty. In Section 3, by using 

Option Metrics Ivy Database, we empirically estimate the option-implied risk aversion functions with 

model uncertainty and offer the option-implied uncertainty premium. Finally, in Section 4, we give a 

conclusion.  

 

 

                                           
4 Ziegler (2007) tries to explain why the option-implied risk aversion functions can be a smile. Theoretically He gives three reasons of this 

smile pattern: (i) preference aggregation with and without stochastic volatility and jumps; (ii) mis-estimation of investor beliefs due to 

stochastic volatility and jumps, or Peso Problem; (iii) heterogeneous beliefs.  
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2. Model 
 

2.1 Problem without model uncertainty 

 

We consider a continuous time financial market that has one riskless asset and one risky asset in the 

finite time horizon [0, T]. A riskless asset follows the deterministic process with the drift r, where is 

risk-free rate. A risky asset follows a stochastic differential equation where μ and σ are the drift and 

volatility, where Bt is a standard Brownian motion on a probability space {Ω, F, P}, and {Ft: t∈[0,T]} 

is a filtration generated by the Brownian motion.  

 

t t t tdS S dt S dB    (1) 

 

Let us define the market price of risk, and the state-price density or stochastic discount factor, 

respectively as follows. 

 

21
,    exp

2
t t

r
H B r t


  



   
      

  
 (2) 

 

Without an intermediate consumption, the representative agent chooses an optimal dollar amount of 

stock investment, πt. The wealth process Wt evolves according to the following stochastic differential 

equation, which implies the investor’s budget constraint.   

 

    ,   0  t t t t tdW rW r dt dB W w         (3) 

 

We do not assume that the agent has a specific utility. Controlling the stock investment πt, the agent 

faces the following terminal wealth maximization problem.  

 

Problem 2.1 The agent maximizes her utility with a budget constraint 
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Using the martingale approach
5
, we can transform the differential equation of wealth dynamics into 

the form of expectations. After multiplying the derivative of discounted wealth process d(e
-rt

W) and 

taking Ito’s integral, the budget constraint can be changed to the expected sum of the discounted 

consumption process by the local martingale property. In equilibrium, the agent invests all her wealth 

in the stock, so the control variable is changed into a terminal wealth. 

 

Problem 2.2 The agent maximizes a utility with a budget constraint 
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 (5) 

 

2.2 Problem with model uncertainty 

 

Based on the model uncertainty framework
6
, we derive the investor’s risk aversion function under 

model uncertainty. A robust agent, who lives in the model uncertainty world, has both a reference 

model and a worst-case alternative model. A worst-case alternative model is assumed to have a 

distorted drift of a reference wealth dynamics.  
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5 See Cox and Huang (1989) and Karatzas, Lehoczky and Shreve (1987) 
6 Anderson, Hansen, and Sargent (2003) and Hansen and Sargent (2001, 2008) 
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Given a maximization problem, a robust agent wants to minimize the relative entropy
7
, which is 

measured as the distance between the reference model and the worst-case alternative model. 

Controlling the arbitrary function h(Wt), a robust agent tries to minimize the relative entropy in the 

following min-max utility problem. The inverse of the coefficient of relative entropy R(Q) represents 

an aversive attitude of pessimistic events. If the parameter ψ goes to infinity, the robust agent has 

more adverse distortions h(Wt) in the drift of wealth dynamics. This implies that the agent do not 

believe reference wealth dynamics. In contrast, as the parameter ψ approaches to zero, the agent has 

zero distortions, which means that the agent never fears a worst case scenario. So, the case where ψ=0 

is identical to problem 2.1.  

 

Problem 2.3 The robust agent faces a min-max problem with a budget constraint 
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 (7) 

 

Similar to problem 2.2, we replace the differential form of wealth dynamics with the expected sum 

of the discounted consumption process. Since the portfolio weight equals the level of wealth in 

equilibrium, we set πt. equal to WT, which gives the following problem.  

 

Problem 2.4 The robust agent maximizes her utility with a budget constraint 
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(8) 

                                           
7 Relative entropy R(Q) is defined by the expectation of log likelihood of Randon-Nikodym derivative. 
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2.3 Solution 

 

To obtain the optimal solution for problem 2.4, let us define the following Lagrangian function L, 

where is a Lagrangian multiplier. 
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 (9) 

 

The first order condition implies that the uncertainty aversion parameter ψ is negatively related to 

the distortion of drift h. This relationship gives two implications. First, as the uncertainty aversion 

parameter ψ increases, the agent faces more negatively distorted wealth dynamics with more fear. 

Second, when the stochastic discount factor is higher, the more negative distortions the agent has. In 

the bad economy, since the aversive attitude about pessimistic events and stochastic discount factor is 

higher in general, it seems reasonable that a robust agent is more likely to have negative returns. 

 

Next, by substituting the distorted process h into the Lagrangian function and taking a first order 

derivative with respect to wealth WT, we derive the marginal utility which is composed of linear 

stochastic discount factor and its quadratic term. If the model uncertainty parameter ψ goes to zero, 

the marginal utility is equal to the linear coefficient of the stochastic discount factor, which is a 

conventional form without model uncertainty. As the uncertainty parameter increases, that is as the 

agent more fears the pessimistic scenario, the marginal utility increases. Especially additional increase 

of marginal utility is affected by the quadratic term of both the level of pricing kernel HT and the 

volatility of stock price σ. 
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With second derivative over first derivative with respect to wealth in the equation (9), we derive the 

investor’s absolute risk aversion (ARA) by eliminating the shadow price λ. Since the stochastic 

discount factor is calculated as the ratio of the risk-neutral probability Q(W) to the subjective 

probability P(W), we finally derive the main proposition about the option-implied absolute risk 

aversion under model uncertainty.      

  

Proposition 2.1 The absolute risk aversion (ARA) under model uncertainty is 
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 (10) 

 

The first implication of proposition 2.1 is that absolute risk aversion with model uncertainty 

(ARAunc) is higher than that with model uncertainty (ARA0). As the model uncertainty parameter ψ 

increases, ARAunc also increases. In particular, when the parameter ψ is equal to zero, the absolute risk 

aversion is identical to the case of Jackwerth (2000) and Ait-Sahalia (2000). If the parameter ψ 

approaches to infinite, ARAunc converges two times of ARA0. Likewise, a model uncertainty about the 

pessimistic scenario could bring about more risk aversive preferences than the case with only a 

reference model. 

 

The second implication is that the absolute risk aversion induced by option-implied uncertainty is 

counter-cyclical. Since the increments in absolute risk aversion is proportional to the quadratic level 

of pricing kernel, the increments of absolute risk aversion enlarges when the economy is bad. On the 

contrary, when the economy is good, the pricing kernel decreases. So, the level of absolute risk 

aversion in good state is less than the absolute risk aversion in bad state. This decreasing option-

implied uncertainty premium across wealth can be applied to account for the smirk pattern of option-
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implied volatility. Since the model uncertainty parameter ψ interacts with the power term of the 

stochastic discount factor, the robust agent has a highly skewed absolute risk aversion function in the 

negative wealth region.  

 

To investigate the shape of option implied risk aversion functions with model uncertainty, we 

require the estimated pricing kernel and the model uncertainty parameter. We assume that the pricing 

kernel is the following Chebyshev polynomial function suggested in Rosenberg and Engle (2002). 

They state that the Chebyshev polynomial specification more effectively estimates empirical pricing 

kernels than the power specification. Figure 1 shows that the pricing kernel with is negatively sloped 

across wealth. As the wealth decreases, the pricing kernel becomes more negatively skewed.   
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 (11) 

 

[Figure 1 about here] 

 

Based on the estimated pricing kernel, we numerically derive the option-implied risk aversion 

functions of proposition 2.1 when the model uncertainty parameter ψ is 0, 1, 5, and 100. Figure 2 

demonstrates that the absolute risk aversion functions decrease across wealth, where the model 

uncertainty parameter ψ plays a role in making the functional shape steep. As the model uncertainty 

parameter increases, which implies that the agent more faces pessimistic scenario, the marginal value 

of option-implied risk aversion functions becomes higher.  

 

[Figure 2 about here] 
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2.4 Option-Implied Uncertainty Aversion 

 

Next, we suggest a method to estimate a reasonable level of model uncertainty premium separated 

from a general equity premium by using the detection-error probabilities developed by Anderson, 

Hansen, and Sargent (2003) and Hansen and Sargent (2008). The detection-error probability is defined 

as the equally weighted sum of two mistake probabilities pA and pB, where pA is the probability of 

mistakenly choosing the worst-case model when the reference model holds, and the pB is the 

probability of mistakenly choosing the reference model when the worst-case alternative model holds.  

 

   
1 1

Pr 0 Pr 0
2 2

, = log   

p A B

where likelihood ratio

  



   
 (12) 

 

When the reference model and the worst-case alternative model both follow a geometric Brownian 

motion, the detection error probability can be calculated by the difference of the equity premium of 

the two models
8
. We define the model uncertainty premium as the difference between the equity 

premium without model uncertainty and the pessimistic equity premium of the robust investor. In 

equilibrium, since the optimal investment in risky assets is equal to the total remaining wealth, the 

robust agent’s equity premium (=EPunc) is ARAunc∙σ
2
 and the equity premium without model 

uncertainty (=EP0) is ARA∙σ
2 
under the assumption of CRRA utility. The model uncertainty premium 

measured by the distance between two models is affected by model uncertainty parameter ψ as well as 

a traditional absolute risk aversion.    

 

By substituting the absolute risk aversion for density functions P(W), Q(W) of proposition 2.1, we 

derive the following option-implied detection-error probability, which is affected by the model 

uncertainty parameter ψ, the subjective density P(W), and the risk-neutral density Q(W). The 

detection-error probability is getting lower when the model uncertainty parameter ψ increases. This 

                                           

8 See Maenhout (2004) 
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implies that as the robust agent more worries about the worst-case pessimistic scenario, she easily 

distinguishes which model holds between reference model and the alternative worst-case model.  
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(13) 

 

Figure 3 plots the model uncertainty premium when the pricing kernel takes the form of equation 

(11) and the model uncertainty parameter ψ is 1, 5, and 100. As stated in the equation (13), the model 

uncertainty premium increases as the model uncertainty parameter ψ is higher. When the parameter ψ 

is 100 at 85% wealth level, the model uncertainty premium is about 18% that is as twice as the case of 

ψ=1. Interestingly, the model uncertainty premium enlarges as the level of wealth decreases. This 

decreasing property of option-implied uncertainty premium looks similar to the smirk pattern of 

option-implied volatility. The higher implied volatility at lower strike prices could be attributed to 

require higher uncertainty premium at negative wealth regions.    

 

[Figure 3 about here] 

 

 

3. Empirical Analysis  
 

With traded option database, we suggest both empirical option-implied risk aversion functions and 

plausible empirical option-implied uncertainty premium based on the proposition 2.1 and equation 

(13). As shown in proposition 2.1, the robust agent’s absolute risk aversion is determined by 

subjective probability, risk-neutral probability, and the model uncertainty parameter. After estimating 
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subjective probability and risk-neutral probability, we extract the empirical option-implied risk 

aversion functions and the empirical option-implied uncertainty premium.    

 

We use S&P 500 index options from the OptionMetrics Ivy Database from July 1, 1996 through 

September 30, 2008. The OptionMetrics Ivy Database has the best bid and ask price of closing day 

across different strike prices. We calculate the mid-price between bid and ask price, and we choose 

options series with maturities closest to one month. We do not include options that are not traded daily 

or deep OTM options with an absolute value of delta of less than 0.01. Also, we eliminate data that 

violate the option arbitrage conditions
9
. As an underlying asset, we calculate a daily future-based 

index return from the S&P 500 index in the OptionMetrics Ivy Database. For the interest rates, we use 

three-month Euro-dollar LIBOR rates in the OptionMetrics Ivy Database.   

 

For estimating subjective density, we use the following GJR-GARCH (1,1) model which is 

developed in Glosten et al. (1993). The GJR-GARCH model is characterized by capturing that the 

second moment is negative correlated with an underlying return. First, we estimate GJR-GARCH (1,1) 

parameters of table 1 by maximizing the log likelihood of S&P 500 returns. Next, we calculate the 

one month subjective density of S&P 500 index after 200,000 times’ monte-carlo simulations of 

estimated GJR-GARCH (1,1) with a four-year standardized innovation(εt/σt) every month. By 

applying a Gaussian kernel density
10

 to the continuous function, we finally obtain the average of the 

estimated subjective density.  
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 (14) 

                                           

9                                    , where C is call option’s price, P is put option’s price, K is strike Price, T is yearly 

based time to maturity, S is underlying asset, r is risk-free rate, and DT is sum of discounted daily dividend during time T.  
10 The bandwidth is equal to 

   σ

  
 , where σ is the standard deviation of returns, and N is the number of observations.  
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[Table 1 about here] 

 

Figure 4 shows the average of estimated subjective densities compared to the average of historical 

one month densities from July, 1996 through September, 2008. The GJR-GARCH(1,1) based 

subjective density is more concentrated around the average return and negatively skewed than the 

actual historical density.  

 

[Figure 4 about here] 

 

Next, we extract risk-neutral densities with a formula of Breeden and Litzenberger (1978), which 

states that the discounted risk-neutral density is equal to the second derivative of call option prices 

with respect to the option strike prices K as follows.  

 

 
 2

2

rT
C K

e q K
K







 (15) 

 

We use a Shimko (1993)’s method of smoothing implied volatility in the framework of non-

parametric approach. Shimko (1993) suggests an estimation methodology of implied volatility surface 

with respect to the strike price by assuming that the implied volatility is a quadratic function of strike 

price. Similarly, applying ordinary least squares, we estimate implied volatility surfaces of observed 

call options with one month maturity every month from July, 1996 through September, 2008. The 

following graph shows the average of estimated implied volatility for every month, which looks 

similar to the smirk pattern stated in Rubinstein (1994). 

 

[Figure 5 about here] 
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After substituting estimated implied volatility into the Black-Sholes formula, we derive the 

approximated risk-neutral density based on the equation (14). The L.H.S’s risk-neutral density can be 

simply obtained by applying the finite difference method of R.H.S. The following graph shows the 

option-implied risk-neutral density compared to the estimated subjective density with GJR-GARCH 

(1, 1). The more convex an implied volatility surface across strike prices, the higher fat tail an implied 

risk-neutral density has. Negatively sloped implied volatility surface brings about negative skewness 

in risk-neutral density. As known in Girsanov theorem, the risk-neutral density is negatively distorted 

by risk premiums compared to the subjective density.  

 

[Figure 6 about here] 

 

With empirically estimated subjective density and risk-neutral density, we extract an empirical 

option-implied risk aversion function that is derived in proposition 2.1. Figure 7 illustrates that the 

option-implied risk aversion function decreases across wealth in general and slightly increases in the 

positive region of wealth. As the model uncertainty parameter increases, the option-implied risk 

aversion becomes steeper. Especially, in the negative wealth region, the uncertainty aversive 

preference about a pessimistic scenario has a greater influence on the risk aversion functions. The 

more a robust agent considers the worst-case scenario, the higher level of option-implied risk aversion. 

But the increment of option-implied risk aversion induced by model uncertainty is limited by two 

times of traditional option-implied risk aversion without model uncertainty.  

 

[Figure 7 about here] 

 

Besides the assumption of model uncertainty parameter ξ, if we know the reasonable value
11

 of 

detection-error probability for the difference between the reference model and the alternative model, it 

                                           
11 Hansen and Sargent (2008) recommend the 10% level of detection-error probability as a reasonable value to distinguish the reference 

model and the alternative model. 
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is plausible to estimate the model uncertainty parameter ξ. Hansen and Sargent (2008) recommend the 

10% level of detection-error probability as a reasonable value to distinguish two models. In the range 

of wealth level between 0.9 and 1.1, we attempt to choose the parameter by minimizing the following 

mean-square error of the detection-error probability stated in equation (12).  
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Table 2 reports that the model uncertainty parameter ξ is estimated 2.06 with 10% detection-error 

probability. As the detection-error probability increases, the estimated model uncertainty parameter 

decreases. For example, considering 20% detection-error probability, the model uncertainty parameter 

ξ becomes 1.24. This implies that it is easier for the robust agent to distinguish the reference model 

and the worst case alternative model when the model uncertainty preference increases.  

 

With empirically estimated model uncertainty parameter ξ, we plot the empirical option-implied 

uncertainty premium (=EPunc - EP0). Figure 8 illustrates that the empirical option-implied uncertainty 

premium shows steeper pattern across wealth especially negative return of wealth. Our empirical 

option-implied uncertainty premium looks very similar to the shape of volatility spread, which is 

defined by the difference between the implied volatility and historical volatility. This phenomenon of 

negative volatility spread could be explained by the option-implied uncertainty premium regarding the 

aversive attitude about a pessimistic scenario. 

  

[Figure 8 about here] 
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4. Conclusion 

 

 
We construct a simple equilibrium model for deriving option-implied preferences with model 

uncertainty that is differentiated from the aversive attitude about tail risk of known distribution. Our 

theoretical model shows that a robust agent with model uncertainty has higher absolute risk aversion 

than an agent without model uncertainty. As the robust agent fears more pessimistic scenario, the 

agent’s option-implied risk aversion function is getting higher. The level of option-implied risk 

aversion with model uncertainty can be twice as much as that without model uncertainty. 

 

With empirically estimated subjective density and risk-neutral density of S&P 500 index, we 

suggest empirically estimated option-implied risk aversion functions and related option-implied 

uncertainty premium. Empirical analysis shows that higher level of model uncertainty, a larger option-

implied risk aversion and a steeper shape are derived. Also, empirically estimated option-implied 

uncertainty premium shows a steeper smirk pattern of negative wealth regions, which is helpful for 

explaining the smirk pattern of option-implied volatility surface and negative volatility spread 

between an implied volatility and a historical volatility.  
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Figure 1. Pricing kernel with Chebyshev polynomial function 

 
Figure 1 graphs the empirical pricing kernel when it takes a form of Chebyshev 

polynomial function of equation (11). This empirical pricing kernel decreases across 

the level of wealth, and the slope is steeper for negative regions of wealth than the 

positive regions of wealth. It ranges between 0.96 and 1.05 for the wealth level of 

[0.85, 1.1]. 
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Figure 2. Empirical option-implied risk aversion function 

with Chebyshev polynomial function  

 
Figure 2 shows the option-implied risk aversion functions with model uncertainty 

derived in the proposition 2.1. Assuming the pricing kernel follows a Chebyshev 

polynomial function of equation (11), we estimate the option-implied risk aversion 

functions when the model uncertainty parameter ξ is 0, 1, 5, and 100. As the wealth 

level increases, the level of option-implied risk aversion is higher in the range of [0, 

10]. When the model uncertainty parameter is higher, the option-implied risk aversion 

with model uncertainty also increases. The increment induced by model uncertainty is 

limited as twice as the option-implied risk aversion without model uncertainty.  
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Figure 3. Option-implied uncertainty premium 

with Chebyshev polynomial function 

 
Figure 3 graphs the option-implied uncertainty premium which is defined by the 

difference between an equity premium with model uncertainty and an equity premium 

without model uncertainty. When the pricing kernel follows a Chebyshev polynomial 

function of equation (11), we numerically calculate option-implied uncertainty 

premium. This model uncertainty premium decreases and shows a smirk pattern across 

wealth. As the model uncertainty parameter ξ increases, both the level of model 

uncertainty premium and the negative slope are getting higher. The average value of 

the option-implied uncertainty premium is 4.27%, 6.73%, and 12.39% respectively 

when ξ is 1, 5, and 100.  
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Figure 4. Empirical subjective density 

 
Figure 4 graphs the subjective density based on the GJR-GARCH (1, 1) model, which 

is expressed in a bold line. After estimating GJR-GARCH (1, 1) parameters of equation 

(14), we estimate subjective densities of S&P 500 index returns with 200,000 Monte 

Carlo simulations over four year empirical innovation density. Then we apply a 

Gaussian kernel with bandwidth 
    

  
  and use the average of estimated subjective 

densities. For comparison, we give a dotted line of the average of simple historical 

densities. The GJR-GARCH (1, 1) based subjective density is slightly negative 

distorted than the historical density.  
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Figure 5. Implied volatility of S&P 500 index options 

 

 
Figure 5 shows the smirk pattern of implied volatility of S&P 500 index options across 

option moneyness (=strike/spot). We use S&P 500 index options of OptionMetrics Ivy 

Database from July 1996, through September, 2008. Assuming that the implied 

volatility is a quadratic function of strike prices such that             
 , we 

estimate          every month. All samples show statistically in the 95% confidence 

level. Then we average monthly estimated implied volatility of S&P index options, 

which ranges between 0.17 and 0.29. 
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Figure 6. Empirical risk-neutral density 

 

 
Figure 6 graphs the risk-neutral density extracted from S&P 500 index options. Based 

on the equation (15), we approximate the risk-neutral density with finite difference 

method such that          
                     

     
 . We estimate risk-neutral 

densities every month and average risk-neutral densities from July, 1996 through 

September, 2008. Compared to the GJR-GARCH (1, 1) based subjective density, the 

risk-neutral density is little left-skewed. 
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Figure 7. Empirical option-implied risk aversion functions  

with model uncertainty 

 
Figure 7 graphs the empirical option-implied risk aversion functions with estimated 

subjective density and risk-neutral density. Similar to the numerical shape of Figure 2, 

the empirical option-implied risk aversion decreases across wealth in general and 

slightly increases in the positive wealth regions, which ranges -10 and 25. As the 

model uncertainty parameter increases, the empirical option-implied risk aversion and 

the slope becomes higher. 
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Figure 8. Empirical option-implied uncertainty premium 

 

 
Figure 8 graphs the empirical option-implied uncertainty premium when the detection-

error probabilities are 10%, 20%, and 30% respectively. The lower-detection error 

probability, which implies that the agent more fears about a pessimistic scenario, the 

empirical option-implied uncertainty premium becomes steeper. At 0.9’s wealth level, 

estimated uncertainty premium are 2%, 4%, and 6% when the detection-error 

probabilities are 10%, 20%, and 30% respectively. 
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Table 1. GJR-GARCH (1, 1) and GARCH (1, 1) estimation 

 
Table 1 reports the estimation result of GJR-GARCH (1, 1) and GARCH (1, 1) model 

stated in equation (14). We use daily based S&P 500 index returns from Jan 1, 1970 to 

Sep 30, 2008. All coefficients are statistically significant, and the log-likelihood of 

GJR-GARCH (1, 1) is higher than that of GARCH (1, 1). To extract subjective density, 

we use GJR-GARCH (1, 1) model instead of GARCH (1, 1) model.   

 

GJR-GARCH (1, 1) 

parameter coefficient 
standard 

errors 
t-statistics 

α0 1.0991E-06 8.0180E-05 3.31 

α1 0.0205 0.0034 6.10 

β 0.9277 0.0027 339.24 

δ 0.0827 0.0039 21.07 

Log-
likelihood 

32523.09 
 

 

 

GARCH (1, 1) 

parameter coefficient 
standard 

errors 
t-statistics 

α0 1.0991E-06 8.0180E-05 3.31 

α1 0.0205 0.0034 6.10 

β 0.9277 0.0027 339.24 

Log-

likelihood 
32523.09 
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Table 2. Estimation of option-implied model uncertainty parameter 

 
Table 2 reports the estimation result of option-implied uncertainty parameter ξ based 

on equation (16). As input variables of equation (16), we use the average of subjective 

density from GJR-GARCH (1, 1) and the average of risk-neutral density from equation 

(15). For the underlying asset’s volatility, we use annualized historical volatility σ = 

0.2086 during sample periods. Estimation results show that the model uncertainty 

parameter which represents for the aversive attitude about the worst-case scenario 

increases as the detection-error probability decreases.  

 

Option-implied model uncertainty parameter 
Detection-error 

probability 
ξ 

10% 2.0619 

20% 1.2390 

30% 0.6676 

 

 


