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Abstract 

 In this paper, we develop a novel model to forecast the volatility of S&P 500 

futures returns by considering measures of limits to arbitrage.  When arbitrageurs face 

constraints on their trading strategies, option prices can become disconnected from 

fundamentals, resulting in a premium that reflects the limits to arbitrage. The 

corresponding market based implied volatility may therefore also contain these 

distortions.   We argue that limits to arbitrage can be systematic or idiosyncratic and we 

search for proxies to capture these effects.  Our contributions are both conceptual and 

empirical. Conceptually, the distinction between systematic and idiosyncratic effects of 

limits to arbitrage can shed light on relative asset prices as exemplified by this particular 

study. Empirically, our volatility forecasting model explains 71% of the variation in 

realized volatility, a substantial improvement over a naive forecast based only on lagged 

realized volatility, which produces an R
2
 of 53%.  
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Forecasting Volatility in the Presence of Limits to Arbitrage 

1. Introduction 

Forecasting volatility is an essential task for many financial market participants.  

The level and evolution of volatility directly impact hedge funds, that specialize in 

volatility trading strategies, financial services firms, that provide insurance against 

volatility, regulators, who seek to stabilize markets, and risk managers, who measure and 

manage a portfolio’s value-at-risk (VAR). To the extent that realized and anticipated 

volatility affect current and future asset prices, anyone who manages money can benefit 

from a better forecast of volatility.   

Volatility is an essential parameter used to price option contracts.  Alternatively, 

given a set of options with known strike prices and expiration dates, and given the risk-

free rate of interest, the observed market prices of options can be used to back out an 

estimate of the volatility expected to prevail over the life of the option, i.e., the implied 

volatility.  Assuming frictionless markets, and assuming the underlying stock price 

process is characterized by geometric Brownian motion, the implied volatility is an 

unbiased and efficient estimate of the volatility that will prevail over the life of the option 

because potential arbitrageurs face no impediments to capitalizing on any arbitrage 

opportunities that arise and as a result will act to keep prices in line.   

However, in the presence of transaction costs, financing constraints, and other 

limits to arbitrage, option prices can become distorted, since potential arbitrageurs will 

scale back their activities due to a lack of capital, significant transaction costs, or a 

perception that the risk-reward trade-off is not favorable.  When option prices are 

distorted, the implied volatility from an option pricing model is also distorted, imparting 
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noise and/or bias into volatility forecasts.  In fact, prior studies have consistently shown 

that implied volatility is a biased forecast of future realized volatility (see Christensen 

and Prabhala, 1998; Jiang and Tian, 2005; and Poteshman, 2000, among others). In this 

paper, we look to extract the premium from option prices that reflects limits to arbitrage, 

with the intent of improving the forecasting power of implied volatility. 

Recently, the finance literature has focused a great deal of attention on the 

concept of liquidity – the ease and speed with which investors can enter and exit 

positions at reasonable prices.  A lack of liquidity can lead to temporary price 

discrepancies between similar baskets of assets. Arbitrageurs seek to capitalize on such 

discrepancies by executing convergence trades, providing liquidity where it is lacking 

and profiting as prices correct.  At Salomon Brothers, John Merriwether mastered the art 

of convergence trading, focusing on simple pricing discrepancies between on-the-run and 

off-the-run Treasury securities.  Other hedge funds or proprietary trading desks seek to 

take advantage of more complex pricing anomalies, such as those between closed-end 

funds and the assets that they invest in. 

Garleanu, Pedersen, and Poteshman (2009) show that market-makers (and by 

extension, arbitrageurs) who usually maintain net short positions in equity index options, 

can profit handsomely by selling insurance to end-users who are hedging portfolio risks.    

When end-user demand for insurance is high, option writers require greater compensation 

as providers of liquidity.  As a result, option prices rise, which in turn, begets an increase 

in implied volatility.  Clearly, asset prices, liquidity and limits to arbitrage are very much 

inter-connected. 
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Brunnermeier and Pedersen (2009) make the crucial observation that arbitrageurs 

typically invest outside capital, relying on so-called funding liquidity – the ease and speed 

with which traders/arbitrageurs can replace withdrawn capital.  Arbitrageurs may face 

different limits to arbitrage in different markets, but all arbitrageurs are exposed to the 

possibility of funding liquidity shocks.  A sudden drop in funding liquidity can turn 

liquidity providers (i.e., arbitrageurs) into liquidity consumers, with adverse 

consequences for the markets in which the arbitrageurs operate.  Hence, funding liquidity 

and market liquidity are inextricably linked.  Brunnermeier and Pedersen (2009) develop 

a model and show how funding liquidity and market liquidity can work in tandem to 

create illiquidity spirals.  Some recent papers confirm that funding liquidity and market 

liquidity are connected.
1
 

Hu, Pan, and Wang (2012), hereafter HPW, propose a market-wide liquidity 

measure based on price deviations in the U.S. Treasury market, the world’s most liquid 

market and a market whose securities most closely approximate risk-free securities.    

When there is ample arbitrage capital available, all Treasury securities are anchored to 

the zero-coupon yield curve. However, when arbitrage capital is in short supply, very-

liquid on-the-run Treasury securities trade at a premium, relative to their off-the-run 

breathren.  HPW average these Treasury security price differences across a wide range of 

maturities to produce a measure of market-wide liquidity.  When the price disparities 

between on-the-run and off-the-run Treasury securities are high, funding capital must be 

                                                 
1
 See, for example, Mitchell and Pulvino (2012), Brunnermeier and Pedersen (2009), and Mitchell, 

Petersen, and Pulvino (2007). Related papers include Adrian and Shin (2010), Gorton and Metrick (2010), 

and Duffie (2010).  Also, see Deuskar (2006) for a model wherein volatility begets illiquidity, leading to 

more volatility.   
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in short-supply, because the obvious set of convergence trades required by arbitrageurs to 

correct relative mispricing in the Treasury market are not being made. 

Similarly, when a closed-end fund (CEF) trades at a discount or premium to its 

net asset value (NAV), arbitrageurs should step in to force a convergence in prices.  That 

they do not suggests that there are limits to arbitrage, either in the form of unavailable 

capital, or capital that is very expensive. Pontiff (1996) argues that CEF arbitrage is 

costly.  Not only are arbitrageurs exposed to the risk that outside capital will flee, but 

there remain significant, unhedgeable risks (e.g., basis risk) due to the fact that CEF 

portfolios are observable only at a quarterly frequency with a 45-day delay.  Moreover, 

trading costs (e.g., taking short positions in CEF shares or their portfolio holdings) can be 

prohibitive, especially for CEFs that invest in illiquid assets (see Nohel, Todd, and Wang, 

2013). 

Pontiff (1996) shows that CEF deviations from NAV are an increasing function of 

arbitrage costs.   In the presence of high funding or transaction costs, arbitrageurs will 

require larger rewards for their activities, resulting in ever larger deviations from 

fundamental value. We argue that in stressed markets, characterized by high volatility, 

the costs of arbitrage increase and we should expect larger deviations from fundamental 

value.  We acknowledge two distinct types of costs for arbitrageurs:  costs resulting from 

systematic liquidity constraints or liquidity shocks; and costs associated with 

idiosyncratic illiquidity or event risks specific to a particular asset or portfolio (such as 

changes in margin requirements, restrictions on shorting, costs related to basis risk, 

uncertainty about portfolio holdings, or unhedgeable risks, such as higher moments of 

risk due to market incompleteness). 
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One might think that S&P 500 index option traders need not worry about 

idiosyncratic liquidity because the S&P 500 is a diversified basket and there is no basis 

risk between index options and S&P 500 futures.  However, the largest arbitrageurs (e.g., 

hedge funds and money-center banks) operate in several asset classes/markets, and an 

idiosyncratic shock in one market can quickly reverberate into other markets.  Hence, 

both systematic and idiosyncratic liquidity are likely to converge during a financial 

crisis.
2
  Moreover, arbitrage trades that aren’t unwound intra-day are exposed to higher 

moments of risk, related to stochastic volatility. 

Our conjecture is that when arbitrage capital is in short supply, end-user demand 

for index options is high, resulting in over-priced options (commensurately overstated 

implied volatilities) and an upwardly biased and inefficient forecast of future realized 

volatility. We construct an index that measures the aggregate mispricing among equity 

closed-end funds.  Whereas the noise measure of HPW captures systematic liquidity 

constraints, we argue that our measure captures asset-specific illiquidity, such as event 

risks, basis risks, and unhedgeable risks, in addition to the risk of systematic liquidity 

shocks. 

We construct a dataset of S&P 500 futures and futures options spanning the 

period 1997 - 2008 to test our volatility forecasting model.  We use futures prices in 5-

minute intervals to construct a realized volatility series.  We sample end-of-day option 

prices each month, focusing on next-to-expire contracts (with just under four weeks until 

                                                 
2
 Mitchell and Pulvino (2012) show that during the recent financial crisis, a reduction in lending by prime 

brokers created tremendous opportunities for hedge funds engaging in convertible arbitrage and credit 

arbitrage (CDS versus bonds).  Such opportunities persisted for months, suggesting that arbitrage capital 

was in short supply.  Moreover, contemporaneous and subsequent hedge fund de-leveraging had a lingering 

impact on merger spreads and CEF discounts, since the shares underlying merger and CEF arbitrages were 

more liquid than convertible bonds or CDS, making them prime “sell” candidates for funds that were 

desperate to raise capital.  We might expect a similar effect in the market for S&P 500 futures, the asset 

underlying any convergence trade involving options on the S&P 500 futures.   
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expiration).  We construct an index measuring the absolute deviations of domestic equity 

CEFs from their NAVs.  We use absolute deviations instead of discounts because CEFs 

that trade at premiums are similarly mispriced, and we don’t want the negative 

“discounts” on premium funds to net out the discounts on discounted CEFs.  We estimate 

regressions and assess the ability of our equity CEF mispricing index and the systematic 

liquidity measure of HPW to improve forecasts of future realized volatility. 

We find that lagged values of implied volatility (either Black-Scholes or model-

free measures) are statistically significant in forecasts of future volatility, with the Black-

Scholes measure performing slightly better than the model-free implied volatility.  We 

find that lagged measures of market-wide liquidity and closed-end fund absolute 

mispricing are also statistically significant in forecasts of future volatility.  A 1% increase 

in the HPW market-wide liquidity index (refecting worsening liquidity) predicts a 3.51% 

increase in realized volatility and a 1% increase in the closed-end fund absolute 

mispricing index forecasts a 4.14% increase in realized volatility. 

We show that implied volatility subsumes the HPW index of market-wide 

liquidity, but not the closed-end fund mispricing index.  Using the closed-end fund 

mispricing index and its lag, along with lagged measures of implied volatility, we are 

able to explain about 71% of the total variation in realized volatility, significantly better 

than a naive forecast based only on lagged realized volatility, which produces an R
2
 of 

53%.  We conclude that the closed-end fund mispricing index contains additional 

information about the limits to arbitrage beyond that captured by the index of market-

wide liquidity. 
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The rest of the paper is organized as follows. In Section 2, we summarize the 

relevant literature on volatility forecasting and limits to arbitrage and motivate the 

variable choices for our volatility forecasting model.  In Section 3 we describe our 

methodology, especially our estimation procedure for model-free implied volatilities.  We 

present our empirical results in Section 4.  Section 5 concludes.  

 

2. Literature Review 

2.1 Volatility Forecasting Models 

Volatility forecasting is the subject of a plethora of academic papers and research 

reports by practitioners.
3
 These papers tend to fall into two general categories: ARCH and 

GARCH-type models based on past time-series behavior of the realized volatility 

process, and market variable-based models that use contemporaneous market-determined 

variables (e.g., option implied volatility) as forward-looking measures of investor 

expectations.  The former attempt to describe a stochastic process that is consistent with 

past observations on realized volatility, focusing on time-series econometrics rather than 

the economic fundamentals that underlie observed volatility series, while the latter 

exploit the fact that expectations of future volatility are a crucial input into option pricing 

models and are naturally forward-looking.  It is generally accepted that forecasts based on 

measures of implied volatility are superior to ARCH/GARCH-type forecasts, though 

there is little consensus on how best to compute the implied volatility. 

                                                 
3
 See Poon and Granger, 2003, and references cited therein, as well as more recent papers such as Jiang and 

Tian, 2005a, b and Anderson and Bondarenko, 2007. 
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 Implied volatilities based on Black-Scholes (1973) dominate the earliest market 

variable-based volatility forecasting models.
4
  These papers generally find that the Black–

Scholes implied volatility (BSIV) is superior to historical volatility as a predictor of 

future realized volatility, but it is biased in that the BSIV tends to exceed future realized 

volatility.   A simple model clarifies this issue.   

 RVolt = b0 + b1IVolt-1 + ut              (1) 

Here RVol and IVol are the realized and implied volatilities, respectively, and u is a 

random error term.  If IVol is an unbiased forecast of RVol, then the coefficient, b1, 

should be statistically equal to 1 and the intercept term, b0, should be equal to zero.  In 

general, early studies produce coefficient estimates of b1 of 0.7 to 0.8, statistically well 

below 1.  Researchers speculated that the bias is due to model mis-specification, 

microstructure effects, non-synchronous trading, and the existence of the wildcard option 

(see Figlewski, 1997, among others).  Based on the R2s reported in prior studies, we 

know that IVol explains roughly half of the variation in RVol. 

Many prior studies relied on implied volatility measures from options on the OEX 

(S&P 100) because this was the most liquid index in the 1970s and 1980s.    These 

models suffer from institutional issues that constrain the arbitrage mechanism, allowing 

option prices to become disconnected from fundamentals.  First, it is difficult to trade the 

underlying 100 stocks in unison as a basket, leaving open a significant possibility of 

arbitrage persistence.  Second, some stocks in the OEX trade rather infrequently implying 

that prices may be stale.  Third, the OEX has a built in wild card option because the 

market for the underlying stocks closes at 4:00, while the OEX options pits are open until 

                                                 
4
 See, for example, Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Jorion (1995) and 

Christensen and Prabhala (1998), among others. 
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4:15.  Finally, a researcher must estimate the expected dividend stream on the underlying 

basket of stocks over the option’s life.   

By using S&P 500 futures and futures options, we circumvent these problems. 

First, the S&P 500 futures and futures options trade in pits that are physically located 

next to one another, thereby facilitating arbitrage trades.  Second, both the options and 

the underlying futures contracts trade on markets that are open until 4:15 (and all our 

trades are time-stamped to the second), thereby reducing the problem of non-synchronous 

pricing and eliminating the wildcard option.  Third, the S&P 500 futures contracts are 

among the most liquid equity futures contracts in the world.  Finally, we have trade-by-

trade data on the underlying contracts.  Thus we are able to compute realized volatility 

measures based on prices sampled every five minutes.  These five-minute returns are 

serially uncorrelated, which is not the case with the underlying SPX (the index 

underlying the futures contracts).
5
  

More recent volatility forecasting models incorporate computational innovations 

for realized and implied volatility measures.  Andersen et al. (2003) and Anderson, 

Bollerslev, and Meddahi (2005) show the superiority of using high-frequency data to 

compute realized volatility, concluding that 5-minute pricing provides a much better 

estimate of realized volatility than daily pricing. Britten-Jones and Neuberger (2000) 

derive a model-free implied volatility (MFIV) and Jiang and Tian (2005a, b) show that 

MFIV remains valid in the presence of jumps.  They also describe how MFIV can be 

estimated consistently.  We follow Andersen et al. (2003) and Anderson, Bollerslev, and 

Meddahi (2005) and compute realized volatilities using 5-minute pricing, and we 

                                                 
5
 See Jiang and Tian (2005a). 
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implement the MFIV algorithm of Jiang and Tian (2005a) to construct our own model-

free implied volatilities. 

When the Chicago Board Options Exchange (CBOE) introduced their volatility 

index (VIX) in 1993, they measured volatility according to Black and Scholes (1973); in 

2003, they switched to MFIV.  When one tests whether implied volatility is an efficient 

predictor of future realized volatility, one simultaneously tests whether the underlying 

options pricing model is valid and if option prices are efficient.  Unlike BSIV, MFIV 

does not suffer from this “joint test” problem.  However, as a forecasting tool, MFIV is 

not without its shortcomings. 

The Britten-Jones and Neuberger (2000) formula for MFIV takes the form of an 

integral (sum) of expected square returns over a range of strike prices.  Of critical 

importance is that this expectation is evaluated using risk-neutral probabilities, rather 

than objective probabilities. If volatility is stochastic and there is a risk premium 

associated with volatility risk, then the risk-neutral and objective expectations of future 

squared returns will differ significantly, leading to errors in forecasts of future realized 

volatility based on MFIV.  

 

2.2 Limits to Arbitrage 

If arbitrageurs face constraints on their trading activities, option prices will adjust 

to reflect these constraints, thereby affecting the risk neutral probability measure and as a 

consequence, the implied volatility.  Limits to arbitrage can be categorized into two 

types: costs resulting from systematic liquidity constraints or liquidity shocks and costs 

associated with idiosyncratic illiquidity or event risks specific to a particular asset (such 
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as changes in margin requirements, or restrictions on shorting, costs related to basis risk, 

uncertainty about portfolio holdings, or unhedgeable risks such as higher moments of risk 

due to market incompleteness.    

In the presence of increased arbitrage costs or risks, arbitrageurs will demand a 

greater reward in the form of a larger price disparity as compensation for bearing the 

additional costs/risks.  Shleifer and Vishny (1997) argue that it is precisely when 

deviations from fundamental value are greatest that arbitrageurs become extremely 

reluctant to execute or maintain arbitrage trades, due to their relatively shallow pockets 

and short time horizons.   

Increased uncertainty or concerns about a jump in volatility increase the costs of 

arbitrage.  Arbitrageurs need to make trades, so their ability to enter and exit trades is 

paramount.  Deuskar (2006) shows that volatility, expected volatility, and illiquidity are 

very much interrelated and self-reinforcing.  Liquidity often dries up when investors 

expect volatility to increase.  Confronted with a mispriced asset that is moving in the 

wrong direction, an arbitrageur may be forced to liquidate his positions at the worst 

possible time, a risk Shleifer and Vishny (1997) label as performance-based arbitrage. 

We acknowledge that limits to arbitrage affect security prices and result in 

deviations from fundamental value.  We search for proxies that capture the systematic 

and idiosyncratic risks that arbitrageurs face.  We believe that by incorporating these 

variables in our model of volatility, we can improve the forecasts of future realized 

volatility.   
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2.3 Funding Liquidity  

HPW argue that the abundance of arbitrage capital during normal times helps 

smooth out the Treasury yield curve and keep the average yield dispersion low. When 

yields fall out of line, hedge funds and proprietary traders at investment banks step in to 

execute relative value and arbitrage trades across various habitats of the Treasury yield 

curve.  The simplicity and transparency of these trades make them very appealing and 

relatively easy to execute.
6
     

During liquidity crises, however, the lack of arbitrage capital forces traders to 

limit or even abandon their relative value trades, allowing yields to move more freely and 

resulting in more yield curve noise. HPW argue that this abnormal noise in Treasury 

yields is a symptom of a market in severe shortage of arbitrage capital.  Moreover, if 

active traders allocate capital across various asset classes, a shortage of arbitrage capital 

in the Treasury market can quickly spread to other markets.  For this reason, we argue 

that the HPW noise measure proxies for systematic liquidity. 

 

2.3 Non-systematic Limits to Arbitrage 

While open-end funds are required to redeem or issue new shares at the reported 

net asset value (NAV) at the end of each trading day, closed-end funds (CEFs) face no 

such redemption requirements.  Instead, closed-end fund shares trade on equity markets 

just like stock.
7
  Therefore, for closed-end funds we observe both an NAV and a price, 

and these two quantities are usually different. 

                                                 
6
 The arbitrage strategy is to buy Treasuries which yield more than their analog zero coupon yields and sell 

Treasuries which yield less than their zero coupon counterparts. 
7
 Compared to open-end funds, closed-end funds also make greater use of leverage.    
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For the vast majority of closed-end funds, the share price is typically well below 

the NAV, resulting in the so-called closed-end fund discount.  Many academics view the 

closed-end fund discount as compelling evidence of investor irrationality, where retail 

investors (noise traders) drive prices away from fundamental value (NAV).
8
  However, 

numerous rational explanations for the closed-end fund discount exist, including liquidity 

differences between CEF holdings and CEF shares, CEF distribution policies, CEF 

portfolio manager skills and compensation, unrealized capital gains, and agency 

problems.
9
  In this paper, we ignore the root causes of discounts (or premiums) and 

instead focus on what impediments might arise to limit CEF arbitrage trades. 

Quite a few hedge funds and mutual funds are engaged in CEF arbitrage.  There 

are also activist hedge funds that target CEFs trading at discounts, hoping to take control 

of a fund and either liquidate the assets or open-end the fund.   These traders represent a 

powerful force against CEF mispricing.  However, as Shleifer and Vishny (1997) and 

Pontiff (1996) argue, CEF arbitrage does not conform to the academic ideal of costless, 

riskless arbitrage that requires no capital.  These papers argue that costs inhibit CEF 

arbitrage and deviations from fundamental value are an increasing function of these costs. 

Trading costs are not negligible, especially for short positions in the CEF shares 

or the CEF assets, which are often illiquid.  Second, basis risk can be quite substantial 

because CEF holdings are observed with a lag and only once per quarter (at most).  Third, 

                                                 
8
 Examples of these sentiment-based explanations of the CEF discount include De Long et al. (1990), Lee, 

Shleifer and Thaler (1991), and Shleifer and Vishny (1997). 
9
 Cherkes, Sagi and Stanton (2009) focus on a liquidity differential; Cherkes, Sagi, and Wang (2009) look 

at CEF distribution policy; Berk and Stanton (2007) model CEF manager ability and compensation; 

unrealized gains and agency problems are the focus of Malkiel (1997) and Brennan and Jain (2008), among 

others. 
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an increase in volatility will exacerbate the mismatch between an arbitrageur’s portfolio 

and the CEF.   

We believe mispricing in the CEF market provides a window into the non-

systematic risks that arbitrageurs face.  For this reason, we construct an index that 

measures the absolute deviation of closed-end fund prices from NAV for a subset of 

domestic, equity-based closed end funds. 

 

3. Data and Methodology 

3.1 Systematic Risks for Arbitrageurs: Funding Liquidity 

Our measure of systematic (funding) liquidity is based on the noise measure of 

HPW.
10

  The authors first estimate a smooth zero-coupon yield curve using daily 

Treasury security price data.  Each Treasury security is then benchmarked to a similar-

maturity zero coupon yield.  The liquidity index squares and aggregates yield 

differentials.   

3.2 Non-systematic Risks for Arbitrageurs: Closed-end Fund Mispricing 

 Using the closed-end fund data from Morningstar, we construct our CEF 

mispricing index as follows.  The mispricing on a closed-end fund equals the absolute 

value of the difference between the closed-end fund price and its net asset value, 

expressed as a percentage of the net asset value. 

CEF Mispricing = |Price – NAV| / NAV                (2) 

On each trading day we compute the CEF mispricing measure for each domestic equity 

CEF.  Our mispricing index is set equal to the arithmetic average of the CEF mispricing 

measure for all funds (an equally-weighted index) or a weighted average of the CEF 

                                                 
10

 We thank Jun Pan for making these data available on her website.  The data span the period 1987 - 2012. 
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mispricing measure for all funds.  Here a fund’s weight equals the product of the fund’s 

NAV and its shares outstanding at the end of the previous month.
11 

3.3 Realized Volatilities 
 

 
We follow Andersen et al. (2003) and Anderson, Bollerslev, and Meddahi (2005) 

in calculating realized volatility based on returns over 5 minute intervals (an intra-day 

measure).
12

   

3.4 Black-Scholes Implied Volatilities 

 We collect intraday data on S&P 500 futures contracts traded on the Chicago 

Mercantile Exchange (CME) during the period 1997 - 2008.  We also collect daily 

closing prices on S&P 500 futures options (also traded at the CME). We measure implied 

volatility two different ways: the Black-Scholes implied volatility (BSIV) using Whaley’s 

(1986) adjustment for futures; and the model-free implied volatility (MFIV) based on 

Britten-Jones and Neuberger (2000), and Jiang and Tian (2005a, b).   

3.5 Estimation of Model-Free Implied Volatilities 

 We compute model-free implied volatilities based on Proposition 1 in Jiang and 

Tian (2005a) which states that the integrated variance (square of volatility) from time 0 to 

date T is specified by the set of all call options expiring at T through the following 

integral: 

 

2
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where K represents the strike price and Ft represents the forward probability measure.  

This expression comes from Britten-Jones and Neuberger (2000) and Jiang and Tian 

                                                 
11

 We use monthly data on CEF outstanding shares.   
12

 See also Anderson and Bondarenko (2007) and Poteshman (2001). 



 

17 

(2005a) derive this expression under more general assumptions (when asset prices 

contain jumps).  Notice that the numerator of the integrand represents the time value of a 

call option (call price minus intrinsic value).  The integral is taken over a continuum of 

strikes between 0 and infinity. 

 The problem with trying to estimate (3) using traded options is that there are only 

a limited number of contracts being traded at any given time that expire at time T.  Thus, 

in general, one needs to solve something akin to (4) below: 

  

2
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( , ) max(0, )
2

Max

Min

K F
T

t

t K
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    
   
   
      (4) 

where KMin is the lowest traded strike and KMax is the highest traded strike.  This is how 

the VIX index has been estimated since 2003.  Another problem arises because there do 

not exist a continuum of strike prices.  Jiang and Tian (2005a) propose two alternatives to 

deal with the fact that KMin > 0 and KMax < ∞: truncation and extrapolation. Truncation 

implies that the information in calls either with strikes less than KMin or greater than KMax 

are ignored (as the CBOE does with the calculation of the VIX); extrapolation includes at 

least some of these options in the computation.   

Jiang and Tian (2005a) find that the extrapolation method is typically an order of 

magnitude more accurate than the truncation method.  Setting KMin and KMax at least 2 

standard deviations away from at-the-money is usually sufficient to ensure accurate 

results.  Both of these conclusions are arrived at via simulations based on estimating the 

MF volatility for options whose prices stem from a model (Heston model with specific 

parameter choices).  Nonetheless, we set KMin and KMax  4 standard deviations away from 



 

18 

the then current level of the underlying futures contract. We also consider the truncation 

approach in separate tests; our results are qualitatively similar.   

Equation (3) needs to be solved numerically.  The first step is to deal with the fact 

that there do not exist call options with a continuum of strikes expiring at T.  Once this 

problem has been dealt with, we focus on the issue of truncation error that stems from the 

fact that there do not exist options with strikes that surpass KMax, nor options with strikes 

less than KMin.  The first problem is one of interpolation, the second, one of extrapolation.  

We consider extrapolated as well as truncated (i.e., un-extrapolated) solutions. 

3.51 Interpolation Using Cubic Splines 

 To solve the problem of lack of a continuum of strikes, we again follow Jiang and 

Tian (2005a) and use cubic splines.  We create a smooth curve that is fitted exactly, based 

on observed prices, and interpolate using cubic polynomials for values between these 

observed prices.  Jiang and Tian (2005a) argue that given that option values are highly 

non-linear functions of strike prices, there is precedent in the literature (see Ait-Sahalia 

and Lo, 1998) to use a curve-fitting algorithm to form a volatility surface and transform it 

into a price surface, rather than forming a price surface directly. 

 Each observed price is turned into an implied volatility using the Black-Scholes 

model.  Cubic splines are then applied to form a volatility surface.  Then any point on 

that volatility surface can be converted back to a price using the Black-Scholes model.  In 

this way one can create as fine a grid of option prices as is desired (we use grid 

increments of one index point, which is more than sufficient to insure accuracy).  Note 

that the Black-Scholes model is only being used as a means to transform prices into 
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volatilities and then back into prices.  As such it does not impose an assumption that 

option prices behave as in the Black-Scholes model.   

The spline is a curve-fitting algorithm that imposes some smoothness conditions 

that enable a researcher to fit a 3
rd

 degree polynomial to a given set of data, along with 

conditions on the first and second derivatives of the spline to ensure smoothness.  Take 

adjoining intervals at time t and t+1.  Since each consecutive interval shares a common 

point with its predecessor, smoothness necessitates that the spline function itself, its first 

derivative, and its second derivative from interval t, evaluated at interval t’s right 

endpoint, must equal the comparable terms for the spline in interval t+1, evaluated at its 

left endpoint to ensure smoothness.  Imposing these smoothness conditions solves for the 

coefficients on the splines in each interval. 

3.52 Extrapolation Beyond Traded Strikes 

 In order to extrapolate to strikes that lie outside the range of options traded at any 

point in time, we again follow Jiang and Tian (2005a) and use the following algorithm.  

We measure the implied volatility for the option with the lowest strike.  We then assume 

that all lower strikes have the same implied volatility as the traded option with the lowest 

strike and use the Black-Scholes model to estimate call prices for those strikes that fall 

below the traded range.  An analogous procedure can be applied to strikes beyond the 

highest traded strike.    

3.53 Numerical Integration Procedure 

 Armed with a complete set of call prices (for as wide a range of strikes as is 

deemed necessary), we can go about estimating the integral in (4), which is an 

approximation to the integral depicted in (3).  We use the Trapezoidal Rule to evaluate 
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the integral in (4) numerically, which is straightforward.  The “range” of the integral 

(from the bottom endpoint to the top endpoint) is divided into intervals of 1 index point.   

For any interval, say between X0 and X0 + α, linearly interpolate between f(X0) and f(X0 

+ α).  The four points, (X0, 0), (X0 + α, 0), (X0 + α, f(X0 + α)), and (X0, f(X0)) form a 

trapezoid whose area is given by:   2/)()( 00   XfXf .  By summing the areas of 

these trapezoids we get an estimate of the integral.  As long as the integrand is fairly 

smooth and the grid is fine enough then we can make this as accurate as necessary. 

 Following Jiang and Tian (2005a), we ignore all in-the-money calls, defined as  

options with strike prices less than 97% of the futures price, (i.e., cases where the given 

option is more than 3% in the money), and instead focus on out-of-the-money put options 

(and out-of-the-money call options) to derive our volatility surface.  It is well established 

that in-the-money options are not very liquid and therefore pose considerable hurdles.   

The out-of-the-money options are far more liquid. 

3.6 Dataset Construction 

We construct our non-telescoping dataset in the following way: we sample option 

prices at one-month intervals, strategically choosing the interval so as to minimize 

microstructure effects while preserving consistency of the interval length.  We select the 

Tuesday following the expiration of the previous contract (-we use Wednesday if 

Tuesday is a holiday), and we focus on the shortest duration contracts.  In this way the 

options contracts we consider all have approximately 20 trading days until expiration.  

Moreover, we compute future realized volatility over exactly the same interval of 

approximately 20 trading days.  Therefore, there is an exact match between the interval 
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used to estimate future realized volatility and the interval corresponding to the option’s 

remaining life, that we use to impute an implied volatility.
13

     

We illustrate our approach using the May 2013 options.  These contracts expired 

on Saturday, May 18, 2013, though the last trading day was Friday, May 17.  We 

estimate implied volatility based on closing prices as of Tuesday, May 21, 2013.  On that 

date, the shortest maturity contracts expire on Saturday, June 22, 2013 (24 trading days 

hence).  RVOLt, is our estimate of realized volatility over the interval 5/21/2013 – 

6/22/2013 and IMPVOLt-1 is our estimate of implied volatility based on option prices as 

of 5/21/2013.   We annualize all volatility estimates to mitigate the effects of slight 

variations in the interval lengths.  The HPW liquidity index and our CEF mispricing 

index are sampled on the same date as implied volatility.   

Finally, as it turns out, all the series we consider in our volatility forecasting 

model have a fair amount of serial correlation, particularly our limits to arbitrage proxies.   

Thus, inclusion of lags and an examination of first differences are critical steps in our 

analysis to insure that our regressions are well-specified. 

 Armed with our measures of systematic and non-systematic risks faced by 

arbitrageurs, we estimate the following equation. 

RVolt = b0 + b1RVolt-1 + b2IVolt-1 + b3LIQUIDt-1+ b4 CEFMISt-1 + ut        (5) 

Here, CEFMIS is one of our closed-end fund mispricing indexes and LIQUID is the 

liquidity/noise measure of HPW.  If our hypothesis is correct and our measures of 

                                                 
13

 In contrast, the CBOE’s volatility index (a.k.a. the “VIX”) is constructed to forecast volatility over a 

fixed interval of 30 days.  To arrive at this 30 day maturity, the CBOE averages implied volatilities from 

two adjacent contracts, one expiring in less than 30 days and one expiring in more than 30 days.  

Additionally, during the expiration week of the nearest term contract, the CBOE ignores the shortest 

maturity contract and instead averages long and short positions in the second and third shortest maturity 

contracts, such that the weighted average maturity remains 30 days.  This approach reflects fairly strict 

assumptions about the time-varying properties of volatility.  
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systematic and idiosyncratic risks are capturing risks faced by arbitrageurs, then we 

should observe one or more of the following outcomes.  The coefficient estimate for b2 

should approach 1, the coefficient estimates for b3 and/or b4 should be significant, and our 

R2 values should increase.  

 

4. Regression Estimates 

We present summary statistics for our data in Table 1.  Over the sample period 

1997 – 2008, realized volatility (RVOL) ranges from a low of 7.06% to a high of 72.90%, 

with a mean value of 18.36%.  In contrast, both measures of implied volatility (IMPVOL) 

traverse narrower ranges, but exhibit higher mean values.  This result comports with our 

hypothesis that option prices contain a premium that reflects limits to arbitrage.   

The market-wide liquidity measure (LIQUID) ranges from a low of 1.05 basis 

points (bp) to a high of 17.03 bp, with a mean value of 2.38 bp.  Here, higher values 

denote reduced liquidity.  Rescaling these values in terms of deviations from the mean, 

we obtain a range of μ – 0.92σ to μ + 5.79σ, similar to the realized volatility series which 

travels between  μ – 1.13σ to μ + 5.43σ.  In contrast, our CEF mispricing indices travel a 

narrower range (e.g., μ – 1.79σ to μ + 2.66σ, in the case of our value-weighted index).   

Table 2 summarizes the correlation structure of our data.  We examine levels data 

in Panel A and first-differences in Panel B since all of our variables are AR(1).  For the 

levels data, all pairwise correlations are statistically significant at the 1% level, with 

correlation values ranging from 39% to 95%.  BSIV and MFIV are highly correlated and 

both measures of implied volatility independently have about an 80% correlation with 

realized volatility.  Our measures of market-wide liquidity and unhedgeable/other risks 
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captured by closed-end fund price deviations from NAV (CEFMISP-VW and CEFMISP-

EW) display much lower pairwise correlations.  Similar results obtain for first 

differences, shown in Panel B of Table 2.  All of the pair-wise correlation values are 

statistically significant at the 2% level, except for the correlation between realized 

volatility changes and market-wide liquidity changes.   

  In Tables 3 – 5, we examine various specifications of a volatility forecasting 

model that uses the implied volatilities from option prices and measures of market-wide 

liquidity and other risks to predict future realized volatility.  Our basic model is described 

in equation (6) below: 

titiiti

i

ititt ORISKSeLIQUIDdIMPVOLcbRVOLaRVOL  



 
2

1

1   (6) 

Here, RVOLt is the realized volatility of S&P 500 futures returns over the period [t-1, t], 

based on price data sampled at 5-minute intervals.  IMPVOLt – 1 is the implied volatility 

of the S&P 500 futures returns, based on daily closing prices for S&P 500 futures 

options, expiring at time t, and sampled at time t-1 (see Section 3).  We compute implied 

volatility two different ways: the Black-Scholes implied volatility (BSIV) using Whaley’s 

(1986) adjustment for futures; and the model-free implied volatility (MFIV) based on 

Britten-Jones and Neuberger (2000), and Jiang and Tian (2005a, b).  LIQUIDt–1 is a 

lagged measure of market-wide liquidity (actually an illiquidity index), based on HPW, 

and ORISKSt – 1 is a lagged measure of closed-end fund absolute deviations from net 

asset value (NAV), either value-weighted (CEFMISP-VW) or equally-weighted 

(CEFMISP-EW), averaged across the universe of US domestic equity closed-end funds.  

In our tests of equation (6), we use non-overlapping monthly data for the period 1997 – 

2008.  We have 144 observations in total.   
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Table 3 reports coefficient estimates and t-statistics for specifications of equation 

(6) based on the Model-free implied volatility (MFIV). Panel A includes models with one 

or two system variables; Panel B includes models with more than two system variables.  

In Panel A, we see that MFIV does a good job forecasting future realized volatility 

(Model 2), with an adjusted R
2
 of 63%.  However, the residuals are serially correlated, 

casting doubt on our t-stat and R
2
 measures.  Adding additional regressors leads to well-

behaved error terms and higher explanatory power.  Realized volatility is positively 

related to the first-lag measure of market-wide liquidity (Model 5).  A 1% increase in 

market-wide liquidity forecasts a 3.51% increase in realized volatility.  Realized volatility 

is also positively related to the first-lag measure of closed-end fund mispricing and 

negatively related to an additional lag of the closed-end fund mispricing (Model 7).  A 

1% increase in the closed-end fund absolute mispricing index forecasts a 4.14% increase 

in realized volatility.   

In Model 4, we see that lagged measures of implied volatility on the right hand 

side largely subsume the lagged measure of realized volatility; the coefficient estimate on 

lagged realized volatility drops from 0.73 to 0.28 and the t-statistic falls from 12.37 to 

2.27.  In contrast, lagged realized volatility subsumes the liquidity index (compare 

Models 5 and 6).  Interestingly, our closed-end fund mispricing index retains its 

forecasting power (compare Models 7 and 8).  The evidence in Table 3 confirms that our 

proxies for systematic and idiosyncratic risks are capturing aspects of the limits to 

arbitrage.   

In Panel B, Models 9 - 14 test whether our systematic and idiosyncratic risk 

proxies have explanatory power beyond the information contained in lagged measures of 
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implied volatility and realized volatility.  Not surprisingly, since the liquidity index 

(LIQUID) was already shown to be redundant in the presence of lagged historical 

volatility, the coefficients on LIQUID and its lag are insignificant in models 9 - 12.  

However, our closed-end fund mispricing index retains its predictive power.   In Models 

13 and 14, which combine lagged measures of implied volatility, realized volatility and 

closed-end fund mispricing, we are able to explain about 71% of the variation in realized 

volatility, significantly better than a naive forecast based on lagged realized volatility 

alone (Model 1 in Panel A), which produces an R
2
 of 53%.   

Table 4 reports coefficient estimates and t-statistics for specifications of equation 

(6) based on the Black-Scholes implied volatility (BSIV).  As in Table 3, we see that 

BSIV does a good job forecasting future realized volatility (Model 1), with an adjusted 

R
2
 of 64%.  However, the residuals are serially correlated, casting doubt on our t-stat and 

R
2
 measures.  Adding additional regressors leads to well-behaved error terms and higher 

explanatory power.  As we saw in Table 3, the closed-end fund mispricing index retains 

its explanatory power in the presence of the other regressors, while LIQUID is subsumed 

by lagged historical volatility.  Using all regressors, including the closed-end fund 

mispricing index (Model 8), we are able to explain about 71% of the variation in realized 

volatility, significantly better than a naive forecast based on lagged realized volatility 

only (Model A), which produces an R
2
 of 53%. Comparing Table 4 to Table 3, we see 

that BSIV does a slightly better job forecasting realized volatility than does MSIV. 

In an effort to induce symmetry in our time-series data, we alter equation (6) by 

taking logarithmic transformations of the dependent and independent variables. Our 



 

26 

results, presented in Table 5, are qualitatively similar, with the adjusted R
2
 values slightly 

higher.
14

   

We also examine first-differences of our time-series data in Table 6.  We estimate 

the following model: 

titttt ORISKSbLIQUIDbMFIVbbRVOL   312110  (7) 

Here ΔRVOLt is defined as RVOLt - RVOLt-1, and ΔMFIVt-1 is defined as MFIVt-1 - 

MFIVt-2; other variables are similarly defined.  We report univariate results in Models 1 - 

3.  Here we see that changes in implied volatility and changes in the closed-end fund 

mispricing index forecast changes in realized volatility, with 12% to 14% of the variation 

in realized volatility changes explained.  In contrast, innovations in the liquidity index 

have no predictive power. 

 In Model 4, we see that innovations in the liquidity index work in tandem with 

implied volatility innovations to explain a combined 20% of the variation in realized 

volatility innovations.  Similarly, innovations in the closed-end fund mispricing index 

also work in tandem with implied volatility innovations to explain 20% of the variation in 

changes in realized volatility.  Finally, Model 7 shows that all three innovation variables 

(implied volatility, liquidity and closed-end fund mispricing) are significant in explaining  

innovations in realized volatility; here the adjusted R
2
 rises to 27%. 

We perform several tests to assess the marginal contributions of some of our 

independent variables when it comes to forecasting realized volatility.  This is 

particularly important for our proxies of systematic and idiosyncratic risks.  We start by 

orthogonalizing the liquidity index with respect to implied volatility and using the 

                                                 
14

 Note that the results in Table 5 are based on MFIV, but the results are qualitatively similar if based on 

BSIV. 
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residuals from this initial regression in place of the liquidity index in a second model that 

predicts realized volatility.  Our approach is described in Equation (8). 

0 1

0 1 1 2 1 3 2 4 5 1

t t t

t t t t t t t

LIQUID a a MFIV

RVOL b b RVOL b MFIV b MFIV b b



     

  

         (8)
 

 We then repeat this procedure, but in the first step we orthogonalize implied 

volatility with respect to the liquidity index.  With either approach, we test whether the 

residuals (and lagged residuals) from the first step have explanatory power in the second 

regression. 

Our results appear in Table 7.  Panel A reports the results of orthogonalizing the 

liquidity index on implied volatility; Panel B reports the results of orthogonalizing 

implied volatility on the liquidity index. 

In Panel A, the residuals have no explanatory power, whereas our measures of 

implied volatility and lagged realized volatility are statistically significant.  These results 

comport with Model 10 from Table 3. 

In contrast, the residuals (and the lagged residuals) are statistically significant at 

the 1% level in Panel B, as is the lagged liquidity index.   We can reasonably conclude 

that MFIV contains additional information about the limits to arbitrage beyond that which 

is captured by funding constraints, but the liquidity index of HPW contains no volatility-

relevant information beyond that already reflected in implied volatility and lagged 

realized volatility. 

We repeat this analysis in Table 8 but this time we expand the list of regressors to 

include our closed-end fund mispricing index as well as its lag.  As we saw in Model 14 

from Table 3, we see that the mispricing index has statistically significant power to 

forecast future realized volatility.  Once again, we can reasonably conclude that MFIV 
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contains additional information about the limits to arbitrage beyond that which is 

captured by funding constraints, but the liquidity index of HPW contains no volatility-

relevant information beyond that already reflected in implied volatility and lagged 

realized volatility.  Moreover, our CEF mispricing index contains volatility relevant 

information beyond that contained in either MFIV or the liquidity index of HPW.   

Figure 1 illustrates these relationships.  First, any volatility-relevant information 

in the liquidity index of HPW is subsumed by MFIV.  Second, our CEF mispricing index 

and MFIV each contains volatility-relevant information that is unique, distinct from each 

other, and distinct from the information in the HPW liquidity index.  These findings 

underscore our conceptualization of the systematic and idiosyncratic effects of limits to 

arbitrage.  In so far as the liquidity measure of HPW is systematic, innovations in that 

index reflect information that is relevant to all arbitrageurs and are reflected to some 

extent in all assets.  However, in addition to these systematic effects, our CEF mispricing 

index reflects conditions specific to those assets that may or may not be relevant in other 

markets.  The same can be said of MFIV. 

Finally, in results not reported in tabular form, we also regress our closed-end 

fund mispricing index (CEFMISP-VW) on our market-wide measure of liquidity 

(LIQUID).  We test whether the residuals from this regression are statistically significant 

predictors of realized volatility.  It turns out they are.  When we reverse the procedure, 

regressing the market-wide measure of liquidity (LIQUID) on the closed-end fund 

mispricing index (CEFMISP-VW), we find that the residuals from this regression are not 

statistically significant predictors of realized volatility.  We conclude that CEFMISP-VW 
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contains additional information about the limits to arbitrage beyond those captured by 

funding constraints. 

These results are robust to different measures of implied volatility, such as BSIV, 

as well as models using logarithmic transformations. Moreover, all results are 

qualitatively similar if we replace our value-weighted mispricing index with the equally-

weighted mispricing index.   

 

5. Conclusions 

 In this paper, we develop a model to forecast the volatility of S&P 500 futures 

returns.  We examine several potential predictors, including realized volatility, implied 

volatility, a measure of market-wide liquidity and a measure of closed-end fund 

mispricing, arguing that the last two variables capture the effects of systematic and 

idiosyncratic limits to arbitrage, respectively.  We estimate realized volatilities based on 

S&P 500 futures price data sampled at 5-minute intervals.  We use end-of-day S&P 500 

futures options prices to compute both Black-Scholes implied volatilities, based on 

Whaley (1986), and model-free implied volatilities, based on Britten-Jones and 

Neuberger (2000).  Our measure of market-wide liquidity comes from Hu, Pan, and 

Wang (2012), whose liquidity (noise) measure is computed as the mean squared 

deviation of Treasury securities from the zero coupon yield curve. The market-wide 

liquidity index captures funding constraints that arbitrageurs face.  It is one of the limits 

to arbitrage.   

We conjecture that there are additional limits to arbitrage that are better classified 

as idiosyncratic.  Arbitrageurs face costs associated with event risks specific to a 
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particular asset (such as changes in margin requirements, or restrictions on shorting).  

They also face costs related to basis risk, uncertainty about portfolio holdings, or 

unhedgeable risks (such as higher moments of risk) due to market incompleteness.  We 

develop an index that measures the absolute price deviations of equity closed-end funds 

from their net asset values.  We argue that this index proxies for some of these additional 

limits to arbitrage.   

  We find that lagged values of implied volatility  are statistically significant in 

forecasts of future volatility.  We find that lagged measures of market-wide liquidity and 

closed-end fund absolute mispricing are also statistically significant in forecasts of future 

volatility.    

We show that our closed-end fund mispricing index contains important 

information that forecasts future realized volatility, while our systematic measure of 

liquidity, the liquidity index of Hu et al. (2012), contains no information beyond that 

already contained in implied volatility.  Using the closed-end fund mispricing index, 

along with lagged measures of implied volatility and realized volatility, we are able to 

explain about 71% of the total variation in realized volatility, significantly better than a 

naive forecast based only on lagged realized volatility, which produces an R
2
 of 53%.  

We conclude that the closed-end fund mispricing index contains additional information 

about the limits to arbitrage beyond that captured by the index of market-wide liquidity.    
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Table 1  
Summary Statistics  

 
RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant measure 

of implied volatility), computed using 5-minute intervals for prices, MFIV is the implied volatility 

computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on interpolation 

between traded strikes and extrapolation beyond the range of traded strikes, as in Jiang and Tian (2005a), 

CEFMISt is the average of the absolute value of the discount on equity closed-end funds at time t (either 

value-weighted or equally-weighted), computed as |(Price – NAV)/NAV|, and LIQt is the noise measure of 

Hu et al (2012) based on mean deviations from the zero-coupon yield curve at time t. Δs represent changes 

in the relevant variable, which account for the reduction in N by 1.  Min, Max, Std Dev, Mean, and N are 

the minimum value, the maximum value, the standard deviation of values from the mean, the mean, and the 

number of observations, respectively. 

 
 

Variable 

 

N 

 

Mean 

 

Std Dev 

 

Minimum 

 

Maximum 

 

RVOL 

 

144 

 

18.36% 

 

10.14% 

 

7.06% 

 

72.90% 

 

BSIV 

 

144 

 

19.35% 

 

8.13% 

 

8.41% 

 

58.94% 

 

MFIV 

 

144 

 

20.58% 

 

8.45% 

 

9.12% 

 

62.97% 

 

LIQUID 

 

144 

 

3.26 bp 

 

2.38 bp 

 

1.05 bp 

 

17.03 bp 

 

 CEFMIS-VW 

 

144 

 

11.71% 

 

3.25% 

 

5.92% 

 

20.36% 

 

CEFMIS-EW 

 

144 

 

11.37% 

 

3.04% 

 

6.97% 

 

19.12% 

 

ΔRVOL 

 

143 

 

-0.10% 

 

7.55% 

 

-33.36% 

 

36.42% 

 

ΔBSIV 

 

143 

 

0.22% 

 

5.09% 

 

-16.48% 

 

24.86% 

 

ΔMFIV 

 

143 

 

0.17% 

 

5.51% 

 

-19.06% 

 

27.13% 

 

ΔLIQUID 

 

143 

 

0.1 bp 

 

0.91 bp 

 

-1.69 bp 

 

6.66 bp 

 

ΔCEFMIS-VW 

 

143 

 

0.021% 

 

1.13% 

 

-3.35% 

 

5.58% 

 

ΔCEFMIS-EW 

 

143 

 

0.026% 

 

0.89% 

 

-2.65% 

 

4.56% 
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Table 2 

Correlations 

Panel A – Levels 
CEFMIS is our CEF absolute deviation index (Equally-weighted (EW) or Value-weighted (VW)), MFIV is 

our model-free volatility measure, BSIV is the CME’s implied volatility measure based on Black-Scholes, 

LIQUID is the Noise measure of Hu et al. (2012), and RVOL is the realized volatility.  P-values are in 

parentheses underneath each correlation.  RVOL is forward-looking over the interval corresponding to the 

expiration date of the options.  * and ** indicate significance at the 5% and 1% level, respectively. 

 

 

 CEFMIS-

EW 

CEFMIS-

VW 

MFIV BSIV LIQUID RVOL 

CEFMIS-

EW 

1 0.95270** 

(0.0000) 

0.50764** 

(0.0000) 

0.53652** 

(0.0000) 

0.41313** 

(0.0000) 

0.45744** 

(0.0000) 

CEFMIS-

VW 

0.95270** 

 (0.0000) 

1 0.53905** 

(0.0000) 

0.56519** 

(0.0000) 

0.38845** 

(0.0000) 

0.48263** 

(0.0000) 

MFIV 0.50764** 

(0.0000) 

0.53905** 

(0.0000) 

1 0.99058** 

(0.0000) 

0.72080** 

(0.0000) 

0.79726** 

(0.0000) 

BSIV 

 

0.53652** 

(0.0000) 

0.56519** 

(0.0000) 

0.99058** 

(0.0000) 

1 0.72736** 

(0.0000) 

0.80160** 

(0.0000) 

LIQUID 0.41313** 

(0.0000) 

0.38845** 

(0.0000) 

0.72080** 

(0.0000) 

0.72736** 

(0.0000) 

1 0.59758** 

(0.0000) 

RVOL 

 

0.45744** 

(0.0000) 

0.48263** 

(0.0000) 

0.79726** 

(0.0000) 

0.80160** 

(0.0000) 

0.59758** 

(0.0000) 

1 

 

 

Panel B – Changes 
ΔCEFMIS is the change in our CEF absolute deviation index (Equally-weighted (EW) or Value-weighted 

(VW)), ΔMFIV is the change in our model-free volatility measure, ΔBSIV is the change in the CME’s 

implied volatility measure based on Black-Scholes, ΔLIQUID is the change in the Noise measure of Hu et 

al. (2012), and ΔRVOL is change in the realized volatility.  P-values are in parentheses underneath each 

correlation.  RVOL is forward-looking over the interval corresponding to the expiration date of the options.  

* and ** indicate significance at the 5% and 1% level, respectively. 

 

 

 

 

ΔCEFMIS-

EW 

 

ΔCEFMIS-

VW 

ΔMFIV ΔBSIV ΔLIQUID ΔRVOL 

ΔCEFMIS-

EW 

 

1 0.87028** 

(0.0000) 

0.42487** 

(0.0000) 

0.35022** 

(0.0000) 

0.27449** 

(0.0010) 

0.35347** 

(0.0000) 

ΔCEFMIS-

VW 

 

0.87028** 

(0.0000) 

1 0.37497** 

(0.0000) 

0.32110** 

(0.0001) 

0.20685* 

(0.0139) 

0.35897** 

(0.0000) 

ΔMFIV 0.42487** 

(0.0000) 

0.37497** 

(0.0000) 

1 0.96998** 

(0.0000) 

0.41745** 

(0.0000) 

0.39194** 

(0.0000) 

ΔBSIV 0.35022** 

(0.0000) 

0.32110** 

(0.0001) 

0.96998** 

(0.0000) 

1 0.42033** 

(0.0000) 

0.38575** 

(0.0000) 

ΔLIQUID 0.27449** 

(0.0010) 

0.20685* 

(0.0139) 

0.41745** 

(0.0000) 

0.42033** 

(0.0000) 

1 -0.07039 

(0.4172) 

ΔRVOL 0.35347** 

(0.0000) 

0.35897** 

(0.0000) 

0.39194** 

(0.0000) 

0.38575** 

(0.0000) 

-0.07039 

(0.4172) 

1 
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Table 3: Panel A 
Individual Variable Effects 

 
Estimation of the following regression:  

2

1

1

t t i t i i t i i t i t

i

RVOL a b RVol c MFIV d LIQUID eORISKS    



       

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, ORISKSt is the 

value-weighted average of the absolute value of the discount on equity closed-end funds at time t, 

computed as |(Price – NAV)/NAV|, and LIQUIDt is the noise measure of Hu et al. (2012) based on mean 

deviations from the zero-coupon yield curve at time t. All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively. 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 

a 

 

0.0490** 

(3.96) 

 

-0.0106 

(-0.78) 

 

0.0048 

(0.34) 

 

0.0190 

(1.25) 

 

0.1077** 

(8.61) 

 

0.0537** 

(4.07) 

 

0.0305 

(1.14) 

 

0.0310 

(1.54) 

 

b 

 

0.7277** 

(12.37) 

   

0.2786* 

(2.27) 

  

0.6402** 

(7.09) 

  

0.6352** 

(10.18) 

 

c1 

  

0.9435** 

(15.52) 

 

1.1974** 

(12.52) 

 

0.9757** 

(7.20) 

    

 

c2 

   

-0.332** 

(-3.37) 

 

-0.432** 

(-4.01) 

    

 

d1 

     

3.5110** 

(4.51) 

 

1.0832 

(1.43) 

  

 

d2 

     

-1.223 

(-1.36) 

 

-0.758 

(-0.97) 

  

 

e1 

       

4.1448** 

(6.55) 

 

3.0001** 

(5.97) 

 

e2 

       

-2.838** 

(-4.45) 

 

-2.699** 

(-5.54) 

 

Adj R
2
 

 

0.532 

 

0.633 

 

0.659 

 

0.671 

 

0.358 

 

0.533 

 

0.322 

 

0.626 
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Table 3: Panel B 
Variable Interactions 

 
Estimation of the following regression:  

2

1

1

t t i t i i t i i t i t

i

RVOL a b RVol c MFIV d LIQUID eORISKS    



       

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, ORISKSt is the 

value-weighted average of the absolute value of the discount on equity closed-end funds at time t, 

computed as |(Price – NAV)/NAV|, and LIQUIDt is the noise measure of Hu et al. (2012) based on mean 

deviations from the zero-coupon yield curve at time t. All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively. 

 

 

 
  

Model 9 

 

Model 

10 

 

Model 

11 

 

Model 

12 

 

Model 

13 

 

Model 

14 

 

a 

 

0.0210 

(1.37) 

 

0.0213 

(1.38) 

 

-0.002 

(-0.12) 

 

0.0090 

(0.46) 

 

-0.005 

(-0.23) 

 

0.0076 

(0.39) 

 

b 

 

0.2472 

(1.93) 

 

0.2767* 

(2.05) 

 

0.2498 

(1.85) 

 

0.295* 

(2.28) 

 

0.2690* 

(2.21) 

 

0.2908* 

(2.50) 

 

c1 

 

0.9604** 

(7.03) 

 

0.9651** 

(7.03) 

 

0.9221** 

(6.67) 

 

0.7908** 

(5.76) 

 

0.9383** 

(6.90) 

 

0.7918** 

(5.84) 

 

c2 

 

-0.442** 

(-4.08) 

 

-0.489** 

(-3.84) 

 

-0.504** 

(-3.98) 

 

-0.387** 

(-3.08) 

 

-0.461** 

(-4.27) 

 

-0.347** 

(-3.23) 

 

d1 

 

0.2811 

(0.86) 

 

-0.154 

(-0.22) 

 

0.0617 

(0.09) 

 

-0.166 

(-0.25) 

  

 

 

d2 

  

0.5448 

(0.70) 

 

0.3458 

(0.45) 

 

0.3884 

(0.52) 

  

 

e1 

   

0.3432 

(1.80) 

 

1.9471** 

(4.03) 

 

0.3366 

(1.80) 

 

1.984** 

(4.17) 

 

e2 

    

-1.696** 

(3.58) 

  

-1.730** 

(-3.73) 

 

Adj R
2
 

 

0.670 

 

0.669 

 

0.675 

 

0.702 

 

0.676 

 

0.706 
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Table 4 
 
Estimation of the following regression:  

2

1

1

t t i t i i t i i t i t

i

RVOL a b RVol c BSIV d LIQUID eORISKS    



       

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, BSIV is the implied volatility 

computed using the Whaley model for futures options (based on Black-Scholes), ORISKSt is the value-

weighted average of the absolute value of the discount on equity closed-end funds at time t, computed as 

|(Price – NAV)/NAV|, and LIQUIDt is the noise measure of Hu et al. (2012) based on mean deviations 

from the zero-coupon yield curve at time t. All regressions are based on monthly observations between 

1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: * & ** 

significant at the 5% and 1% level, respectively. 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 

a 

 

0.0490** 

(3.96) 

 

-0.010 

(-0.75) 

 

0.0048 

(0.35) 

 

0.0171 

(1.15) 

 

0.0210 

(1.37) 

 

0.0188 

(1.24) 

 

-0.001 

(-0.02) 

 

0.0116 

(0.61) 

 

b 

 

0.7277** 

(12.37) 

 

 

 

 

 

0.2526* 

(2.07) 

 

0.2472 

(1.93) 

 

0.2538 

(1.90) 

 

0.2440 

(1.83) 

 

0.2817* 

(2.23) 

 

c1 

  

1.0001** 

(15.75) 

 

1.2688** 

(12.12) 

 

1.0624** 

(7.39) 

 

0.9604** 

(7.01) 

 

1.0562** 

(7.23) 

 

1.0057** 

(6.74) 

 

0.8818** 

(6.11) 

 

c2 

   

-0.351** 

(-3.24) 

 

-0.449** 

(-3.83) 

 

-0.442** 

(-4.08) 

 

-0.505** 

(-3.65) 

 

-0.528** 

(-3.81) 

 

-0.403** 

(-3.00) 

 

d1 

     

0.2811 

(0.86) 

 

-0.177 

(-0.25) 

 

-0.005 

(-0.01) 

 

-0.290 

(-0.43) 

 

d2 

   

 

   

0.5052 

(0.65) 

 

0.3619 

(0.47) 

 

0.4472 

(0.61) 

 

e1 

       

0.2946 

(1.51) 

 

2.0599** 

(4.38) 

 

e2 

        

-1.873** 

(-4.08) 

 

Adj R
2
 

 

0.532 

 

0.640 

 

0.664 

 

0.672 

 

0.670 

 

0.669 

 

0.673 

 

0.708 
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Table 5 
 
Estimation of the following regression:  

2

1

1

(1 ) (1 ) (1 ) (1 ) (1 )t t i t i i t i i t i t

i

Log RVOL a b Log RVol c Log MFIV d Log LIQUID e Log ORISKS    



          

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes ORISKS t is the 

value-weighted average of the absolute value of the discount on equity closed-end funds at time t, 

computed as |(Price – NAV)/NAV|, and LIQUIDt is the noise measure of Hu et al. (2012) based on mean 

deviations from the zero-coupon yield curve at time t. All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively. 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 

a 

 

0.0429** 

(4.03) 

 

-0.011 

(-0.95) 

 

0.0006 

(0.05) 

 

0.0119 

(0.91) 

 

0.0137 

(1.037) 

 

0.0140 

(1.06) 

 

-0.004 

(-0.02) 

 

0.0041 

(0.25) 

 

B 

 

0.7354** 

(12.68) 

 

 

 

 

 

0.2556* 

(2.13) 

 

0.2309 

(1.85) 

 

0.2533 

(1.95) 

 

0.2266 

(1.74) 

 

0.2597* 

(2.08) 

 

c1 

  

0.9537** 

(16.18) 

 

1.1802** 

(12.29) 

 

0.9843** 

(7.48) 

 

0.9706** 

(7.29) 

 

0.975** 

(7.30) 

 

0.9327** 

(6.93) 

 

0.8191** 

(6.15) 

 

c2 

   

-0.292** 

(-2.95) 

 

-0.389** 

(-3.57) 

 

-0.396** 

(-3.62) 

 

-0.433** 

(-3.45) 

 

-0.449** 

(-3.59) 

 

-0.334** 

(-2.69) 

 

d1 

     

0.1919 

(0.74) 

 

-0.108 

(-0.19) 

 

0.0534 

(0.10) 

 

-0.156 

(-0.29) 

 

d2 

   

 

   

0.3757 

(0.61) 

 

0.2274 

(0.37) 

 

0.2943 

(0.50) 

 

e1 

       

0.2966 

(1.78) 

 

1.6477** 

(3.92) 

 

e2 

        

-1.433** 

(-3.48) 

 

Adj R
2
 

 

0.544 

 

0.652 

 

0.671 

 

0.681 

 

0.680 

 

0.679 

 

0.684 

 

0.709 
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Table 6 
Forecasting Volatility Changes 

 
Estimation of the following regression:  

 

0 1 1 2 1 3 1t t t t tRVOL b b MFIV b LIQUID b ORISKS           
 

 
where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, ORISKSt is the 

value-weighted average of the absolute value of the discount on equity closed-end funds at time t, 

computed as |(Price – NAV)/NAV|, and LIQUIDt is the noise measure of Hu et al. (2012) based on mean 

deviations from the zero-coupon yield curve at time t. All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively. 

 

 Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Model 

6 

Model 

7 

 

b0 

 

-0.002 

(-0.38) 

 

-0.000 

(-0.05) 

 

-0.001 

(-0.19) 

 

0.0002 

(0.03) 

 

-0.002 

(-0.36) 

 

0.003 

(0.06) 

 

0.0006 

(1.14) 

 

b1 

 

0.5715** 

(4.82) 

   

0.7474** 

(5.93) 

 

0.4468** 

(3.69) 

 

 

 

 

0.6269** 

(5.03) 

 

b2 

  

-0.583 

(-0.81) 

 

 

 

-2.339** 

(-3.32) 

  

-1.271 

(-1.87) 

 

-2.564** 

(-3.80) 

 

b3 

   

2.3900** 

(4.44) 

 

 

 

1.7453** 

(3.21) 

 

2.6070** 

(4.77) 

 

1.923** 

(3.70) 

 

Adj R
2
 

 

0.142 

 

-0.003 

 

0.122 

 

0.203 

 

0.199 

 

0.139 

 

0.272 
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Table 7 
Panel A 
Estimation of the following regression:  

 

0 1

0 1 1 2 1 3 2 4 5 1

t t t

t t t t t t t

LIQUID a a MFIV

RVOL b b RVOL b MFIV b MFIV b b



     

  

      
 

 

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, and LIQ t is the 

noise measure of Hu et al. (2012) based on mean deviations from the zero-coupon yield curve at time t. 

Note that this is a 2-stage procedure: in the first stage LIQUID is regressed on MFIV, and the residuals 

from that regression, γt, are used as regressors in place of LIQUID so that the regressors are orthogonal by 

construction.  We also include a lag of γt, as a regressor.  All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively. 

 

 
 

 

 

 

 

 

 

Panel B 
Estimation of the following regression:  

0 1

0 1 1 2 3 1 4 1 5 2

t t t

t t t t t t t

MFIV a a LIQUID

RVOL b b RVOL b b b LIQUID b LIQUID u



    

  

        

 

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, and LIQ t is the 

noise measure of Hu et al. (2012) based on mean deviations from the zero-coupon yield curve at time t. 

Note that this is a 2-stage procedure: in the first stage LIQUID is regressed on MFIV, and the residuals 

from that regression, νt, are used as regressors in place of LIQUID so that the regressors are orthogonal by 

construction.  We also include a lag of νt, as a regressor.  All regressions are based on monthly observations 

between 1997 and 2008 and thus have an N of 144 observations.  T-statistics are in parentheses.  Notation: 

* & ** significant at the 5% and 1% level, respectively.
 

 
 

 

 

 

 

 

 

  

b0 

 

b1 

 

b2 

 

b3 

 

b4 

 

b5 

 

Adj-R
2
 

 

Model 

1 

 

0.0178 

(1.17) 

 

0.2767* 

(2.05) 

 

0.9340** 

(5.01) 

 

-0.379** 

(-2.69) 

 

-0.154 

(-0.22) 

 

0.5448 

(0.70) 

 

0.669 

 

  

b0 

 

b1 

 

b2 

 

b3 

 

b4 

 

b5 

 

Adj-R
2
 

 

Model 2 

 

0.0793** 

(5.33) 

 

0.2767* 

(2.05) 

 

0.9651** 

(7.03) 

 

-0.489** 

(-3.84) 

 

2.3292** 

(3.10) 

 

-0.714 

(-1.07) 

 

0.669 
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Table 8 
Panel A 
Estimation of the following regression:  

 

0 1

0 1 1 2 1 3 2 4 5 1 6 1 7 2

t t t

t t t t t t t t t

MFIV a a LIQUID

RVOL b b RVOL b MFIV b MFIV b b b ORISKS b ORISKS u



      

  

        
 

 

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, and LIQ t is the 

noise measure of Hu et al. (2012) based on mean deviations from the zero-coupon yield curve at time t. 

Note that this is a 2-stage procedure: in the first stage LIQUID is regressed on MFIV, and the residuals 

from that regression, γt, are used as regressors in place of LIQUID so that the regressors are orthogonal by 

construction.  We also include a lag of γt, as a regressor.  Finally, ORISKSt is the value-weighted average 

of the absolute value of the discount on equity closed-end funds at time t, computed as |(Price – 

NAV)/NAV|.  All regressions are based on monthly observations between 1997 and 2008 and thus have an 

N of 144 observations.    T-statistics are in parentheses.  Notation: * & ** significant at the 5% and 1% 

level, respectively. 

 

Panel B 
Estimation of the following regression:  

 

0 1

0 1 1 2 3 1 4 1 5 2 6 1 7 2

t t t

t t t t t t t t t

MFIV a a LIQUID

RVOL b b RVOL b b b LIQUID b LIQUID b ORISKS b ORISKS u



      

  

        

 

where RVOL is the realized volatility over the remaining life of an option (corresponding to the relevant 

measure of implied volatility), computing using 5-minute intervals for prices, MFIV is the implied 

volatility computed using the Britten-Jones & Neuberger (2000) model-free implied volatility based on 

interpolation between traded strikes and extrapolation beyond the range of traded strikes, and LIQ t is the 

noise measure of Hu et al. (2012) based on mean deviations from the zero-coupon yield curve at time t. 

Note that this is a 2-stage procedure: in the first stage LIQUID is regressed on MFIV, and the residuals 

from that regression, νt, are used as regressors in place of LIQUID so that the regressors are orthogonal by 

construction.  We also include a lag of νt, as a regressor.  Finally, ORISKSt is the value-weighted average 

of the absolute value of the discount on equity closed-end funds at time t, computed as |(Price – 

NAV)/NAV|. All regressions are based on monthly observations between 1997 and 2008 and thus have an 

N of 144 observations.  T-statistics are in parentheses.  Notation: * & ** significant at the 5% and 1% level, 

respectively.
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Figure 1 
 

Unique and Common Information for Forecasting Volatility  

in the Presence of Past Realized Volatility 
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