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Abstract

A random field LIBOR market model is proposed by extending
the LIBOR market model with uncertainty modeled via random field.
First, closed-form formulas for pricing caplet and swaption are derived.
Then the random field LIBOR market model (RFLMM) is integrated
with the lognormal-mixture model to capture the implied volatility
skew/smile. Finally, the model is calibrated to cap volatility surface
and swaption volatilities. Numerical results show that the random field
LIBOR market model outperforms LIBOR market model in capturing
caplet volatility smile and the pricing of swaptions, in addition to pos-
sessing other documented advantages (no need of frequent recalibration
or to specify the number of factors in advance).

Key Words: LIBOR market model, random field, lognormal-
mixture model, volatility smile.

1 Introduction

In this paper we extend the LIBOR market model (LMM) by describing for-
ward rate uncertainties as random field. The LIBOR market model (LMM)
(Brace, Gatarek, and Musiela (BGM)[10], Jamshidian[17], and Miltersen,
Sandmann, and Sondermann [31]) is based on the assumption that each for-
ward LIBOR rate follows a driftless Brownian motion under its own forward
measure, which justifies the use of Black’s formula for the pricing of inter-
est rate options, such as caplets and swaptions. It is very fast to calibrate
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the LMM to market data. As a result, it has become very popular among
practitioners for interest rate modeling and derivatives pricing.

However, the LMM has several limitations. Firstly, it only generates flat
implied volatility curve of caplets and swaptions and thus cannot capture
the implied volatility smile as observed in these markets. Several extensions
have been proposed to capture the smile/skew of implied volatilities. The
first approach is referred to as local volatility models. For example, the
constant elasticity of variance (CEV) model by Andersen and Andreasen [1]
and the displaced diffusion (DD) model by Joshi and Rebonato [27] generate
a monotonic skew, but not smile, of implied volatility. Another approach is
the stochastic volatility model, which models volatility itself as a stochastic
process. For example, Andersen and Brotherton-Ractliffe [3], Wu and Zhang
[46] produce additional curvature to the volatility curve. Hagan et al.[23]
propose a stochastic volatility extension of the CEV model, termed the
SABR model to capture the smile or skew of caps and swaptions. Secondly,
the LMM requires the specification of the number of factors in advance. For
any finite-factor models, it is necessary to specify the number of factors prior
to the modeling process. However, this may be a difficult problem. Longstaff
et. al. [29] shows that using even the best-fitting single-factor model can be
suboptimal if the term structure is driven by multi-factors. Finally, frequent
re-calibration is needed for the LMM. Like other no-arbitrage models that
are consistent with the current term structure at the current point in time,
the LMM requires re-calibration of the parameters in order to fit the new
term structure the following day (or week).

A new methodology that models interest rate innovation by random
field overcomes some of these problems. Kennedy [25, 26] and Goldstein
[13] first introduce this methodology. Pang [36], Longstaff et al.[29] and
Bester [6] investigate random field model from different aspects such as
model calibration and option pricing.

In this paper, we introduce an extended LIBOR market model where the
uncertainty term is driven by random field. We therefore refer it as the ran-
dom field LIBOR market model (RFLMM). Then the RFLMM is integrated
with the lognormal-mixture local volatility model to capture implied volatil-
ity skews/smiles. It will be shown that this model can generate the implied
volatility smile in interest rate caps and is more accurate in calibration.
We also demonstrate through our implementation that it is unnecessary to
choose the number of factors in advance.

The rest of the paper is organized as follows. Section 2 extends the LI-
BORmarket model to a random field setting. Formulas for caplets and swap-
tions pricing are provided. Section 3 integrates the model with lognormal-
mixture local volatility model. Section 4 calibrates the model to market
data. Section 5 concludes the paper.
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2 Random Fields LIBOR Market Model

In this section we derive an extended LIBOR market model with uncertain-
ties described by random fields. The extended model is therefore referred
to as the random field LIBOR market model (RFLMM). Firstly, we intro-
duce random field as a description of uncertainty in Sec.2.1. Secondly, we
review the advantages of modeling interest rates as random fields in Sec.2.2.
Thirdly, we derive the random fields LIBOR market model in Sec.2.3, and
closed-form formulas for pricing European caplets and swaptions in Sec.2.4.

2.1 Random Field

A random field is a stochastic process that is indexed by a spatial variable,
as well as a time variable. For example, if we would like to measure the
temperature at position u and time t with u ∈ Rn and t ∈ R+, the measure
can be modeled as a random variable W (t, u). The collection of

{W (t, u) : (t, u) ∈ R+ ⊗ Rn}

is a random field.
Random fields are generations of Brownian motions. For fixed maturity

T , random field W (t, T ) is a Brownian motion, i.e. dW (t, T ) := [dW (t +
dt, T ) − dW (t, T )] follows normal distribution N (0, dt). In addition, the
correlation between dW (t, T1) and dW (t, T2) for any t < T1 ≤ T2 is specified
by

c(u, v) = Corr[dW (t, u), dW (t, v)], (1)

with limu→v c(u, v) = 1, where the differential notation d is used to denote
the increments in the t-direction. Given a specification of the correlation
structure c(u, v), Bester [6] showed the construction of random field as fol-
lows. Assume that for a correlation function c(u, v), there exists a symmetric
function g(u, v) such that

c(u, v) =

∫ ∞

0
g(u, z)g(v, z)dz,

with

∫ ∞

0
|g(u, z)|2dz = 1. The random field W (t, u) can be defined as

W (t, u) = W (0, 0) +

∫ ∞

0

∫ t

0
g(u, z)ϵ(s, z)dsdz, (2)

or equivalently

dW (t, u) = [

∫ ∞

0
g(u, z)ϵ(t, z)dz]dt (3)

From Eq.(3) we can see that the increments of random field are weighted
average of white noise at time t. Here g(u, z) is the weight of ϵ(t, z) at
location z in determining the change of the field at location u. A formal
theoretic definition of random field and other treatments can be found in
Adler [49], Gikhman-Skorokhod [50] and Khoshnevisan [24].
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2.2 Interest Rate Modeling in Random Fields Setting

Modeling interest rates as random fields was introduced by Kennedy [25, 26]
and Goldstein [13]. Limiting the scope to Gaussian random fields, Kennedy
[25] obtains the form of the drift terms of the instantaneous forward rates
processes necessarily to preclude arbitrage under the risk neutral measure.
Goldstein [13] extends the work to the case of non-Gaussian random fields.
We first provide an overview of the Kennedy-Goldstein Framework.

Kennedy-Goldstein Framework. Define zero coupon bond price

P (t, T ) = e−
∫ T
t f(t,u)du, (4)

where f(t, u) is the instantaneous forward rate and t, T are current time
and maturity respectively. According to Goldstein [13], if we require the
discounted bond price

e−
∫ t
0 r(s)dsP (t, T ), (5)

where r(t) is the instantaneous spot rate, to be a martingale under the risk

neutral measureQ, the drift term must be given by σ(t, T )

∫ T

t
σ(t, u)c(t, T, u)du,

to rule out arbitrage. Thus the dynamics of the instantaneous forward rates
f(t, T ) under the risk neutral measure is given by

df(t, T ) = σ(t, T )

∫ T

t
σ(s, u)c(s, T, u)duds+ σ(t, T )dW̃ (t, T ), (6)

with the correlation structure

Corr[dW (t, T1), dW (t, T2)] = c(t, T1, T2), (7)

where lim∆T→0 c(t, T, T +∆T ) = 1 and W̃ (t, T ) is a random field under the
risk neutral measure Q.

Goldstein [13] and Pang [36] argue that modeling the term structure of
interest rates as random fields provides many advantages. First, it is unnec-
essary to determine the number of factors prior to calibration or estimation.
Random fields models are infinite-factor models, since the instantaneous
forward rates in random fields models form a continuum. In fact random
field models accommodate both finite and infinite-factor models and thus
all finite-factor models are special cases of random fields models. It can be
shown that the Gaussian random fields can be interpreted as a linear combi-
nation of infinite number of Brownian motions indexed by different forward
rate maturities, T , under mild technical conditions. Pang [36] shows that it
is possible to reduce Eq.(6) to a d-factor HJM model

df(t, T ) = σ(t, T ) ·
∫ T

t
σ(t, u)dudt+ σ(t, T ) · dW̃(t), (8)
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by taking

dW̃ (t, T ) =
1

σ(t, T )

d∑
i=1

σi(t, T )dW̃i(t), (9)

where σ(t, u) is a d−dimension vector and · is the inner product of two
vectors. In fact, for random fields model, the covariance of instantaneous
changes of forward rates is given as

Cov[df(t, u), df(t, v)] = σ(t, u)σ(t, v)c(u, v). (10)

While in the HJM framework, we have

Cov[df(t, u), df(t, v)] = σ(t, u) · σ(t, v). (11)

If c(u, v) can be written as

c(u, v) = e(t, u) · e(t, v), (12)

with |e(t, T )| = 1, we can take

σ(t, T ) = σ(t, T )e(t, T ). (13)

Thus the Gaussian field model Eq.(6) is reduced to HJM model Eq.(8).
This suggests that random fields models can be viewed as an infinite-factor
generalization of HJM models. This shows the difference when calibrating
of HJM and random field models. We can directly specify the correlation
structure without specifying the number of factors.

Second, it is unnecessary to frequently recalibrate random fields mod-
els. As pointed out in Buraschi and Corielli [5],the finite-factor models
completely determines the future trend of the yield curve and thus its pos-
sible shapes in the future. For instance, the d-factor models can at most
fit d points on the yield curve and the volatility curve at a specific date.
At the following date, without re-calibration, the same specification will
typically miss those points. In practice, the most common solution is to
frequently re-calibrate the model by inputting a new term structure. How-
ever, as Pang [36] points out, the re-initialization of yield curve at each new
date would violate the no-arbitrage constraint, which is the fundamental
assumption of the no-arbitrage modeling. In other words, the re-calibration
violates the self-financing condition of the replication strategy since it im-
plies a change in the conditional distribution of the process with respect
to which the replicating portfolio weights are computed. In d-factor HJM
term structure models, any security can be perfectly hedged by a preferred
choice of d assets. However, in random fields HJM models, the innovation of
each instantaneous forward is imperfectly correlated with that of any linear
combination of other instantaneous forwards. Thus random fields models
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have enough degree of freedom to fit the current yield curve. More discus-
sion of re-calibration can be found in Pang [36], which demonstrate that
the calibration of a random fields model permits more stability over time
and frequent re-calibration can be avoided, in contrast to a d-factor HJM
model. Pang [36] examines the stability of the covariance function and show
that the function maintains similar shapes throughout a long period of time
(at least one month). The eigenvalues and corresponding eigenfunctions of
the implied zero rate covariance matrix remain mostly the same during the
sample period. He also use principle component analysis (PCA) to extract
the eigenvalues and eigenvectors to examine the HJM models. He finds that
the eigenvalues and eigenvectors in HJM models are very unstable over time.

2.3 Random Fields LIBOR Market Model (RFLMM)

In this section, we derive the dynamics of LIBOR rates Lk(t) with uncer-
tainty terms modeled as random fields, under risk neutral measure Q, and
Tj-forward measure QTj , for j = 0, 1, ..., N .

Let us consider the time structures {T0, T1, ..., TN} with time intervals
δk = Tk − Tk−1, k = 1, ..., N . For t < Tk−1 < Tk, the LIBOR forward rate
Lk(t) is defined as

Lk(t) =
1

δk
[
P (t, Tk−1)

P (t, Tk)
− 1], (14)

and the zero coupon bond price P (t, T ) is defined in Eq.(4). Given the dy-
namics of f(t, T ) in Eq.(6), by Itô’s formula we can derive that the dynamics
of the zero coupon bond price P (t, T ) with random field setting is

dP (t, T ) = P (t, T )[r(t)dt−
∫ T

t
σ(t, u)dW̃ (t, u)du]. (15)

The dynamics of Lk(t) is determined by those of zero coupon bonds. By
Itô’s formula we can derive that under risk neutral measure Q, the dynamics
of Lk(t) is:

dLk(t) =
1

δk

P (t, Tk−1)

P (t, Tk)
[

∫ Tk

Tk−1

σ(t, u)dW̃ (t, u)du+

∫ Tk

t
σ(t, u)dW̃ (t, u)du∫ Tk

Tk−1

σ(t, u)dW̃ (t, u)du]. (16)

Now let us derive the dynamic of forward rates under Tk-forward measure.
Suppose that there exists a function θ(t, Tk, u) such that dW Tk(t, u) :=

θ(t, Tk, u)dt+dW̃ (t, u) has normal distribution Φ(0, dt) under the Tk-forward
measure. Using the fact that if Lk(t) is a martingale under the Tk-forward
measure then the drift term should vanish, we can conclude that

θ(t, Tk, u) =

∫ Tk

t
σ(t, v)c(u, v)dv. (17)
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Thus we have the dynamics of Lk(t) under the Tk-forward measure as shown
in the following proposition and corollaries.

Proposition 2.1. (Random fields dynamics under the associated
forward measures) Under the log-normal assumption, the dynamics of
Lk(t) under the Tk-forward measure is described by the following equation

dLk(t) =
1

δk

P (t, Tk−1)

P (t, Tk)

∫ Tk

Tk−1

σ(t, u)dW Tk(t, u)du, (18)

where W Tk(t, u) is a Gaussian random field under the Tk-forward measure.

See Appendix 1 for the proof of Proposition 2.1.

Corollary 2.2. If dW̃ (t, u) is normally distributed according to N (0, dt)
under the risk neutral measure, then

dW Tk(t, u) :=

∫ Tk

t
σ(t, v)c(u, v)dvdt+ dW̃ (t, u)

is normally distributed according to N (0, dt) under the Tk-forward measure
(using P (t, Tk) as a numeraire).

Corollary 2.3. If corr[dW Tk(t, u), dW Tk(t, v)] = c(u, v), then

∫ Tk

Tk−1

σ(t, u)dW Tk(t, u)du

is normally distributed with mean 0 and variance

∫ Tk

Tk−1

∫ Tk

Tk−1

σ(t, x)σ(t, y)c(x, y)dxdydt

under the Tk-forward measure.

Proposition 2.1 shows that Lk(t) is log-normally distributed under the
Tk-forward measure. Corollary 2.2 describes the form of random fields un-
der the Tk-forward measure and Corollary 2.3 provides the distribution of
the integral of random fields, given the correlation structure c(u, v). These
results are essential for the derivation of RFLMM.

Now we can derive the dynamics of forward rates Lk(t) under the Tj-
forward measure, j = 1, 2, ..., N . From Eq.(18) and Corollary 2.2, we can
derive the relation of dW Tk(t, u) and dW Tk+1(t, u) as follows,

dW Tk(t, u) = dW Tj (t, u)−
j∑

i=k+1

∫ Ti

Ti−1

σ(t, v)c(u, v)dvdt, (19)

for j > k. As we know, Lk(t) is a martingale under Tk-forward measure.
By the Martingale representation proposition, there exists a function ξ(t, u),
such that

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)dW
Tk(t, u)du. (20)
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Comparing the above equation with Eq.(18), we can simply take

ξk(t, u) =
δkLk(t) + 1

δkLk(t)
σ(t, u), (21)

and obtain the dynamics of Lk(s) under the Tk-forward measure. The deriva-
tion in case j < k is similar. Thus we have the following proposition.

Proposition 2.4. (Random field dynamics under forward measures)
Under the log-normal assumptions, the dynamics of Lk(t) under the Tk-
forward measure, in three cases j < k, j = k, j > k, are described respectively
by the following equations

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)[dW
Tj (t, u) + Λk

j (t, u)dt]du, j < k;

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)dW
Tj (t, u)du, j = k;

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)[dW
Tj (t, u)− Λj

k(t, u)dt]du, j > k.

(22)

with

Λk
j (t, u) =

k∑
i=j+1

∫ Ti

Ti−1

δiLi(t)ξi(t, v)c(u, v)

δiLi(t) + 1
dv,

where W Tj (t, u) is a Gaussian random field under the Tj-forward measure.
The above equations admit a unique solution if the coefficient ξk(·, ·) are
locally bounded, locally Lipschitz continuous and predictable.

See Appendix 2 for the proof of Proposition 2.4.

Proposition 2.5. (Consistency between the LMM and the RFLMM)
The HJM framework is a special case of the Kennedy-Goldstein framework,
since Eq.(22) in Proposition 2.4 reduces to Eq.(6), if we take δi → 0. LMM
is a special case of RFLMM, since Eq.(22) in Proposition 2.4 reduces to
Eq.(23), if we take the value of dW T (t, u) on [Tk−1, Tk] to be dW T

k (t).

dLk(t) = Lk(t)ξk(t)[dW
Tj

k (t) +

k∑
i=j+1

δiρi,k(t)Li(t)ξi(t)

δiLi(t) + 1
dt], j < k;

dLk(t) = Lk(t)ξk(t)dW
Tj

k (t), j = k;

dLk(t) = Lk(t)ξk(t)[dW
Tj

k (t)−
j∑

i=k+1

δiρi,k(t)Li(t)ξi(t)

δiLi(t) + 1
dt], j > k.

(23)

See Appendix 3 for the proof of Proposition 2.5.
Proposition 2.5 shows that the LIBOR market model Eq.(23) is a special

case of random field LIBOR market model.
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2.4 Option Pricing in the Random Field LIBOR Market
Model

In this section we derive the Black-Scholes equation for the pricing of deriva-
tives in random field case and the closed-form formulas for caplets and swap-
tions. Similar to the Black-Scholes equation for the price of derivatives in the
Brownian motion case, we provide and prove a Black-Scholes type equation
in the random field case, as shown in the following proposition.

Proposition 2.6. (The Black-Scholes equation in the random field
setting for time dependent parameters) Suppose we have an option on
some underlying asset S, which follows dynamics

dS(t)

S(t)
= µ(t)dt+

∫ t2

t1

ξ(t, u)dW (t, u)du, (24)

with time dependent parameters. Then the price of derivatives V satisfies
the equation:

∂V

∂t
+

1

2
[

∫ t2

t1

∫ t2

t1

ξ(t, u)ξ(t, v)c(u, v)dudv]
∂2V

∂S2
+ rS

∂V

∂S
− r(t)V = 0. (25)

We can denote it as the Black-Scholes equation for option pricing with ran-
dom field. For a call option with strike K and maturity T , the price is given
by

C = SΦ(d̃1)−Ke−
∫ T
0 r(u)duΦ(d̃2),

where

d̃1 =
1√∫ T

0 ξ̂2(u, t1, t2)du
[ln

S

K
+

∫ T

0
(r(u) +

ξ̂2(u, t1, t2)

2
)du];

d̃2 = d̃1 −

√∫ T

0
ξ̂2(u, t1, t2)du;

ξ̂2(t, t1, t2) =

∫ t2

t1

∫ t2

t1

ξ(t, u)ξ(t, v)c(u, v)dudv,

and Φ(d) is the normal cumulative distribution function.

See Appendix 4 for the proof of Proposition 2.6. We can get a Black-type
formula for pricing caplets and swaptions from Proposition 2.6.

2.4.1 Random field LMM formula for caplets

The payoff of a caplet at time Tk is

δk[Lk(Tk−1)−K]+.
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The time t price of caplet is

Cplt(t,K, Tk−1, Tk) = δkP (t, Tk)ETk [[Lk(Tk−1)−K]+|Ft].

Suppose that Lk(t) follows dynamics given by Eq.(20) under the Tk-forward
measure. If we assume that ξk(t, u) is deterministic, then by Corollary 2.3,
Lk(t) is log-normally distributed and by Black’s formula the time t price is

Cplt(t,K, Tk−1, Tk) = δkP (t, Tk)Black(K,Lk(t), σ
Black,RF
k

√
Tk−1 − t),

where

Black(K,Lk(t), σ
Black,RF
k

√
Tk−1 − t) = Lk(t)Φ(d1)−KNΦ(d2), (26)

d1 =
log(Lk(t)/K) + (σBlack,RF

k )2(Tk−1 − t)/2

σBlack,RF
k

√
Tk−1 − t

,

d2 =
log(Lk(t)/K)− (σBlack,RF

k )2(Tk−1 − t)/2

σBlack,RF
k

√
Tk−1 − t

= d1 − σBlack,RF
k

√
Tk−1 − t,

and

σBlack,RF
k =

√
1

Tk−1 − t

∫ Tk−1

t
[

∫ Tk

Tk−1

∫ Tk

Tk−1

ξk(s, x)ξk(s, y)c(x, y)dxdy]ds.

(27)
We can specify the volatility and correlation structure to get particular
forms of the pricing formula. For example, Kennedy [26] demonstrated
that for forward rate to be modeled as a Gaussian, Markov, and stationary
random field, the volatility must be of the form ξ(t, T ) = σe−α(T−t) and the
correlation structure must be Corr[dW (t, T1), dW (t, T2)] = e−ρ|T2−T1|. In
this case, the caplet price under random field LMM is given in the above
formula, where

(σBlack,RF
k )2 = σ2e2t[

ρ− α

α2 − ρ2
(e−2αTk−e−2αTk−1)− δ

α+ ρ
e−(α+ρ)Tk+

δ

α− ρ
e−(α−ρ)Tk−1 ].

2.4.2 Random field LMM formula for swaptions

The payoff of a European swaption at time Tk is

δk[Si,j(Tk−1)−K]+.

The time t price is therefore

[Si,j(t)−K]+
j∑

k=i+1

δkP (t, Tk),
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where the swap rate

Si,j(t) =

∑j
k=i+1 δkP (t, Tk)Lk(t)∑j

k=i+1 δkP (t, Tk)
=

P (t, Ti)− P (t, Tj)∑j
k=i+1 δkP (t, Tk)

, (28)

for 0 ≤ t ≤ Ti, i < j ≤ N .
In the swap market model, the swap rates are assumed to follow dynamics

dSi,j(t) = Si,j(t)ηi,j(t)dW
i,j(t). (29)

The time t price of a swaption can be computed from the Black’s formula
as

Swaption(t,K, Ti, Tj) = A Black(K,Si,j(t), σ
Black
i,j

√
Tk−1 − t), (30)

where σBlack
i,j :=

√
1

Tk−1 − t

∫ Tk−1

t
∥ ηi,j(s) ∥2 ds, A =

j∑
k=i+1

δkP (t, Tk).

The simultaneous assumption of log-normally distributed forward LI-
BOR and log-normally distributed swap rates is inconsistent. As a result,
swaptions cannot be priced using Black’s formula within the LIBOR market
model. Now we shall rewrite the implied volatility of the swpation in terms
of forward LIBOR Lk(t). Given

P (t, Tk)

P (t, Ti)
=

k∏
j=i+1

1

1 + δjLj(t)
,

for k ≥ i+1, by dividing through P (t, Tj), the swap rate defined in Eq.(28)
can be written as

Si,j(t) =

∏j
l=i+1(1 + δlLl(t))− 1∑j

k=i+1 δk
∏j

l=k+1(1 + δlLl(t))
,

or equivalently

lnSi,j(t) = ln{
j∏

l=i+1

(1 + δlLl(t))− 1} − ln{
j∑

k=i+1

δk

j∏
l=k+1

(1 + δlLl(t))},

for j − 1 ≥ k ≥ i+ 1, where
∏n

m = 1 if m > n. According to Hull et al.[20]
and from Itô’s formula, the uncertainty term of swap rates in the LMM
model can be written as:

j∑
k=i+1

1

Si,j(t)

∂Si,j(t)

∂Lk(t)
dW Tk

k (t) =

j∑
k=i+1

δkLk(t)γ
i,j
k (t)

1 + δkLk(t)
ξk(t)dW

Tk
k (t),

where

γi,jk (t) =

∏j
l=i+1(1 + δlLl(t))∏j

l=i+1(1 + δlLl(t))− 1
−

∑k−1
m=i+1 δm

∏j
l=m+1(1 + δlLl(t))∑j

m=i+1 δm
∏j

l=m+1(1 + δlLl(t))
.
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Using Black’s formula the time t price of swaption is

Swaption(t,K, Ti, Tj) = A Black(K,Si,j(t), σ
Black,RF
i,j

√
Tk−1 − t),

where

σBlack,RF
i,j =

√√√√ 1

Ti − t

∫ Ti

t
∥

j∑
k=i+1

δkLk(s)γ
i,j
k (s)

1 + δkLk(s)

∫ Tk

Tk−1

ξk(s)dW (s, u)∥2ds

=

√√√√ 1

Ti − t

j∑
k=i+1

j∑
l=i+1

δkLk(t)γ
i,j
k (t)

1 + δkLk(t)

δlLl(t)γ
i,j
l (t)

1 + δlLl+1(t)
×

√∫ Ti

t

∫ Tk

Tk−1

∫ Tl

Tl−1

ξk(s, x)ξl(s, y)c(x, y)dxdyds. (31)

The last equation is obtained by using standard freezing approximation tech-
niques, i.e. approximatively evaluating the LIBOR rates Lk(s), t ≤ s ≤ Ti

appearing in the instantaneous volatility at initial time t.

Remark 2.7. Standard Freezing Approximation Techniques.
The last equation is obtained by approximatively evaluating the LIBOR rate
Lk(s), t ≤ s ≤ Ti at initial time t. This approximation technique is highly
accurate according to Hull and White [18]. Hull and White [18] compared
the prices of swaptions calculated by the approximation formula above with
the price calculated from a Monte Carlo simulation and found the two to be
very close. We will use this approximation in several places in this paper.

In this section we have derived the random fields LIBOR market model
(RFLMM) (Eq.(22)) and formulas for the implied volatility for caplets (Eq.(27))
and swpations (Eq.(31)). These two formulas can be used to calibrate the
RFLMM.

3 Random Field Lognormal-mixture Volatility Smile
Model

In this section, we derive a random field lognormal-mixture volatility smile
model. First, we review implied volatility smiles in interest rates options in
Sec.3.1. Then we extend the lognormal-mixture model to the random field
case in Sec.3.2.

3.1 Volatility Smile

It is well known that the lognormal LMM has the main drawback of pro-
ducing constant implied volatility for any given maturity. From the Black’s
formula for caplet price, we can see that the volatility of the forward rate
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does not depend on the option strike K. However, each caplet market price
requires its own Black volatility depending on the caplet strike K. In other
terms, there is no a single volatility parameter σk such that both

Cplt(t,K1, Tk−1, Tk) = δkP (t, Tk)Black(K1, Lk(t), σk
√

Tk−1 − t)

and

Cplt(t,K2, Tk−1, Tk) = δkP (t, Tk)Black(K2, Lk(t), σk
√

Tk−1 − t)

hold. The market observation shows that we need two different volatil-
ities σk(K1) and σk(K2) to use Black’s formula to match market price.
The volatility smile or skew of the Tk-expiry caplet is the curve K →
σk(K)/

√
Tk − t. The reason that the curve is called volatility ‘smile’ or

‘skew’ is that the curve usually displays ‘smiley’ or ‘skewed’ shapes. If the
volatility has a lower value around the at-the-money derivatives the shape is
called smile. If the low-strike implied volatilities are higher than high-strike
implied volatilities, the shape is said to be skew.

The model’s volatility smile is generated as follows. Given a starting
strike K, we compute the caplet price using

Cplt(K) = δkP (t, T )ETk [Lk(Tk−1)−K)+|Ft],

with Lk(t) following dynamics Eq.(32). Then we invert Black’s formula for
this strike, i.e., solve

Cplt(K) = δkP (t, T )Black(K,Lk(t), σk(K)
√

Tk−1 − t)

in σk(K). Finally we change K and repeat the process to get a curve K →
σk(K).

There have been many works dealing with the volatility smiles. One pop-
ular adjustment to the above issue is to start from an alternative dynamics,
by assuming that under Tk−forward measure,

dLk(t) = ξk(t, Lk(t))Lk(t)dW
Tk(t), (32)

where ξk can be either a deterministic or a stochastic function of Lk(t).
A deterministic ξk leads to so called ‘local-volatility model’. For instance,
we can take ξk(t, Lk) = ξk(t)Lk(t)

β−1, where 0 ≤ β ≤ 1 and ξk(t) is a
deterministic function of t. The latter case leads to so called ‘stochastic
volatility models’. For example, we can take ξk(t, L) = ξk(t), where ξk(t)
follows a stochastic differential equation. In this article, we will use the
lognormal-mixture model introduced by Brigo et al.[8] as an example of
local volatility models.

Several authors have attempted to modify the LMM to capture the
implied volatility smile/skew. Stochastic processes more general than log-
normal process have been proposed. For example, constant elasticity of vari-
ance model(CEV) by Andersen-Andreasen[1] and displaced diffusion model(DD)
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by Joshi-Rebonato[27] generate a monotone skew but not smile of implied
volatility. A remedy to the above models has been to extend standard
LMM by adopting mean reverting square root process for variance, such as
Andersen and Brotherton-Ractliffe[3], Wu and Zhang [46], which produce
additional curvature to the volatility curve. One of the main drawbacks of
above models is that the volatility dynamics of all forward rates are driven
by the same stochastic process, which may have difficulty in capturing dif-
ferent individual smile or skew shape of caps and swaptions. This problem is
solved by Hagan et al.[23] by applying the SABR model to LIBOR modeling.
However the volatility in the SABR model does not mean-revert. Lastly, for
LMM with stochastic volatilities, one needs to decide on the number of
factors ex ante.

3.2 Random Field Lognormal-mixture Volatility Model

In this section we present a local volatility model to capture the implied
volatility smile. We extend the lognormal mixture model derived in Brigo
et al. [8] to the random field case. Similar to Eq.(32), we can assume that
under the Tk-forward measure, the dynamics of Lk(t) in the random field
setting is

dLk(t) =

∫ Tk

Tk−1

ξk(t, Lk(t), u)dW
Tk(t, u)du, (33)

where ξk is a deterministic function of Lk(t). Similar to the random field
LIBOR market model, we have the following proposition.

Proposition 3.1. (Random field local volatility dynamics under for-
ward measures) Under the assumption of Eq.(33), the dynamics of Lk(t)
under the Tj-forward measure, in three cases j < k, j = k, j > k, are de-
scribed respectively by the following equations

dLk(t)

Lk(t)
=

∫ Tk

Tk−1

ξk(t, Lk(t), u)[dW
Tj (t, u) + Λk

j (t, u)dt]du, j < k;

dLk(t)

Lk(t)
=

∫ Tk

Tk−1

ξk(t, Lk(t), u)dW
Tj (t, u)du, j = k;

dLk(t)

Lk(t)
=

∫ Tk

Tk−1

ξk(t, Lk(t), u)[dW
Tj (t, u) + Λj

k(t, u)dt]du, j > k.

(34)

Λk
j (t, u) =

k∑
i=j+1

∫ Ti

Ti−1

δiLi(t)ξi(t, Lk(t), v)c(u, v)

δiLi(t) + 1
dv,

where W Tj (t, u) is a Gaussian random field under the Tj-forward measure.
The above equations admit a unique solution if the coefficients ξk(·, ·, ·) are
locally bounded, locally Lipschitz continuous and predictable.
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Brigo and Mercurio [9] provide a class of analytical models based on
a given mixture of densities. In this section we will extend them to the
random field setting and provide closed-form formulas for caplet pricing and
corresponding impled volatility that can be used for calibration.

Let us consider the diffusion process with dynamics

dGk
i (t) = Gk

i (t)

∫ Tk

Tk−1

νki (t, G
k
i (t), u)dW

Tk(t, u)du, (35)

with initial value Gk
i (0) = Lk(0) for all i = 1, 2, ...,M , where W Tk(t, u) is a

Gaussian field under the Tk-forward measure with correlation c(t, T1, T2) as
described in Eq.(7). Similarly to Brigo and Mercurio [9], the problem here
is to derive the local volatility ξk(t, u) such that the density of Lk(t) under
Tk-forward measure satisfies, for each time t:

pk(x, t) =
d

dx
P Tk{Lk(t) ≤ x} =

M∑
i=1

ωi
d

dx
P Tk{Gk

i (t) ≤ x}du =
M∑
i=1

ωip
k
i (x, t),

where ωi is a weighting function with
∑M

i=1 ωi = 1. In fact pk(x, t) is a
proper density function under the Tk-forward measure since∫ +∞

0
xpk(x, t)dx =

∫ +∞

0
x

M∑
i=1

ωip
k
i (x, t)dx =

M∑
i=1

ωiG
k
i (0) = Lk(0),

if the conditions for exchange of integrals are verified. The last calcula-
tion follows from the fact that Gk

i (t) is a martingale under the Tk-forward
measure. We know that that the local volatility ξk(t, Lk(t)) is

∫ Tk

Tk−1

∫ Tk

Tk−1

ξk(t, u)ξk(t, v)c(u, v)dvdu =

M∑
i=1

ωi(

∫ Tk

Tk−1

∫ Tk

Tk−1

νki (t, u)ν
k
i (t, v)c(u, v)dvdu)p

k
i (x, t)

N∑
i=1

ωip
k
i (x, t)

.

(36)
If we take c(x, y) = 1, the above formula reduces to

ξk(t) =

√√√√√√√√√√
M∑
i=1

ωiν
k
i (t)

2pki (x, t)

N∑
i=1

ωip
k
i (x, t)

, (37)

which is the original lognormal-mixture model derived in Brigo et al.[8].
Since ∫ Tk

Tk−1

ξk(t, Lk(t), u)dW
Tk(t, u)du
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is normally distributed with variance∫ Tk

Tk−1

∫ Tk

Tk−1

ξk(t, Lk(t), u)ξk(t, Lk(t), x)c(u, v)dvdu,

we have the following proposition.

Proposition 3.2. (Random field lognormal-mixture dynamics un-
der forward measures) The dynamics of Lk(t) is given by

dLk(t) = Lk(t)

√√√√√√√√√√
M∑
i=1

ωi(

∫ Tk

Tk−1

∫ Tk

Tk−1

νki (t, u)ν
k
i (t, v)c(u, v)dvdu)p

k
i (x, t)

M∑
i=1

ωip
k
i (x, t)

dW Tk(t),

(38)
where W Tk(t) is a Brownian motion under the Tk-forward measure.

If we assume that in Eq.(35)

νki (t, x, u) = νki (t, u), (39)

i.e., the densities pki (x, t) are all log-normal, where for all k, νki (t) are deter-
ministic and continuous functions of time that are bounded from above and
below by strictly positive constants, the marginal density of Gk

i (t) is then
log-normal:

pki (x, t) =
1

xνki (t)
√
2π

exp{− 1

2νki (t)
2
[ln

x

Lk(t)
+

1

2
νki (t)

2]2}, (40)

νki (t) =

√∫ t

0

∫ Tk

Tk−1

∫ Tk

Tk−1

νki (s, u)ν
k
i (s, v)c(s, u, v)dudvds. (41)

3.2.1 Option pricing in a random field local volatility model

In this section, we derive the closed-form pricing formulas for caplets in the
random field lognormal-mixture model.

The payoff of a caplet at time Tk is

δk[Lk(Tk−1)−K]+.

The time t price of the caplet is

Cplt(t,K, Tk−1, Tk) = δkP (t, Tk)E
Tk [[Lk(Tk−1)−K]+|Ft]

= P (0, Tk)

∫ +∞

0
[x−K]+pk(x, t)dx

= P (0, Tk)
M∑
i=1

∫ +∞

0
[x−K]+pki (x, t)dx. (42)
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Suppose that Lk(t) follows the dynamics of Eq.(33) under the Tk-forward
measure and Eq.(39) holds, then the caplet price is

Cplt(t,K, Tk−1, Tk) = δkP (t, Tk)

M∑
i=1

Black(K,Lk(t), ν
k
i (Tk−1, u)).

Given the above closed-form solution, we can derive an explicit approxima-
tion for the caplet implied volatility as a function of the strike price.

Proposition 3.3. (Implied volatility of the random field lognormal-

mixture model) Define m = ln Lk(t)
K . The implied volatility σBlack,RF

k is

σBlack,RF
k (m)

= σBlack,RF
k (0) +

1

2σBlack,RF
k (0)(Tk−1 − t)

M∑
i=1

ωi[
σBlack,RF
k (0)

√
Tk−1 − t

νki (Tk−1)

e
1
8
(σBlack,RF

k (0))2(Tk−1−t)−νki (Tk−1)
2 − 1]m2 + o(m2), (43)

where the at-the-money caplet implied volatility σBlack,RF
k (0) is

σBlack,RF
k (0) =

2√
Tk−1 − t

Φ−1(

M∑
i=1

ωiΦ(
1

2
νki (Tk−1))). (44)

Proposition 3.3 can be used to capture the volatility smile when cali-
brating the random field lognormal-mixture model to caplets.

4 Calibration

The models we discuss and derive in this paper require in general three
different inputs, the initial forward curve, the instantaneous volatilities of the
forward rates, and the correlation structure. The instantaneous volatilities
of forward rates are usually assumed to depend on current time t, forward
rate maturity T and time to maturity T − t. The most popular assumption
is that the volatilities depend only on time to maturity (time-homogenous).
There are two ways to specify the volatility function. One is to assume that
volatility is piecewise-constant. Another way is to assume some parametric
form for the volatility. In this paper we assume that the instantaneous
volatility is of a particular parametric form with several time independent
parameters. The estimation of the correlation structure can be based on
historically estimated correlation matrix or some parametric form. However,
the historical matrix is very volatile and is likely to have some outliers. Thus
we follow the other approach to assume a parametric functional form for the
correlation structure. See Sec.4.1 for details of the specification of model
inputs.
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4.1 Model specification

We need to calibrate the instantaneous volatility functions ξk(t), k = 1, 2, ..., N
and the correlation matrix ρi,j(t), i, j = 1, 2, .., N from the data of the ini-
tial yield curve Lk(0) and the caps and swaptions prices observed in the
market. Notice that in the random field case, the correlation structure may
take the continuum form c(u, v). In this paper, we choose to parameterize
the instantaneous volatility ξk(t) and the correlation structure c(u, v).

Rebonato [39] proposes a time homogenous linear-exponential functional
form with four parameters ξk(t) = f(t, Tk)h(t)g(Tk) for the instantaneous
volatility, while h(t), g(Tk) are usually taken to be 1 and

f(t, Tk) = [a+ b(Tk − t)]e−c(Tk−t) + d; a, b, c, d > 0. (45)

This formulation possesses several advantages. First, the function is
flexible enough to produce either a humped or monotonically decreasing
instantaneous volatility. Second, the function’s parameters have clear inter-
pretations. For example, the parameter d is the volatility when δ = T − t
is large, while the a+ d is approximately the instantaneous volatility of the
forward rate when δ is small. And the limit of the function is reached at
(b− ca)/cb. Third, analytical integration of the function’s square is possible
to allow fast calculation of forward rate variance and covariance.

The correlation structure differs for LMM and random field LMM. For
the LMM, one need to specify the functional form of correlation matrix
ρi,j , while for the random field LMM, one need to specify the correlation
function c(u, v). The difference of correlation structures for the LMM and
the random field LMM is discussed as follows.

For the LMM, given the dynamics in Eq.(23) we know that the instan-
taneous correlation between forward rates Li(t) and Lj(t) is defined as

Cov(dLi(t), dLj(t))√
V ar(dLi(t))V ar(dLj(t))

=
ξi(t)ξj(t)dWi(t)dWj(t)√

ξ2i (t)ξ
2
j (t)

= dWi(t)dWj(t) = ρi,j(t),

which means that the instantaneous correlation of forward rates is exactly
the same as the correlation structure of Brownian motion W (t). We follow
Schoenmakers and Coffey [42], who propose a two-parameter functional form
for the correlation:

ρi,j = e−
|i−j|
N−1

(ρ∞+ρ0
N−i−j+1

N−2
), (46)

where N is the size of the matrix ρ and 0 ≤ ρ0 ≤ ρ∞. The number of factors
in the LIBOR market model depends on the rank of correlation matrix ρ.
A rank-d correlation matrix ρ with entries defined in Eq.(46) gives rise to a
d-factor LIBOR market model. In this paper we take a full rank correlation
matrix and thus the LIBOR market model considered in this paper has
the number of factors the same as the number of forward rates considered.
Notice that if we specify the correlation directly without parametrization,
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we need to calibrate K(K + 1)/2 parameters, where K is the size of the
correlation matrix. The number of parameters becomes very large if K is
large. Thus the techniques of factor reduction will be needed to reduce the
rank of the matrix and thus the number of parameters. On the other hand,
we parameterize the correlation structure. The parameters needed to be
calibrated are just the parameters in the functional form. Thus it is not
necessary to reduce the correlation matrix to lower rank.

However, for the random field LMM, given the dynamics in Eq.(22), we
know that the instantaneous correlation between forward rates Li(t) and
Lj(t) is defined as

Cov(dLi(t), dLj(t))√
V ar(dLi(t))V ar(dLj(t))

=

∫ Ti

Ti−1

∫ Tj

Tj−1

ξi(t, x)ξj(t, y)c(x, y)dxdy√∫ Ti

Ti−1

∫ Ti

Ti−1

ξi(t, x)ξi(t, y)c(x, y)dxdy

∫ Tj

Tj−1

∫ Tj

Tj−1

ξj(t, x)ξj(t, y)c(x, y)dxdy

,

which means that the instantaneous correlation of forward rates depends on
both the correlation structure and the instantaneous volatilities. In other
words, the correlation matrix depends the specification of both ξ(t, y) and
c(x, y). Thus the choice of the correlation functional form c(x, y) for random
fields LIBOR market model can be simpler than that for LIBOR market
model and it turns out that the following simple function form is sufficient:

c(x, y) := e−ρ∞|x−y|. (47)

The correlation is independent of current time t.

4.2 Calibration Procedure

In this section, we provide the closed-form Black implied volatility for caplets
and swaptions, as functions of the instantaneous volatility ξ(t, T ) and the
correlation structure c(u, v). The Black implied volatilities for caplets are
derived in Eq.(43), where νki (t) takes different form for the LMM and the
RFLMM. For the LMM,

νki (t) =

√
1

Tk−1 − t

∫ Tk−1

t
f2
i (s, Tk)ds. (48)

For the RFLMM,

νk,RF
i (t) =

√
1

Tk−1 − t

∫ Tk−1

t
[

∫ Tk

Tk−1

∫ Tk

Tk−1

fi(s, x)fi(s, y)c(x, y)dxdy]ds.
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To facilitate calibration and comparison between the LMM and the RFLMM,
it is reasonable to set f(t, x) = f(t, Tk) for x ∈ [Tk−1, Tk]. Thus the above
equation becomes

νk,RF
i (t) =

√
1

Tk−1 − t

∫ Tk−1

t
δ2kf

2
i (s, Tk)ds

∫ Tk

Tk−1

∫ Tk

Tk−1

c(x, y)dxdy

=

√
1

Tk−1 − t
ckk

∫ Tk−1

t
δ2kf

2
i (s, Tk)ds, (49)

where ckk =
∫ Tk

Tk−1

∫ Tk

Tk−1
c(x, y)dxdy.

The Black implied volatilities for swaptions are derived as follows. From
Eq.(31) and Eq.(47), we know that correlation structure is independent of
current time t, thus we have

σBlack,RF
i,j

=

√√√√ 1

Ti − t

∫ Ti

t
∥

j∑
k=i+1

δkLk(s)γ
i,j
k (s)

1 + δkLk(s)

∫ Tk

Tk−1

f(s, Tk)dW (t, u)∥2ds

=

√√√√ 1

Ti − t

j∑
k,l=i+1

δkLk(t)γ
i,j
k (t)

1 + δkLk(t)

δlLl(t)γ
i,j
l (t)

1 + δlLl(t)

∫ Ti

t
cklδkδlf(s, Tk)f(s, Tl)ds

=

√√√√ 1

Ti − t

j∑
k,l=i+1

δkLk(t)γ
i,j
k (t)

1 + δkLk(t)

δlLl(t)γ
i,j
l (t)

1 + δlLl(t)
σBlack,RF
k σBlack,RF

l

ckl√
ckkcll

Θl,k(t),

(50)

where

Θl,k(t) =

√
Tl − t

√
Tk − t

∫ Ti

t f(s, Tk)f(s, Tl)ds√∫ Tk

t f2(s, Tk)ds
√∫ Tl

t f2(s, Tl)ds
. (51)

The second equation above is obtained by using standard freezing approx-
imation techniques, i.e. approximately evaluating the LIBOR rates Lk(s),
t ≤ s ≤ Ti, appearing in the instantaneous volatility at initial time t.

We conduct two calibrations. The first calibration is for the lognormal
mixture models, using caplet volatility surface, by minimizing the root of
mean square percentage error

RMSPEcplt =

√√√√ 1

NNs

Ns∑
i=1

N∑
j=1

(
σBlack
j (mi)− σMarket

i,j

σBlack
j (mi)

)2, (52)

where N is the number of tenor days and Ns is the number of caplet strike
price used in calibration.
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The second calibration is for lognormal models, using both at-the-money
swaption and cap volatilities, by minimizing the root of mean square per-
centage error

RMSPEswpt =

√√√√ 2

(2N −M − 1)M

M∑
i=1

N∑
j=i+1

(
σBlack
i,j − σMarket

i,j

σBlack
i,j

)2. (53)

where N is the number of tenor days and M is the number of swaption
maturities used in calibration. The second calibration is considered joint-
calibration to both swaption and caps because the market quotes of Black’s
volatility for caps enter into swaption volatility through Eq. (50). Calibra-
tion results are shown in Sec.4.3.

4.3 Numerical Results

In this section we present the calibration results of LMM and RFLMM.
The input of the calibration consists of market closing prices on October
20, 2011 from Bloomberg. The data include annualized initial forward rate
curve, annualized caplet volatilities and swaption volatilities.

4.3.1 Parameter calibration

Firstly, we investigate the caps surface calibration using the lognormal-
mixture model. The caps considered here have floating leg 6M LIBOR,
maturity dates from 1 year to 30 years and strikes from 1% to 10%. Ta-
ble 1 and 2 show the calibration results on October 20, 2011. The column
“RMSPE” represents the root mean squared percentage error of the model
volatilities and market quoted volatilities.

Table 1: Calibration Results for LMM(Cap Surface)

ω a b c d RMSPE(%)

ω1=0.21 0.0125 0.0120 0.2035 0.1085 -
ω2=0.23 0.0313 0.0558 0.2473 0.1523 -
ω3=0.29 0.0083 0.0328 0.2243 0.1293 -
ω4=0.27 0.0004 0.0249 0.2164 0.1214 3.52

Table 2: Calibration Results for RFLMM(Cap Surface)

ω a b c d ρ∞ RMSPE(%)

ω1=0.15 0.0151 0.0396 0.2311 0.1361 2.5341 -
ω2=0.17 0.0077 0.0322 0.2237 0.1287 2.5267 -
ω3=0.35 0.0082 0.0327 0.2242 0.1292 2.5272 -
ω4=0.33 0.0020 0.0225 0.2140 0.1190 2.5170 2.64

From Table 1 and 2, we notice that random field models produce smaller
RMSPE, compared to the Brownian motion LMM. The reason is that the
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Figure 1: Examples of Caplet Volatility Smile Calibration for Maturity 1
year, 3 years, 15 years.
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calibration of cap volatility surface in LMM does not utilize the information
from the correlation structure, while the random field model uses correlation
structure as one critical input. This makes the cap calibration more accurate
in the random field model.

We plot the calibrated volatility smile for maturity 1 year, 3 year and
15 year in Figure 1. From these figures we observe that the random field
lognormal-mixture LMM fits the smile/skew better than the original lognormal-
mixture LMM.

Secondly, we consider the joint calibration of swaption and caps. The
swaptions considered here are based on swaps which have the same tenors
as in caps discussed above, with combined option maturity and underlying
swap maturity not exceeding 10 years. Table 3 shows the calibration results
on Oct. 20, 2011. From Table 3, we observe that the random field model can

Table 3: Calibration Results for LMM and RFLMM(Swaption)

a b c d ρ∞ ρ0 RMSPE(%)

LMM 0.001 0.0255 0.220 0.132 2.54 0.112 5.95
RFLMM 0.001 0.0254 0.219 0.15 2.112 - 4.87

fit the market prices better than the Brownian model even with a simpler
correlation specification.

5 Conclusions

This paper extends the LIBOR market model by modeling forward rate
innovations via Gaussian random fields. Derivatives prices are shown to
satisfy a Black-Scholes type partial differential equation, which gives rise to
closed-form solutions for caplet and swaption prices. We then derive a local
volatility smile model in the random field setting. We use the lognormal-
mixture model as an example. Approximation formulas for option implied
volatilities are obtained. Finally we discuss the calibration procedure of the
random field LIBOR market model. Our calibration results indicate that the
random field LIBOR market model is superior in capturing market prices of
caps and swaptions, in addition to other documented advantages of random
field models (no need of frequent recalibration or to specify the number of
factors in advance).
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6 Appendix

Appendix 1. Proof of Proposition 2.1:

Proof. Given the dynamics of the zero coupon bond price P (t, T ) in Eq.(15),
by Itô’s formula, we have that

d(
1

P (t, Tk)
) = −

r(t)dt−
∫ Tk

t σ(t, u)dW̃ (t, u)du+ (
∫ Tk

t σ(t, u)dW̃ (t, u)du)2

P (t, Tk)
,

and

dP (t, Tk−1)d(
1

P (t, Tk)
) =

−P (t, Tk−1)

P (t, Tk)

∫ Tk−1

t
σ(t, u)dW̃ (t, u)du

∫ Tk

t
σ(t, u)dW̃ (t, u)du.

Thus the dynamics of Lk(t) under risk neutral measure Q can be derived as

dLk(t) = d[
1

δk
(
P (t, Tk−1)

P (t, Tk)
− 1)]

=
1

δk
[
dP (t, Tk−1)

P (t, Tk)
+ P (t, Tk−1)d(

1

P (t, Tk)
) + dP (t, Tk−1)d(

1

P (t, Tk)
)]

=
1

δk

P (t, Tk−1)

P (t, Tk)
[

∫ Tk

Tk−1

σ(t, u)dW̃ (t, u)du+

∫ Tk

t
σ(t, u)dW̃ (t, u)du∫ Tk

Tk−1

σ(t, u)dW̃ (t, u)du].

Now we derive the dynamics of forward rates Lk(t) under Tk-forward mea-
sure. Suppose that there exists a function θ(t, Tk, u) such that dW Tk(t, u) :=

θ(t, Tk, u)dt + dW̃ (t, u) has normal distribution Φ(0, dt) under Tk-forward

measure. Replace dW̃ (t, u) by dW Tk(t, u) − θ(t, Tk, u)dt in above formula,
we obtain

dLk(t) =
1

δk

P (t, Tk−1)

P (t, Tk)
{
∫ Tk

Tk−1

σ(t, u)[dW Tk(t, u)− θ(t, Tk, u)dt]du+

∫ Tk

t
σ(t, u)

[dW Tk(t, u)− θ(t, Tk, u)dt]du

∫ Tk

Tk−1

σ(t, u)[dW Tk(t, u)− θ(t, Tk, u)dt]du}.

Since Lk(t) is a martingale under Tk-forward measure, the drift term should
vanish, i.e.∫ Tk

Tk−1

σ(t, u)θ(t, Tk, u)dtdu =

∫ Tk

Tk−1

σ(t, u)dW Tk(t, u)du

∫ Tk

t
σ(t, v)dW Tk(t, v)dv

=

∫ Tk

Tk−1

σ(t, u)[

∫ Tk

t
σ(t, v)c(u, v)dtdv]du,
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which means that

θ(t, Tk, u) =

∫ Tk

t
σ(t, v)c(u, v)dv.

This completes the proof.

Appendix 2. Proof of Proposition 2.4:

Proof. From Eq. (18) and Corollary. 2.2, we know that

dW Tk(t, u)−
∫ Tk

t
σ(t, v)c(u, v)dvdt = dW (t, u) = dW Tk+1(t, u)−

∫ Tk+1

t
σ(t, v)c(u, v)dvdt.

Thus

dW Tk(t, u) = dW Tk+1(t, u)−
∫ Tk+1

Tk

σ(t, v)c(u, v)dvdt,

from which follows that for j > k

dW Tk(t, u) = dW Tj (t, u)−
j∑

i=k+1

∫ Ti

Ti−1

σ(t, v)c(u, v)dvdt. (54)

Plugging Eq. (54) in to Eq. (18), we obtain

dLk(t) =
1

δk
(δkLk + 1)[

∫ Tk

Tk−1

σ(t, u)dW Tj (t, u)du

−
j∑

i=k+1

∫ Tk

Tk−1

σ(t, u)

∫ Ti

Ti−1

δkσ(t, v)c(u, v)dvdudt].

As we know, Lk(t) is a martingale under Tk-forward measure. By random
field martingale representation proposition, there exists a function ξ(t, u)
such that

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)dW
Tk(t, u)du. (55)

From Eq.(18), we can simply take

ξk(t, u) =
δLk(t) + 1

δLk(t)
σ(t, u). (56)

Thus Eq.(55) becomes

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)dW
Tj (t, u)du

−
j∑

i=k+1

Lk(t)

∫ Tk

Tk−1

ξk(t, u)

∫ Ti

Ti−1

δLi(t)ξi(t, v)c(u, v)

δLi(t) + 1
dvdudt]

= Lk(t)

∫ Tk

Tk−1

ξk(t, u)[dW
Tj (t, u) +

j∑
i=k+1

∫ Ti

Ti−1

δLi(t)ξi(t, v)c(u, v)

δLi(t) + 1
dvdt]du.
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The derivation in case j < k is perfectly analogous. The existence and
uniqueness of solution Lk(t) is assured by the existence and uniqueness of
f(t, T ) in Eq.(8). Thus, given the coefficients satisfying the required condi-
tions, locally bounded, locally Lipschitz continuous and predictable, there
exists a unique f(t, T ) for Eq.(8). This completes the proof.

Appendix 3. Proof of Proposition 2.5:

Proof. If the value of dW T (t, u) on [Tk−1, Tk] is dW
T
k (t), then∫ Tk

Tk−1

∫ Ti

Ti−1

c(u, v)dvdu = δkδic(t, Tk, Ti),

which means that for j < k, Proposition 2.4 becomes

dLk(t) = Lk(t)

∫ Tk

Tk−1

ξk(t, u)[dW
Tj (t, u) +

k∑
i=j+1

∫ Ti

Ti−1

δiLi(t)ξi(t, v)c(u, v)

δiLi(t) + 1
dvdt]du

= Lk(t)δkξk(t, u)[dW
Tj (t, u) +

k∑
i=j+1

δi
δiLi(t)δiξi(t, v)c(t, Ti, Tk)

δiLi(t) + 1
dt].

From Eq.(23), we can easily take c(t, Ti, Tk) = ρi,k and take δkξk(t) to be
ξk(t). The derivation for j > k is analogous. Thus Eq.(22) in Proposition
2.4 will reduce to Eq.(6) and Proposition 2.4 reduces to Eq.(23), which
means that Eq.(23) is a discrete case of Proposition 2.4. This completes the
proof.

Appendix 4. Proof of Proposition 2.6 (Random fields Black-Scholes
equation):

Proof. We provide the proof of Black-Scholes equation with random fields
for time dependent parameters. Suppose that we have an option V on some
underlying asset S, which has dynamics

dS(t)

S(t)
= µ(t)dt+

∫ t2

t1

σ(t, u)dW (t, u)du. (57)

We create a portfolio Π which consists of long ∆ number of the asset and
short one options, i.e.

Π = −V +∆S.

The increment of portfolio value is given by that of option and underlying
asset, i.e.

dΠ = −dV +∆dS.
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By Itó’s formula for dV and the dynamics of asset S, we can have that

dΠ = −dV +∆dS

= −∂V

∂t
dt− 1

2
[

∫ t2

t1

σ(t, u)dW (t, u)du

∫ t2

t1

σ(t, u)dW (t, u)du]S2∂
2V

∂S2
+ (∆− ∂V

∂S
)dS

= (−∂V

∂t
− 1

2
[

∫ t2

t1

∫ t2

t1

σ(t, u)σ(t, v)c(u, v)dudv]S2∂
2V

∂S2
)dt+ (∆− ∂V

∂S
)dS

= (−∂V

∂t
− 1

2
σ̂2(t, t1, t2)S

2∂
2V

∂S2
)dt+ (∆− ∂V

∂S
)dS,

where

σ̂2(t, t1, t2) =

∫ t2

t1

∫ t2

t1

σ(t, u)σ(t, v)c(u, v)dudv. (58)

The portfolio will become non-stochastic if we choose ∆ = ∂V
∂S , which means

that the portfolio will grow in risk free interest rate r(t):

dΠ = (−∂V

∂t
− 1

2
σ̂2(t, t1, t2)S

2∂
2V

∂S2
)dt = r(t)(−V + S

∂V

∂S
)dt.

By rearranging the equation above we can have the Black-Scholes equation
with random fields for time dependent parameters:

∂V

∂t
+

1

2
σ̂2(t, t1, t2)S

2∂
2V

∂S2
+ r(t)S

∂V

∂S
− r(t)V = 0.

We can introduce new parameters Y = lnS,τ = T − t, U = e
∫ τ

0
r(t)dtV and

the above equation becomes

∂U

∂τ
=

∫ t2
t1

∫ t2
t1

σ(t, u)σ(t, v)c(u, v)dudv

2

∂2U

∂Y 2
+[r(τ)−

∫ t2
t1

∫ t2
t1

σ(t, u)σ(t, v)c(u, v)dudv

2
]
∂U

∂Y
,

which has fundamental solution as

Φ(Y, τ) =
1√

2π
∫ τ
0 σ̂2(u, t1, t2)du

e
−[Y +

∫ τ

0
(r(u)− σ̂2(u, t1, t2)/2)du]

2/[2

∫ τ

0
σ̂2(u, t1, t2)du]

.

Thus the solution of Black-Scholes equation is given by

U(Y, τ) =

∫ +∞

−∞
U(v, 0)Φ(Y − v, τ)dv.

The terminal conditions V (S, T ) = max(ST −K, 0) for call option give the
price for a call option as

C = SN(d̃1)−Ke−
∫ τ

0
r(u)duN(d̃2),
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where

d̃1 =
1√∫ τ

0 σ̂2(u, t1, t2)du
[ln

S

K
+

∫ τ

0
(r(u) +

σ̂2(u, t1, t2)

2
)du], (59)

d̃2 = d̃1 −

√∫ τ

0
σ̂2(u, t1, t2)du. (60)

This completes the proof.
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