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Abstract

This paper investigates a new semiparametric ARCH-X model, which is a partial linear model

combining a nonparametric ARCH component and an exogenous covariate that is persistent in

memory. This model can generate the long memory property in volatility because the covariate

is persistent and allow for a �exible functional form of the asymmetric relationship between stock

return and volatility. We adopt a realized volatility measure as the covariate in our model. For

the daily FTSE 100 Index return series, the nonparametric component of our model captures

the leverage e¤ect and is estimated to be a complex nonlinear function. It is shown that our

model outperforms other parametric or nonparametric volatility models both in within-sample

and out-of-sample forecasts.
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1 Introduction

Financial time series such as stock or exchange rate return series commonly exhibit the long memory

property in volatility ; the autocorrelation of squared return series decays very slowly. Ding et al.

(1993) found earlier that it is possible to characterize the power transformation of stock return series

to be long memory. For stock return series, it is also well known that the relationship between

stock return and volatility is asymmetric; volatility is higher when stock return is negative. Such

an asymmetric relationship between stock return and volatility is called the leverage e¤ect.

In the literature of parametric ARCH type models, there have been active attempts to accommo-

date the long memory property in modeling volatility. See Baillie et al. (1996), Ding and Granger

(1996), Bollerslev and Mikkelsen (1996), Engle and Lee (1999), Diebold and Inoue (2001), Mikosch

and Starica (2004), Granger and Hyung (2004), Park (2002) and Han and Park (2008). However,

there has been less attention on this property in the literature of nonparametric or semiparametric

volatility models. Han and Zhang (2012) only recently focused on the long memory property in the

framework of a nonparametric volatility model. However, their model does not explicitly allow for

the leverage e¤ect.

To capture the leverage e¤ect, a simple nonlinear function is typically adopted in the literature

of parametric ARCH type models; for example, the GJR-GARCH model by Glosten et al. (1993)

and the EGARCH model by Nelson (1991). In the mean time, there has been active research on

nonparametric or semiparametric volatility models that allow for a general shape to the asymmetric

relationship between stock return and volatility. See Linton (2009) for an excellent review. The

nonparametric ARCH literature begins with Pagan and Schwert (1990) and Pagan and Hong (1991),

where the conditional variance
�
�2t
�
of a demeaned return series (yt) is de�ned as

�2t = m(yt�1) or �2t = m(yt�1; yt�1; � � � ; yt�d)

for a smooth but unknown function m (�).

To the best of our knowledge, there has been no model that accommodates the long memory

property while it allows for a �exible functional form of the asymmetric relationship between stock

return and volatility. The aim of this paper is to �ll this gap. We propose a new model that
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captures the two common properties observed in stock return series and also allows for a general

shape to the leverage e¤ect. Our model is a simple semiparametric model, de�ned as

�2t = m(yt�1) + �xt�1;

where m (�) is a smooth but unknown function and (xt) is a (nonnegative) persistent covariate. We

refer to this model as the semiparametric ARCH-X model. The model captures the asymmetric

relationship between stock return and volatility in a �exible way by m(yt�1): It can also generate

the long memory property in volatility, according to asymptotic results in Han (2013), if the added

covariate xt�1 is persistent in memory.

As the covariate (xt) ; we choose a realized volatility measure constructed from high frequency

data in the empirical application of the model. Recently, various realized volatility measures have

been adopted as covariates in the GARCH-X models with the rapid development seen in the �eld

of realized volatility; see Barndor¤-Nielsen and Shephard (2007), Engle (2002), Engle and Gallo

(2006), Hansen et al. (2012), and Shephard and Sheppard (2010). It is shown that using a realized

volatility measure as a covariate is useful in within-sample �tting and out-of-sample forecasting.

Moreover, realized volatility measures are known to be persistent. Therefore, a realized volatility

measure is a reasonable choice as the covariate in our model.

It is of our interest to investigate whether the features of our model will be helpful in forecasting

volatility. We consider the daily FTSE 100 Index return series from 21 October 1997 to 27 February

2009 (2844 trading days) and investigate within-sample and out-of-sample predictive power of our

model. The forecast evaluation is based on the QLIKE loss function and we use the realized kernel,

introduced by Barndor¤-Nielsen et al. (2008), as the proxy for actual volatility. Our model performs

the best providing the smallest QLIKE loss in both within-sample and out-of-sample forecasts.

The estimation result shows that the nonparametric component of our model captures the

asymmetric relationship between stock return and volatility. Moreover, the estimated nonlinear

function of the lagged stock return is complex and some parametric counterparts to our model has

di¢ culty in capturing such a complex nonlinear relationship. This could be one of the main reasons

why our model outperforms the benchmark models.

The rest of the paper is organized as follows. Section 2 introduces the model with required
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assumptions and discusses the estimation method. Section 3 provides an empirical application

of the model, which includes data description, estimation results, and within-sample and out-of

sample forecast evaluation results. Section 4 concludes the paper.

2 Model and Estimation Method

2.1 The Model

Our new semiparametric volatility model is introduced in the following assumptions. We observe

fyt; xtg at time t: We write the time series (yt) to be modeled as

yt = �t"t

and let (Ft) be a �ltration with Ft for each t denoting information available at time t.

Assumption 2.1 Assume that

(a) ("t) is iid (0,1) and adapted to (Ft),

(b)

�2t = m(yt�1) + �x
2
t�1 (1)

for � � 0 and a smooth but unknown function m (�) such that m(z) > 0 for all z 2 R.

Under Assumption 2.1, we have

E(ytjFt�1) = 0 and E(y2t jFt�1) = �2t :

The time series (yt) has conditional mean zero with respect to the �ltration (Ft), and therefore,

(yt;Ft) is a martingale di¤erence sequence. However, it is conditionally heteroskedastic with con-

ditional variance (�2t ).

Assumption 2.2A Assume that

(a) for 1=4 < d < 1=2;

(1� L)d xt = vt;
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(b) (vt) is iid N(0; �2v):

Assumptions 2.1 and 2.2A de�ne our semiparametric ARCH-X model. Our model includes the

nonparametric ARCH component m(yt�1) introduced by Pagan and Schwert (1990). As shown by

Pagan and Schwert (1990), m(yt�1) captures the asymmetric relationship between stock return and

volatility in a �exible way. While the nonparametric ARCH component explains the short-term

movement of volatility, the other parametric component �x2t�1 explains the long-term movement

of volatility because the covariate x2t is persistent in memory.

We employ x2t�1 instead of xt�1 in (1) to guarantee that the conditional variance is positive. We

can consider (x2t ) to represent a nonnegative covariate that we choose among economic or �nancial

indicators. If the chosen covariate contains useful information on the volatility of time series, it

will improve the performance of the model in within-sample �tting or out-of-sample forecasting.

Most importantly, under Assumption 2.2A, our model can generate the long memory property

in volatility. The parametric counterpart to our model is the ARCH-X model de�ned as

�2t = ! + �y
2
t�1 + �x

2
t�1:

This model is investigated as the GARCH-X model with � = 0 in Han (2013) and it is shown

that the ARCH-X process can generate the long memory property as long as the covariate is

persistent. Han (2013) showed that, for 1=4 < d < 1=2; the autocorrelation function of y2t in

the ARCH-X process decreases hyperbolically. This is because the covariate x2t is a long memory

process LM(2d � 1=2) under Assumption 2.2A as shown by Dittmann and Granger (2002).1 See

the remarks 2.2 and 2.4 in Han (2013) for details. Since the persistence in the covariate x2t plays

a key role in generating the slow decaying autocorrelation of y2t in the ARCH-X model, we expect

that our model can also explain the long memory property in volatility. For example, if m(yt�1) in

(1) includes �y2t�1 for � < 1; our model can exhibit the slow decaying autocorrelation of y
2
t as the

ARCH-X model does.

While this paper considers only the semiparametric ARCH-X model de�ned as Assumptions

2.1 and 2.2A, it is also possible to consider the following cases.

1We use the notation of LM(d) following Dittmann and Granger (2002). If (xt) � LM(d) with 0 < d < 1=2, (xt)
is a long memory process with a hyperbolically decreasing autocovariance function of the form 
x (k) � k2d�1:

5



Assumption 2.2B Assume that (xt) satis�es Assumption 2.2A with �1=2 < d � 1=4.

Assumption 2.2C Assume that (xt) is a fractionally integrated process I(d) for 1=2 < d < 3=2

satisfying Assumption 2B of Han (2013):

Dittmann and Granger (2002) showed that (x2t ) is a short memory process LM(0) under As-

sumption 2.2B. Han (2013) showed that the ARCH-X process cannot generate the long memory

property in this case. Hence, a short memory case can be covered by the model under Assumption

2.2B. Meanwhile, in the nonstationary case under Assumption 2.2C, the model can generate the

long memory property. Han (2013) showed that the autocorrelation of y2t in the ARCH-X process

under Assumption 2.2C decreases exponentially at �rst and converges to a positive random limit.

See the remarks 2.3 and 2.4 in Han (2013) for details. However, we leave the nonstationary case

under Assumption 2.2C as future work. Since our model is a semiparametric partial linear model,

we adopt the two-step estimation method using a feasible least squares estimator. For the nonsta-

tionary case, it is hard to establish the asymptotic distribution of the estimator. We provide more

discussions on this issue in the next subsection.

Our model can be also extended to the following nonstationary semiparametric model:

�2t = m(yt�1) + f (xt�1) (2)

where (xt) is integrated or near-integrated and f (�) : R ! R+ is a parametric nonlinear function.

f (�) can be either integrable (f 2 I) or asymptotically homogeneous (f 2 H). The reader is referred

to Park and Phillips (1999) for more details on these function classes. The parametric counterpart

to this model is the ARCH-NNH model by Han and Park (2008) given as

�2t = �y
2
t�1 + f (xt�1) :

They provided asymptotic theories showing that the ARCH-NNH model captures the long memory

property in volatility due to the persistent covariate xt�1: The model in (2) is not partial linear and

therefore one cannot use the two-step estimation method using a feasible least squares estimator.

Alternatively, we can use the local likelihood estimation method, but it is challenging to establish
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the asymptotic distribution because of nonstationarity. We also leave this nonstationary model as

future work.

2.2 Estimation Method

To estimate our model, we use the following two-step estimation method. We arrange the model

as

y2t = m(yt�1) + �x
2
t�1 + ut

where ut = �2t ("
2
t � 1): Here (ut) is a martingale di¤erence sequence. We �rst obtain the estimate

of � from the least squares regression

�
y2t � E

�
y2t jyt�1

��
= �

�
x2t�1 � E

�
x2t�1jyt�1

��
+ ut;

which is

�̂ =

Pn
t=1

�
x2t�1 � bE �x2t�1jyt�1���y2t � bE �y2t jyt�1��Pn

t=1

�
x2t�1 � bE �x2t�1jyt�1��2 (3)

where bE �x2t�1jyt�1� and bE �y2t jyt�1� are the kernel-based estimators of E �x2t�1jyt�1� and E �y2t jyt�1� ;
respectively. The kernel estimate of E (wtjzt = z) is

m̂(z) =
nX
j=1

 
Kh (z � zj)

,
nX
k=1

Kh (zk � z)
!
wj :

We let K(s) be a nonnegative real function and set Kh (s) = h�1K(s=h). The Gaussian kernel is

used for nonparametric estimation in all cases throughout the paper.

Robinson (1988) and Speckman (1988) showed that �̂ in (3) is
p
n-consistent and asymptoti-

cally normal under some regularity conditions. Andrews (1994) provided a general framework for

asymptotics for semiparametric models using results concerning the stochastic equicontinuity of

stochastic processes. Under Assumptions 2.2A, (x2t ) is strictly stationary and ergodic as shown

in the proof of Lemma 1 in Han (2013). This implies that (yt) is in general strictly stationary

if we assume that m(yt�1) is stationary. For example, if m(yt�1) = ! + �y2t�1 for � < 1 as in

the ARCH-X model, (yt) is strictly stationary under Assumptions 2.2A. Therefore, the asymptotic

result established by Andrews (1994) can be applied for �̂ in our model.
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In the second step, the nonparametric component m (yt�1) can be estimated from

y2t � �̂x2t�1 = m (yt�1) + ut: (4)

However, in this step we do not apply the Nadaraya-Watson kernel method because we have to

guarantee that m̂ (yt�1) > 0: Given the least squares estimate �̂, it is possible that some values

of
�
y2t � �̂x2t�1

�
are negative, which could result in some negative values in m̂ (yt�1) if we use

the Nadaraya-Watson kernel method in the second step. This actually happens in our empirical

application in Section 3.

Instead, we choose the local maximum likelihood estimation method of Fan and Yao (1998).

To overcome the negativity problem, we take the exponential of the linear form to approximate

the nonparametric component m(yt�1) in the model. The weighted conditional local log-likelihood

function is

�1
2

nX
t=1

L
�
exp(�+ �(zt � z)) + b�x2t�1; yt	Kh (zt � z)

where L (�; y) = ��1y2 + log � and zt is yt�1: We maximize this log-likelihood function and obtain

the local maximum likelihood estimator of m (yt�1) in (4), which is

m̂ (z) = exp(b�): (5)

This completes the two-step estimation of our model.

Finally, we comment on some di¢ culties in establishing the asymptotic distribution of �̂ for

the nonstationary case under Assumption 2.2C. To establish the asymptotic distribution of �̂; we

also need asymptotic results for the nonparametric estimators of E
�
x2t�1jyt�1

�
and E

�
y2t jyt�1

�
:

However, there exists no available asymptotic result for such cases considering that (xt�1) is a non-

stationary fractionally integrated process and (yt�1) is neither stationary nor integrated. Nonpara-

metric estimation has been conducted mostly in a stationary mixing framework. See, for example,

Robinson (1988), Marsry and Tj�stheim (1995), and references therein. For most nonparametric

or semiparametric volatility models, it is assumed that (yt) is strictly or covariance stationary with

some mixing conditions when necessary. Recently some works introduced nonparametric estimation

theory in a nonstationary situation. See Karlsen and Tj�stheim (2001), Karlsen et al. (2007) and
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Wang and Phillips (2009a, 2009b). However, these are still not suitable for the nonstationary case

of our model because (yt�1) is neither integrated nor fractionally integrated in the model. Hence,

without development in the asymptotic theory of a nonparametric estimator for such variables,

it is hard to establish the asymptotics for the nonstationary case of the semiparametric ARCH-X

model.

3 Empirical Application

3.1 The Data, Models and Estimation Methods

We consider the daily FTSE 100 Index return series from 21 October 1997 to 27 February 2009

(2844 trading days). We demean the return series by subtracting its sample mean which is close

to zero. We use the demeaned return series as (yt) : As the covariate (xt) for our semiparametric

ARCH-X model, we choose a realized volatility measure constructed from high frequency data.

Realized volatility measures are known to be persistent and recently realized volatility measures

have been included as exogenous covariates in the framework of the GARCH-X model. See Engle

(2002), Engle and Gallo (2006), Barndor¤-Nielsen and Shephard (2007), Cipollini et al. (2007),

Shephard and Sheppard (2010), and Hansen et al. (2012). These works motivate us to adopt a

realized volatility measure as the covariate in our model. In particular, we choose the realized

kernel, introduced by Barndor¤-Nielsen et al. (2008), because it has some robustness to market

microstructure e¤ects. The realized kernel of the FTSE 100 Index return is persistent; the log

periodogram estimate of the memory parameter d is 0:410 and its standard error is 0:027:2

In this section, we estimate the following models and compare their within-sample and out-of-

sample predictive ability:

2The realized kernel of the daily FTSE 100 index return series is available at the database �Oxford-Man Institute�s
realised library�produced by Heber et al. (2009).
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�2t = ! + �y
2
t�1 + ��

2
t�1 GARCH(1,1);

�2t = ! + (�+ 
st�1)y
2
t�1 + ��

2
t�1 GJR-GARCH(1,1);

�2t = ! + �y
2
t�1 + �xt�1 ARCH-X;

�2t = ! + (�+ 
st�1)y
2
t�1 + �xt�1 GJR-ARCH-X;

�2t = m(xt�1; yt�1) nonparametric model;

�2t = m(yt�1) + �xt�1 semiparametric ARCH-X;

where (yt) and (xt) are the demeaned stock return series and the realized kernel, respectively. The

�rst benchmark model is the GARCH(1,1) model and the second one is the GJR-GARCH model

with a dummy variable st�1; where st is 1 when yt < 0 and zero otherwise. While the volatility at

time t is a function of all past values of yt in these two models, the rest models use only yt�1 and

xt�1: The third benchmark model is the ARCH-X model. The fourth one includes an asymmetric

term as the GJR-GARCH model and therefore we name it as the GJR-ARCH-X model. The �fth

benchmark model is a two-dimensional nonparametric model. The last model is our semiparametric

ARCH-X model, which is a semiparametric counterpart to the ARCH-X, GJR-ARCH-X and the

nonparametric model. In the ARCH-X, GJR-ARCH-X and our model, we use simply xt�1 instead

of x2t�1 because realized volatility measures are always positive.

For the four parametric ARCH type models, we use the quasi-maximum likelihood estima-

tion method which is the standard estimation method. For the nonparametric model, we use the

Nadaraya-Watson kernel estimation method.

For the bandwidth selection in the estimation of our model, we use the cross-validation band-

width obtained from the following iterating procedure. Given an initial value for bandwidth h (we

use the Silverman�s bandwidth as the initial value), we �rst obtain the least squares estimate �̂ in

(3) and the nonparametric estimate m̂ (yt�1) in (5). Then we minimize the following weighted local

log-likelihood criterion to obtain the cross-validation bandwidth hcv:

hcv = argmin
h

1

n

nP
j=1

nP
t=1;t6=j

Kh(zj�zt)Pn
k=1Kh(zk�zj)

�
y2tbm(zt) + b�xt�1 + log(bm(zt) + b�xt�1)

�

where zt is yt�1. Next, we use this hcv as a new initial bandwidth and repeat the same procedure.

This procedure is repeated until the convergence of bandwidth is reached. For our data, we need

only a few iterations for the convergence. We also tried di¤erent bandwidths including the Silver-
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man�s bandwidth. It is shown that the estimation results of our model are relatively robust to the

choice of bandwidth.

3.2 Estimation Results

Table 1 reports the within-sample estimation results of the models. The estimation results of the

GARCH(1,1) and the GJR-GARCH models are similar to typical results reported before in the

literature. For the GARCH(1,1) model, the ARCH e¤ects are close to unity (�̂ + �̂ = 0:996): For

the GJR-GARCH model, the coe¢ cient of the asymmetric term st�1y2t�1 is estimated to be 0:123

and it is signi�cant. This implies that the model captures the leverage e¤ect.

For the ARCH-X model, the coe¢ cient of the covariate xt�1 is estimated to be signi�cant. This

implies that the ARCH-X model captures the slow decaying autocorrelation of squared returns

because the covariate, realized kernel, is persistent. However, the coe¢ cient of y2t�1 is estimated to

be insigni�cant. When we include the asymmetric term, the coe¢ cients of y2t�1 and st�1y
2
t�1 are

still insigni�cant in the GJR-ARCH-X model. These results may indicate that it is unnecessary to

include y2t�1 or st�1y
2
t�1 in the ARCH-X model when the realized kernel is added as the covariate.

Alternatively, these results may be due to misspeci�cation of the functional form of yt�1:

Compared to the ARCH-X model, our semiparametric ARCH-X model let the functional form

of the lagged stock return yt�1 be �exible. For our model, the coe¢ cient of the covariate xt�1 is still

estimated to be signi�cant. However, when the functional form of yt�1 is allowed to be �exible, the

magnitude of �̂ becomes smaller than that of the ARCH-X or GJR-ARCH-X model: �̂ is 1:268 in

our model while it is 1:769 and 1:786 in the ARCH-X and the GJR-ARCH-X models, respectively.

The estimated nonparametric component bm(yt�1) in our model is plotted on the grid of values
fyt�1 = �0:09 + 0:002k; k = 0; 1; � � � ; 90g in Figure 1. The stock return series, used as (yt); is

ranged from �0:093 to 0:088 in our sample. The shape of the nonparametric component bm(yt�1)
is clearly nonlinear. In general, bm(yt�1) is larger for a negative stock return yt�1: However, more
importantly, the simple asymmetric term st�1y2t�1 adopted in the GJR-ARCH-X model cannot

adequately capture the nonlinearity in bm(yt�1). In Figure 1, as yt�1 moves from 0 to �0:09;

bm(yt�1) exhibits a (bell-shaped) hump before it rapidly increases. The estimation result of our
model shows that the nonlinear function of yt�1 is complex and a simple parametric function

cannot capture it.
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3.3 Forecast Evaluation Results

Evaluation Criterion

Following Pagan and Schwert (1990), we evaluate the performance of our model by comparing

predictive power of volatility models. The fundamental problem with the evaluation of volatility

forecasts is that volatility is unobservable and therefore actual values with which to compare the

forecasts do not exist. To overcome this problem, there has been recent developments in the

literature of volatility forecast evaluation.

First, recent works support using a realized volatility measure as the proxy for actual volatility.

See Hansen and Lunde (2006) and Patton and Sheppard (2009). It is because realized volatility

measures are better estimates of actual volatility than squared return series. See Barndor¤-Nielsen

and Shephard (2002) and Andersen et al. (2003). Therefore, we use the realized kernel as the proxy

for actual volatility as in Shephard and Sheppard (2010).

Second, there has been research on loss functions that are robust to the use of a noisy volatility

proxy. See Hansen and Lunde (2006), Patton (2011) and Patton and Sheppard (2009). Even if

realized volatility measures are better measures, they are still imperfect and noisy proxies for actual

volatility. Therefore, it is important to use a robust loss function to prevent any spurious ranking

of various volatility forecasts. Hansen and Lunde (2006) and Patton (2011) showed that the MSE

and QLIKE are robust. In particular, Patton and Sheppard (2009) shows that the QLIKE loss

function has the highest power among robust loss functions. Therefore, we use the QLIKE loss

function as the loss function, which is de�ned as

L(�̂2t ; �
2
t ) =

�2t
�̂2t
� log �

2
t

�̂2t
� 1 (6)

where
�
�2t
�
is the proxy for actual volatility and

�
�̂2t
�
is the within-sample or out-of-sample forecast.

To test for equal forecasting accuracy of two competing models, we apply the Diebold-Mariano

and West (henceforth DMW) test (see Diebold-Mariano(1995) and West (1996)). A DMW statistic
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is computed using the di¤erence in the losses of two models

dt = L(�̂2t;1; �
2
t )� L(�̂2t;2; �2t );

DMWT =

p
T �dTr

[avar
�p
T �dT

� � N(0; 1); (7)

where �dT is the sample mean of dt and T is the number of forecasts. The asymptotic variance of

the average is computed using a Newey-West variance estimator with the number of lags set to�
T 1=3

�
: The null and alternative hypotheses in this case are

H0 : dt = 0 versus H1 : dt 6= 0:

Within-sample forecast comparison

Table 2 contains the within-sample forecast evaluation result based on the QLIKE loss function.3

In this case, �̂2t in (6) denotes the �tted values of the volatility models for the entire sample period

and T = 2843 in (7). Our model does not encompass the GARCH(1,1) and GJR-GARCH models

and, as a consequence, there is no reason to expect our model to outperform these two models even

for the within-sample forecast.

In Table 2, our model shows the smallest QLIKE loss of 0:257:4 The second best model is

the GJR-GARCH model and its QLIKE is 0:279. The ARCH-X and GARCH(1,1) models exhibit

similar QLIKE losses of 0:292 and 0:294; respectively. The two-dimensional nonparametric model

performs very poorly with the largest QLIKE of 0:719:We test the null hypothesis of equal loss by

the DMW test procedure, and the test results show that the null hypotheses of equal loss between

our model and �ve benchmark models are all rejected at either 5% or 1% signi�cance level. This

means that, in terms of the within-sample �tting, our semiparametric ARCH-X model provides a

better explanation of the stock return volatility than the rest models.

3We do not include the GJR-ARCH-X model because the estimation results of both ARCH-X and GJR-ARCH-
X models suggest that they would produce similar forecasts. We also considered the nonparametric ARCH model
�2t = m(yt�1) by Pagan and Schwert (1990). However, we do not repot its result because it performs very poorly.

4We also estimated our model using the Silverman�s bandwidth �̂yn�1=5 where �̂y is the sample standard deviation
of (yt). For �̂yn�1=5; 0:5�̂yn�1=5 and 2�̂yn�1=5; the QLIKE of our model is 0:256; 0:257 and 0:262; respectively.
These are similar to the result obtained by the cross-validation bandwidth.
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Out-of-sample forecast comparison

To check the possibility of over-�tting, we evaluate out-of-sample forecasts. If over-�tting is a serious

problem, the QLIKE statistics for out-of-sample forecasts should be much larger than the QLIKE�s

for the within-sample forecasts. We adopt the rolling window forecast procedure with moving

windows of 8 years (2016 trading days). This means that we obtain one-step ahead forecasts of

the models for the period from 21 November 2005 to 27 February 2009. In this case, �̂2t in (6) now

denotes one-period ahead volatility forecasts at time t� 1 and T = 827 in (7). For our model, we

use the cross validation bandwidth chosen in the within-sample case. Table 3 reports the QLIKE�s

of the models and the DMW test statistics.

As in the within-sample case, our model shows the smallest QLIKE loss of 0:236: It shows that

over-�tting is not a serious problem for our model because the out-of-sample QLIKE is even smaller

than the within-sample counterpart. The second best model is still the GJR-GARCH model and

its QLIKE is 0:248: The GARCH(1,1) model has the QLIKE of 0:281; which is smaller than that

of the ARCH-X model (0:360): The worst model is still the two-dimensional nonparametric model.

According to the DMW test result, the null hypothesis of equal loss between our model and the

GJR-GARCH models is not rejected while the null hypotheses of equal loss between our model and

the rest models are rejected.

4 Conclusion

This paper proposes and investigates a new semiparametric volatility model, which is a partial

linear model combining a nonparametric ARCH component and a persistent exogenous covariate.

The nonparametric component allows for a �exible functional form of the asymmetric relationship

between stock return and volatility and a persistent covariate is included to generate the long mem-

ory property in volatility. We show that the features of our model is indeed helpful in forecasting

stock return volatility.

For the daily FTSE UK 100 Index return series for the period from 21 October 1997 to 27

February 2009 (2844 trading days), we evaluate the within-sample �tting and the out-of-sample

forecasting of the model. We use the daily realized kernel as the covariate in our model. Realized

volatility measures are known to be persistent. Moreover, recently many works included them as
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covariates in the framework of the GARCH-X model and showed they are useful in forecasting

volatility. The estimation result shows that the nonparametric component captures the leverage

e¤ect and is estimated to be a complex nonlinear function that parametric counterparts to our

model cannot properly represent. This could be one of main reasons why our model outperforms

the benchmark models in both within-sample and out-of-sample forecasts.
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Table 1. Within-sample estimation results of the models

Parameter GARCH(1,1) GJR-GARCH ARCH-X GJR-ARCH-X Semi-ARCH-X

� 0:105 0:012 �0:017 �0:001

(0:015) (0:015) (0:017) (0:019)

� 0:891 0:917

(0:013) (0:010)


 0:123 �0:047

(0:025) (0:030)

� 1:769 1:786 1:268

(0:081) (0:084) (0:057)

Notes: The table reports the estimation results of the models described in Section 3.1. For the parametric

models, it reports the quasi-maximum likelihood estimates. For the semiparametric ARCH-X model, it

reports the least squares estimate �̂ described in (3). The standard errors are reported in parentheses.
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Table 2. Comparison of within-sample predictive power for the stock return volatility

(1997.10.21-2009.02.27)

models QLIKE DMW

GARCH(1,1) ! + �y2t�1 + ��
2
t�1 0:294 3:520���

GJR-GARCH ! + (�+ 
st�1)y2t�1 + ��
2
t�1 0:279 2:007��

ARCH-X ! + �y2t�1 + �xt�1 0:292 5:612���

GJR-ARCH-X ! + (�+ 
st�1)y2t�1 + �xt�1 0:288 6:128���

nonparametric model m(xt�1; yt�1) 0:719 13:381���

Semi-ARCH-X m(yt�1) + �xt�1 0:257

Notes: The QLIKE loss is de�ned in (6) and the DMW test statistic is de�ned in (7). �;�� and ��� signify

rejecting the null hypothesis of equal loss for 10%, 5% and 1% tests, respectively.

Table 3. Comparison of out-of-sample predictive power for the stock return volatility

(2005.11.21-2009.02.27)

models QLIKE DMW

GARCH(1,1) ! + �y2t�1 + ��
2
t�1 0:281 2:484��

GJR-GARCH ! + (�+ 
st�1)y2t�1 + ��
2
t�1 0:248 0:608

ARCH-X ! + �y2t�1 + �xt�1 0:360 1:863�

GJR-ARCH-X ! + (�+ 
st�1)y2t�1 + �xt�1 0:300 5:260���

nonparametric model m(xt�1; yt�1) 0:738 6:039���

Semi-ARCH-X m(yt�1) + �xt�1 0:236

Notes: The QLIKE loss is de�ned in (6) and the DMW test statistic is de�ned in (7). �;�� and ��� signify

rejecting the null hypothesis of equal loss for 10%, 5% and 1% tests, respectively.
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Figure 1. Estimate of m(yt�1) in the semiparametric ARCH-X model
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