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Abstract

The aim of this paper is to provide an explicit form for the moments and the autocorrelation
function of the number of jumps over a given interval for the Hawkes process. These computations
are possible thanks to the affine property of this process. Using these quantities an implementation
of the method of moments for parameter estimation that leads to an optimization algorithm that
can be solved almost instantaneously is developed. The estimation strategy is applied to trade
arrival times for major stocks that show a clustering behaviour, a feature the Hawkes process is
shown to handle effectively. As the calibration is fast the estimation is rolled to determine the
stability of the estimated parameters. A forecasting test underlining the advantages of the Hawkes
process as a modelling framework is performed. Lastly, thanks to the quantities computed the
determination of the diffusive limit of a simple model for the price evolution based on the Hawkes
process is made explicit. It allows the determination of the connection between the parameters
driving the high frequency activity to the daily volatility.
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Introduction

Trading activity leads to time series of irregularly spaced points that show a clustering behaviour.

This stylized property suggests the use of the Hawkes process, a point process mathematically defined

by Hawkes (1971), which is an extension of the classical Poisson process that possesses this clustering

property. It explains the large number of works on trading activity and more generally high-frequency

econometrics based on this process as a modeling framework. To name only a few let us quote Hewlett

(2006), Bowsher (2007), Large (2007), Bacry et al. (2013) or Muni Toke and Pomponio (2011)1.

There are other stochastic processes possessing this clustering property, they are often more sophis-

ticated than the Hawkes process in the sense that their dynamic involves several lags and strong

nonlinearities. They are actively studied in the econometrics literature, see Hautsch (2012) for a

general overview. As for these sophisticated stochastic processes the Hawkes process has a likelihood

function which is known in closed-form. As a consequence, most of the existing literature focuses on

the estimation of the dynamics. However, despite or because of its simplicity the Hawkes has several

advantages from an analytical point of view, that we will develop in this paper, that allow for very

interesting applications.

First, we show how to compute in closed-form the moments of any order of the number of jumps over

a given time interval. This analytical tractability even extends to the autocorrelation function of the

number of jumps. As such, we can develop an estimation strategy based on these quantities which,

compared with the likelihood estimation strategy, is extremely fast. This aspect is crucial when it

comes to applications, as high frequency trading activity requires a fast estimation procedure. The

maximization of the likelihood function, that can take several minutes, cannot be used in real appli-

cations. What is more, with the estimation being immediate, we can roll the estimation procedure

and study the parameter stability which is an essential aspect in practice.

Second, we can easily perform some forecast analysis and specify the horizon beyond which the Hawkes

process does not perform better than a very simple model. It also underlines the well-known fact that

complicated models that lead to high likelihood function values can perform poorly in terms of fore-

cast. Therefore, the apparent simplicity of the Hawkes process might be, after all, an advantage.

1For non-financial applications see Vere-Jones (1970), Veen and Schoenberg (2008), Lewis and Mohler (2011) and
Mohler et al. (2011).
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Third, thanks to its analytical tractability we can explicitly compute the impulse function of the

Hawkes process and therefore the trading activity, modelized by this process, can easily be analyzed.

Fourth, we can compute the diffusive limit for the process and therefore make explicit the link be-

tween the microscopic activity, i.e. the trading activity at high frequency, to the macroscopic activity,

i.e. the daily volatility as used in the Black-Scholes model. To perform such analysis the analytical

tractability of the Hawkes process turns out to be essential and underlines, once again, the advantages

related to the simplicity of this process. With respect to that aspect we contribute to a new trend

of the literature developed by Cont et al. (2010), Cont and De Larrard (2011), Cont and De Larrard

(2012), Bacry et al. (2013), Abergel and Jedidi (2013), Bacry et al. (2012), Kirilenko et al. (2013)

aiming at connecting these two scales (the high frequency quantities and the daily quantities).

The structure of the paper is as follows. In the first part, we describe the basic properties of the

Hawkes process as well as the Dynkin formula that will be our main mathematical tool. In the second

part, we present the computation of the moments and the autocorrelation function for the number of

jumps over a given time interval. In the third part, we present the usual optimization algorithms used

in the literature and the method of moments based on the analytical results. In the fourth part, we

present the data, various estimation results and a forecasting experiment. In this part we also present

the impulse response analysis allowed by the model estimated on different data sets as well as the

diffusive limit of the model. The last part concludes the paper. Some technical results, tables and

figures are gathered in the appendix.

1 Univariate Hawkes Process

1.1 Dynamics and properties

The Hawkes process was defined in Hawkes (1971) and is a self-excited point process whose intensity

depends on the path followed by the point process. More precisely, the point process is determined

by the intensity process (λt)t≥0 through the relations

P [Nt+h −Nt = 1|Ft] = λth+ o (h) (1)

P [Nt+h −Nt > 1|Ft] = o (h) (2)

P [Nt+h −Nt = 0|Ft] = 1− λth+ o (h) , (3)
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where (Ft)t≥0 is a filtration on the underlying probability space (Ω,F ,P) containing the filtration

generated by (Nt)t≥0. The intensity follows the dynamics

dλt = β (λ∞ − λt) dt+ αdNt. (4)

A jump of Nt at a given time will increase the intensity which increases the probability of another

jump thanks to equation (1) and justifies the use of the term “self-excited” to qualify this process. The

jumps tend to cluster but the process does not blow up because the drift becomes negative whenever

the intensity is above λ∞ > 0 (β is by hypothesis positive) and prevents any explosion. Furthermore,

applying Ito’s lemma to eβtλt yields :

λt = e−βt (λ0 − λ∞) + λ∞ +

∫ t

0
αe−β(t−s)dNs. (5)

From (5) we also observe that the impact on the intensity of a jump dies out exponentially, as time

passes. For the existence and uniqueness results we refer to chapter 14 of Daley and Jones (2008) and

references therein, of particular interest is Brémaud and Massoulié (1994).

As t gets large the impact of λ0, the initial value for the intensity vanishes, leaving us with :

λt ∼ λ∞ +

∫ t

0
αe−β(t−s)dNs.

Our presentation differs slightly from the usual one found in the literature where the Hawkes intensity

is written

λt = λ∞ +

∫ t

−∞
αe−β(t−s)dNs. (6)

The equation (6) leads to a stochastic differential equation similar to (4), the process starts infinitely

in the past and is at its stationary regime. In our case we have a dependency with respect to the

initial position λ0 in equation (5) but as mentioned above, for t large enough its impact will vanish.

Our presentation for the Hawkes process follows closely Errais et al. (2010) and is motivated by the

fact that we want to perform stochastic differential calculus.

The process Xt = (λt, Nt) is a Markov process in the state space D = R+×N. This is a key property

that will give us very powerful tools to investigate the distributional properties of the process. Among

these tools is the infinitesimal generator. Consider a sufficiently regular function f : D → R, the

infinitesimal generator of the process, denoted L, is the operator acting on f such that :

Lf (x) = lim
h→0

Ext [f (Xt+h)]− f (x)

h
,
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with Ext [.] = Ex [.|Ft] and Xt = x (E0 [.] = E [.]). In the case of a Hawkes process, this writes :

Lf (x) = β (λ∞ − λt)
∂f

∂λ
(x) + λt

[
f (λt + α,Nt + 1)− f (x)

]
. (7)

For every function f in the domain of the infinitesimal generator, the process

Mt = f (Xt)− f (X0)−
∫ t

0
Lf (Xu) du

is a martingale relative to its natural filtration (see for example Proposition 1.6 of chapter VII in

Revuz and Yor (1999)), thus, for s > t we have

Et
[
f (Xs)−

∫ s

0
Lf (Xu) du

]
= f (Xt)−

∫ t

0
Lf (Xu) du

by the martingale property and we finally obtain the important Dynkin formula

Et [f (Xs)] = f (Xt) + Et
[∫ s

t
Lf (Xu) du

]
. (8)

This formula allows the computation of conditional expectations of functions of the Markov process

(λt, Nt) which turns out to be very useful when the expectation on the right hand side can be easily

computed. In the following section we will heavily rely on this formula to compute some distributional

properties of Hawkes process.

1.2 Affine structure and moment-generating function

As underlined in Errais et al. (2010) the process Xt = (λt, Nt) is a Markov process which is affine.

Hence a closed-form solution for the moment-generating function is available that we now recall.

Let u = (u1, u2)> ∈ R2, the conditional moment-generating function of XT = (λT , NT ) is defined as

f (t,Xt) = Ext
[
eu
>XT

]
= Ext

[
eu1λT+u2NT

]
. Clearly, f (t, λt, Nt) must be a martingale and the function

f satisfies:

∂f

∂t
(t,Xt) + Lf (t,Xt) = 0, (9)

with boundary condition f (T,XT ) = eu
>XT . As Xt = (λt, Nt) is a Markov affine point process we

guess that the solution of (9) is an exponential affine form of the state variable, that is to say :

f(t,Xt) = ea(t)+b(t)λt+c(t)Nt .
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Setting this guess into equation (9) we obtain the system of ordinary differential equations:

∂a

∂t
= −βλ∞b(t)

∂b

∂t
= βb(t) + 1− eαb(t)+u2 (10)

∂c

∂t
= 0

with terminal conditions a(T ) = 0, b(T ) = u1 and c(T ) = u2. From the last equation we deduce

that c(t) = u2. Choosing u1 = 0 in the above equations yields the moment-generating function for Nt

which writes as (we take u2 = u):

Ext
[
euNT

]
= ea(t)+b(t)λt+uNt .

Expressed in terms of τ = T − t the expectation and the system of ordinary differential equations are

given by:

Ext
[
eu(Nt+τ−Nt)

]
= ea(τ)+λtb(τ) (11)

with

∂a

∂τ
= βλ∞b(τ), (12)

∂b

∂τ
= −βb(τ)− 1 + eαb(τ)+u (13)

and a(0) = b(0) = 0.

The above system of ODEs fully characterizes the moment-generating function and the Laplace trans-

form of the process which completely determines its distribution. However, an explicit solution for

the equation (13) is most often not available. From the moment-generating function (11) we can

retrieve the moments of the process after differentiating with respect to u and evaluating for u = 0

the function. This leads to differentiate with respect to u the above system. For instance, for the

expected number of jumps this yields to a system of ODE for bu = db
du and au = da

du of the form:

∂au
∂τ

= βλ∞bu(τ), (14)

∂bu
∂τ

= −βbu(τ)− 1 + αbu(τ)eαb(τ)+u (15)

with au(0) = bu(0) = 0 that can be explicitly solved in conjunction with equations (12) and (13) when

u = 0. Therefore, we can compute the different moments for the number of jumps by successively
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differentiating the system of ordinary differential equations. In our particular case, i.e. for a one-

dimensional Hawkes process, the computations are feasible but for a multidimensional Hawkes process

they quickly become tedious. Also, whenever we wish to compute moments for the intensity process

λt then the resolution of (10) is not possible. What is more, the computation of the autocovariance

function of the number of jumps increments, that is to say

Ext [(Nt4 −Nt3)(Nt2 −Nt1)] (16)

with t < t1 < t2 < t3 < t4 can be obtained from (11) by performing successive conditioning. More

precisely, we need to compute the function

Ext
[
eu2(Nt4−Nt3 )+u1(Nt2−Nt1 )

]
.

In that case it will introduce the intensity process, which appears on the right hand side of (11), and

implies that the joint moment-generating function (i.e. (λt, Nt)) has to be evaluated. The resulting

system of ODE and its differentiation becomes more complicated. As the quantity (16) is essential,

because it carries the clustering property of the Hawkes process, we need to develop a simpler approach

to compute these quantities.

In Errais et al. (2010), the authors rely on this approach to compute the expected number of jumps

and higher moments, but they rapidly become tedious beyond the first moment. To overcome these

computational difficulties, that obviously increase with the dimension of the process or when the

autocovariance property of the process is needed, we develop another approach that we now present.

2 Computing the Moments and the Autocovariance

Our aim in this section is to compute the moments of the process Xt = (λt, Nt) and also the autoco-

variance of the number of jumps over a period τ . To achieve this we rely on the infinitesimal generator

of the process given by (7) and Dynkin’s formula (8).

In order to obtain the expected number of jumps, we apply Dynkin’s formula to f ≡ Nt and taking

into account the fact that:

Lf (Xt) = λt,
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we obtain

E [Nt] = N0 + E
[∫ t

0
λsds

]
.

Thanks to Fubini-Tonnelli’s theorem we have:

E [Nt] = N0 +

∫ t

0
E [λs] ds. (17)

This equation could have been obtained by recalling that Nt−
∫ t

0 λsds is a martingale, by definition of

the intensity of a point process, as explained in Brémaud (1981). We nevertheless quote the Dynkin

formula method as the same reasoning will prove useful for other functions as well.

Indeed, in order to calculate the r.h.s. of the equation (17), we rely again on Dynkin’s formula.

Following Errais et al. (2010), let f ≡ λt in (7) then we have:

Lf (Xt) = β (λ∞ − λt) + αλt.

Dynkin’s formula leads to:

E [λt] = λ0 + E
[∫ t

0
(β (λ∞ − λs) + αλs) ds

]
= λ0 + βλ∞t+ (α− β)

∫ t

0
E [λs] ds,

where as before, we used Fubini-Tonnelli’s theorem to swap the integration and expectation operators.

Taking the differential with respect to t yields the ordinary differential equation satisfied by the

expected intensity of the process

dE [λt] = (βλ∞ + (α− β)E [λt]) dt.

Taking into account the initial condition E [λ0] = λ0 the solution is found to be

E [λt] = λ∞β
e(α−β)t − 1

α− β
+ e(α−β)tλ0. (18)

From the above equation a stability condition is given by α
β < 1 . Using the above result in equation

(17) yields the expression for the mean number of jumps:

E [Nt] = N0 +
λ∞β

(
−1 + e(α−β)t − (α− β)t

)
(α− β)2

+

(
−1 + e(α−β)t

)
α− β

λ0.

We are interested in the expected number of jumps during an interval of length τ . Using the previous

computation we conclude that it is given by
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E [Nt+τ −Nt] =
−λ∞βτ
α− β

+ et(α−β)

(
−λ∞β + e(α−β)τλ∞β − αλ0 + e(α−β)ταλ0 + βλ0 − e(α−β)τβλ0

)
(α− β)2

.

(19)

The equation (19) depends on λ0 the initial value for the intensity which is unknown. To eliminate

this value we take the limit t→∞ and under the stability condition α
β < 1 we obtain

lim
t→∞

E [Nt+τ −Nt] =
βλ∞
β − α

τ = Λτ, (20)

where Λ = λ∞
1−α/β stands for stationary regime expected intensity, giving the long run expected value

of the number of jumps during a time interval of length τ . The strategy of taking the limit to simplify

the dependency of the results on the initial value of the process, which is unknown, is borrowed from

Aı̈t-Sahalia et al. (2010) who used the Hawkes process for modeling contagion effects between stocks.

It puts the process in its long-run, or, said differently, stationary-regime. Having determined the first

moments we pursue our approach and focus on higher moments.

The computation of the second moment of the number of jumps during an interval, namely

I = E
[
(Nt2 −Nt1)2

]
= E

[
Et1
[
N2
t2

]
− 2Nt1Et1 [Nt2 ] +N2

t1

]
(21)

leads to apply Dynkin’s formula to the function f ≡ N2. As we have

Lf (Xt) = 2λtNt + λt,

it results that

Et1 [N2
t2 ] = N2

t1 + 2

∫ t2

t1

Et1 [λuNu]du+

∫ t2

t1

Et1 [λu]du, (22)

and when inserted in the previous equation leads to:

I = 2

∫ t2

t1

E[λuNu]du+

∫ t2

t1

E[λu]du− 2E
[
Nt1

∫ t2

t1

Et1 [λu]du

]
. (23)

The infinitesimal generator of the Hawkes process applied respectively to f ≡ λ2 and f ≡ λN gives

after proceeding as for the previous functions, to the following set of ordinary differential equations

dE[λ2
t ] =(α2 + 2βλ∞)E[λt]dt+ 2(α− β)E[λ2

t ]dt (24)

dE[λtNt] =βλ∞E[Nt]dt+ (α− β)E[λtNt]dt+ E[λ2
t ]dt+ αE[λt]dt (25)

dE[N2
t ] =2E[λtNt]dt+ E[λt]dt, (26)
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where the last equation (26) is in fact (22). To integrate equation (25) we need to know the solutions

of (24), (18) and (17). Once these ODE are integrated the computation of I is complete. Indeed,

using the solution of the EDO satisfied by E[λtNt] we obtain:

I1 =

∫ t2

t1

E[λuNu]du

=

∫ t2

t1

e(α−β)(u−t1)E[λt1Nt1 ]du+

∫ t2

t1

∫ u

t1

e(α−β)(u−s){βλ∞E[Ns] + E[λ2
s] + αE[λs]}dsdu,

and

I2 = E
[
Nt1

∫ t2

t1

Et1 [λu]du

]
= E

[
Nt1

(∫ t2

t1

e(α−β)(u−t1)λt1du+

∫ t2

t1

∫ u

t1

e(α−β)(u−r)βλ∞drdu

)]
=

∫ t2

t1

e(α−β)(u−t1)duE[Nt1λt1 ] +

∫ t2

t1

∫ u

t1

e(α−β)(u−r)drduβλ∞E [Nt1 ] .

As we have E[Ns] = E[Nt1 ] +
∫ s
t1
E[λr]dr we arrive after substitution and simplification to :

I =

∫ t2

t1

E[λu]du+ 2

∫ t2

t1

∫ u

t1

e(α−β)(u−s)
{
βλ∞

∫ s

t1

E[λr]dr + E[λ2
s] + αE[λs]

}
dsdu.

We can therefore calculate the time t expected second moment of the number of jumps occurring

during an interval of length τ , by first conditioning on Ft, obtaining Et
[
(Nt+τ −Nt)

2
]
, which is an

expression depending only on the expectations E[λt] and E[λ2
t ]. These last two terms depend on λ0

but by letting t → ∞ we obtain its stationary regime value, and get an expression independent of

the initial intensity. As a consequence, we have the second moment of the jump number over a time

interval of length τ .

To specify further the result, we note limt→∞ E[λt] = Λ, limt→∞ E[λ2
t ] = Λ2, τ = t2 − t1 and taking

the limit on the expression for I we reach:

I = τΛ + 2

∫ t2

t1

∫ u

t1

e(α−β)(u−s)
∫ s

t1

drdsduβλ∞Λ

+ 2

∫ t2

t1

∫ u

t1

e(α−β)(u−s)dsdu{Λ2 + αΛ},

where the integral expressions are given by:∫ t2

t1

∫ u

t1

e(α−β)(u−s)
∫ s

t1

drdsdu = −(α− β)−1 τ
2

2
− (α− β)−2τ + (α− β)−3(e(α−β)τ − 1),∫ t2

t1

∫ u

t1

e(α−β)(u−s)dsdu = −(α− β)−1τ + (α− β)−2(e(α−β)τ − 1).
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Recalling the results of the previous subsection, we are then able to obtain the long run variance of

the number of jumps during a time interval of length τ :

V(τ) = lim
t→∞

E
[
(Nt+τ −Nt)

2
]
− E [Nt+τ −Nt]

2

= Λ

(
τκ2
− +

(
1− κ2

−
) (1− e−τγ−)

γ−

)
, (27)

where

Λ =
λ∞

1− α/β
, κ− =

1

1− α/β
and γ− = β − α.

We have the first and second moments for the process (Nt+τ −Nt)t≥0 for a given τ and following the

above procedure it is possible to compute higher order moments as well. However, we are interested by

the autocovariance function for this process as it contains the information regarding the self-exciting

or clustering property of the Hawkes process. We now turn our attention to the computation of this

important quantity.

To compute the autocorrelation function of the number of jumps during different time intervals we

need to determine Et [(Nt1 −Nt) (Nt3 −Nt2)], where t < t1 < t2 < t3. In order to simplify notations

we consider the variables ∆1 = t1 − t, ∆2 = t3 − t2 and δ = t2 − t1. We perform the successive

conditioning

E [(Nt1 −Nt) (Nt3 −Nt2)] = E [Et [Et1 [Et2 [(Nt1 −Nt) (Nt3 −Nt2)]]]] .

The innermost conditional expectation is

Et2 [(Nt1 −Nt) (Nt3 −Nt2)] = (Nt1 −Nt)×

[
λ∞β

(
−1 + e(α−β)∆2 − (α− β)∆2

)
(α− β)2

+

(
−1 + e(α−β)∆2

)
α− β

λt2

]

thanks to calculations done for the first moment. Then, conditioning down by Ft1 , one has to compute

Et1 [λt2 ] = λ∞β
e(α−β)δ − 1

α− β
+ e(α−β)δλt1 . (28)

This results in an expression depending on Nt1λt1 and Ntλt1 . Further conditioning down with respect

to Ft, one has to calculate :

Et [λt1 ] = λ∞β
e(α−β)∆1 − 1

α− β
+ e(α−β)∆1λt.

Lastly, the quantity Et [λt1Nt1 ] is already known from the previous computations. Collecting all results

together, we determine the autocovariance of the process, where, to simplify the final expression, we
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suppose ∆1 = ∆2 = τ :

Cov (τ, δ) = lim
t→∞

E [(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]

=
λ∞βα(2β − α)

(
e(α−β)τ − 1

)2
2(α− β)4

e(α−β)δ +
λ2
∞β

2

(α− β)2
τ2. (29)

From the autocovariance we deduce the autocorrelation function of the number of jumps over an

interval of length τ with a lag δ :

Acf (τ, δ) = lim
t→∞

E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+2τ+δ)]√
var(Nt+τ −Nt)var(Nt+2τ+δ −Nt+τ+δ)

=
e−2βτ

(
eατ − eβτ

)2
α(α− 2β)

2
(
α(α− 2β)

(
e(α−β)τ − 1

)
+ β2τ(α− β)

)e(α−β)δ. (30)

The above expression is always positive when α < β, which is the stability condition of the process

and decays exponentially with the lag δ. The half-life depends on the difference α−β. Note also that

the background intensity λ∞ is not involved in the autocorrelation, a property that could have been

expected.

The computation performed above allows us to determine the moments up to the second order of

(Xt)t≥0 as well as the autocorrelation function for the number of jumps over an interval τ . Following

this approach we can compute higher order moments. The key ingredient underlying the computations

is in fact the stability of the polynomial functions with respect to the infinitesimal generator of the

Hawkes process. More precisely, the expected value of a polynomial function of the process (Xt)t≥0

(i.e.
∑

i≤nj≤m aijx
ixj) can be expressed as a function of polynomial functions of same or lower degree.

This property is a consequence of the affine structure of the Hawkes process and has been used for

the classical standard affine model of Duffie and Kan (1996) in Cuchiero et al. (2013) and Filipović

et al. (2013). To be more precise, if we denote Zt =
(
E[λt],E[Nt],E[λ2

t ],E[λtNt],E[N2
t ]
)>

then using

the ODEs obtained above the vector Zt satisfies the ODE

dZt
dt

= AZt +B (31)

with

A =



α− β 0 0 0 0

1 0 0 0 0

α2 + 2βλ∞ 0 2(α− β) 0 0

α βλ∞ 1 α− β 0

1 0 0 2 0


B =



βλ∞

0

0

0

0


.
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The solution of this ODE is given by

Zt = eAtZ0 +

∫ t

0
eA(t−s)Bds (32)

where the exponential of the matrix is computed using classical algorithms, see Golub and Van Loan

(1996).

3 Inference Strategies

In this section, we first present the classical Maximum Likelihood approach usually used to calibrate

the Hawkes process and underline the numerical difficulties. Then using the explicit expression for

the moments and the autocorrelation computed in the previous section we develop a GMM estimation

strategy whose computational speed appears to be very fast compared to the existing alternatives.

3.1 Maximum likelihood estimation

Let (Xt)t≥0 be a simple point process on [0, T ] and t1...tNT denote a realization of (Nt)t≥0 over [0, T ],

then, as established in proposition 7.2.III of Daley and Jones (2002), among other references, the

log-likelihood of (Xt)t≥0 is of the form :

L =

∫ T

0
(1− λs) ds+

∫ T

0
ln (λs) dNs

=

∫ T

0
(1− λs) ds+

NT∑
i=1

ln (λti).

In the case of a Hawkes process we have

L =

∫ T

0

(1− λt) dt+

∫ T

0

ln (λt) dNt

=

∫ T

0

(
1− λ∞ +

∫ t

0

αe−β(t−s)dNs

)
dt+

∫ T

0

ln

(
λ∞ +

∫ t

0

αe−β(t−s)dNs

)
dNt

= T − Tλ∞ +

NT∑
i=1

∫ T

0

αe−β(t−ti) × 1{t≥ti}dt+

NT∑
i=1

ln

λ∞ +
∑
tj≤ti

αe−β(ti−tj)

,
and simplifying the above integral∫ T

0
αe−β(t−ti) × 1{t≥ti}dt =

[
−α
β
e−β(t−ti) × 1{t≥ti}

]T
0

−
∫ T

0
−α
β
e−β(t−ti) × δ{t=ti}dt

=
α

β
− α

β
e−β(T−ti),

we end with

L = T − Tλ∞ −
NT∑
i=1

α

β

(
1− e−β(T−ti)

)
+

NT∑
i=1

ln (λ∞ + αA(i)), (33)
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where A(i) =
∑

tj≤ti e
−β(ti−tj).

The estimation leads to a non linear optimization algorithm, such as Nelder-Mead to find the maxi-

mum of this function. We stress the fact that for each set of parameters the evaluation of this function

requires a loop over the observations which for the problem at hand, trade clustering, is very large.

Some authors, as Ozaki (1979), pointed out that A(i) used in (33) satisfies a recursive relation. Indeed,

defining A(1) = 0 then for i > 1, A(i + 1) = e−β(ti+1−ti) × (1 + A(i)), this property simplifies the

calculation of the likelihood function and speeds up evaluation. However, the calibration still takes a

few minutes and a large number of function calls are performed. Any simplification of the calibration

is therefore of interest.

3.2 Fast Hawkes process calibration

Even with the improvement previously presented the parameter estimation procedure based on the

maximum likelihood function is still very time consuming. Having computed explicitly the moments

as well as the autocorrelation function for the Hawkes process a natural estimation strategy is the

method of moments. The calibration procedure will then consist in a least squares fit of theoretical

moments with the empirically observed ones. The problem writes as

θ̂ = argmin
3∑
i=1

[
M i − fi (θ)

]2
, (34)

where the M i are some empirically estimated moments of the considered sample, and fi (θ) are the

corresponding theoretical moments. As we have 3 parameters we use the same number of moments

to build the function (34). The optimization problem can then be solved very quickly by Levenberg-

Marquardt algorithm (we use this implementation by Lourakis (Jul. 2004)).

As we have more than three moments in closed form at our disposal and also the autocorrelation

function we can rely on the Generalized Method of Moments (GMM), see Hall (2004) for an exhaustive

treatment. The inference problem now writes as

θ̂ = argmin
{

(M − f (θ))>W (M − f (θ))
}
,

13



where M is now the vector of empirical moments (with eventually the autorcorrelation condition), and

f (θ) is the vector of corresponding theoretical moments. W is a symmetric positive definite weight

matrix so it is a quadratic form. As usual, if W is the identity matrix, and dim(W ) = 3, we recover

our original minimization problem as written in equation (34).

This method of estimation is known to be consistent and asymptotically normal. It can also be shown

that with a suitable choice of the weighting matrix W , the estimator is asymptotically efficient in the

sense that it has the smallest covariance matrix. Intuitively, the optimal weighting matrix will attribute

less weight to the noisier moments, and more weight to moments that are easiest to estimate with

better accuracy. It turns out indeed that the optimal weight matrix is the inverse variance-covariance

matrix of the error terms, so in our notation Wopt = E
[(
M − f

(
θ̂
))
×
(
M − f

(
θ̂
))>]−1

, with θ̂

being the true parameter value. As this true parameter value is unknown we rely on Hansen’s two-step

method Hansen (1982) to obtain the optimal weighting matrix:

• Let W be the identity matrix and estimate the parameters. This gives a consistent estimate θ0.

• Update the weight matrix as : Wopt = E
[
(M − f (θ0))× (M − f (θ0))>

]−1
, finding θ1, and

iterate this step until convergence, i.e θk+1 ≈ θk.

Some numerical experiments lead us to the following conclusions: the optimization problem (34) based

on the mean and variance of number jumps during an interval τ (i.e. equations (20) and (27)), and

autocorrelation function (30) gives the best results if calibration quality and speed are taken into ac-

count. Even when there are more moments than the number of parameters, calculation time remains

negligible and far more rapid than the MLE. Also we found it very important to take the autocorre-

lation function into account in the objective function.

Another numerical problem that we met is that the order of magnitude of the different moments is

not the same. For example, while the autocorrelation is always less than 1 in absolute value, the mean

or variance of the jump numbers grow linearly with the length of the estimation intervals, and can

be typically of the order of hundreds for the applications considered. To deal with this problem, we

slightly modify the optimization problem:

θ̂ = argmin

{(
1− f (θ)

M

)>
W

(
1− f (θ)

M

)}
,

where the components of the vector (1 − f(θ)
M ) are (1 − fi(θ)

Mi
) and involve the relative ratio of the
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theoretical moment to its empirically estimated counterpart. This is made possible by the fact that

all the considered moments are different from zero, and this solves the problem of orders of magnitude

of the different moments2.

Lastly and more importantly the evaluation of the empirical moments is only made once during the

optimization procedure and explains why this estimation strategy is intrinsically faster than the MLE.

This gives us a very appealing estimation procedure. Not only is it instantaneous and this point is

crucial if the objective is to apply a model to a high-frequency problem (optimal execution, price

impact analysis of a trade), but it has also the advantage of being robust to data pollution, an aspect

which is very common in such data.

4 Applications

4.1 Data

We rely on tick-by-tick data from TRTH (Thomson Reuters Tick History). The data consist of trades

and quotes files timestamped in milliseconds. We particularly studied two stocks: BNP Paribas and

Sanofi, as well as two futures on indices : Eurostoxx and Dax. For each studied day we consider the

front maturing futures, i.e. the futures with the shortest maturity date. The data cover the period

between 2010/01/01 to 2011/12/31.

All the trading days begin at 9:00 and end at 17:30. We nevertheless neglect the first and last 15

minutes in order to avoid the open and close auctions. We end with 8 trading hours per day, between

9:15 and 17:15.

Most of our study deals with trade time arrivals and statistics on the number of trades occurring on

intervals of fixed length. The fact that the timestamps have a bounded precision, the millisecond in

our case, is another appealing feature of our method of estimation. Indeed, many trades will have the

same time to the nearest millisecond even if they did not take place at the same time. This millisecond

will count as a unique entry in the ML estimation procedure; whereas in our moment based inference

all, the trades will individually be taken into account in the moment calculation. This, among other

2Similar problem appears in Aı̈t-Sahalia et al. (2010) where the authors use the matrix W to control for the discrep-
ancies between the moments.
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factors, will make the method of moments more robust to data imprecision, a fact typical to high

frequency data.

4.2 Trade clustering

As outlined in the introduction, trading activity is not a completely random and memory-less process.

If it was so, a Poisson process would have been a good candidate for trade arrival times. As shown in

figure 1, a qqplot of interarrival times of trades against an exponential distribution clearly rejects the

Poisson process as the data generating process for the order flow.

[ Insert Figure 1 here ]

In fact, trades tend to cluster and an illustration is given in figure 2 where we plot an histogram of

the number of trades occurring every minute during a trading day on Eurostoxx. The clustering is

graphically clear.

[ Insert Figure 2 here ]

Numerous reasons can be mentioned to explain this clustering of trade arrivals, among them liquidity

takers splitting their orders so as to minimize their market impact, or insider traders reacting rapidly

to take advantage from information they have before it is widespread in the market : these justify a

one sided trade clustering (i.e. either buy or sell initiated trades). On the other hand, heterogeneity of

market participants is responsible for the two-sided trade clustering. A complete study can be found

in Sarkar and Schwartz (2006).

To quantify this clustering in time we compute the correlation of the number of trades occurring

during different time intervals of fixed length separated by a time lag. A plot of the number of trades

autocorrelation gives information about the degree of clustering. Needless to say that with a Poisson

process generating trade arrival times this correlation would have been zero.

Precisely, we want to compute:

C(τ, δ) =
E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+τ+δ)]√

var(Nt+τ −Nt)var(Nt+2τ+δ −Nt+τ+δ)
. (35)
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For example, we count the number of trades occurring during two sliding non overlapping intervals of

one τ = 1 minute length separated by a certain time lag δ. We change this time lag from 1 second to

20 minutes by a step of 1 second. This gives 1200 number of trades autocorrelation points, allowing

to plot the function C(τ, δ). An example plot is given in figure 3, where we considered different time

intervals τ for the same underlying symbol, namely the Eurostoxx. We clearly see that the autocor-

relation is positive and significant, and that it decreases with the time lag. It is also remarkable that

this is true for all the time interval lengths considered, and that independently from τ , this memory

effect seems to take around 10 minutes to become insignificant.

[ Insert Figure 3 here ]

The same phenomenon is observed for all the symbols we tested. The absolute value of the autocorre-

lation is higher for the two futures, which are far more liquid than the stocks, but the same decreasing

shape is observed, and the time life of this autocorrelation seems to be very close for all the symbols

tested. An illustration is given in figure 4.

[ Insert Figure 4 here ]

These stylized facts justify the use of the Hawkes process as modelling framework.

Thanks to the previous computations, we have an expression for the number of trades autocorrelation

function (35) as in the case of the Hawkes process, namely equation (30). A least squares fit of this

function to the empirical one can be performed to calibrate the model parameters. Note, however,

that the autocorrelation function for the number of trades does not depend on λ∞. Therefore, we

rely on equation (20) to obtain λ∞ from the other parameters3. Based on figure 5 we choose to fit

the autocorrelation function (30) for τ = 1 min and δ ranging from 0 to 600 seconds by steps of 60

seconds and figure 4 convinces us that this choice is suitable for all the analyzed stocks.

[ Insert Figure 5 here ]

We calibrated the model every day for a one-year data sample for the four considered symbols. Results

are summarized in table 1. A striking fact is the small ratio of the λ∞ to a Poisson equivalent λ that

3From a statistical point of view it means that we suppose equation (20) is satisfied without error.
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we put in the table for reference: it is the intensity we obtain if we calibrate a Poisson process to the

data. Indeed, λ∞ is always between 5% to 10% of its Poisson equivalent, showing that the Hawkes

process attributes only this fraction of events to a background process activity, while explaining the

remaining part by the branching aspect of the process, i.e. the self-exciting property.

[ Insert Table 1 here ]

The best test for the calibration procedure is if the so calibrated model does reproduce the empirical

stylized fact that we were interested in, namely the trade arrival time clustering. This is indeed the

case. Examples of fit of the autocorrelation functions of the number of trades are shown in figure 6.

The good quality of the fit advocates the Hawkes process as a good modeling tool for trade arrival

times.

[ Insert Figure 6 here ]

For robustness, we also conducted calibrations of the model on a variety of traded assets ranging from

interest rate futures to commodity, energy and foreign exchange futures. Results are reported in table

2.

[ Insert Table 2 here ]

In all our results, one can notice the moderate values of standard deviations as compared to mean

parameter values, as well as the similarity of mean and median values, denoting the relative stability

of the calibration and absence of outliers. Additionally, in all our calibrations we did not include the

stability constraint α < β, the calibration automatically filled this constraint. Indeed, it is a necessary

condition to fit the decreasing shape of the autocorrelation function as it is clear from equation (30).

4.3 Forecasting

Once the model is calibrated, one is naturally interested in its forecasting power. In our case, as

stressed in the preceding section, the model essentially captures the autocorrelation of the number of

trades occurring in consecutive time intervals. The shape of this function, exponentially decreasing

function to zero, naturally suggests to model the number of trades occurring in fixed time intervals as

an autoregressive process.
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Given a set of moments t0 < t1 < t2 < . . . < tN with ti − ti−1 = τ , we define yti = 1
τ (Nti −Nti−1) and

denote yt with t ∈ {t1, . . . , tN}. For simplicity, we work with the centered version of yt and consider

the autoregressive model:

yt = a1yt−1 + ut

where ut is a random variable, independent of yt with 0 mean. Then, in the case of a Hawkes model,

the parameters of the AR model for the number of trades can be computed. Indeed, from the previous

results we have

Et−1[y2
t ] = a1Et−1[ytyt−1] + Et−1[ytut]

leading to

a1 =
Et−1[ytyt−1]

Et−1[y2
t ]

=
Cov(τ, 0)

V(τ)
= Acf(τ, 0)

where the autocovariance and variance functions are known.

The same reasoning can be done if one considers an AR(p) model :

yt = a1yt−1 + a2yt−2 + ...+ apyt−p + ut

then for every i ∈ {1, .., p}, multiplying the above equation by yt−i and taking the expectation yields

p linear equations with coefficients ai :

C(τ, δ = (i− 1)× τ) = V (τ)ai +

p∑
j=1,j 6=i

ajC(τ, δ = (|i− j| − 1)× τ)

therefore the (a1, . . . , ap)
> is the solution of the linear system:

1 Acf[τ, 0] ... ... Acf[τ, (p− 2)τ ]

Acf[τ, 0] 1 Acf[τ, 0] Acf[τ, (p− 3)τ ]

...

...

Acf[τ, (p− 2)τ ] Acf[τ, 0] 1


×



a1

...

...

...

ap


=



Acf[τ, 0]

...

...

...

Acf[τ, (p− 1)τ ]


.

(36)

Solving this equation for a sufficiently large first guess of p allows the calculation of the ai coefficients

and to decide the length of the autoregressive process by discarding the small coefficients.
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We conduct the forecast experiment by daily calibrating the Hawkes process and use the parameters

of each calibrated day as forecast parameters for the following day. In order to assess the quality of

this prediction, we calculate the residues of our forecast and compare them to the residues of a forecast

that relies on a Poisson process. Results are summarized in Table 3. They show a superior forecasting

power for the Hawkes process. Table 4 presents the distribution of the number of lags necessary for

the prediction.

[ Insert Table 3 here ]

[ Insert Table 4 here ]

Nevertheless, both models give exactly the same results when the forecast horizon is sufficiently large

(half an hour in our case). As an illustration, notice that in Figure 7, the standard deviation of Hawkes

forecast residues converges to that of the Poisson residues when the forecast horizon increases. More-

over, as illustrated by figure 8, both distributions of residues converge when the forecast horizon is

sufficiently large. This is an expected result as the Hawkes forecast method relies on the autocorre-

lation of the number of trades falling in consecutive intervals, which is significant for small time lags,

but disappears after twenty to thirty minutes as previously shown in the paper.

[ Insert Figure 7 here ]

[ Insert Figure 8 here ]

4.4 Branching structure of trading activity

An interesting property of the Hawkes process is its branching structure. Indeed, the occurence of a

jump increases the intensity of the process, and thereby the probability to observe another jump. As

pointed out by (Hewlett, 2006), this results in a direct and indirect impulse response of the process

intensity to a jump event. Denoting the expected increase of the process intensity at time t as a

response to a jump occurring at time 0 by f(t), we have the following decomposition:

• Direct response: an increase of the intensity by α that will decay exponentially as time passes,

thus leading to an increase of the intensity at time s of αe−βs.

• Indirect response: at any time s between 0 and t, the direct increase of the intensity by

αe−βs leads to an indirect increase of the expected number of jumps at time t which equals
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to αe−βsdsf(t − s); we then need to integrate over the range [0 t] to obtain the total indirect

effect.

Therefore, the expected direct and indirect increase of the intensity at time t caused by a jump at

time 0 writes as:

f(t) = αe−βt +

∫ t

0
αe−βsf(t− s)ds.

The solution of this integral equation is given by

f(t) = αe−(β−α)t.

Expressed in terms of jump counts, this impulse response is equal to:

Nresponse =

∫ ∞
0

f(s)ds =
α

β − α
,

where Nresponse denotes the expected number of jumps triggered by one jump occurring at time 0 if

the process is observed indefinitely.

We use our daily calibrations on real data of the Hawkes process to measure an average Nresponse for

the studied assets. We obtain the following table:

[ Insert Table 5 here ]

We clearly observe a difference between futures, given by the symbols Dax and Eurostoxx, and the

stocks represented by BNPP and Sanofi. This points towards considering this number as an indicator

of liquidity and trading activity. For instance, despite the fact that the estimated parameters for the

Dax and the Eurostoxx are close, the impulse response value for the former is larger and is consistent

with the fact that futures on this index are more actively traded, due to a stronger branching structure.

A robustness check was also performed for other assets in the previously mentioned table 2. According

to this measure a trade on the Bund triggers more other trades than does a trade on the Bobl. The

Euro currency, and to a lesser extent the JPY, seem to be more reactive markets than the others.

Among the commodities, the Crude Oil Brent dominates the Natural Gas, Sugar, Corn and the Wheat.

4.5 Diffusive limit and signature plot

In all the preceding sections, we dealt with the trading process from a microscopic point of view i.e. at

the transaction level. In the classical High Frequency literature mainly developed by econometricians,
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most of the studies deal with this same level of granularity trying to uncover the intimate mechanisms

of the price formation process. Many models try to encompass the subtle interactions of the many

components of the trading process (order flow, order signs, quantities and so on...). For instance,

ACD models as proposed in Engle and Russell (1998) fall in this trend of research. For an overview

of models and techniques involved see Hautsch (2012) and references therein.

In our paper, we consider a simpler framework focusing only on the order flow. Certainly, this sim-

plification comes at a cost of neglecting important aspects of the price formation process, such as

the volume for example. Nevertheless, it allows us to address the important question of connecting

the microscopic price formation process at transaction level to its macroscopic properties at a coarser

time scale. In other words, we connect the stochastic differential equations used to model an asset

price evolution at a daily frequency, such as in the Black-Scholes model which relies mainly on the

continuous Brownian motion, to the discontinuous point process describing individual transactions.

The Hawkes process, thanks to its strong analytical tractability, enables us to relate these two time

scales.

In recent years, many authors developed this bottom-up point of view in price modeling, establishing

connections between order-book level price formation mechanisms and statistical macroscopic price

properties. Among other references: Abergel and Jedidi (2013) model the order book as a multidi-

mensional Markov chain with independent Poissonian order arrival times and prove the convergence

of the price process to a Brownian motion. In Cont and De Larrard (2011) and Cont and De Larrard

(2012), the order book is described as a Markovian queuing system, for which the authors establish a

diffusive limit and calculate some quantities of interest such as volatility. In Kirilenko et al. (2013),

the authors use these same ideas of different time scales and relate microscopic causes to macroscopic

effects, they study the influence of high frequency traders on asset volatility. Bacry et al. (2013) in-

troduce a model for microstructure price evolution based on mutually exciting Hawkes processes and

connect the statistically observed signature plot of volatility and Epps effect of asset correlations to

the microstructure price formation mechanism. They also establish diffusive limits of such models in

Bacry et al. (2012).

In this section, we closely follow Bacry et al. (2013) in our setting of the univariate Hawkes process.

We consider a toy model for the movements of the mid price of a traded asset. The mid price is the

mean of the best ask price in the order book and the best bid price. As the best ask price or the best
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bid price moves up (down) by one tick the mid price will move (down) by half a tick. Despite its

simplicity, the model captures the essential features of the price process.4. The model writes:

St = S0 +
(
Nup
t −Ndown

t

) δ
2
, (37)

where δ is the tick value. The Nup
t and Ndown

t are Hawkes processes capturing the up and down jumps

of the mid price. Both of them follow a dynamic of the form (4). We consider them independent and

with the same parameters in order to avoid a price explosion. In the stationary regime their intensities

are given by:

λupt = λ∞ +

∫ t

0
αe−β(t−s)dNup

s (38)

λdownt = λ∞ +

∫ t

0
αe−β(t−s)dNdown

s (39)

In Bacry et al. (2012), the authors rely on the martingale theory and limit theorems for semi-

martingales to prove stability and convergence results for a general model with mutually excit-

ing processes and a generic kernel5. In our case, as the kernel is exponential, the process Xt =(
St, N

up
t , λupt , N

down
t , λdownt

)
is a Markov process. Its infinitesimal generator writes :

Lf (x) = β (λ∞ − λupt )
∂f

∂λup
(x) + β

(
λ∞ − λdownt

) ∂f

∂λdown
(x)

+ λupt

[
f

(
St +

δ

2
, Nup

t + 1, λupt + α,Ndown
t , λdownt

)
− f (x)

]
+ λdownt

[
f

(
St −

δ

2
, Nup

t , λupt , N
down
t + 1, λdownt + α

)
− f (x)

]
.

The availability of the infinitesimal generator allows the specifications of the conditions ensuring the

stability results. For instance, ergodicity of the process Xt, that is roughly speaking, its convergence

to a stationary regime, can be easily established thanks to the test of the function criterion based on

Foster-Lyapounov inequalities. We refer to Meyn and Tweedie (2009) for a detailed exposition. In

our case, we define the function V (x) = λup+λdown

2λ∞
, then a simple calculation yields the geometric drift

condition:

LV (x) ≤ (α− β)V (x) + β, (40)

4For instance, the so-called trade-throughs Pomponio and Abergel (2013), i.e. trades consuming many successive
limits and then moving the best quote by more than one tick can be regarded in this model as successive one-tick
movements occurring very closely in time

5The function g(t) = αe−βt is called the kernel of the Hawkes process. Other forms are possible but this choice leads
to the most tractable Hawkes process.
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which grants, thanks to (CD3) in Meyn and Tweedie (1993), the V-uniform ergodicity of the process

Xt.

Let us then write unit-time price increments:

ηi =
[
(Nup

i −N
up
i−1)− (Ndown

i −Ndown
i−1 )

]
× δ

2
,

and consider the random sums

Sn =
n∑
i=1

η̄i,

where {η̄i; i = 1 . . . n} denote the centered price increments. We focus on the asymptotic behaviour of

the rescaled (centered) price process

S̄nt =
Sbntc√
n
.

The V-uniform ergodicity and theorem 16.1.5 in Meyn and Tweedie (2009) allows us to conclude that

the increments are geometrically mixing and theorem 19.3 of Billingsley (1999) proves therefore, that

S̄nt converges to a Brownian motion in the sense of Skorokhod topology.

S̄nt ⇒ σWt.

Moreover, calculations done before for the moments of the Hawkes process increments lead to a very

simple expression for the volatility. In fact, we have:

σ2 = lim
n→∞

Var(S̄n)

n

= 2
δ2

4

(
E[η̄0

2] + 2
∞∑
n=0

E[η̄0η̄n])

)

=
δ2

2

(
V [1] +

∞∑
n=0

2Cov[1, n]

)
,

where thanks to (29), the centered covariance Cov[1, n] writes :

Cov[1, n] =
λ∞βα(2β − α)

(
e(α−β)τ − 1

)2
2(α− β)4

e(α−β)n.

Then, summing up with the expression of the variance, and simplifying, one obtains:

σ2 =
δ2

2

λ∞β
3

(β − α)3
. (41)

Notice the importance of the denominator β − α in this formula. The smaller this difference is, the

greater is the volatility. This is an expected feature because from equation (30) this difference char-

acterizes the persistence of the autocorrelation of the Hawkes processes involved in the model, and
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therefore the autocorrelation of mid price movements in either side inflates the process’ variance.

Besides giving a framework that allows the connection of the the microscopic price formation mecha-

nism to its macroscopic behaviour, as shown above, the Hawkes process can reproduce some stylized

facts across time scales. Among these stylized facts is the volatility signature plot.

In Bacry et al. (2013), signature plot is presented as ”an increase of the observed daily variance when

one goes from large to small scale”. In Andersen et al. (1999) the authors mention ”the patterns of bias

injected in realized volatility as underlying returns are sampled progressively more frequently”. This

bias leads to a decreasing volatility as a function of the the sampling period. These patterns are the

most frequent but inverted patterns are also possible and can be found in data, even for liquid stocks

as illustrated in figure 9. Let us stress that these figures are realized based on mid price sampling,

eliminating any noise due to bid-ask bounce.

[ Insert Figure 9 here ]

We can calculate the mean signature plot in our toy model. The realized variance over a period T

calculated by sampling the data by time intervals of length τ can be written thanks to (37):

Ĉ(τ) =
1

T

T/τ−1∑
n=0

(
S(n+1)τ − Snτ

)2
=

1

T

T/τ−1∑
n=0

((
Nup

(n+1)τ −Nup
nτ

)
−
(
Ndown

(n+1)τ −Ndwon
nτ

))2 δ2
4

=
1

T

T/τ−1∑
n=0

(
Nup

(n+1)τ −Nup
nτ

)2 δ2
4

+
1

T

T/τ−1∑
n=0

(
Ndown

(n+1)τ −Ndown
nτ

)2 δ2
4

− 2
1

T

T/τ−1∑
n=0

(
Nup

(n+1)τ −Nup
nτ

)(
Ndown

(n+1)τ −Ndown
nτ

) δ2
4
.

Therefore, the mean signature plot writes:

C(τ) = E[Ĉ(τ)]

=
δ2

2τ
V (τ)

=
δ2

2
Λ

(
κ2
− +

(
1− κ2

−
) (1− e−τγ−)

τγ−

)
,
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where

Λ =
λ∞

1− α/β
, κ− =

1

1− α/β
and γ− = β − α.

Notice that when τ becomes larger the above expression converges to the asymptotic diffusive variance

of the model calculated in (41). The mean signature plot leads to an increasing shape of the volatility

as the sampling period increases. This captures situations as the one observed in figure 9.

In Bacry et al. (2013), the authors propose a model similar to (37) but with Hawkes processes that

are mutually-excited and not self-excited as in our case. To be more precise the dynamics for the

intensities are given by:

λupt = λ∞ +

∫ t

0
αe−β(t−s)dNdown

s

λdownt = λ∞ +

∫ t

0
αe−β(t−s)dNup

s .

Notice that an up jump increases the down intensity that increases the probability of a down jump

and if this one occurs it will increase the up jump intensity. The process is purely mutually excited

and possesses a mean reversion behavior. The diffusive limit for this model is

σ2 =
δ2

2

λ∞β
3

(β − α)(β + α)2
, (42)

and the mean signature plot is

C(τ) =
δ2

2
Λ

(
κ2

+ + (1− κ2
+)

1− e−τγ+
τγ+

)
,

with

Λ =
λ∞

1− α/β
, κ+ =

1

1 + α/β
and γ+ = α+ β.

As a function of the sampling period the signature plot is decreasing (or equivalently the signature

plot is increasing with the sampling frequency) and this is due to the serial negative autocorrelation

of the returns. This corresponds to the more frequent shape observed in the market. However, an

inverted shape can also happen on the market.

Notice that we also obtain different asymptotic volatility formulas. In order to assess their plausibility,

we calibrate a Hawkes process to the mid price up-jumps, and calculate the asymptotic volatilities

both in our model (41) and in Bacry et al. (2013)’s specification (42). Results are reported in table 6.

We rescaled the obtained volatilities by the spot value in order to obtain the more usual Black-Scholes
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volatility corresponding to a lognormal model. One can clearly see that our model systematically

overestimates volatility whereas Bacry et al. (2013)’s model systematically underestimates it. Qual-

itatively, this is due to the fact that our model expands up and down movements, thus inflating the

realized volatility, whereas Bacry et al. (2013)’s model moderates up and down movements thanks to

its mean reversion mechanism, thus underestimating the volatility.

[ Insert Table 6 here ]

Our results suggest a more general specification allowing for both self and mutual excitations. The

particularly simple approach we adopted in our calculations based on the infinitesimal generator and

Dynkin’s formula may be generalized to a multidimensional setting and yet keeping the computations

tractable. It would allow us to take into account these effects, that were underlined in the empirical

literature (see Hautsch (2012)), on the price dynamics and provide us with a deeper understanding

of how the volatility measured at a macroscopic level (at a daily frequency) depends on the trading

activity observed at a microscopic level (at high frequency).

5 Conclusion

In this paper we compute explicitly the moments and the autocorrelation function of the number of

jumps over an interval for the Hawkes process. Using these quantities we develop a method of moments

estimation strategy which is extremely fast compared with the usual maximum likelihood estimation

strategy. This aspect is essential as we are interested in the trade clustering activity observed in high

frequency data or if we wish to apply in real time the model. We use our estimation framework to

calibrate the Hawkes process on trades for four stocks over a one-year sample. The Hawkes process

can cope with the trade clustering effect thanks to its autocorrelation structure. As our calibration is

fast we roll the daily estimation over two years to analyze the parameters stability, and they are found

to be reasonably stable. We perform a robustness check on other assets and obtain similar results.

We perform a forecast analysis to determine the horizon beyond which the Hawkes process does not

perform better than a simple model. This horizon is found to be smaller or equal to 10 minutes which

is satisfactory as high frequency trading occurs within this time range. Thanks to the analytical

tractability of the Hawkes process we compute explicitly the impulse response associated with the

process which determines the market impact of a trade.
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Lastly, within a simple model based on the Hawkes process we compute explicitly the diffusive limit

for the price process. This allows us to connect the microscopic dynamics, that is to say the high

frequency dynamics, to the macroscopic dynamics, the volatility computed at a daily frequency (with

the Black-Scholes volatility being the most well-known quantity).

Our work points towards several extensions. First, we computed the diffusive limit under the restric-

tive hypothesis that the Hawkes processes are only self-excited whereas in Bacry et al. (2013), on

which we heavily rely, the Hawkes processes are only mutually excited. The reality should lie between

the two and requires Hawkes processes that are both self and mutually excited. To this end we would

need to perform the computation in the multidimensional case. As a matter of fact the computations

performed here can be carried out for that case.

Another aspect of interest is the diffusive limit concept. In this work we connect the dynamics driving

the trade process, using a Hawkes process, to the daily volatility. It would be of interest to go further

at the microscopic level by modelling, for example, the level I quotes. The Hawkes process provides a

natural modelling framework and would extend the interesting existing models based on the Poisson

process. To perform such a limit the moments as well as the autocorrelation are needed and can be

obtained using the the computation strategy developed in this work. These interesting problems are

left for future work.
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Appendix

Some Useful Expressions

Skewness

By application of the infinitesimal generator operator to adequate functions, one has the following
ordinary differential equations:

dE[N3] = E[λt]dt+ 3E[λtNt]dt+ 3E[λtN
2
t ]dt

dE[λtN
2
t ] = E[λ2

t ]dt+ 2E[λ2
tNt]dt+ αE[λt]dt+ 2αE[λtNt]dt+ (α− β)E[λtN

2
t ]dt+ βλ∞E[N2

t ]dt

dE[λ2
tNt] = E[λ3

t ]dt+ 2αE[λ2
t ]dt+ 2(α− β)E[λ2

tNt]dt+ α2E[λt]dt+ (α2 + 2λ∞β)E[λtNt]dt

dE[λ3
t ] = 3(α− β)E[λ3

t ]dt+ 3
(
α2 + λ∞β

)
E[λ2

t ]dt+ α3E[λt]dt.

The stationary regime third moment then writes:

lim
t→∞

E
[
(Nt+τ −Nt)

3
]

=
1

2(α− β)6
λ∞β[

− e2(α−β)τα2(2α− 3β)(α− β)

+ 2e(α−β)τα
(
α3 − 4α2β + 3αβ2 + 6β3 + 3(λ∞ + α)(α− 2β)(α− β)βτ

)
+ β

(
3α
(
α2 − αβ − 4β2

)
+ 2(−α+ β)

(
3λ∞α(α− 2β) + β2(2α+ β)

)
τ

+ 6λ∞(α− β)2β2τ2 + 2λ2
∞β(−α+ β)3τ3

)]
.

Kurtosis

Similarly to the preceding paragraph, we have the following ordinary differential equations:

dE[N4] = E[λt]dt+ 4E[λtNt]dt+ 6E[λtN
2
t ]dt+ 4E[λtN

3
t ]dt

dE[λtN
3
t ] = E[λ2

t ]dt+ 3E[λ2
tNt]dt+ 3E[λ2

tN
2
t ]dt+ αE[λt]dt+ 3αE[λtNt]dt+ 3αE[λtN

2
t ]dt

+ (α− β)E[λtN
3
t ]dt+ λ∞βE[N3

t ]dt

dE[λ2
tN

2
t ] = E[λ3

t ]dt+ 2E[λ3
tNt]dt+ 2αE[λ2

t ] + 4αE[λ2
tNt]dt+ 2αE[λ2

tN
2
t ]dt+ α2E[λt]dt

+ 2α2E[λtNt]dt+ (α2 + 2λ∞β)EλtN2
t ]dt− 2βEλ2

tN
2
t ]dt

dE[λ3
tNt] = E[λ4

t ]dt+ 3αE[λ3
t ]dt+ 3(α− β)E[λ3

tNt]dt+ 3α2E[λ2
t ]dt+ 3(α2 + λ∞β)E[λ2

tNt]dt

+ α3E[λt]dt+ α3E[λtNt]dt

dE[λ4
t ] = (4α− 4β)E[λ4

t ]dt+
(
6α2 + 4λ∞β

)
E[λ3

t ]dt+ 4α3E[λ2
t ]dt+ α4E[λt]dt.

The stationary regime fourth moment of the process writes:
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lim
t→∞

E
[
(Nt+τ −Nt)4

]
=

1

6(α− β)8
×

λ∞β

[
− 2e3(α−β)τα3(3α− 4β)(α− β)(2α− β)

+ 3e2(α−β)τα2

(
6α4 + 6(λ∞ − 3α)α2β + 3α(−8λ∞ + α)β2

+ 6(4λ∞ + 5α)β3 − 18β4 + 4(λ∞ + 2α)(2α− 3β)(α− β)2βτ

)

− 6e(α−β)τα

(
α5 + 6λ∞α

3β − 3α4β − 24λ∞α
2β2 − α3β2

+ 24λ∞αβ
3 + 20α2β3 − 45αβ4 − 14β5

+ 2(λ∞ + α)(α− β)β
(
2α3 − 8α2β + 3αβ2 + 18β3

)
τ

+ 6(λ∞ + α)2(α− 2β)(α− β)2β2τ2

)

+ β

(
α
(
2α4 + 18λ∞α(α− 2β)2 + 15α3β + 22α2β2 − 216αβ3 − 84β4

)
+ 6β(−α+ β)

(
6λ∞α

3 + 6α(−6λ∞ + α)β2 + 8αβ3 + β4
)
τ

+ 6λ∞(α− β)2β
(
6λ∞α(α− 2β) + β2(8α+ 7β)

)
τ2 + 36λ2∞β

3(−α+ β)3τ3 + 6λ3∞(α− β)4β2τ4

)]
.
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Tables

Symbol Measure Poisson λ λ∞ α β

Eurostoxx Mean 1.4480 0.0625 0.0869 0.0911
Std. dev. 0.6283 0.0209 0.0229 0.0237
Median 1.3343 0.0593 0.0843 0.0882

Dax Mean 1.7814 0.0664 0.0993 0.1034
Std. dev. 0.7322 0.0249 0.0218 0.0226
Median 1.6214 0.0609 0.0988 0.1028

BNPP Mean 0.8627 0.0556 0.0760 0.0819
Std. dev. 0.3923 0.0231 0.0192 0.0219
Median 0.7438 0.0508 0.0724 0.0772

Sanofi Mean 0.6704 0.0453 0.0747 0.0806
Std. dev. 0.1873 0.0213 0.0212 0.0240
Median 0.6087 0.0414 0.0700 0.0758

Table 1: Calibration results for two years of data. We calibrate daily a Hawkes process to the trade
arrival time of each symbol. For comparison, we put the Poisson equivalent λ, defined as the mean
number of trades per second for every day, and characterizing the trading activity on each symbol.
For every measure, we put mean, standard deviation and median value of the calibration parameters.
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Symbol Measure Poisson λ λ∞ α β Nresponse

Bund Mean 1.2742 0.0671 0.0956 0.1013 19.683
Std. dev. 0.4434 0.0244 0.0218 0.0232 8.3592
Median 1.2063 0.0645 0.0934 0.0983 18.256

Bobl Mean 0.6699 0.0546 0.0816 0.0894 13.236
Std. dev. 0.1705 0.0216 0.0225 0.0257 6.4551
Median 0.6173 0.0498 0.0790 0.0858 11.329

Schatz Mean 0.6245 0.0473 0.0877 0.0952 14.896
Std. dev. 0.1397 0.0209 0.0211 0.0236 7.4515
Median 0.5712 0.0440 0.0835 0.0903 13.556

JPY Mean 1.6023 0.0536 0.1130 0.1173 29.737
Std. dev. 0.7144 0.0172 0.0207 0.0215 11.123
Median 1.5510 0.0518 0.1133 0.1178 29.139

EURO Mean 4.1955 0.0788 0.1220 0.1245 53.526
Std. dev. 1.7419 0.0271 0.0192 0.0194 19
Median 4.1956 0.0770 0.1258 0.1282 52.045

GOLD Mean 2.3191 0.0852 0.1104 0.1149 27.716
Std. dev. 0.8824 0.0290 0.0237 0.0244 10.472
Median 2.1555 0.0815 0.1175 0.1212 25.743

Crude Oil Brent Mean 2.0453 0.0550 0.1243 0.1279 37.528
Std. dev. 0.7018 0.0154 0.0143 0.0147 12.877
Median 1.9787 0.0535 0.1255 0.1302 36.86

Natural GAS Mean 1.4524 0.0688 0.1177 0.1241 21.17
Std. dev. 0.4362 0.0181 0.0156 0.0166 8.4653
Median 1.3653 0.0680 0.1168 0.1246 18.532

Sugar Mean 0.8082 0.0434 0.1213 0.1289 19.964
Std. dev. 0.3214 0.0196 0.0174 0.0190 11.93
Median 0.6869 0.0382 0.1272 0.1351 18.539

CORN Mean 1.0338 0.0626 0.1069 0.1146 17.348
Std. dev. 0.4563 0.0213 0.0332 0.0334 9.3997
Median 0.9563 0.0537 0.1226 0.1312 17.333

WHEAT Mean 1.1562 0.0639 0.1119 0.1193 18.807
Std. dev. 0.4334 0.0242 0.0215 0.0227 8.9511
Median 1.0926 0.0594 0.1182 0.1244 17.372

Table 2: Calibration results for two years of data (2010 and 2011) and for different asset classes (interest
rates, foreign exchange, metal commodities) to assess the robustness of the model. Schatz, Bobl and
Bund are respectively the 2 year, 5 year and 10 year futures on German government bonds. For every
asset class considered we take daily data of the front maturing future to make our calibrations. The
last column Nresponse will be defined in section 4.4
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Symbol p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

Eurostoxx 0.0020 0.0122 0.0446 0.3681 0.5691 0.0040
Dax 0 0.0020 0.0100 0.1896 0.7944 0.0040
BNPP 0 0.0123 0.1284 0.6403 0.2190 0
Sanofi 0.0021 0.0576 0.1725 0.6350 0.1328 0

Table 4: For every symbol, we present the frequency of the number of lags that were necessary to
make the forecast in the AR(p) model of the number of trades occurring over a time interval. The
system (36) is solved for a sufficiently large dimension. We consider p to be the rank from which the
autoregressive coefficients become non significant. We considered a cut off absolute value of 0.001.

Symbol Average Nresponse

Dax 26
Eurostoxx 22
BNPP 14
Sanofi 10

Table 5: Nresponse as a characteristic of market liquidity. Symbols are ranked from the most liquid to
the less liquid.

Symbol λ∞ α β σBDHM Empirical σ Toy model σ

Eurostoxx 0.0184 0.0160 0.0219 12.79% 40.77% 80.64%
Dax 0.0429 0.0226 0.0259 4.80% 25.75% 71.36%
BNPP 0.0379 0.0481 0.0569 5.36% 41.86% 72.24%
Sanofi 0.0279 0.0488 0.0587 4.00% 30.30% 45.37%
Bund 0.0267 0.0180 0.0261 2.70% 8.25% 14.47%
Bobl 0.0228 0.0187 0.0288 2.45% 6.92% 11.19%
Schatz 0.0257 0.0223 0.0372 1.38% 2.63% 5.39%
JPY 0.0313 0.0659 0.0764 1.98% 9.89% 29.88%
EURO 0.0474 0.0648 0.0725 4.87% 16.76% 112.25%
GOLD 0.0728 0.0775 0.0868 3.77% 24.48% 71.64%
Crude Oil Brent 0.0474 0.0472 0.0528 6.22% 41.25% 126.29%
Natural GAS 0.0548 0.0931 0.1090 11.24% 58.65% 150.30%
Sugar 0.0410 0.0556 0.0758 10.58% 51.37% 73.30%
CORN 0.0419 0.0552 0.0694 9.34% 43.73% 75.94%
WHEAT 0.0451 0.0626 0.0763 10.59% 57.17% 94.53%

Table 6: Median values of asymptotic volatilities as calculated by our toy model, as well as that
calculated thanks to BDHM model (Bacry et al., 2013) compared to realized volatilities of the day. We
also put median values of Hawkes model parameters. Both of the models give plausible values. BDHM
volatility underestimates systematically the realized volatility, whereas our toy model systematically
overestimates it.
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Figure 1: QQplot of inter-trade durations against exponential distri-
bution. Interarrival trade times are clearly not exponential. Graph for
Eurostoxx futures trade time durations on 2011/03/03 for the first trad-
ing hour.
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durations on 2011/03/03.
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Figure 3: Empirical autocorrelation of the trade numbers occurring on consecutive
intervals separated by a time lag, as a function of this latter. In the four plots, we
varied the length of the time interval considered. (a) correponds to 20 seconds, (b)
30 seconds, (c) 60 seconds and (d) 90 seconds. The shape of the function remains
identical, even if the plot is noisier when the time interval length decreases. The
data are the Eurostoxx futures trades on 2010/01/07.
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Figure 4: Empirical autocorrelation of the trade numbers of 1-minute intervals for
Eurostoxx, Dax, BNPP and Sanofi, averaged every day for the month January 2010.
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Figure 5: Number of trades empirical autocorrelation. The number of
trades are computed for an interval τ = 1 minute and the lag δ is also
measured in minutes. The symbol is Eurostoxx on 2010/10/26.
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Figure 6: Empirical autocorrelation of the time series of the number of
trades occurring during τ = 1 minute versus the theoretically fitted one.
For the Dax, fitted parameters are : λ∞ = 0.0326806, α = 0.0431643
and β = 0.0486235 and for Eurostoxx, fitted parameters are : λ∞ =
0.033282, α = 0.04259 and β = 0.0446049.
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Figure 7: Standard deviation of residues of Hawkes forecasts vs. Poisson
forecasts as a function of the forecast time horizon.
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Figure 8: Densities of residues collapsing when forecast horizon in-
creases. (a), (b), (c) and (d) correspond to forecast horizons of 1 minute,
5 minutes, 10 minutes and 30 minutes, respectively.
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Figure 9: Signature Plot of Eurostoxx futures and BNPP stock on
2011/04/01, computed on mid prices to eliminate bid-ask bounce.
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