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Cointegration and stochastic correlation models for commodity

derivatives

Abstract

Cointegration and stochastic correlations, including stochastic volatilities, are statisti-

cally significant for the spot prices of crude oil and gasoline. As these commodities

are not traded on exchange, their futures prices provide us with strong empirical sup-

port that cointegration contributes significantly to the stochastic movements of their

convenience yields in addition to their storage costs. We develop continuous-time coin-

tegrated asset dynamics with a stochastic covariance matrix to simultaneously capture

the effects of cointegration and stochastic correlations. Our proposed model allows us to

super-calibrate the cointegration parameters by fitting to the observed term structure

of futures prices. We demonstrate the model’s use in valuing options on a single asset

and on multiple assets using Fourier transform techniques.
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1. Introduction

A number of stylized facts about commodity prices have been uncovered in the lit-

erature. Whereas Bessembinder et al. (1995) and Schwartz (1997) observe the mean

reversion of commodity spot prices, other researchers have identified a long-term equi-

librium relationship between multiple commodities, termed cointegration; cf., Serletis

(1994), Duan and Theriault (2007), Lardica and Mignona (2008), Maslyuka and Smyth

(2009), and Westgaarda et al. (2011). Trolle and Schwartz (2009) recognize the un-

spanned stochastic volatility in commodity markets, particularly that in the crude oil

market.

Cointegration and stochastic volatility are important ingredients in derivatives pric-

ing and hedging. Alexander (1999) points out that the concept of cointegration is es-

sential in hedging with futures. Duan and Pliska (2004) consider the valuation of crack

spread options on two cointegrated assets. They employ an error correction model with

GARCH to value the spread option, but assume the correlation between the two assets

to be a constant value. Dempster et al. (2008) develop spread option pricing mod-

els for the situation in which the two underlying commodity prices of the spread are

cointegrated. They model the spread process directly using two latent factors, as the

correlation between two asset returns is notoriously difficult to model.

In this paper, we propose a tractable continuous-time model that simultaneously

captures cointegration, stochastic volatilities, and stochastic correlations. More specifi-

cally, the cointegration structure is reflected by the diffusion limit of the discrete error

correction model, whereas the stochastic correlations are subsumed in the stochastic ma-

trix dynamics following the Wishart affine stochastic correlation (WASC) model. Our

continuous-time cointegration dynamics are consistent with those in Duan and Pliska

(2004) and Chiu and Wong (2011). The WASC process proposed by Bru (1991) general-

2



izes the Heston (1993) model to allow for stochastic conditional correlation. The use of

WASC processes for multivariate stochastic volatilities is exploited by Gourieroux and

Sufana (2010), and Gourieroux et al. (2009) provide thorough analysis of the properties

of these processes in both discrete and continuous-time settings. Buraschi et al. (2010)

investigate stochastic correlation risk in asset allocation using a WASC process. We

derive explicit solution to futures prices and an analytical expression for option prices

under our proposed model.

In addition to the valuation of commodity derivatives, this paper contributes to the

finance literature by providing insights into several interesting questions. First, if coin-

tegration exists among commodities, does it affect the convenience yields of commodity

futures? If the underlying assets are traded, then the locally risk-neutral (LRN) valua-

tion adopted by Duan and Pliska (2004), which assumes a martingale condition for the

discounted asset prices, causes cointegration to have no impact on convenience yields.

However, crude oil and gasoline are not traded on exchange, and hedging with spot

prices is impossible in the oil market. Using a time-deterministic market price of risk,

our model permits the cointegration of non-tradable underlying assets under the market-

implied pricing measure. We test this hypothesis using the spot and futures prices of

crude oil and gasoline. Although our empirical result reconfirms the theory of storage

in Routledge et al. (2000), it also strongly supports the hypothesis that cointegration

is an important contributing factor to convenience yields. Our empirical analysis also

supports the formula of convenience yield derived with the proposed model.

Second, Hilliard and Reis (1998) and Casassus and Collin-Dufresne (2005) assume

exogenous mean-reverting convenience yield model to improve the valuation of commod-

ity derivatives. As cointegrating factors form a mean-reverting system and are factors of

convenience yield, our model offers an endogenous explanation for the stochastic mean-
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reverting convenience yield. When we contrast our model with that in Hilliard and

Reis (1998), we find very similar behavior in the yield dynamics. In addition, as the

cointegrating factor is a linear combination of log-spot-prices, and spot prices exhibit

stochastic correlations and volatilities, our model predicts that the volatility of the con-

venience yield is stochastic. This prediction coincides exactly with Broadie et al. (2000),

who use a non-parametric approach to show that putting the stochastic dividend and

volatility together improves empirical option prediction.

Third, how can risk-neutral cointegration parameters be calibrated to the observed

market prices? We render a super-calibration of the risk-neutral characteristic function

to the term structure of futures contracts. The risk-neutral cointegration matrix can then

be filtered by examining the elasticity of futures prices to spot prices. The calibrated

characteristic function is then applied to the valuation of options on a single asset and

to options on multiple assets using fast Fourier transform (FFT) techniques.

The remainder of this paper is organized as follows. Section 2 presents the proposed

model under the physical measure, provides a method for identifying the pricing measure

implied by the market, and derives the joint characteristic function of the underlying

assets. Section 3 offers comprehensive empirical analysis using the spot and futures

prices of crude oil and gasoline. We show that these two commodities are cointegrated

and have a stochastic correlation coefficient under the physical probability measure.

Then, we further test our hypothesis that cointegration affects the convenience yields of

commodity futures. Section 4 links the characteristic function to the Fourier transform

of option prices and employs several numerical examples to demonstrate the application

of the framework. The super-calibration of the model to the term structure of futures

prices is also discussed. Section 5 concludes the paper.
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2. The Model

This section introduces and discusses derivative pricing models with cointegration

and stochastic volatilities. After reviewing the discrete-time cointegrated assets dy-

namics with GARCH investigated in Duan and Pliska (2004), we explain the need to

generalize their concept to the commodity derivatives market, in which the locally risk-

neutral (LRN) valuation is inadequate to explain stochastic convenience yields when the

commodities are not traded on exchange but their futures contracts are. A pricing mea-

sure corresponding to a simple mean-shifting approach is proposed and illustrated with

the continuous-time cointegrated assets dynamics with WASC. Our approach retains

cointegration under the market-implied risk-neutral measure.

2.1. Review of a discrete-time model

In the discrete-time model of Duan and Pliska (2004), with respect to the data

generating probability measure P (or physical probability measure), an error correction

dynamic for the n-component asset price time series with k (1 ≤ k ≤ n) cointegrating

factors is defined as follows.

lnSi,t − lnSi,t−1 = r − 1

2
σ2
i,t + λσi,t +

k∑
j=1

δijzj,t−1 + σi,tϵi,t, i = 1, . . . , n,

σ2
i,t = βi0 + βi1σ

2
i,t−1 + βi2σ

2
i,t−1(ϵi,t−1 − θi)

2, (1)

zj,t = aj + bjt+
n∑

i=1

cij lnSi,t for j = 1, . . . , k,

where (c1j, · · · , cnj) are linearly independent vectors for j = 1, . . . , k; βij are constants

for i = 1, . . . , n and j = 0, 1, 2; [θ1, · · · , θn] is a constant vector; and the random vector

[ϵ1,t, · · · , ϵn,t] follows a multivariate normal distribution with mean zero and a constant

correlation coefficient matrix. In the error correction model, the vector of [z1,t, · · · , zk,t]
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should be a stationary time series, such that each zj,t has bounded variance at all time

points.

As the physical dynamics in (1) are not suitable for derivatives valuation, Duan and

Pliska (2004) adopt the equilibrium pricing measure Q̂, which satisfies the following

assumptions.

1. Q̂ and P are mutually absolute continuous;

2. conditional on the information up to t− 1, Ft−1, Si,t/Si,t−1 for all i = 1, . . . , n has

a multivariate lognormal distribution under Q̂.

3. EQ̂[Si,t/Si,t−1|Ft−1] = er for all i; and

4. CovQ̂(ln
Si,t

Si,t−1
, ln

Sj,t

Sj,t−1
|Ft−1) = CovP(ln

Si,t

Si,t−1
, ln

Sj,t

Sj,t−1
|Ft−1) for all i and j, almost

surely with respect to P.

Then, the LRN dynamics take the form

lnSi,t − lnSi,t−1 = r + σi,tξi,t, i = 1, . . . , n,

σ2
i,t = βi0 + βi1σ

2
i,t−1 + βi2σ

2
i,t−1

(
ξi,t−1 − θi − λi −

k∑
j=1

δij
zj,t−2

σi,t=1

)2

, (2)

zj,t = aj + bjt+
n∑

i=1

cij lnSi,t for j = 1, . . . , k,

where [ξ1,t, . . . , ξn,t] follows a multivariate normal distribution with a zero mean vector

under Q̂. Although it is easy to derive the diffusion limit of (1), that of (2) is much less

obvious and is not explicitly given in Duan and Pliska (2004). It can be recognized from

(2) that the cointegrating factors, [z1,t, . . . , zk,t], disappear in the conditional asset price

process but appear in the volatility dynamics in (2).

Assumption 3 for deriving (2) is referred to as the martingale condition. When

the underlying assets are liquidly traded, a derivative security can be hedged using its
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underlying asset at time t, at which the physical process (1) has locally deterministic

volatility. The hedging procedure is equivalent to adjusting the drift of the process to

the risk-free rate. If (2) is the correct process under the pricing measure, then the T -

futures price of the i-th asset quoted at t is Si,te
r(T−t). However, futures contracts in the

commodity market usually observe (stochastic) convenience yields, cf., e.g., Fama and

French (1987), Schwartz (1997), Casassus and Collin-Dufresne (2005), and Liu and Tang

(2011). The theory of storage implies that the convenience yield depends mainly on the

commodity inventories, and predicts a negative relationship between the convenience

yield and inventories. The convenience yield can then be partially explained in terms of

the interest forgone in storing the commodity. Regression approaches analogous to Fama

and French (1987) and Bailey and Ng (1991) are adopted here to explain the change in

the convenience yield. In hypothesis I, the interest rate term reflects the time value of

the storage cost, and the term (T − t)−1 is used to model the Samuelson effect, where

T − t is the time-to-maturity of the futures contract.

Hypothesis I: Fi,T (t) = EQ̂[Si,T |Ft] = Si,te
(r−q̂i,T (t))(T−t) for i = 1, . . . , n, where Fi,T (t)

is the T -futures price of Si,t quoted at time t and

∆q̂i,T (t) = βI
i0 + βI

i1∆rt + βI
i2∆(T − t)−1,

where ∆q̂i,T (t) = q̂i,T (t)− q̂i,T (t−∆t), ∆rt = rt−rt−∆t, and ∆(T−t)−1 = 1
T−t

− 1
T−(t−∆t)

.

In hypothesis I, the convenience yield is assumed to be independent of the underlying

spot price of the futures contract. The theory of storage in Fama and French (1987)

expects the regression coefficient of the interest rate term to be positive. In the following

hypothesis II, we follow Bailey and Ng (1991) and use the underlying spot price as the

proxy for the inventory level contributing to the convenience yield. In other words, for
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the i-th commodity, the convenience yield q̂i,T (t) depends on the underlying spot price

Si,t and the interest rate, as in the model of Casassus and Collin-Dufresne (2005).

Hypothesis II: Fi,T (t) = EQ̂[Si,T |Ft] = Si,te
(r−q̂i,T (t))(T−t) for i = 1, . . . , n, and

∆q̂i,T (t) = βII
i0 + βII

i1 ∆rt + βII
i2 ∆

1

T − t
+ β̂II

i ∆Xi,t + β̃II
i ∆

Xi,t

T − t
,

where ∆Xi,t = Xi,t −Xi,t−∆t, and ∆
Xi,t

T−t
=

Xi,t

T−t
− Xi,t−∆t

T−(t−∆t)
.

Hypotheses I and II both come from the traditional theory of storage in which coin-

tegration has no impact on the convenience yield. An alternative hypothesis, however, is

that, in addition to the conventional explanatory variables, cointegrating factors are also

important contributors to the stochastic convenience yields once the underlying assets

are not traded on exchange. The martingale condition with respect to the spot prices

may not hold under the market-implied pricing measure, but it is expected to hold with

respect to the futures contracts. This alternative hypothesis will be detailed shortly.

2.2. The proposed model

The proposed model extends the physical process (1) to cope with stochastic volatil-

ities and correlations. However, we base our model on a diffusion limit generalizing that

of (1).

Consider n commodity spot prices whose values at time t are represented in an

n-dimensional vector St. The n × n positive definite stochastic covariance matrix is

denoted by Vt. We postulate the joint dynamics of logarithmic spot prices Xt = lnSt

and Vt under the physical measure P as

dXt = [θ(t)− κXt + (Tr(D1Vt), ...,Tr(DnVt))
′]dt+

√
VtdZ

P
t , (3)
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dVt = (βQ′Q+MVt + VtM
′)dt+

√
VtdW

P
t Q+Q′(dW P

t )
′
√

Vt, (4)

where ZP
t ∈ Rn and W P

t ∈ Rn×n are a vector Brownian motion and matrix Brownian

motion under the physical measure P, respectively. κ is an n × n constant matrix of

cointegration coefficients. If κ is a positive diagonal matrix, then all of the individual

assets are stationary and exhibit mean-reversion. θ(t) is an n-dimensional deterministic

function. β is a scalar, such that β > n − 1, and M and Q are n × n constant real

square matrices. Tr(·) denotes the trace operator. Q′ is the (unconjugated) transpose

of matrix Q.
√
Vt, the square root of Vt, is defined as the unique symmetric positive

definite matrix, such that
√
Vt

√
Vt = Vt. The continuous-time process of the stochastic

matrices in (4) is essentially the continuous time Wishart process introduced by Bru

(1991). The Wishart process ensures that, at any point in time, the stochastic variance

matrix is always a positive definite matrix. Tr(DiVt) in (3) represents the risk premium

of Vt.

In our model, Xt and Vt are correlated. Following Da Fonseca et al. (2007), we

require that ZP
t in (3) and W P

t in (4) are linearly correlated in the following way.

dZP
t = dW P

t ρ+
√

1− ρ′ρ dBP
t , (5)

where dBP
t is an n-dimensional Brownian motion independent of dW P

t , and ρ is a vector

of correlations, such that ρi ∈ [−1, 1] and ρ′ρ < 1. The market model introduced

by Gourieroux and Sufana (2010) is also based on (5) and further assumes that ρi =

0, for which the Brownian motions of asset returns are independent of those driving

the covariance matrix, which leads to a symmetric volatility smile for vanilla options.

Buraschi et al. (2010) assume that the Brownian motion driving the asset returns is

generated by the Brownian motion matrix of the covariance process.
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The multivariate cointegration dynamics with WASC in (3) and (4) strike a balance

between tractability and the ability to fit empirical stylized facts. In particular, it

enables the characteristic function of log-asset-values to take an exponential affine form.

Consider the joint characteristic function of XT evolving as (3) and (4) conditional on

Ft. Denote the characteristic function under P as

fP(x, v, t;u) = EP[eiuXT |Xt = x, Vt = v], (6)

where T ≥ t, i =
√
−1, and u = (u1, ..., un) is a row vector of size n.

Lemma 1. If Xt follows the dynamics in (3) and (4), then the joint characteristic

function defined in (6) is given by

fP(x, v, t;u) = exp [Tr(A(τ ;u)v) +B(τ ; u)′x+ C(τ ; u)] , (7)

where τ = T−t, A(τ ;u) = H(τ ;u)−1G(τ ; u), B(τ ; u) = ie−κ′τu′, C(τ ; u) = iu
∫ τ

0
e−κsθ(t−

s)ds− β
2
Tr
[
lnH(τ ; u) +M ′τ − i

∫ τ

0
e−κ′sdsu′ρ′Q

]
,

d

dτ

 G(τ ; u)′

H(τ ;u)′


=

 M +Q′ρB(τ ;u)′ −2Q′Q

B(τ ;u)B(τ ;u)′

2
+
∑n

j=1 Uj(1)B(τ ; u)Dj −(M ′ +B(τ ; u)ρ′Q)


′ G(τ ;u)′

H(τ ; u)′

 ,

with H(0;u) = In, G(0;u) = 0n, In and 0n being the identity and zero matrices of order

n, respectively. Uj(y) denotes a row vector with the j-th element equal to y and the

remaining elements equal to 0.

Proof. See Appendix A.
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The matrix exponential e−κτ can be computed easily based on the Cayley-Hamilton

theorem by using a polynomial of −κ, as detailed in Appendix B.

2.3. Market price of risk specifications

For the purpose of derivatives valuation, it is necessary to discuss the joint process

(Xt, Vt) under the pricing measure implied by the market, or the so-called risk-neutral

measure Q, and the linkage between the physical dynamics and the risk-neutral dynam-

ics. In addition, as commodities are not traded on exchange, but their futures contracts

are, the martingale condition should hold with respect to futures prices instead of spot

prices. Here, we adopt the extended affine market price of risk specification suggested by

Cheredito et al. (2007) and Trolle and Schwartz (2008) to preserve cointegration under

Q. This is the most flexible market price of risk specification that preserves the affine

structure of the state vector under the change of measure. In our setting, the extended

affine specification is given by

ΛX,t = (
√

Vt)
−1(λ0

X + λ1
XXt + (Tr(Dλ

1Vt), ...,Tr(D
λ
nVt))

′), (8)

ΛV,t = (
√

Vt)
−1(Λ0

V + VtΛ
1
V ), (9)

from which Brownian motions under P and Q are linked through

dZP
t = dZQ

t − ΛX,tdt, dW P
t = dWQ

t − ΛV,tdt. (10)

Hence, the joint dynamics of Xt and Vt under Q are given as follows.

dXt = [θQ(t)− κQXt + (Tr(DQ
1 Vt), ...,Tr(D

Q
nVt))

′]dt+
√
VtdZ

Q
t , (11)

dVt = ((β − 2γ)Q′Q+MQVt + Vt(M
Q)′)dt+

√
VtdW

Q
t Q+Q′(dWQ

t )
′
√
Vt, (12)
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which is related to their P-processes (3) and (4) by reparametrization,

θQ(t) = θ(t)− λ0
X , κQ = κ+ λ1

X , DQ
j = Dj −Dλ

j ,

MQ = M −Q′(Λ1
V )

′, dZQ
t = dWQ

t ρ+
√
1− ρ′ρdBQ

t , (13)

dBQ
t = dBP

t + (
√

1− ρ′ρ)−1(ΛX,tdt− ΛV,tρdt).

To preserve the type of distribution under P and Q, we require that Λ0
V = γQ′ for a

scalar γ, such that β − 2γ > n− 1.

The advantage of the extended affine specification is that the cointegration coeffi-

cients and the long-run level of the covariance processes can be adjusted independently

when changing the measure. This approach is valid if Vt does not attain its boundary

value of zero under both Q and P, as shown by Cheredito et al. (2007). The condition

β − 2γ > n− 1 ensures the positivity of Vt. We derive the joint characteristic function

of XT conditional on Ft under Q as follows.

Lemma 2. If Xt follows the dynamics in (11) and (12), then the joint characteristic

function for XT is given by

fQ(x, v, t; u) = EQ[eiuXT |Xt = x, Vt = v]

= exp
[
Tr(AQ(τ ;u)v) +BQ(τ ;u)′x+ CQ(τ ; u)

]
, (14)

where AQ(τ ; u), BQ(τ ; u), and CQ(τ ;u) are, respectively, the Q-counterparts of A(τ ; u),

B(τ ;u), and C(τ ;u) in Lemma 1 with the reparametrization (13).

As the Q-characteristic function for XT is exponentially affine in the state variables,

the marginal Q-characteristic function of Xj,T conditional on Ft for j = 1, . . . , n, can be
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extracted from Lemma 2 as follows.

fQ
j (x, v, t;ϕ) = EQ[eiϕXj,T |Xt = x, Vt = v] = fQ(x, v, t;u = Uj(ϕ)), (15)

where Uj(ϕ) denotes a row vector with the j-th element equal to ϕ and the remaining

elements equal to 0.

The characteristic functions are not only useful in describing the distributional prop-

erties of the model, but also in deriving formulas for standard derivative products. An

obvious application is to derive a closed-form solution of futures prices.

Corollary 1. Under the Q-dynamics (11) and (12), the futures price of the j-th com-

modity with maturity T is given by

Fj,T (t) = EQ
t [Sj,T ] = fQ

j (x, v, t;ϕ = −i), for j = 1, ..., n, (16)

where fQ
j (x, v, t;ϕ) is defined in (15).

This corollary implies that the futures price of the j-th commodity depends not only on

its underlying spot price but also on other commodities with a cointegrating relationship.

It thus deduces the third hypothesis of the convenience yield from our model, in which

the cointegrating assets are used as explanatory variables to explain the variations in the

convenience yield. We further provide an explicit formulation of the convenience yield

in the empirical analysis in the next section to validate the specification of hypothesis III.

Hypothesis III: The T -futures price of commodity i, Fi,T (t) = EQ̂[Si,T |Ft] = Si,te
(r−q̂i,T (t))(T−t)
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for i = 1, . . . , n, where

∆q̂i,T (t) = βIII
i0 + βIII

i1 ∆rt + βIII
i2 ∆

1

T − t
+

n∑
j=1

β̂III
ij ∆Xj,t +

n∑
j=1

β̃III
ij ∆

Xj,t

T − t
,

in which ∆q̂i,T (t) reflects the change in the convenience yield i from t to T .

3. Empirical Analysis

This section is devoted to an empirical examination of the proposed model and its

consequences. We start by investigating the existence of cointegration and stochastic

correlation in the spot prices of crude oil and gasoline. Then, their futures price data

are used to test hypothesis I, II, and III.

3.1. Data description

The data set obtained from Bloomberg consists of the NYMEX daily spot prices of

WTI crude oil and gasoline from January 03, 2008 to July 15, 2011. We also collect

data on their futures prices with different maturities over the same period of time. The

summary statistics of the futures contracts are exhibited in Table 1.

Table 1: Summary statistics of futures contracts on crude oil and gasoline
Maturity Number Maturity Number

of Observations of Observations
Jan 2011 746 Jul 2011 748
Feb 2011 746 Aug 2011 743
Mar 2011 748 Sep 2011 722
Apr 2011 748 Oct 2011 701
May 2011 746 Nov 2011 678
Jun 2011 747 Dec 2011 659

3.2. Unit root and cointegration tests

An investigation of the joint dynamics of this pair of spot prices shows that they are

correlated and cointegrated. Figure 1 plots the daily closing prices against time. The
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Figure 1: Time series of crude oil price and adjusted gasoline price

prices of gasoline are multiplied by 42 because crude oil is quoted as price per barrel,

whereas gasoline is quoted as price per gallon (42 gallons = 1 barrel). The figure shows

a high degree of correlation because shocks to one series are accompanied by shocks to

the paired series. The figure also shows that the series follow each other through time,

and the spreads between prices appear to be mean reverting. These properties usually

occur in a pair of cointegrated time series.

Table 2 formalizes this observation by providing the correlations of the log-spot prices

and the results of three cointegration tests. The sample correlation coefficient between

crude oil and gasoline was 0.9599. The significant correlations in the table indicate that

spot prices are related by a positive long-run relationship and react to shocks in the
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Table 2: Bivariate time-series properties of log-spot prices of crude oil and gasoline
Correlation ADF test Phillips-Ouliaris Phillips-Perron

cointegration test unit root test
0.9599 test statistic=-4.2225 test statistic = -26.0649 test statistic = -42.8071

p-value = 0.01 p-value = 0.0175 p-value = 0.01

same direction on a short-run basis. Treating such series as two correlated processes is

inappropriate and can lead to seriously erroneous conclusions. For the model allowing

cointegration, we need to identify the cointegration relationship. Because there are only

two series, one cointegration relationship at most is considered. We employ the Engle-

Granger two-step method to obtain the cointegrating vector. A time trend variable is

included to take into account the growth in the underlying variables. The cointegration

regression gives rise to the following stationary series.

Zt = 0.6801 + 0.00016t+X1,t − 0.957599X2,t, (17)

where X1,t and X2,t denote the log-spot price of crude oil and gasoline, respectively.

The p-value of the augmented Dickey-Fuller (ADF) test on Zt is 0.01, which suggests

that cointegration exists. We also check the Phillips-Ouliaris cointegration test and

the Phillips-Perron unit root test statistics. Both also show a significant cointegration

relationship. In other words, equation (17) is not due to the spurious regression effect.

The pair of commodities contribute to the cointegrating factor in the opposite direction.

As our cointegration dynamics permit volatilities and correlations to be stochastic,

we investigate the market behavior of correlation further. Instead of taking the average

over the entire sample, we can use rolling window estimates of correlation. Figure 2 plots

the estimated correlations with different rolling window lengths. Descriptive statistics of

the rolling window correlations are reported in Table 3. When using this rolling-window

approach to calculate time-varying correlations, the length of the window determines

the smoothness of the temporal movements of the data. In general, a shorter window
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Table 3: Rolling window correlation estimates between crude oil and gasoline
30 days rolling 100 days rolling 250 days rolling

Mean 0.7742 0.8449 0.8976
Median 0.8796 0.9064 0.9263

Minimum -0.3822 0.3557 0.6927
Maximum 0.9929 0.9877 0.9898

Standard Deviation 0.2463 0.1476 0.0797
No. of observations 861 791 641

will produce a more erratic time series of sample correlations but will give a better

representation of the contemporaneous correlation. Here, we set the lengths of the

rolling window to 30 days, 100 days and 250 days. It can be seen from Figure 2 that the

correlation is not constant over time. The proposed dynamics in (3) and (4) are appealing

when cointegration and stochastic covariances are incorporated simultaneously.

0 100 200 300 400 500 600 700 800 900
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trading Day (from February 14, 2008 to July 15, 2011)

C
o

rr
e

la
tio

n

 

 

30−day rolling window
100−day rollling window
250−day rolling window

Figure 2: Rolling window correlations between crude oil and gasoline
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3.3. Cointegration under the risk-neutral measure

Using a GARCH equilibrium-based option pricing approach, Duan and Pliska (2004)

apply the LRN valuation to show that the usual Black-Scholes results are recovered

when volatilities are deterministic. When cointegration is combined with stochastic

volatilities, the cointegration parameters explicitly affect option value because it shows

up in the volatility dynamics through the measure transformation. However, there is

no case in which asset prices can be cointegrated under a risk-neutral pricing measure;

otherwise, the discounted asset prices would not be martingales. This paper instead

considers a flexible market price of risk specifications that preserves the cointegration

structure under the change of measure in Section 2.

By making use of the term structure of the futures prices of crude oil and gasoline

described in Section 3.1, we here test whether investors anticipate cointegration in spot

asset prices under the risk-neutral measure. The futures price is a martingale under

this measure. The convenience yield is the benefit that is obtained from holding the

spot commodity but not the futures contract. Some evidence suggests the convenience

yield should be specified by a stochastic process. Rather than examining evidence of

ex post reversion using time series of futures prices, we use the implied convenience

yield from futures contracts with varying delivery horizons. This approach offers two

advantages. First, there is little ambiguity as to the source of any cointegration detected

using our method. Subject only to the maintained assumption that the no-arbitrage cost-

of-carry condition holds, our test detects the cointegration that is expected to occur in

equilibrium, but has no power to detect that which from noise or inefficiencies. Second,

our approach links the stochastic convenience yield and cointegration models. In the

stochastic convenience yield model of Casassus and Collin-Dufresne (2005), the three

state variables are not directly observed, and hence they choose to fit the principal
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components of the futures curves. In our model, the cointegrated assets are endogenous

stochastic factors of the convenience yields.

Consider the situation of two cointegrated commodities and a constant interest rate.

Corollary 1 asserts that the futures price of S1 depends on the current values of both S1

and S2. The explicit formula is:

F1,T (t) = exp
[
Tr(AQ(τ ;U1(−i))v) +BQ(τ ;U1(−i))′x+ CQ(τ ;U1(−i))

]
= S1,t exp [rτ − q1(t, T )τ ] , (18)

where

q1(t, T ) = r +
x1

τ
− Tr(AQ(τ ;U1(−i))v)

τ
− BQ(τ ;U1(−i))′x

τ
− CQ(τ ;U1(−i))

τ
,

in which

BQ(τ ;U1(−i))′x

τ
=

(
αQ
0 (τ)− κQ

11α
Q
1 (τ)

τ

)
x1 −

κQ
12α

Q
1 (τ)

τ
x2, (19)

[κQ
11 κ

Q
12] is the first row of κQ, and αQ

i (τ) = γi0+
∑n

j=1 γije
λjτ , as shown in Appendix B by

the Cayley-Hamilton theorem. By Taylor’s theorem, we have αQ
i (τ) = γ̂i0+ γ̂i1τ+R1(τ),

where R1(τ) denotes the remainder term. Substituting the Taylor expansion of αQ
i (τ),

i = 0, 1, into (19) gives us

BQ(τ ;U1(−i))′x

τ
≃ (γ̂00 − κQ

11γ̂10)
x1

τ
+ (γ̂01 − κQ

11γ̂11)x1 − κQ
12γ̂10

x2

τ
− κQ

12γ̂11x2.

Therefore, we obtain the following relation of the convenience yield of S1.

∆q1(t, T ) = ∆q̂1,T (t) + Error Term, (20)
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where the function

∆q̂1,T (t) = βIII
i0 + βIII

i1 ∆rt + βIII
i2 ∆

1

T − t
+

n∑
j=1

β̂III
ij ∆Xj,t +

n∑
j=1

β̃III
ij ∆

Xj,t

T − t

is specified in hypothesis III. Allowing the convenience yield to depend on the log spot

price and the risk-free rate, Casassus and Collin-Dufresne (2005) document that the mis-

specification of the convenience yield can have a significant impact on option valuation

and risk management. Correctly modeling the convenience yield process thus constitutes

a significant step toward modeling commodity-related contingent claims. The proposed

model not only accommodates the dependence of the convenience yield on the underlying

spot price and risk-free rate, but also allows the convenience yield to have stochastic

volatility and correlation with the underlying spot prices.

3.4. The regression model and results

To estimate the convenience yield, we propose a simple regression model, as specified

in our three hypotheses. To illustrate, the variance-covariance matrix is assumed to be

constant. In hypothesis I, we regress the changes in the convenience yield on the changes

in the set of state variables (∆rt,∆1/(T − t)). For the risk-free rate rt, we use the daily

3-month constant maturity Treasury yield obtained from the U.S. Department of the

Treasury. The estimates of the regression coefficients, and their standard errors (SE) and

p-values, are given in Table 4, in addition to the explanatory power of the regressions,

as measured by adjusted R2. The interest rate term and the Samuelson effect are far

from sufficient to explain the variations in the convenience yield. In hypothesis II, we

add the underlying spot price as a regressor to reflect the level dependence feature of

the convenience yield. More specifically, we regress the changes in the convenience yield

q̂i,T (t) for i = 1, 2 on the changes in the set of state variables (∆rt,∆1/(T−t),∆Xi,t) and
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Table 4: Parameter estimates of the regression model (hypothesis I)
Explanatory Variables Crude Oil (∆q̂1,T (t)) Gasoline (∆q̂2,T (t))

Intercept 2.951e−6 0.00019
(SE) (1.253e−4) (0.0002157)

[p-value] [0.981] [0.377]
∆1/(T − t) 5.371e−4 −0.00205

(SE) (4.1374e−4) (0.0016996)
[p-value] [0.194] [0.226]

∆rt 2.183∗∗ 2.384∗∗

(SE) (0.2015) (0.3444)
[p-value] [< 2e−16] [4.76e−12]

Adjusted R2 0.0133 0.0053
Note: ∗ and ∗∗ denote significance at the 5% and 1% levels, respectively.

the interaction term ∆Xi,t/τ . The regression results are given in Table 5. All coefficients

of ∆Xi,t are significant in our regression model. The adjustedR2 is improved significantly

compared to the results in Table 4, which implies that a realistic model of commodity

prices should allow the convenience yield to depend on the underlying spot prices and

the interest rate. This is consistent with the findings of Casassus and Collin-Dufresne

(2005) on level dependence in the convenience yield, which leads to mean reversion in

the spot prices under the risk-neutral measure. As the spot price rises and inventories

decline, the convenience yield also rises. Thus, the estimate of the regression coefficients

of ∆Xi,t should be positive. Our regression result incorporates this feature as well.

In hypothesis III, we include the pair of cointegrating assets as explanatory variables.

The regression results are presented in Table 6. To explain ∆q̂i,T (t), we further add

∆Xj,t, j ̸= i, as an explanatory variable, and all of the coefficients of ∆Xj,t are significant.

The adjusted R2 is improved by about 6% in the case of crude oil and by about 20% in

the case of gasoline. The regression coefficients of ∆Xi,t remain positive, reflecting the

relationship between inventories and spot prices. In addition, the regression coefficients

of ∆X1,t and ∆X2,t are of different signs, which is consistent with the specification of

the cointegrating factor Zt in (17). These findings imply that the market anticipates

a cointegration relationship under the risk-neutral measure. The proposed change of

measure preserves the feature of cointegration and thus has greater flexibility to reflect
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Table 5: Parameter estimates of the regression model (hypothesis II)
Explanatory Variable Crude Oil (∆q̂1,T (t)) Gasoline (∆q̂2,T (t))

Intercept −9.498e−6 −2.694e−6 9.845e−5 8.709e−5

(SE) (9.292e−5) (9.294e−5) (2.004e−4) (1.83e−4)
[p-value] [0.9185] [0.9768] [0.623] [0.6341]

∆1/(T − t) 2.874e−5 −2.02e−2∗ −2.401e−3 −1.013∗∗

(SE) (3.068e−4) (8.21e−3) (1.579e−3) (2.425e−2)
[p-value] [0.9253] [0.0138] [0.128] [< 2e−16]

∆rt 0.0507∗∗ 0.0518∗∗ 0.0592 1.093∗∗

(SE) (0.1507) (0.1507) (0.3235) (0.2956)
[p-value] [0.00075] [0.00059] [0.067] [0.00022]
∆X1,t 0.2489∗∗ 0.2456∗∗

(SE) (2.943e−3) (3.237e−3)
[p-value] [< 2e−16] [< 2e−16]
∆X1,t/τ 4.384e−3∗

(SE) (1.778e−3)
[p-value] [0.01367]
∆X2,t 0.2494∗∗ 0.1071∗∗

(SE) (6.687e−3) (6.994e−3)
[p-value] [< 2e−16] [< 2e−16]
∆X2,t/τ 0.1793∗∗

(SE) (4.298e−3)
[p-value] [< 2e−16]

Adjusted R2 0.4577 0.458 0.142 0.2847
Note: ∗ and ∗∗ denote significance at the 5% and 1% levels, respectively.

market phenomena. Although the residual of the regression analysis may come from the

stochastic volatility or from the default premium, which are absent in the model, the

adjusted R2 is over 47% for both commodities. X1,t and X2,t are highly correlated, and

the correlation of ∆X1,t and ∆X2,t is 0.7452. The improvements in the adjusted R2 in

Table 6 relative to Table 5 shows that the explanatory power of the cointegrating asset

is due to the cointegration relationship rather than the correlation relationship.

4. Application to the Valuation of Derivatives

The Q-characteristic function of the log-spot prices is useful in computing European

options through Fourier inversion. An advantage of the proposed model is that it incor-

porates the empirical features of cointegration and the stochastic covariance matrix in the

commodity market, as shown in the previous section, and renders the Q-characteristic

function as a tractable exponential affine form.

For practical purposes, the Q-characteristic function can be super-calibrated to the
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Table 6: Parameter estimates of the regression model (hypothesis III)
Explanatory Variables Crude Oil (∆q̂1,T (t)) Gasoline (∆q̂2,T (t))

Intercept −4.483e−5 4.925e−5 2.468e−5 −0.0002455
(SE) (8.838e−5) (8.842e−5) (1.743e−4) (0.0001570)

[p-value] [0.612] [0.5775] [0.887] [0.118]
∆1/(T − t) −2.409e−2∗∗ −1.637e−2 −0.9783∗∗ −0.6847∗∗

(SE) (7.807e−3) (9.409e−3) (2.312e−2) (0.0218)
[p-value] [0.002] [0.0818] [< 2e−16] [< 2e−16]

∆rt 0.8545∗∗ 0.8504∗∗ 1.342∗∗ 1.209∗∗

(SE) (0.1437) (0.1437) (0.2816) (0.2535)
[p-value] [2.85e−9] [3.4e−9] [1.92e−6] [1.87e−6]
∆X1,t 0.3388∗∗ 0.3372∗∗ −0.2443∗∗ −0.0745∗∗

(SE) (4.341e−3) (4.486e−3) (8.161e−3) (0.00825)
[p-value] [< 2e−16] [< 2e−16] [< 2e−16] [< 2e−16]
∆X2,t −0.1345∗∗ −0.1319∗∗ 0.3038∗∗ 0.1955∗∗

(SE) (4.416e−3) (4.762e−3) (9.356e−3) (0.0087)
[p-value] [< 2e−16] [< 2e−16] [< 2e−16] [< 2e−16]
∆X1,t/τ 5.201e−3∗∗ 7.004e−3∗∗ −0.2272∗∗

(SE) (1.69e−3) (2.09e−3) (0.005)
[p-value] [0.0021] [0.0008] [< 2e−16]
∆X2,t/τ −2.858e−3 0.1734∗∗ 0.3078∗∗

(SE) (1.947e−3) (4.098e−3) (0.0047)
[p-value] [0.1421] [< 2e−16] [< 2e−16]

Adjusted R2 0.51 0.5101 0.3512 0.4743
Note: ∗ and ∗∗ denote significance at the 5% and 1% levels, respectively.

observed term-structures of commodity futures.

Proposition 1. If the underlying asset follows the WASC model with cointegration in

(11-12), then the joint characteristic function calibrated to the term structure of futures

prices is given by

fQ(x, v, t;u, FT (t)) =
n∏

j=1

[Fj,T (t)]
iuj exp[Tr(∆A(τ ; u)v) + ∆C̃(τ ;u)], (21)

where

∆A(τ ; u) = AQ(τ ; u)− i
n∑

j=1

ujA
Q(τ ;u = Uj(−i)),

∆C̃(τ ; u) = C̃(τ ; u)− i
n∑

j=1

ujC̃(τ ; u = Uj(−i)),

C̃(τ ;u) = −β − 2γ

2
Tr

[
lnHQ(τ ; u) + (MQ)′τ − i

∫ τ

0

e−(κQ)′τu′ρ′Q

]
.

Proof. See Appendix C.
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The market-implied risk-neutral parameter θQ(t) in (11) and (12) can be used to fit

the term structure of futures prices exactly. The effects of the seasonality of commodity

prices are fully reflected in and captured by the futures prices. Hence, there is no longer

any need to estimate this deterministic function.

Based on the elasticity of distant futures prices with respect to spot prices, we can

further calibrate the market-implied matrix of cointegration coefficients κQ(t). The

explicit formulae for futures prices are

F1,T (t) = exp
[
Tr(AQ(τ ;U1(−i))v) +BQ(τ ;U1(−i))′x+ CQ(τ ;U1(−i))

]
F2,T (t) = exp

[
Tr(AQ(τ ;U2(−i))v) +BQ(τ ;U2(−i))′x+ CQ(τ ;U2(−i))

]
,

where

BQ(τ ;U1(−i))′x = (αQ
0 (τ)− κQ

11α
Q
1 (τ))x1 − κQ

12α
Q
1 (τ)x2,

BQ(τ ;U2(−i))′x = (αQ
0 (τ)− κQ

22α
Q
1 (τ))x2 − κQ

21α
Q
1 (τ)x1.

The elasticity of the date t futures prices maturing at T with respect to the date t spot

prices is

∂F1,T (t)

∂S1(t)

S1(t)

F1,T (t)
=

∂ lnF1,T (t)

∂x1(t)
= αQ

0 (τ)− κQ
11α

Q
1 (τ)

=
1

2ϕ
e−

1
2
(κQ

11+κQ
22+ϕ)τ

(
κQ
11 − eϕτκQ

11 +
(
−1 + eϕτ

)
κQ
22 +

(
1 + eϕτ

)
ϕ
)
,

where ϕ =
√

(κQ
11)

2 + 4κQ
12κ

Q
21 − 2κQ

11κ
Q
22 + (κQ

22)
2. Similarly, we have

∂ lnF2,T (t)

∂x2(t)
= αQ

0 (τ)− κQ
22α

Q
1 (τ)

=
e−

1
2
(κQ

11+κQ
22+ϕ)τ

((
−1 + eϕτ

)
κQ
11 + κQ

22 − eϕτκQ
22 +

(
1 + eϕτ

)
ϕ
)

2ϕ
,
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∂ lnF1,T (t)

∂x2(t)
= −κQ

12α
Q
1 (τ) = −

e−
1
2
(κQ

11+κQ
22+ϕ)τ

(
−1 + eϕτ

)
κQ
12

ϕ
,

∂ lnF2,T (t)

∂x1(t)
= −κQ

21α
Q
1 (τ) = −

e−
1
2
(κQ

11+κQ
22+ϕ)τ

(
−1 + eϕτ

)
κQ
21

ϕ
.

To estimate the elasticities of the futures prices with respect to the contemporaneous

spot prices, we regress the first difference of the logarithms of distant futures prices

on the first difference of the logarithms of spot prices or near futures prices, which are

used as proxies for the spot prices. Then, the elements in the market-implied matrix of

cointegration coefficients κQ can be estimated separately by fitting the market-observed

elasticities of the futures prices.

4.1. European vanilla option on a single asset

We first discuss the valuation of what is probably the best known option, the Euro-

pean vanilla call on a single asset. Consider S1 to be the underlying asset of the plain

vanilla call option whose payoff is given by

max(S1,T −K, 0),

where K is the strike price and T is the option’s maturity.

Proposition 2. (Carr and Madan, 1998) Suppose that the interest rate r is constant

and the log-asset values Xt follow the risk-neutral dynamics (11-12). Then, the European

call option pricing formula on S1 at time 0 is given by

C(S1,0, K, T ) = S1,0e
−rT−ακF−1

k,ξ

[
fQ
1 (x, v, t; ξ − (α+ 1)i)

α2 + α− ξ2 + i(2α+ 1)ξ

]
, (22)
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where k = logK, fQ
1 (x, v, t;ϕ) is defined in (15) and F−1

k,ξ [·] represents the inverse Fourier

transform:

F−1
k,ξ [g(ξ)] =

1

π

∫ ∞

0

e−iξkg(ξ)dξ. (23)

In addition, the inverse Fourier transform in (22) converges for some α > 0.

Carr and Madan (1998) advocate the use of the FFT to implement the Fourier

inversion numerically, which simultaneously computes the option values for a set of

log strikes. Chourdakis (2004) shows significant improvement using the fractional FFT

(FRFT), which is a linear transformation that generalizes the Fourier transform.

Similar to the case of futures prices, the vanilla call option pricing formula for the

first asset depends on the current value of the second asset through the cointegrating

factor. This can be recognized from the marginal characteristic function of X1,T or from

its process. If we look at the process of X1,t alone, then we see that the cointegrating

component U1(1)κXt can be viewed as a dividend yield. Hilliard and Reis (1998) use

a latent Cox-Ingersoll-Ross (CIR) type model to describe the yield, which leads to a

non-central χ2-distributed dividend yield. In our case, the dividend yield process can be

discovered from the cointegration relationship, which provides us with a reason to take a

closer look at the cointegration feature to incorporate the randomness of the convenience

yield.

Example 4.1. We first contrast our futures price formula (18) with the futures price

under stochastic convenience yield derived by Hilliard and Reis (1998). We base our

computation on (11-12) with these parameters: r = 0.05, T = 1, β − 2γ = 7, ρ =
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(0.6 − 0.6)′, θQ(t) = (0.1 0.05)′, S0 = (1 1.1),

κQ =
1

3

 1.1 2

2 1

 , DQ
1 =

 −0.5 0

0 −0.5

 , DQ
2 =

 −0.5 0

0 −0.5

 ,

MQ =

 −2.5 −1.5

−1.5 −2.5

 , Q =

 0.11 0.04

0.14 0.21

 , V0 =

 0.09 −0.036

−0.036 0.09

 .

The upper part of Figure 3 plots the futures price against the spot convenience yield using

the Hilliard-Reis model, and the lower part plots the futures price against the log-value of

the current asset price of S2. As we fix S1,t = 1 in all of our computations, the change

in logS2 corresponds to the change in the cointegrating factor of our model. Similar

increasing trends are seen with the spot value of the convenience yield. Hence, we have

further numerical evidence that the cointegrating factor contributes to futures prices as

a stochastic convenience yield.

Example 4.2. It would also be interesting to determine the performance of the FRFT

applied to vanilla options under the proposed model. We examine the pricing error of

the solution of Proposition 2 and Lemma 2 using the FRFT technique. The efficient

simulation procedure of the Wishart process proposed by Gauthier and Possamäı (2009)

is adopted. By regarding Monte Carlo (MC) simulation as the benchmark, we compute

the percentage difference between the two methods. The simulation uses 10, 000 pairs

of sample paths, and the time-step is 1/300. The FRFT employs a different N , i.e.,

N = 8, 16, 32. The damping coefficient α is set at 3. Table 7 shows that the numerical

method is highly accurate because all of the errors are less than 1%. For the options with

a maturity of one year, the 16-FRFT takes less than half a second to produce 16 option

prices corresponding to different strike prices, whereas the simulation requires more than

seven minutes. This numerical example verifies that our analytical solution is correct
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Figure 3: Futures prices with cointegration versus futures prices with stochastic convenience yield

and the FRFT is accurate and efficient.

4.2. Multivariate derivatives

Many options, such as spread, maximum, minimum, and basket options, are defined

in terms of two or more underlying price processes. The underlying price system is typ-

ically modeled as a multivariate geometric Brownian motion whose volatility matrix is

constant, in which case the option valuation problem is straightforward. However, such

a model is unrealistic for capturing market phenomena. The proposed model accommo-

dates the cointegration relationship and stochastic correlation, and thus provides greater

flexibility in pricing multivariate derivatives. To illustrate this, consider the European
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Table 7: Call option prices on a single asset
T=0.5 T=1

Strike Price 8-FRFT 16-FRFT 32-FRFT MC 8-FRFT 16-FRFT 32-FRFT MC
0.85 0.1652 0.1650 0.1649 0.1651 0.1851 0.1849 0.1848 0.1849

(%difference) (0.05%) (-0.06%) (-0.12%) (0.11%) (0.00%) (-0.05%)
0.9 0.1283 0.1283 0.1282 0.1285 0.1518 0.1516 0.1516 0.1511

(%difference) (-0.21%) (-0.21%) (-0.28%) (0.46%) (0.33%) (0.33%)
0.95 0.0969 0.0969 0.0969 0.0971 0.1228 0.1227 0.1227 0.1224

(%difference) (-0.29%) (-0.29%) (-0.29%) (0.32%) (0.24%) (0.24%)
1 0.0714 0.0713 0.0713 0.0713 0.0982 0.0981 0.0981 0.098

(%difference) (0.14%) (0.00%) (0.00%) (0.20%) (0.10%) (0.10%)
1.05 0.0514 0.0512 0.0512 0.0513 0.0778 0.0777 0.0777 0.0777

(%difference) (0.19%) (-0.19%) (-0.19%) (0.12%) (0.00%) (0.00%)
1.1 0.0363 0.036 0.036 0.0362 0.0613 0.0611 0.061 0.061

(%difference) (0.27%) (-0.55%) (-0.55%) (0.49%) (0.16%) (0.00%)
1.15 0.0252 0.0249 0.0249 0.0251 0.0479 0.0477 0.0476 0.0477

(%difference) (0.39%) (-0.79%) (-0.79%) (0.41%) (-0.00%) (-0.21%)
CPU Time 0.1024s 0.2176s 0.4049s 216.393s 0.2144s 0.4609s 0.8321s 433.02s

option on two assets with payoff function Π(XT ).
1 Let the corresponding valuation for-

mula be P (t,Xt, T ). The following proposition links the option pricing formula to the

joint characteristic function.

Proposition 3. Suppose that the interest rate is constant. The present value of the

option is given by

P (0, X0, T ) = e−rTF−1
X0,u

{
f̂(X0, V0;T, u)Π̂(u)

}
, (24)

where F−1
X0,u

is the 2-D inverse Fourier transform, and Π̂(u) is the 2-D Fourier transform

of the payoff function:

Π̂(u) = FXT ,u {Π(XT )} ,

f̂(X0, V0;T, u) =
f(X0, V0;T, u)

eiX0u′ , (25)

in which f(X0, V0;T, u) is defined in Lemma 2.

1The extension to options on three or more assets is straightforward but suffers from the curse of
dimensionality.
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Proof. See Appendix D.

Given the characteristic function, all that remains is to derive the Fourier transform

on different option payoffs. The crack spread option of the oil market has the payoff:

max(S1,T −S2,T −K, 0). Hurd and Zhou (2010) have derived the Fourier transform of this

payoff. Another popular option contingent on multiple assets is the maximum option

or the best-of option of which the payoff is max(max(S1,T , S2,T )−K, 0). We derive the

corresponding Fourier transform of this option’s payoff function.

Proposition 4. Suppose that Π(X) = max(max(S1,T , S2,T )−K, 0). For any real num-

bers ϵ = (ϵ1, ϵ2) with ϵ2 > 0 and ϵ1 + ϵ2 < −1,

Π̂(u) = − iK1−i(u1+u2)

u1u2(i+ u1 + u2)
. (26)

Proof. See Appendix E.

Example 4.3. For options on several assets, Hurd and Zhou (2010) have already sug-

gested a numerical method for pricing spread options in general. The derived character-

istic function enables their numerical solution to work using FFT. To avoid repeating

their procedures, we provide only numerical examples for the best-of option in Table 8.

With an option maturity of 12 months, the FFT method produces option prices with

around a 1% pricing difference compared to the simulation.

Table 8: Best-of option prices
N = 32 N = 64

S2,t K = 0.9 K = 1.0 K = 1.1 K = 1.2 K = 0.9 K = 1.0 K = 1.1 K = 1.2
1 0.3006 0.2136 0.1408 0.0868 0.3004 0.2145 0.1412 0.0872

(%difference) (-1.47%) (-1.74%) (-1.67%) (-1.69%) (-1.54%) (-1.33%) (-1.39%) (-1.25%)
1.1 0.3304 0.2411 0.1615 0.1035 0.3325 0.2424 0.1627 0.1055

(%difference) (-1.28%) (-1.75%) (-1.10%) (-1.61%) (-0.66%) (-1.22%) (-0.36%) (0.28%)
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5. Conclusion

We propose a dynamic model for cointegrated assets with stochastic variance-covariance,

which captures most of the known stylized facts associated with financial markets, in-

cluding leverage and asymmetric correlation effects. This model enables us to derive

the solution for the joint characteristic function of asset returns in an elegant exponen-

tial affine form. As derivative pricing with the proposed model generally works with

an incomplete market, there are infinitely many equivalent martingale measures. We

consider an extended affine market price of risk specification to preserve cointegration

after changing the measure. The pricing formula for futures contracts reveals that the

cointegrating factor could be an important contributing factor to the convenience yield.

Thus, we link the stochastic convenience yield and cointegration models. The proposed

option pricing model with cointegration can be thought of as an option pricing model

with stochastic dividend yield and volatility, but the stochastic dividend yield process

is endogenously derived from the cointegration model. Although the convenience yield

is not directly observable, the existence of a cointegration relationship may facilitate its

analysis based on the observable cointegrated assets.

Based on empirical data of the spot prices and futures contracts of crude oil and gaso-

line, the model-free regression results strongly indicate that a cointegration relationship

exists not only under the physical measure but is also anticipated in the market under

the risk-neutral measure. Thus, the extended affine market price of risk specification

turns out to be more flexible in the presence of cointegration. We further propose a

super-calibration method that forces the risk-neutral discount factor to fit the observed

term structure of futures prices exactly. This method is especially useful for commodity

markets, in which spot prices are not available for most commodities.
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Appendix A: Proof of Lemma 1

After reversing the time by τ = T − t, the Feynman-Kac formula gives a partial

differential equation (PDE) for the characteristic function

L{X,V }f
P =

∂fP

∂τ
, (27)

where L{X,V } is the joint infinitesimal generator of the couple {Xt, Vt} under the physical

measure. We have

L{X,V }f
P = (LX + LV + LX,V )f

P,

LXf
P =

∂fP

∂X ′ [θ(t)− κX + (Tr(D1V ), ...,Tr(DnV ))′] +
1

2
Tr

[
∂2fP

∂X∂X ′

]
,

LV f
P = Tr[(βQ′Q+MV + VM ′)DfP + 2VDQ′QDfP],

LXf
P = 2Tr

[(
DQ′ρ

∂

∂X ′

)
fPV

]
,

where D =
[

∂
∂V ij

]∣∣
i,j=1,...,n

is a matrix differential operator. Because the Wishart process

is a matrix affine process, the characteristic function of XT is exponentially affine in the

state variables given by

fP(x, v, t;u) = exp [Tr(A(τ ; u)v) + [B(τ ;u)]′x+ C(τ ; u)] ,

fP(x, v, t = T ; u) = exp(iux),

where τ = T−t, A(τ = 0;u) = 0n, B(τ = 0;u) = iu, and C(τ = 0;u) = 0n. Substituting

it into (27) yields

Tr

[
dA(τ ; u)

dτ
v

]
+

dB(τ ;u)′

dτ
x+

dC(τ ; u)

dτ
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= B(τ ; u)(θ(t)− κx+ (Tr(D1v), ...,Tr(Dnv))
′) +

1

2
Tr[B(τ ;u)B(τ ; u)′v]

+Tr[(βQ′Q+Mv + vM ′)A(τ ;u) + 2vA(τ ;u)Q′QA(τ ; u) + 2A(τ ;u)Q′ρB(τ ;u)′v].

Matching the coefficients leads to the following system of ordinary differential equations

(ODEs).

dB(τ ;u)′

dτ
= −B(τ ; u)′κ, (28)

dC(τ ; u)

dτ
= B(τ ; u)′θ(t) + βTr(Q′QA(τ ;u)), (29)

dA(τ ; u)

dτ
=

1

2
B(τ ;u)B(τ ; u)′ + A(τ ; u)(M +Q′ρB(τ ;u)′) + (M ′ +B(τ ;u)ρ′Q)A(τ ;u)

+2A(τ ;u)Q′QA(τ ; u) +
n∑

j=1

Uj(1)B(τ ;u)′Dj, (30)

where Uj(y) denotes a row vector with the j-th element equal to y and the remaining

elements equal to 0. It is clear that from ODE (28) and B(τ = 0;u) = iu′, we have

B(τ ; u) = ie−κ′τu′. (31)

By Radon’s lemma (Freiling, 2002), ODE (30) can be linearized with the following

procedure. Let

G(τ ; u) = H(τ ; u)A(τ ;u), (32)

with H(τ ; u) being invertible. Differentiating both sides of (32) with respect to τ yields

dG(τ ;u)

dτ

=
dH(τ ;u)

dτ
A(τ ;u) +H(τ ;u)

dA(τ ; u)

dτ

=
dH(τ ;u)

dτ
A(τ ;u) + +H(τ ; u)

[
1

2
B(τ ;u)B(τ ; u)′ + A(τ ;u)(M +Q′ρB(τ ;u)′)
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+(M ′ +B(τ ;u)ρ′Q)A(τ ; u) + +2A(τ ; u)Q′QA(τ ;u) +
n∑

j=1

Uj(1)B(τ ; u)′Dj

]
.

Matching both sides gives

d

dτ
(G(τ ;u) H(τ ;u))

= (G(τ ;u) H(τ ; u))

 M +Q′ρB(τ ; u)′ −2Q′Q

1
2
B(τ ; u)B(τ ;u)′ +

∑n
j=1 Uj(1)B(τ ; u)′Dj −(M ′ +B(τ ;u)ρ′Q)

 ,

withH(τ ; u) = In andG(τ ;u) = 0n. This system of first-order linear ODEs can be solved

very efficiently using standard numerical schemes. We use the fourth-order Runge-Rutta

method (Burden and Faires, 2011) in the calculation, which is strongly stable. Therefore,

A(τ ;u) is solved accordingly. Finally, consider

dC(τ ;u)

dτ

= B(τ ;u)′θ(T − τ) + βTr(Q′QA(τ ; u))

= iue−κτθ(T − τ)− β

2
Tr

(
H(τ ; u)−1dH(τ ; u)

dτ
+M ′ + ie−κ′τu′ρ′Q

)
,

whose solution can be obtained by directly integrating from 0 to τ with the zero initial

condition as follows.

C(τ ; u) = iu

∫ τ

0

e−κsθ(t− s)ds− β

2
Tr

[
lnH(τ ; u) +M ′τ − i

∫ τ

0

e−κ′sdsu′ρ′Q

]
.
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Appendix B: Computation of Matrix Exponential

According to the Cayley-Hamilton theorem, when −κ is an n×n matrix, the matrix

exponential e−κτ can be computed by a polynomial of −κ:

e−κτ = α0(τ)In + α1(τ)(−κ) + · · ·+ αn−1(τ)(−κ)n−1,

where αk(t), k = 1, · · · , n, are governed by the system of linear equations



eλ1τ

eλ2τ

...

eλnτ


=



1 λ1 λ2
1 · · · λn−1

1

1 λ2 λ2
2 · · · λn−1

2

...
...

...
. . .

...

1 λn λ2
n · · · λn−1

n





α0(τ)

α1(τ)

...

αn−1(τ)


,

and λi, i = 1, · · · , n, are eigenvalues of the matrix −κ. Thus, αi(τ) can be represented

by a linear combination in terms of eλjτ , j = 1, · · · , n, i.e.,

αi(τ) = fi(e
λ1τ , · · · , eλnτ ) = γi0 +

n∑
j=1

γije
λjτ .

Appendix C: Proof of Lemma 1

Corollary 1 gives us

Fj,T (t) = fQ(x, v, t;Uj(−i))

= exp[Tr(AQ(τ ;Uj(−i))v) +BQ(τ ;Uj(−i))′x

+iUj(−i)

∫ τ

0

e−κQsθQ(t− s)ds+ C̃(τ ;Uj(−i))].
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We then have
∫ τ

0
e−κQsθQ(t− s)ds being an n× 1 vector, of which the j-th element is

lnFj,T (t)− Tr(AQ(τ ;Uj(−i))v)−BQ(τ ;Uj(−i))x− C̃(τ ;Uj(−i)).

Thus,

iu

∫ τ

0

e−κQsθQ(t− s)ds

= i
n∑

j=1

uj

[
lnFj,T (t)− Tr(AQ(τ ;Uj(−i))v)−BQ(τ ;Uj(−i))x− C̃(τ ;Uj(−i))

]
.

Because

BQ(τ ;u)′x− i
n∑

j=1

ujB
Q(τ ;Uj(−i))′x = iue−κQτx− i

n∑
j=1

ujiUj(−i)e−κQτx = 0,

we have

fQ(x, v, t; u, FT (t))

= exp[Tr(AQ(τ ; u)v) + C̃(τ ;u) + i
n∑

j=1

uj[lnFj,T (t)− Tr(AQ(τ ;Uj(−i))v)− C̃(τ ;Uj(−i))]

=
n∏

j=1

[Fj,T (t)]
iuj exp[Tr(∆A(τ ;u)v) + ∆C̃(τ ;u)].

Appendix D: Proof of Lemma 3

P (0, X0, T ) = e−rTE [Π(XT )|X0, V0] = e−rTE
[
F−1

XT ,u

{
Π̂(u)

}∣∣∣X0, V0

]
= e−rTE

[
(2π)−2

∫ ∫
R2+iϵ

eiXTu′
Π̂(u)du

∣∣∣∣X0, V0

]
= e−rT (2π)−2

∫ ∫
R2+iϵ

E
[
eiXTu′

∣∣∣X0, V0

]
Π̂(u)du
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= e−rT (2π)−2

∫ ∫
R2+iϵ

eiX0u′
f̂(X0, V0;T, u)Π̂(u)du

= e−rTF−1
X0,u

{
f̂(X0, V0;T, u)Π̂(u)

}
.

Appendix E: Proof of Lemma 4

Suppose that ϵ2 > 0 and ϵ1 + ϵ2 < −1; application of the Fourier inversion theorem

to eϵxΠ(x), ϵ = (ϵ1, ϵ2) implies that

Π(x) = (2π)−2

∫ ∫
R2+iϵ

eiuxΠ̂(u)d2u,

where

Π̂(u) =

∫ ∫
R2

e−iuxΠ(x)d2x

=

∫ ∞

logK

e−iu1x1(ex1 −K)

∫ x1

−∞
e−iu2x2dx2dx1

+

∫ ∞

logK

e−iu2x2(ex2 −K)

∫ x2

−∞
e−iu1x1dx1dx2

=

∫ ∞

logK

e−iu1x1(ex1 −K)
ie−iu2x1

u2

dx1 +

∫ ∞

logK

e−iu2x2(ex2 −K)
ie−iu1x2

u1

dx2

= − iK−i(i+u1+u2)

u1(u1 + u2)(i+ u1 + u2)
− iK−i(i+u1+u2)

u2(u1 + u2)(i+ u1 + u2)

= − iK1−i(u1+u2)

u1u2(i+ u1 + u2)
.
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